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Resonant Machine Learning Based on Complex
Growth Transform Dynamical Systems

Oindrila Chatterjee

Abstract— Traditional energy-based learning models associate
a single energy metric to each configuration of variables involved
in the underlying optimization process. Such models associate the
lowest energy state with the optimal configuration of variables
under consideration and are thus inherently dissipative. In this
article, we propose an energy-efficient learning framework that
exploits structural and functional similarities between a machine-
learning network and a general electrical network satisfying
Tellegen’s theorem. In contrast to the standard energy-based
models, the proposed formulation associates two energy compo-
nents, namely, active and reactive energy with the network. The
formulation ensures that the network’s active power is dissipated
only during the process of learning, whereas the reactive power
is maintained to be zero at all times. As a result, in steady state,
the learned parameters are stored and self-sustained by electrical
resonance determined by the network’s nodal inductances and
capacitances. Based on this approach, this article introduces three
novel concepts: 1) a learning framework where the network’s
active-power dissipation is used as a regularization for a learning
objective function that is subjected to zero total reactive-power
constraint; 2) a dynamical system based on complex-domain,
continuous-time growth transforms that optimizes the learning
objective function and drives the network toward electrical
resonance under steady-state operation; and 3) an annealing
procedure that controls the tradeoff between active-power dis-
sipation and the speed of convergence. As a representative
example, we show how the proposed framework can be used for
designing resonant support vector machines (SVMs), where the
support vectors correspond to an LC network with self-sustained
oscillations. We also show that this resonant network dissipates
less active power compared with its non-resonant counterpart.

Index Terms— Complex-domain machine learning, coupled
oscillators, electrical resonance, energy-based learning models,
energy-efficient learning models, resonant networks, support
vector machines (SVMs), Tellegen’s theorem.

I. INTRODUCTION

ROM an energy point of view, the dynamics of a machine-

learning framework is analogous to an electrical network
since both evolve over a conservation manifold to attain a
low-energy state. In the literature, this analogy has served
as the basis for energy-based learning models, where the
learning objective function is mapped to an equivalent network
energy [1], [2]. The network variables then evolve according
to some physical principles subject to network constraints
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Fig. 1. (a) Total or apparent power Sy of the electrical network comprising of
the active power Py or the dissipated power and the reactive power Q y or the
power used for energy storage. The goal of the proposed resonant learning
framework: (b) minimizing active power Py during learning and ensuring
Py = 0, post-learning or steady state, and (c¢) maintaining Q 5y = 0 in learning
and post-learning phases.

to seek out an energy optimal state. However, even if the
solution reached by such learning models may be optimal from
the objective function point of view, it may not be the most
energy-efficient solution when considering an actual physical
implementation. This is because most of these formulations
assume that the energy being minimized in the network is
dissipative in nature.Whereas, in a physical electrical network,
the total power Sy (also known as the apparent power)
comprises not only of the dissipative component (also referred
to as the active power) but also a latent or stored nondissipative
component (also referred to as the reactive power) [3], [4].
This is shown in Fig. 1(a) and can be mathematically expressed
as

Total Network Power Sy = Active Power Py
+j x Reactive Power Qn (1)

where j = +/—1 denotes the imaginary component. While
the active power Py represents the rate-of-energy loss in
the network, the reactive power Qpy represents the rate of
change in stored energy in the network’s electric and magnetic
fields (typically modeled as lumped capacitive and inductive
elements). In the design of electrical networks, reactive power
is generally considered to be a nuisance since it represents the
latent power that does not perform any useful work [5], [6].
However, from the point of view of learning, the reactive
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power could be useful not only for storing the learned para-
meters of the network but could also improve the dynamics
of the network during learning. In this article, we propose a
framework which exploits both active and reactive network
powers for learning and memory. The objective will be to
achieve a network power profile as shown in Fig. 1 (b) and (c).
During learning, the network will optimize its active
power (Py), and under steady-state condition or post-learning,
ensure Py = 0. The reactive power (Qy), on the other
hand, will always be maintained at zero. This implies that
the stored energy (mathematically—the time integral of the
reactive power) is conserved across the learning and post-
learning phases. Thus, during the post-learning phase or in
steady state, the network will not dissipate any power, and
the reactive energy is used to maintain its current network
state or memory.

This steady-state condition corresponds to a state of electri-
cal resonance, and in Section III, we generalize this concept to
a framework of resonant machine learning. To reach this steady
state, in Section IV, we present a dynamical system based
on complex-domain continuous-time growth transforms, which
extends our previous work on growth transform networks
using real variables [7]. The complex-domain formulation
allows manipulation of the relative phase between the voltage
and current variables associated with the network nodes and
thus is used to optimize the active-power dissipation during
learning. While the approach could be applied to different
learning networks, in Section V, we use this framework
for designing resonant one-class support vector machines
(SVMs) [8]. In this context, we also compare the performance
of the resonant SVM model with its non-resonant variant on
both synthetic and real datasets. Finally, Section VI concludes
this article with a brief discussion on the implication of the
proposed model when applied to other network-based models
that do not involve learning, for instance, the coupled oscillator
networks [9].

The key contributions of this article can be summarized as
follows.

1) Contrary to standard energy-based models (EBMs) that
optimize for a single energy metric, we map a learning
problem to an electrical network with two energy com-
ponents: dissipative(active) and nondissipative(reactive)
energy.

2) Active power dissipation is introduced as a regularizer in
the original learning problem while enforcing zero total
reactive power by driving the network into electrical
resonance. This ensures zero active power dissipation
in the post-learning stage.

3) We present a novel growth transform-based complex
dynamical system for optimizing the cost function that
ensures a resonant condition in steady state.

4) We propose an annealing schedule that can trade off the
speed of convergence with active-power dissipation for
different applications.

A. Notations

For the rest of this article, we will follow the mathematical
notations summarized in Table I.
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TABLE I
NOTATIONS
Variable | Definition
R4 One-dimensional positive real vector space
RN N-dimensional real vector space
C One-dimensional complex vector space
|z magnitude of a complex variable z
Re(z) real part of a complex variable z
Im(z) imaginary part of a complex variable z
z* complex conjugate of a complex variable z
z(t) a continuous-time complex variable at time ¢
Zn a discrete-time complex variable at the n'M time step

II. BACKGROUND AND RELATED WORKS
A. Energy-Based Learning Models

The principle of minimum energy states that all self-
organizing physical systems evolve dynamically over an intrin-
sic conservation manifold to attain their minimum energy
configuration in the steady state [10]. Energy-based machine-
learning models follow a similar cue, where the goal is to
find the optimal configuration of a predetermined energy land-
scape determined by the learning problem at hand [1], [11].
Some of the most notable examples of EBMs are those
based on the Ising model of statistical mechanics, such
as the Hopfield network [2], and its stochastic counterpart
the Boltzmann machine [12] and its variants [13]. In these
models, the network converges to the local minimum of a
Lyapunov function in steady state. Another class of EBMs [1]
proposes a unified learning framework by mapping the learn-
ing problem to a global scalar “energy function.” The algo-
rithm minimizes a loss functional to seek out an optimal
energy landscape that associates the lowest energy to the
observed configuration of variables involved in the underlying
optimization process. These methods are essentially non-
probabilistic and often involve intractable integrals, which
require MCMC methods for normalization when applied to
probabilistic frameworks. Different classes of optimization
algorithms such as contrastive divergence, contrastive Hebbian
learning, and equilibrium propagation [14], have been pro-
posed for a variety of supervised, unsupervised, and reinforce-
ment learning applications [15]-[18] in the context of EBMs.
However, all these approaches consider an energy metric
that solely depends on the learning task under consideration.
This implies that in an analog implementation of the model,
the optimal solution may not be the most energy-efficient one.

B. Complex-Domain Machine-Learning Models

A variety of complex-domain learning models have been
proposed in the literature for different learning algorithms,
e.g., complex neural networks, complex SVMs, and complex
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(a) Learning is equivalent to changing the values of inductive and capacitive elements. (b) In steady state, the network is driven into electrical resonance.

deep networks [19]-[23]. In addition to providing the phase
variables that allow for an additional degree of freedom, other
advantages of the complex-domain operation have been shown
in these works. It has been demonstrated that complex learning
models lead to a richer set of dynamics, noise robustness,
and better convergence properties in the case of classification
problems [20], [24], [25]. Moreover, phase information might
provide additional insights in the context of many complex-
valued physical signals (or complex-domain transforms of
physical signals, e.g., Fourier or wavelet transforms) [20], [26].
However, most of these complex learning models either
treat the real and imaginary components of the signal sepa-
rately, or do not utilize the entire phase space when operating
in the complex domain.

III. OPTIMIZATION AND ELECTRICAL RESONANCE

Consider an electrical network as shown in Fig. 2(a), com-
prising of N internal nodes. The voltage difference between
the ith and jth nodes is denoted by V;;, with Vjo being the
ith nodal voltage with respect to ground terminal (referred to
as the Oth node). Similarly, the current flowing between the
ith and jth nodes is given by /;;, and ;o denotes the current
flowing out of the ith node into the ground terminal. Then,
according to Tellegen’s theorem [27]

2. Vil =0
i

which states that the total complex electrical power or apparent
power is zero. Isolating the apparent power flowing from the
nodes to the ground terminal from that flowing between the
internal nodes, we have

> VI + > Vi) =0

)

i#],0;j#0
N N
= D Voliy=— > Vil
i=1 i,j=1
— St = —Sy
= Pr+jOr=—Py—jOn
= |Pr|=|Pp|
= |01 =10 3)
where Sy = >, Violj, is the nodal apparent power, and

Pr = > Re{Violjy} and Q7 = > ; Im{VjoI} are the total

active and reactive power consumed at the terminal nodes.
Similarly, Sy, Py, and Qpy represent the apparent, active,
and reactive power consumed due to current flow between
the network nodes (other than the ground terminal). Note that
this result holds even if active-power sources are embedded in
the network, as shown in Fig. 2(a). Thus, (3) implies that if
we minimize the active power at the nodes of the network Pr
subject to the constraint that the nodal reactive power Q7 = 0,
then the formulation would be equivalent to minimizing the
network active power Py while ensuring that the network
reactive power Qn = 0. This result can be equivalently
expressed as

N
D= [Re{V;I}}?

i=1

st. > Im{Vi[} =0
i

min
{Vi,1;€C}
(4)
where we have used the notations Vo = V; and [I;p = [; for
the sake of brevity. If we assume that the ith node is associated

with a lumped capacitance C; and a lumped inductance L;,
ensuring zero nodal reactive power implies

N *
dv; dl;
Z Vi(cid—tl) + (Lid_;)li* =0

i=1

(5)

where (Ci%) and (Li%) represent the current flowing
through C; and the voltage across L;, respectively. Equa-
tion (5) is equivalent to

N
> lc-|v-|2+1L-|1-|2 = E,
2 1 L 2 it

i=1

(6)

where |V;|> = V; V¥ and |[;|* = I;1, implying that the total
network reactive energy is conserved to be equal to some
constant value Eg. Satisfying this constraint is equivalent to
sustaining a condition of electrical resonance. The optimiza-
tion problem (4) can be transformed as

N
RSV ARV AR

i=1

@)

min
{IVil,|I;|eRy,¢; R}

N
1 1
s.t. Z(Eci|vi|2+5Li|Ii|2)=Eo, |pil < Vi (8)

i=1
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where ¢; denotes the phase angle between the voltage and
current phasors at the ith node. Note that the optimization
in (7) admits only three types of solutions in steady state:
D (4] # 0,1Vil # 0,|¢i] = =/2) which corresponds
to a resonant LC tank; 2) (|;] = 0,|Vi] # 0) which
corresponds to an electrically isolated or floating node; and
3) (I1;] # 0, |Vi|] = 0), which corresponds to a short-circuit.
In Appendix A, we illustrate steady-state resonance conditions
using a simple LC tank. Note that in all cases, active power
is dissipated only during the learning phase, where C; and
L; adapt to change the relative magnitude of the voltage
and current variables. Fig. 2(b) shows this resonant condition
of the network in the post-learning stage, whereby active
power sources in the network get electrically isolated from the
rest of the network. The lumped capacitance and inductance
associated with the LC network at the terminal nodes adapt
such that the resonant frequency condition in maintained in
steady state (see Appendix A). This implies that in steady
state, the learned network parameters are stored and sustained
by the resonant electric and magnetic fields of the LC tanks.

The constraint in (8) can be simplified by normalizing with
respect to Eg such that

N
Sk +1nP) =1 ©)

i=1

where V; <« (ZCT"O)UZVi and I; <« (i)l/z

3k, I; represent

the dimension-less voltages and currents. Henceforth, unless

stated otherwise, we will use dimension-less quantities in our
derivations.

We now extend the optimization framework in (7) to include

a general optimization function H as

LAEWVil, il #i) = HAVil, L) + D

min
{IVil. i |, }
N
st. D (ViP+ILP) =1, |gil <7 Vi. (10)

i=1

In this formulation, the active-power dissipation D in (10)
acts as a regularization function with f > 0 being a hyper-
parameter. Note that the objective function H({|Vil, |i|})
is only a function of the magnitudes of the voltages and
currents and is independent of the phase angle ¢;. This
ensures independent control of the magnitudes and the phases
to achieve the desired objective of optimizing the active-
power dissipation. This is shown in Fig. 3, where control-
ling the phase allows different paths from the initial to the
final state, whereas evolution over the real domain allows
only one possible path. The complex-domain approach thus
results in steady-state limit cycle oscillations that encode the
final solution. Compared with other complex-domain machine-
learning frameworks [20], [23], the proposed formulation
avoids nonlinear processing of phase/frequency that produces
unwanted higher order harmonics. This would have made it
difficult to maintain the network in the state of resonance
(at a specific set of frequencies) under steady state.

The two important properties of the optimization framework
in (10) are as follows.
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Fig. 3. TIllustration showing that operating in the complex domain allows
different possible learning trajectories from an initial state to the final steady
state. Regularization with respect to the phase factor could then be used
to select the trajectory with an optimal active-power dissipation profile and
results in limit cycle oscillations in steady state. The circles indicate the
constant magnitude loci.

1) For a convex cost function H, we have

LAVl 1Ll ¢i})= min
(AIVil, 111, ¢i}) anas

min HAVIL L.
Vil i) anran)
(11)

This result follows from the three possible solutions of
optimization problem (7).

2) If S is slowly annealed to a sufficiently high value, then
¢i — m/2 under steady state for i : |Vi||l;] # O.
This implies that network achieves zero active power
dissipation in steady state. Note that the method holds
for nonconvex objective functions as well. In this case,
however, the network might show resonant behavior at
a locally optimal solution.

Example 1: Consider a single-variable quadratic optimiza-
tion problem of the form 71 (x) = x?, subject to the constraint
|x| < 1, x € R. Substituting x = |V|> — |I|?, the problem
can be mapped (please see Appendix B for more details) into
the form equivalent to (10) as

Li=(V* = I +BIVIHI cos’ ¢ (12)

|p| < m.

Fig. 4(a)—(c) plots £ for different values of . As shown
in Fig. 4(a) and as expected for f = 0, the cost function has
several minima (or attractors), whereas for f > 0, the min-
ima corresponds to ¢ = =x /2, for which the active-power
dissipation is zero. Fig. 4(b) and (c) shows that controlling
S will control the optimization landscape (without changing
the location of the attractors) and will determine the attractor
trajectory. This feature has been exploited in Sections IV and
V to optimize the active-power dissipation profile during the
learning phase.

min
{IVL11,¢}

st |VI2411>=1, (13)

IV. COMPLEX GROWTH TRANSFORMS

The problem in (10) involves complex phasors and hence
entails the use of learning models operating in the complex
domain for reaching the optimal solution. To this end, in this
section, we propose a dynamical system that can be used to
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Algorithm 1: Complex Growth Transform Dynamical System (Proof in Appendix C)

e For an optimization problem of the form:

N
LAVl L] ¢} = HAVilL LD + B D 1Vil? 111 cos? ¢

min
{IVil,11i 1,6} o
N
st 2 (ViP+1LP) =1, Il sz Vi=1,.. N, f=0 (14)
i=1
o If H({|Vil, |1;]}) is Lipschitz continuous in the domain D = {|V;|, | ;] : vazl (IV,'I2 + |I,~|2) =1}, the
following system of nonlinear dynamical equations
oV;(t .
alt() = joov,()Vi(t) — Aoy, (1) Vi (1), (15)
ol;(t
55 ) — @+ ooy 010 — Aoy, L), (16)
and 7;04 + ¢i(t) = g4, (t) Yi=1,...,N 17)
oL
ensures that — < 0, (18)
ot
oL 1 oL déi(r)
h (1) = (—— /IV.*), (1) = (—— /II.*), = , Aoy, (t) =1 — oy (1),
where o0 \/Vi*n av, TAVT) en® \/I,-*n op;, THT) en =g Aon@) ovi ()
oL
S c oL
Ao (1) =1—o0p(t) and g4, (1) =7 P , with 57 = Z,ivzl Vk[ - — +/1Vk*] + Ik[ - — +/II,:‘] , @ is an
oL Vi ol
—(/5,'? + i

. . i . . .
arbitrary angular frequency, and 7; is the time-constant associated with the evolution of ¢;.

solve this optimization problem. The main result is summa-
rized in Algorithm 1, and the details of the proof is given
in Appendix C.

Theorem 1: The system of nonlinear dynamical equations
given by (15)—(18) in Algorithm 1 converge to the optimal
point of (14) in the steady state, with zero energy dissipation,
ie., 2,11\’:1|V,~||I,-|cos ¢i = 0 (proof given in Appendix C).

Consider an optimization problem that is an multivariable
extension of Example 1, given by (12) and (13):

N N
L=y (Vil* =L+ JVilP|li* cos” ¢ (19)
i=1

min
{1Vil.l1i1.¢i} im

N
st. D (ViP+ILP) =1, |§l <= Vi.
i=1

(20)

The optimal solution is reached when ¢; = =+(n/2) Vi,
which implies £y = 0. For the sake of comparison, we will
consider two variants: 1) the non-resonant model (M) where
f = 0, and 2) the resonant model (M,) where f # 0.
Fig. 5(a) and (b) shows a comparison of the cost Hy and
the regularization metric Dy (Zf*’:1|v,-|2|1,~|2 for M, and
SN WVilPlL1? cos? ¢ for M,), for N = 5 and @ = 7/10.
In the case of M,,, Ly = Hy and in the case of M,,
Ly = Hy + pDn, with f = 1. The solid line indicates
the mean response across ten trials with random initializations
of Vi, I;, and ¢;. The shaded region shows the standard
deviation across the trials in each case. Also shown in Fig. 5(b)
are the true active-power dissipation profiles (Zfl\'=1|V,-||I,-|
for M,, and Zfl\’:l|Vi||I,-|cos¢,~ for M,) over the ten
trials.
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Fig. 5. Comparison of the resonant optimization model (M) with its non-resonant variant (M) for a quadratic objective function £y shown in (19). For
this experiment, N = 5, input frequency w = 7 /10, and the mean response is estimated over ten trials with random initializations of V;, I;,¢; Vi =1,...,5.
(a) Comparison of the time evolution of Hy for My, and M,. (b) Comparison of the time evolution of Dy (ZiNzl |Vi |2|I,- |2 for My, and

iN: 1|V,~|2|I,~|2 cos? ¢; for M,). For all the curves, the line indicates the mean response, while the shaded region shows the standard deviation about

the mean across the ten trials. The true dissipation (Zr’l\’:l [Villl;| for My, and Z,}lv:l [Villl;| cos ¢; for M) over the ten trials is also shown. Phasor
representations of the LC tank voltages and currents for a single trial. (c) Initial configuration and (d) final configuration for M,.. For M,, =1 for all the

trials.

It can be observed that under steady-state conditions,
the model M, dissipates power. However, for the model M,,
the steady-state active power goes to zero. This is shown
in Fig. 5(b). Fig. 5(c) shows the initial phasor configuration
for the currents and voltages at each node of the network for a
single trial for M,.. Here, we assume the voltage phasor V; to
be aligned with the horizontal axis and the current phasor /; to
be at an angle ¢; with respect to the horizontal Vi. Fig. 5(d)
shows the steady-state phasor configuration for M, for the
same trial. The voltage and current phasors are orthogonal to
each other for all the nodes, thus verifying the zero active-
power dissipation.

In the next set of experiments, we annealed the hyper-
parameter f and evaluated its impact on the active-power
dissipation metric Dy and the convergence of the object
function Hy for the model M,. Fig. 6 shows a comparison
of the performance of M, for different choices of annealing
schedule for £, with the angular frequency w /10 as
before. Fig. 6(a) shows the time evolution of the objective
function Hy, Fig. 6(b) shows the time evolution of the
dissipation metric Dy, and Fig. 6(c) shows the annealing
schedules adopted for f. In all the cases, the optimization
process starts after time ¢ = 0.1 a.u. from the onset of the
simulation. The curves corresponding to f = 1 denote the case
when f takes a constant value from = 0.1 a.u.; f = logistic
corresponds to the case when S is slowly increased from
Pmin = O following a logistic curve of the form £(r) =
PBmin+(Bmax — Bmin)/ (1 + exp(—k(t + 19))) fromt = 0.1 a.u.
and takes on a maximum value of fnax = 1 (k and #y are
hyperparameters determining the steepness and midpoint of
the sigmoid, respectively); f = switching corresponds to the
case when £ switches from a minimum value (S = 0) to a
maximum value (fmax = 1) at + = 0.3 a.u., after the system
has converged to the optimal solution. We can observe that
in all the cases, the model converges to the optimal solution,
irrespective of the choice of . However, different annealing
schedules for f lead to different active-power dissipation
profiles. For example, a constant value of £ throughout the
duration of the experiment would lead to faster minimization
of the active-power dissipation metric but at the cost of slower

convergence. The opposite trend can be seen when £ is slowly
annealed to a sufficiently high value throughout the course of
the optimization. The annealing schedule thus acts as a tradeoff
between the speed of convergence and the rate of minimization
of the active power.

A. Model Properties and Extensions

The dynamical system represented by (15)—(18) and the
resonant optimization framework also exhibit the following
properties and extensions.

1) Energy Constraints Can Be Imposed Over Subgroups of
Nodes in the Network: We can have the reactive energy
conservation constraint between subgroups of nodes,
instead of on the network as a whole, i.c., vazkl (| Vir 1>+
|1,-k|2) =1Vk=1,...,M, where M is the number of

subgroups and Nj; = is the number of nodes in the
kth subgroup. The update equations in this case are given
by

oVik(r) .

— = Joov (OVik (1) = Aoy ()Vik 1)

Mie(r) .

la—f =] (C()k +w¢ik)01fk (t)Iik (t)

—Aop, (D) (1)

Tik Oy + Gik(t) = gpy (1) Vi, k (21

where wy is the constant angular frequency of the kth
subgroup of nodes, and wgy,, = %.

System Dynamics and Reactive-Energy Constraints
Remain Invariant Under the Imposition of a Global
Phase: The network dynamics remain invariant to the
imposition of a global phase component on all the
network variables, and the conservation constraint is also

satisfied in this case. The governing equations are given

2)

by

axgt(t) = j(@+ wg,)ov,()Vi(t) — Aoy, () Vi (1),

P _ ot op, +op)o O (-0, 0 10) 22
where ¢, is the global phase and wy, = %.
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Time (a.u.) dissipation
=z — (25)
08l , - ,6‘=Iog'isticl I
' , B-switching where ) = @ 4 @y The first terms in the right-
—~ 06 ! hand side of (24) and (25) correspond to stable limit
E o " cycle oscillations of all the phasors, whereas the other
@ - I terms correspond to the dissipative effects in the net-
02+ U . work. This demonstrates that the network as a whole is
H 7 . .. . .
oL -, ‘ ‘ essentially a coupled dissipative system that is capable
0 02 0.4 0.6 of self-sustained oscillations under steady state. Each
Time (a.u.) individual state variable describing the network thus
Fig. 6. Comparison of the performance of the resonant model M, for returns to the same position 1n 1ts respective limit CyCle

different choices of annealing schedule for f (N = 5, @ = x/10). (a) Time
evolution of Hpy (inset shows a zoomed-in view of the cost evolution in the
transient phase). (b) Time evolution of Dy . (c) Time evolution of f. In all
the cases, the optimization process starts after 0.1 a.u. from the onset of
the simulation. The curves corresponding to f = 1 denotes the case when
f takes a constant value from t = 0.1 a.u., f = logistic corresponds to the
cases when £ is slowly increased following a logistic curve from r = 0.1 a.u.
and takes on a maximum value of f = 1, and f = switching corresponds
to the case when f switches from a minimum value(= 0) to a maximum
value(= 1) at + = 0.3 a.u., after the system has converged to the optimal
solution.

3) Reactive-Energy Constraints Remain Invariant With
Varying Network Dynamics Under the Imposition of a
Relative Phase: The conservation constraints are satis-
fied on the introduction of a relative phase component
between the voltage and current phasors of each node,
even though the overall network dynamics change. The
governing equations are given by

a‘;t( D=+ gy )ov, (OVi(t) = Aoy, (Vi (D),
alaift) = j(o+ oy, + wg)or ()1i(t) — Aoy, (1)1i(1)

(23)

where ¢; = ¢, — ¢y, is the relative external phase shift

applied between the voltage and current phasors of the

. doy. do;.
ith node, Oy, = %, and 0, = %.

at regular intervals of time, even when subjected to small
perturbations.

V. RESONANT MACHINE-LEARNING FRAMEWORK

In this section, we show how the framework introduced in
Section IIT can be applied for constructing resonant machine-
learning networks. In general, the framework can be applied
to any learning network that optimizes a cost function defined
over a set of learning variables o; as

r{nir}1 H{ai})) +hY ({a;}))

aj
N

s.t. Zaizl, 0; >0 Yi=1,...,N  (26)
i=1

where H({a;}) represents a loss function [28], which
depends on the learning problem (e.g., supervised, unsuper-
vised, or semisupervised) and the dataset under consideration
(e.g., training data). The second term W(-) in the objective
function is any linear or nonlinear function which represents
either a regularization function or a penalty function used to
satisfy optimization constraints. & is a hyperparameter that
acts as a tradeoff between H(-) and ¥ (). Because a; could
be viewed as probability measure, the optimization frame-
work in (26) naturally lends itself to probabilistic learning
models [29]-[31].

The problem above can be mapped to the reso-
nant learning framework in Section III by substituting
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Fig. 7. Comparison of the active and reactive power dissipated at each node for the non-resonant model M, and the resonant model M, for the synthetic
one-class SVM problem on a two-dimensional dataset (Dataset I), with N = 300, v = 0.1, @ = = /4, and random initializations for V;, l;,¢; Vi =1,..., N.
(a) and (c) Values of the active power metric (= |V;||/;|) at each node in the initial and final stages, respectively, for M. (b) and (d) Values of the reactive
power metric (= 0) at each node in the initial and final stages, respectively, for M. (e) and (g) Values of the active power metric (= |V;||[;|cos¢;) at
each node in the initial and final stages, respectively, for M. (f) and (h) Values of the reactive power metric (= |V;||/;|sin ¢;) at each node in the initial
and final stages, respectively, for M. For both models, K (-, -) was chosen to be a Gaussian kernel with kernel parameter ¢ = 1, and f = | throughout the

optimization process for M.
a; = |Vi|* 4+ |I;|?, to arrive at the following problem:

min H{Vil, |1} + Y {IVil, [
qymin - HAViL LD R AVl D
N
+ 8D Vil 1i]* cos® ¢

i=1

N
st. > (ViP+IL)=1, |l <7 Vi=1,...,N. (27)
i=1
Note that non-probabilistic learning problems can also be
mapped to the probabilistic framework by imposing an addi-
tional constraint, as discussed in Appendix A.

A. One-Class Resonant SVM

We now show how the framework in (27) can be used to
design a resonant one-class support vector machine.

The solution of a generic one-class SVM is obtained by
solving the following optimization problem [8], [32], [33]:

N N

% Z Z a; K (xi, Xj)o;

i=1 j=1

min
{ai}

N
1
s.t. Za,-:l, 0<oc,-<W Yi=1,...,N (28)
i=1

where X = [X1,...,Xi,...,xn] € RV*P is the D-dimensi-
onal input dataset of size N, v € {0, 1} is a parameter that
controls the size of the decision surface, K (-, -) is a positive-
definite kernel function satisfying Mercer’s conditions, and

o; values are the learning parameters. The optimization prob-
lem above can be reformulated by replacing the inequality
constraint with a smooth penalty or loss function W(-) such

as the logarithmic barrier, e.g., ¥ (a;, v) = — log (ﬁ - a,-)
| NN N
in H=-— K (xi, X{)a; h ¥ (ai,
min 2220(, (xi, Xj)a; + ,zzl (@i, v)

i=1 j=1

(29)

N
S.t. Zai =1.

i=1
The parameter & determines the steepness of the penalty
function, where a lower value of & implies an almost-accurate
inequality constraint.

An equivalent complex-domain representation in terms of
voltages and currents in an LC network can be arrived at if
we consider a; = |V;|? + |I;|* Vi. In this case, we consider
that the network is globally energy constrained, and all the
individual units in the network have the same frequency w.
The redefined learning problem is as follows:

1 N N
5 2 2 Vil + 1)K (xi, %)

min  H=
{IVil, 11} ‘ :
i=1 j=I

N
< (IViP?+ 115 +h > W Vil 1], v)

i=1

N
st > (ViP+167) =1.

i=1

(30)
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Fig. 8. Comparison of the performance of the resonant model M, for different choices of annealing schedules for f for the one-class SVM problem,

on three different two-dimensional synthetic datasets for a simulation duration of + = 4 g.u. In all cases, N = 300,v = 0.1, w = 7/20, and K(-,-) was
chosen to be a Gaussian kernel with parameter values ¢ = 1, 10 and 20 for synthetic Datasets I-III, respectively. In addition, for each dataset, V;, I;, ¢; were
randomly initialized Vi = 1, ..., N. (a) Contour plot with the decision boundary around the data points and SVs. (b) Time evolution of H (inset shows a
zoomed-in view of the cost evolution in the transient phase). (c¢) Time evolution of D. (d) Time evolution of f for different annealing schedules. The curves
corresponding to = 1 and 10 denote the cases when f takes a constant value throughout the simulation duration; £ = logistic; and f = logistic, correspond
to the cases when £ is slowly increased following a logistic curve and takes on maximum values of fmax = 1 and fmax = 10, respectively; f = switching
corresponds to the case when £ switches from a minimum value (S, = 0) to a maximum value (fmax = 10) at r = 2 a.u., after the system has converged
to the optimal solution. (e)—(h) Similar plots on Dataset II. (i)—(1) Plots corresponding to Dataset III.

Introducing the active-power dissipation regularization,
we arrive at the following problem:

N N
. 1 2 2
min L=— Vil“ + |1;]7) K (xi, Xj
AR 2 2. 2 Vil + 11P)K (. )

i=1 j=1
N
< (IV;*+ 1112 + 0 > W (Vi L], v)
i=1

N
+ 8 Vil cos”

i=1

N
st. D> (ViP+1L1) =1, |l <= Vi.
i=1

(€19

The update equations in this case are of the form shown
in (15)—(18). Fig. 7 shows a comparison of the active and
reactive power metrics of each node of the non-resonant model
My, and the resonant model M, for a synthetic one-class
SVM problem on a two-dimensional dataset (Dataset I). The
dataset was generated by uniformly selecting 300 random

points within a circle having a fixed radius. Here, N =
300,v = 0.1, and w = n /4, with random initializations for
Vi,Ii,¢; Yi =1,...,N. A constant value of the regulariza-
tion hyperparameter § = 1 was considered throughout the
duration of the optimization process for M,. Fig. 7(a) and
(c) shows the values of the active power metric (= |V;||/;|)
at each node in the initial and final stages, respectively, for
M, whereas Fig. 7(b) and (d) shows the values of the
reactive power metric (= 0) at each node in the initial and
final stages, respectively, for M,,,. Similarly, Fig. 7(e) and (g)
shows the values of the active power metric (= |V;||/;| cos ¢;)
at each node in the initial and final stages, respectively, for
M, whereas Fig. 7(f) and (h), finally, shows the values of the
reactive power metric (= |V;||;|sin ¢;) at each node in the
initial and final stages, respectively, for M,.

Fig. 8 shows a comparison of the performance of
the resonant model M, for different choices of anneal-
ing schedules for S on three different two-dimensional
synthetic datasets for a simulation duration of t =4 a.u.
In all cases, N = 300,v = 0.1, = #/20, and K(,-)
was chosen to be a Gaussian kernel with parameter values
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Fig. 9. Robustness to random initialization. Comparison of (a) time evolution
of the cost H and (b) dissipation metric profile D (ZYIL\’:IIVI-IZIII-l2 for
the non-resonant model M, and Z,}:’:llvilzlli|2cos2 ¢; for the resonant
model M, respectively) for the synthetic one-class SVM problem on
Dataset I for N =300, v = 0.1, and w = /8 over ten random initializations
for Vi, I;,¢; Yi = 1,..., N. The regularization parameter was chosen to be
p =1 for the entire simulation duration of = 4 a.u. of the optimization
process for M. For all the curves, the solid line indicates the mean response,
whereas the shaded region shows the standard deviation about the mean across
the trials.

o = 1,10, and 20, respectively, for synthetic Datasets I, II
and II. In addition, for each dataset, V;, I;, and ¢; were
randomly initialized Vi = 1,..., N. Fig. 8(a) shows the
contour plot with the decision boundary around the data
points, along with the support vectors (SVs) for Dataset I,
whereas Fig. 8(b)—(d) shows the time evolutions of the cost H,
the dissipation metric D, and the hyperparameter S for
different annealing schedules. The curves corresponding to
f = 1 and 10 denote the cases when f takes a constant
value throughout the simulation duration. f = logistic; and
f = logistic, correspond to the cases when S is slowly
increased following a logistic curve of the form S(f) = fmin+
(Pmax — Pmin)/ (1 + exp(—k(t + 1p))) and takes on maximum
values of fmax = 1 and fmax = 10, respectively, starting
from fmin = 0. Finally, f§ = switching corresponds to the
case when f switches from a minimum value (fpin = 0)
to a maximum value (fpmax = 10) at + = 2 a.u., after the
system has converged to the optimal solution. Fig. 8(e)—(h)
shows the similar plots for Dataset II, whereas Fig. 8(i)—(1)
shows the plots corresponding to Dataset III. Dataset I,
as described before, was generated by selecting 300 points
uniformly within a two-dimensional circle having a fixed
radius. Datasets II and III also consist of 300 data points
generated using a Gaussian mixture model consisting of four
different clusters, with a fixed cluster mean and variance
associated with each cluster. Datasets II and III differ only
in terms of the cluster means associated with their respective

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE 11
PERFORMANCE ON REAL BENCHMARK DATASETS FOR v = 0.1

Dataset Majority Class Size | Correct | Outliers | SVs
Iris (50,4) 48 2 8
Heart (139,13) 1210 18 56
Diabetes (500,4) 466 34 90
Ecoli (327,7) 309 18 42
Adulta3a (2412,123) 2111 301 356
Mammography (10923,6) 9608 1315 5969

constituent clusters, while the cluster variances are the same
for all the clusters for both the datasets. It can be seen that
since the optimization problem is convex, the model always
converges to the optimal solution for every dataset, irrespective
of the annealing schedule for § or the dataset complexity.
However, the dissipation profiles corresponding to a particular
annealing schedule strongly depend on the complexity of the
dataset. In general, however, higher values of § would lead to
lower dissipation profiles during the learning process. Also,
the model shows a much slower convergence in terms of
the actual objective function for a constant nonzero value of
p throughout the optimization, compared with the case when
f is slowly annealed to a sufficiently high value. The choice
of a proper annealing schedule for f would thus involve a
tradeoff between the speed of convergence and the rate of
power dissipation.

Finally, Fig. 9(a) and (b) shows the robustness of the
proposed framework to different initial conditions by providing
a comparison of the time evolutions of the cost H and the
dissipation metric D (3_,|V;|?|I;|* for the non-resonant
model M, and ny:l | Vi |2|1,- |2 cos? ¢; for the resonant model
M,), when applied to Dataset I. We show the results for
ten random initializations of V;, I; and ¢;, Vi. In all cases,
v=0.1,0 = xn/8, and K(-,-) was chosen to be a Gaussian
kernel with parameter value ¢ = 1. Note that even though
the ten trails had different initializations of V; and [;, they
were chosen to have the same initial value of a/s in all
cases, because of which there is no deviation between the
cost evolution curves for both M, and M,. The dissipation
evolution is, however, different across different trials for both
the models. However, the dissipation attains a final value of
zero for M, for all the trials, while there is a finite dissipation
for M, in all cases.

We also conducted experiments on real-life benchmark
datasets of varying sizes and dimensionality, considering the
majority class as inliers in all cases. In all the experiments,
we used similar parameter settings and annealing schedules
as used in the experiments shown in Fig. 8, and v = 0.1.
Table II shows the dataset description along with the perfor-
mance [number of inliers, number of outliers, and number
of support vectors (SVs)] of the one-class SVM classifier
for the following datasets: “Iris” (inlier: class “setosa”),
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Fig. 10. Comparison of the dissipation profiles of the resonant model M, for different choices of annealing schedules for f for different real-life benchmark
datasets. (a) ‘Iris’. (b) ‘Heart’. (c) ‘Diabetes’. (d) ‘Ecoli’. (e) ‘Adulta3a’. (f) ‘Mammography’.
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Fig. 11.  Circuit- and phasor-based representations for a one-class SVM
problem. (a) Support vectors, corresponding to resonant LC tanks. (b) Interior
points, corresponding to sinks/ground (V;, I; = 0).

“Heart” (inlier: ‘“healthy” heart), “Diabetes” (inlier: non-
diabetic patients), “Ecoli” (inlier: classes ‘“cp,” “im,” ‘pp,’
“imU,” and “om”), “Adulta3a” (inlier: individuals with income
< $50K), and “Mammography” (inlier: non-calcifications)
[34], [35]. Fig. 10(a)—(f) shows the dissipation profiles cor-
responding to different annealing schedules for the different
datasets. It can be seen that an optimal choice of the annealing
schedule depends on both the dataset size and complexity, even
though the dissipation decreases over time for all the cases,
irrespective of the schedule chosen.

Interestingly, the solution of the one-class SVM can be
interpreted in terms of an electrical network as follows,
as shown in Fig. 11: 1) the support vectors have voltage
and current magnitudes with a £z /2 phase shift between
them, and hence can be interpreted as resonant LC tanks; and
2) the interior points well inside the boundary have both zero
voltage and current magnitudes and can be essentially treated
as floating sinks.

VI. CONCLUSION AND DISCUSSION

In this article, we proposed a complex-domain formulation
of a machine-learning network that ensures that the network’s
active power is dissipated only during the process of learning,
whereas the network’s reactive power is maintained to be zero
at all times. We showed that the active power dissipation
during learning can be controlled using a phase regularization
parameter. Also, the framework is robust to variations in
the initial conditions and to the choice of the input/driving
frequency . The proposed approach thus provides a physi-
cal interpretation of machine-learning algorithms, where the
energy required for storing learned parameters is sustained
by electrical resonances due to nodal inductances and nodal
capacitances. Using the one-class support vector machine
problem as a case study, we have shown how the steady-state
solution of a learning problem can be interpreted in terms of
these nodal circuit elements.

Future directions involve exploring the implications of
incorporating network dynamics in the free frequency vari-
able w, and utilizing the phase information associated with
each node in the learning process. Also, the experimental
results presented in this article were based on an unsupervised
learning setting. Exploring an energy-efficient framework for
supervised learning problems would also be a part of our future
work.

In this paper, we also proposed a dynamical system model
based on complex-domain growth transforms. The formulation
is general enough to be applicable to other complex-domain
learning models [19]-[23]. Our proposed framework also
preserves both the magnitude and phase information
and provides additional flexibility compared with other
complex-domain learning models in terms of phase
manipulation/cancellation [20].

In addition to implementing classic machine learning algo-
rithms, the complex growth transform dynamical system can
also be used for designing synchronized networks of coupled
oscillators. Such networks can be potentially used for solving
different computing tasks such as optimization, pattern match-
ing etc., as is achievable using coupled oscillatory computing
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Fig. 12. LC tank resonator.

models [36], [37]. An oscillator network designed in this
fashion is capable of demonstrating stable, self-sustaining
oscillatory dynamics, whereby the network can return to its
initial stable limit cycle configuration following small per-
turbations, while simultaneously minimizing some underlying
system-level objective function. The framework could also
be used to study connections between learning and synchro-
nization, or the emergence of a rhythmic periodic pattern
exhibited by a group of coupled oscillators, which provides
the key to understanding periodic processes pervading com-
plex networks of different biological, physical, social, and
quantum ensembles [9], [38]. In this regard, the existing
mathematical models for such collective behavior are mostly
phenomenological or bottom—up, and in general, do not pro-
vide a network-level perspective of the underlying physical
process. The proposed growth transform formulation, thus,
could provide new network-level insights into the emergence
of phase synchronization, phase cohesiveness, and frequency
synchronization in coupled-oscillator networks.

Note here that since we are implicitly assuming an analog
implementation, the learning network should converge to the
steady-state solution of the optimization, where the time of
convergence depends on the network’s time constant [39].
Hence, the notion of time complexity is not well defined.
However, in a digital implementation, the time complexity
would depend on the learning algorithm under consideration,
dataset size and dimensionality, angular frequency w, and time
constants 7; for the phase updates.

APPENDIX

A. Resonance in an LC Tank

Consider the parallel LC tank circuit shown in Fig. 12,
with V¢ and Vi being the voltages across the capacitor C and
inductor L, respectively. Ic and I7 denote the corresponding
currents flowing through the elements. Thus, Vs = V; = V¢
and Is = I; + Ic. Considering the LC tank to be driven by
the voltage source Vg at frequency w, we have the following
condition in steady state:

V.
Is@) = S9N — el 32)
joL
Resonant condition of the circuit is achieved when
1
w=—— = Is(w) =0. (33)

JvLC
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This implies that the apparent power Sy = Py + jOnN =
VsI§+ VLI + Ve, where the active power Py = 0. In addi-
tion, at resonance, the reactive power Oy = Qc + Q1 =
ViIf + Velg = —(j/ol)IV(@) + (j/oL)|V(@)]* = 0,
where Q¢ and Qp are the reactive powers associated with
the capacitance and inductance, respectively.

B. Mapping a Generic Optimization Problem to the
Equivalent Network Model

Let us consider an optimization problem defined over a
probabilistic domain, given by the following generic form:

I{ni_r}l H({xi})

N
S.t. in =1, x; >0.
i=1

We can map the above to the electrical network-based model
introduced in Section III by replacing x; = |V;|>+|1;|%, which
leads to the following problem in the {|V;|?, |;|*} domain:

(34)

min ~ H{| Vi, |I;
{IVil,1L; 1} (1vil, 14:1})

N
st > (ViP+ 167 =1. (39)
i=1
Note that the method also works for optimization problems
defined over non-probabilistic domains of the following form:

rpi? H({x:})

st x| <1, x;eR VYi=1,...,N. (36)

This can be done by considering x; = xi+ — x; Vi, where

both x;r,xf > 0. Since by triangle inequality, |x;| < |xl-+| +
|x;”|, enforcing x;r +x; =1 Vi would automatically ensure
|x;] <1 Vi. Thus we have

argmin H({x;}) = argmin H({x;“,xf})
) [}

s.t. x| <1, x; eR S.t. xi++xi_: 1, x?‘,xi_zo.
(37)
In this case, we replace x;r = |Vi|%, x; = |I;]2, and

the equivalent problem in the {|V;|?, |1;|*} domain is thus as
follows:

min

HA|Vil, | 1;
(Vi1 1} {IVil, 11:1})

st. [ViP+|L)PP=1 Vi=1,...,N. (38)

For example, the variables {x;} can represent the Lagrangian
multipliers in the primal space of a support vector machine
network, or the weights and biases of a generic neural network.

C. Complex Growth Transform Dynamical System
(Algorithm 1)

Let us consider the optimization problem in (34) again.
We can use the Baum—Eagon inequality [40], [41] to converge
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to the optimal point of H in steady state, by using updates of

the form
x,-(— M) | A)
Gxi

= Xk( ol | A)

OX

Xi <

(39)

where H is assumed to be Lipschitz continuous [7] on the
domain D = {xy,...,xnN : ZZV:] xi =1, x;, >0 Vi} C Rﬁ.
The constant 4 € R is chosen such that |—6Hg# + A >
0 Vi. '

We can solve the optimization problem given by (10) by
using the growth transforms discussed earlier. The outline of
the proof is as follows.

1) We will start with a generic magnitude domain opti-
mization problem without any phase regularizer and
derive the form for the growth transform dynamical
system which would converge to the optimal point
asymptotically.

2) We derive a complex-domain counterpart of the above,
again without phase constraints.

3) We derive the complex-domain dynamical system by
incorporating a phase regularizer in the objective func-
tion.

Since the time evolutions of V; and [; are symmetric
because of the conservation constraints, for the rest of the
section, we will consider only the update equations for the
voltages V;, and similar results would also apply to the updates
for I;.

1) Condition 1: Considering f = 0 in (10) and
H{|Vil, |I;]}) to be Lipschitz continuous over the domain
D = {Vil, Il © 3L (Vil? + |L?) = 1), we can use
the growth transforms to arrive at the following discrete-
time update equations in terms of the voltage and current
magnitudes:

Vinl* < gvin1{Vin-11% 1 lin-117}) (40)
where
gVin—1 (Vi1 1% | Tin—11%})
_ |Vi,nl|2(_ oH +/1) 1)
Hn—1 O Vin-1/?
al oH
Un—1 = ; (IVk,nl |2|: T AV + /1]

oH
I 2T 4 42
+ U n—1l [ e + D (42)

oH
— 3 + 1) > 0 and

and . € Ry is chosen to ensure that (
(=375 +4)>0Vi.

Writing gvin—1 = gvin—1({|Vin-11%, lin-11?}) for nota-
tional convenience and taking gy, ,—1 = |Vi,"—1|20\2/,v,n—1’
we get

[Vinl® < Vim0 ,_;- (43)

2) Condition 2: Considering p = 0 in (10) and V;, I; €
D = (Vi,l; € C : XN (Vil> + |LP?) = 1), a time
evolution of the form given below converges to limit cycles
corresponding to the optimal point of a Lipschitz continuous
objective function H{| V|, |1;|}):

1%
Vi,n < Vi,n—IO'V,-,n—lej

Lin < Ii,n—lo'li,n—lej(ng@) (44)

where oy,, o, —1 Vi =1,..., N, in steady state, 0 is the
instantaneous global phase difference of the system of phasors
with respect to an absolute stationary reference frame, and
¢i is the instantaneous phase difference between V; and I;.

Proof: Since |V,-,,,|2 = Vin Vij"n and |I,-,,,|2 = ILin Ii’fn,
the update equations can be rewritten as

Vin V,-T,, <~ [Vi,n—lav,-,n—lejg] X [Vi,n—lo'\/i,n—lejg]*
Linlf, < Lin—105; 01" VXL 101, y1e? OFHET
(45)

where oy, ,—1 is used to represent ov, n—1({Vin V", Lin1,})
for ease of notation, and similarly for oy, ,—1. Considering
H{V; V¥, I 1}}) to be analytic in D€ and applying Wirtinger’s

calculus [42], since

oH oH (6Vi,n_1Vif‘n_1)
aVi,nfl aVi,nflviTn_l aVi,nfl
oH
= VX 46
avi,n—lvijknfl i,n—1 ( )
we have
1 oH
oV, n—1 = — + AVE ) 47)
n \/Vl*n 1’7( aVi,n—l i,n—1
where
N
OH
n= Vk,ll:—7+lv*_:|
;( | = 57+ Vi
OH
+ 1k n—1 [ — FyA +j'llf,n—li|)' (48)
SN—=

The discrete-time update equations for V; , are thus given by

Vin < Vi,n—lo'Vi,n—leje- (49)

Similar expressions can also be derived for the current phasors.
|
Lemma: A continuous-time variant of the model given
by (44) is given by
aVi()
ot
Proof: The difference equations for the voltage phasors
are given by

= jooy,(0)Vi(t) — Aoy, () Vi(1). (50)

Vin=Vin1 < Vinaovn1le!? = 11+ Vin_1lov,n1—1]
(51)

which can be rewritten as

Vin—Vin-1 < Vin-10v, n1[&/®2 —11=Viu_1 Aoy, -1 (52)
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where Aoy, ,—1 = 1 — oy, ,—1 and 0 = wAt, o being the
common oscillation frequency of all the phasors, and Atz the
time increment. In the limiting case, when At — O, this
reduces to the following continuous-time differential equation
for the complex variable V;():

oVi()
ot

= jooy, (1) Vi(t) — Aoy, (1) V; (t). (53)

|
In the steady state, since H is Lipschitz continuous in D,

t .
oy, (1) %1, hence the dynamical system above reduces to

PO~ jovity
which implies that the steady-state response of the complex
variable V;(r) corresponds to limit cycle oscillations with a
constant angular frequency of w.
The difference equations in terms of the nodal currents can
be similarly written as

(54)

Lin—1Iin1 <_Ii,n710'1,v,n71[ej(w¢i)At_1]_11',1171 Aoy n
(55)
where wg, = ‘%"'. The equivalent continuous domain differen-
tial equation is then given by
ol (1)
ot

= j(o+ wy)o ()1 (t) — Ao () :(t).  (56)

|

3) Condition 3: Considering f # 0 in (10), additional
phase constraints can be incorporated in the dynamical
system represented by Equations (15)—(18). In steady state,
for |Vil?|L|?> # O, the system settles to ¢i = =+ /2 Vi.
Additionally, for sufficiently small values of f (or if B is
slowly increased during the optimization process), the system
converges to the optimal point of the modified objective
Junction H{|Vil, |1i]}).

Proof: Since L({|V;l, |I;], ¢i}) is Lipschitz continuous in
both |V;|? and |I;|?, the same form of the update equations
proved in Lemma 2 can be applied. For arriving at the updates
for the phase angles ¢;, we will use a similar approach as
shown in (37). We can split ¢; as ¢; = ¢>i+—¢>lf, ;r, ¢, >0,
which implies that ¢1+ + ¢, = m. We can then apply the
growth transform dynamical system [7] to get

Tiog; + ¢i(t) = g4 (1) (57)
where wy, = dqzt(’) and
oL oL
o (o) ()

g¢[:ﬂ¢+(_£+i)+¢_(_£+i).
i op; i od;

Since gqf = ;—ﬁ = —;—ﬁ_, the above can be simplified to

84 =7 (A — m(BL/0¢1))/(—i(DL/0¢i)+Am). This implies
that the voltage and current phasors corresponding to the ith
node in the network may be phase shifted by an additional
amount ¢; with respect to the absolute reference.

Since for optimality, ¢; = £z /2 for [Vil?|L;> # 0 in the
steady state, the net energy dissipation in steady state is zero,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ie., Zf,v:l |Vi|?|I;|? cos®> ¢; = 0. Also, in the steady state, for
sufficiently small values of the hyperparameter

i LAIVil, 1], ¢i}) = mi HAIVil, |1 59
”Vim}fl\l’d’i} {1Vil, 11, @i }) (qomin Vil 11} (59)

which implies that the system reaches the optimal solution
with zero active power in the post-learning stage. [ ]
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