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Abstract— Traditional energy-based learning models associate
a single energy metric to each configuration of variables involved
in the underlying optimization process. Such models associate the
lowest energy state with the optimal configuration of variables
under consideration and are thus inherently dissipative. In this
article, we propose an energy-efficient learning framework that
exploits structural and functional similarities between a machine-
learning network and a general electrical network satisfying
Tellegen’s theorem. In contrast to the standard energy-based
models, the proposed formulation associates two energy compo-
nents, namely, active and reactive energy with the network. The
formulation ensures that the network’s active power is dissipated
only during the process of learning, whereas the reactive power
is maintained to be zero at all times. As a result, in steady state,
the learned parameters are stored and self-sustained by electrical
resonance determined by the network’s nodal inductances and
capacitances. Based on this approach, this article introduces three
novel concepts: 1) a learning framework where the network’s
active-power dissipation is used as a regularization for a learning
objective function that is subjected to zero total reactive-power
constraint; 2) a dynamical system based on complex-domain,
continuous-time growth transforms that optimizes the learning
objective function and drives the network toward electrical
resonance under steady-state operation; and 3) an annealing
procedure that controls the tradeoff between active-power dis-
sipation and the speed of convergence. As a representative
example, we show how the proposed framework can be used for
designing resonant support vector machines (SVMs), where the
support vectors correspond to an LC network with self-sustained
oscillations. We also show that this resonant network dissipates
less active power compared with its non-resonant counterpart.

Index Terms— Complex-domain machine learning, coupled
oscillators, electrical resonance, energy-based learning models,
energy-efficient learning models, resonant networks, support
vector machines (SVMs), Tellegen’s theorem.

I. INTRODUCTION

FROM an energy point of view, the dynamics of a machine-
learning framework is analogous to an electrical network

since both evolve over a conservation manifold to attain a
low-energy state. In the literature, this analogy has served
as the basis for energy-based learning models, where the
learning objective function is mapped to an equivalent network
energy [1], [2]. The network variables then evolve according
to some physical principles subject to network constraints

Manuscript received August 14, 2019; revised January 13, 2020; accepted
March 25, 2020. This work was supported in part by the National
Science Foundation under Grant ECCS:1550096 and Grant ECCS: 1935073.
(Corresponding author: Shantanu Chakrabartty.)
The authors are with the Department of Electrical and Systems Engineering,

Washington University in St. Louis, St. Louis, MO 63130 USA (e-mail:
shantanu@wustl.edu).
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNNLS.2020.2984267

Fig. 1. (a) Total or apparent power SN of the electrical network comprising of
the active power PN or the dissipated power and the reactive power QN or the
power used for energy storage. The goal of the proposed resonant learning
framework: (b) minimizing active power PN during learning and ensuring
PN = 0, post-learning or steady state, and (c) maintaining QN = 0 in learning
and post-learning phases.

to seek out an energy optimal state. However, even if the
solution reached by such learning models may be optimal from
the objective function point of view, it may not be the most
energy-efficient solution when considering an actual physical
implementation. This is because most of these formulations
assume that the energy being minimized in the network is
dissipative in nature.Whereas, in a physical electrical network,
the total power SN (also known as the apparent power)
comprises not only of the dissipative component (also referred
to as the active power) but also a latent or stored nondissipative
component (also referred to as the reactive power) [3], [4].
This is shown in Fig. 1(a) and can be mathematically expressed
as

Total Network Power SN = Active Power PN

+ j × Reactive Power QN (1)

where j = √−1 denotes the imaginary component. While
the active power PN represents the rate-of-energy loss in
the network, the reactive power QN represents the rate of
change in stored energy in the network’s electric and magnetic
fields (typically modeled as lumped capacitive and inductive
elements). In the design of electrical networks, reactive power
is generally considered to be a nuisance since it represents the
latent power that does not perform any useful work [5], [6].
However, from the point of view of learning, the reactive
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power could be useful not only for storing the learned para-
meters of the network but could also improve the dynamics
of the network during learning. In this article, we propose a
framework which exploits both active and reactive network
powers for learning and memory. The objective will be to
achieve a network power profile as shown in Fig. 1 (b) and (c).
During learning, the network will optimize its active
power (PN ), and under steady-state condition or post-learning,
ensure PN = 0. The reactive power (QN ), on the other
hand, will always be maintained at zero. This implies that
the stored energy (mathematically—the time integral of the
reactive power) is conserved across the learning and post-
learning phases. Thus, during the post-learning phase or in
steady state, the network will not dissipate any power, and
the reactive energy is used to maintain its current network
state or memory.
This steady-state condition corresponds to a state of electri-

cal resonance, and in Section III, we generalize this concept to
a framework of resonant machine learning. To reach this steady
state, in Section IV, we present a dynamical system based
on complex-domain continuous-time growth transforms, which
extends our previous work on growth transform networks
using real variables [7]. The complex-domain formulation
allows manipulation of the relative phase between the voltage
and current variables associated with the network nodes and
thus is used to optimize the active-power dissipation during
learning. While the approach could be applied to different
learning networks, in Section V, we use this framework
for designing resonant one-class support vector machines
(SVMs) [8]. In this context, we also compare the performance
of the resonant SVM model with its non-resonant variant on
both synthetic and real datasets. Finally, Section VI concludes
this article with a brief discussion on the implication of the
proposed model when applied to other network-based models
that do not involve learning, for instance, the coupled oscillator
networks [9].
The key contributions of this article can be summarized as

follows.
1) Contrary to standard energy-based models (EBMs) that

optimize for a single energy metric, we map a learning
problem to an electrical network with two energy com-
ponents: dissipative(active) and nondissipative(reactive)
energy.

2) Active power dissipation is introduced as a regularizer in
the original learning problem while enforcing zero total
reactive power by driving the network into electrical
resonance. This ensures zero active power dissipation
in the post-learning stage.

3) We present a novel growth transform-based complex
dynamical system for optimizing the cost function that
ensures a resonant condition in steady state.

4) We propose an annealing schedule that can trade off the
speed of convergence with active-power dissipation for
different applications.

A. Notations

For the rest of this article, we will follow the mathematical
notations summarized in Table I.

TABLE I

NOTATIONS

II. BACKGROUND AND RELATED WORKS

A. Energy-Based Learning Models

The principle of minimum energy states that all self-
organizing physical systems evolve dynamically over an intrin-
sic conservation manifold to attain their minimum energy
configuration in the steady state [10]. Energy-based machine-
learning models follow a similar cue, where the goal is to
find the optimal configuration of a predetermined energy land-
scape determined by the learning problem at hand [1], [11].
Some of the most notable examples of EBMs are those
based on the Ising model of statistical mechanics, such
as the Hopfield network [2], and its stochastic counterpart
the Boltzmann machine [12] and its variants [13]. In these
models, the network converges to the local minimum of a
Lyapunov function in steady state. Another class of EBMs [1]
proposes a unified learning framework by mapping the learn-
ing problem to a global scalar “energy function.” The algo-
rithm minimizes a loss functional to seek out an optimal
energy landscape that associates the lowest energy to the
observed configuration of variables involved in the underlying
optimization process. These methods are essentially non-
probabilistic and often involve intractable integrals, which
require MCMC methods for normalization when applied to
probabilistic frameworks. Different classes of optimization
algorithms such as contrastive divergence, contrastive Hebbian
learning, and equilibrium propagation [14], have been pro-
posed for a variety of supervised, unsupervised, and reinforce-
ment learning applications [15]–[18] in the context of EBMs.
However, all these approaches consider an energy metric
that solely depends on the learning task under consideration.
This implies that in an analog implementation of the model,
the optimal solution may not be the most energy-efficient one.

B. Complex-Domain Machine-Learning Models

A variety of complex-domain learning models have been
proposed in the literature for different learning algorithms,
e.g., complex neural networks, complex SVMs, and complex
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Fig. 2. Equivalent network model comprising of N electrical nodes, with an inductive and a capacitive element associated with each of the nodes.
(a) Learning is equivalent to changing the values of inductive and capacitive elements. (b) In steady state, the network is driven into electrical resonance.

deep networks [19]–[23]. In addition to providing the phase
variables that allow for an additional degree of freedom, other
advantages of the complex-domain operation have been shown
in these works. It has been demonstrated that complex learning
models lead to a richer set of dynamics, noise robustness,
and better convergence properties in the case of classification
problems [20], [24], [25]. Moreover, phase information might
provide additional insights in the context of many complex-
valued physical signals (or complex-domain transforms of
physical signals, e.g., Fourier or wavelet transforms) [20], [26].
However, most of these complex learning models either
treat the real and imaginary components of the signal sepa-
rately, or do not utilize the entire phase space when operating
in the complex domain.

III. OPTIMIZATION AND ELECTRICAL RESONANCE

Consider an electrical network as shown in Fig. 2(a), com-
prising of N internal nodes. The voltage difference between
the i th and j th nodes is denoted by Vij , with Vi0 being the
i th nodal voltage with respect to ground terminal (referred to
as the 0th node). Similarly, the current flowing between the
i th and j th nodes is given by Ii j , and Ii0 denotes the current
flowing out of the i th node into the ground terminal. Then,
according to Tellegen’s theorem [27]∑

i

Vi j I ∗
i j = 0 (2)

which states that the total complex electrical power or apparent
power is zero. Isolating the apparent power flowing from the
nodes to the ground terminal from that flowing between the
internal nodes, we have∑

i �= j,0; j �=0

(Vij )I ∗
i j +

∑
i

(Vi0)I ∗
i0 = 0

�⇒
N∑

i=1

Vi0 I ∗
i0 = −

N∑
i, j=1

Vij I ∗
i j

�⇒ ST = −SN
�⇒ PT + j QT = −PN − j QN
�⇒ |PT | = |PN |
�⇒ |QT | = |QN | (3)

where ST = ∑
i Vi0 I ∗

i0 is the nodal apparent power, and
PT = ∑

i Re{Vi0 I ∗
i0} and QT = ∑

i Im{Vi0 I ∗
i0} are the total

active and reactive power consumed at the terminal nodes.
Similarly, SN , PN , and QN represent the apparent, active,
and reactive power consumed due to current flow between
the network nodes (other than the ground terminal). Note that
this result holds even if active-power sources are embedded in
the network, as shown in Fig. 2(a). Thus, (3) implies that if
we minimize the active power at the nodes of the network PT

subject to the constraint that the nodal reactive power QT = 0,
then the formulation would be equivalent to minimizing the
network active power PN while ensuring that the network
reactive power QN = 0. This result can be equivalently
expressed as

min
{Vi ,Ii ∈C}

D =
N∑

i=1

|Re{Vi I ∗
i }|2

s.t.
∑

i

Im{Vi I ∗
i } = 0 (4)

where we have used the notations Vi0 = Vi and Ii0 = Ii for
the sake of brevity. If we assume that the i th node is associated
with a lumped capacitance Ci and a lumped inductance Li ,
ensuring zero nodal reactive power implies

N∑
i=1

Vi

(
Ci

dVi

dt

)∗
+

(
Li

d Ii

dt

)
I ∗
i = 0 (5)

where
(
Ci

dVi
dt

)
and

(
Li

d Ii
dt

)
represent the current flowing

through Ci and the voltage across Li , respectively. Equa-
tion (5) is equivalent to

N∑
i=1

(
1

2
Ci |Vi |2 + 1

2
Li |Ii |2

)
= E0 (6)

where |Vi |2 = Vi V ∗
i and |Ii |2 = Ii I ∗

i , implying that the total
network reactive energy is conserved to be equal to some
constant value E0. Satisfying this constraint is equivalent to
sustaining a condition of electrical resonance. The optimiza-
tion problem (4) can be transformed as

min
{|Vi |,|Ii |∈R+,φi ∈R}

D =
N∑

i=1

|Vi |2|Ii |2 cos2 φi (7)

s.t.
N∑

i=1

(
1

2
Ci |Vi |2 + 1

2
Li |Ii |2

)
= E0, |φi | ≤ π ∀i (8)
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where φi denotes the phase angle between the voltage and
current phasors at the i th node. Note that the optimization
in (7) admits only three types of solutions in steady state:
1) (|Ii | �= 0, |Vi | �= 0, |φi | = π/2) which corresponds
to a resonant LC tank; 2) (|Ii | = 0, |Vi | �= 0) which
corresponds to an electrically isolated or floating node; and
3) (|Ii | �= 0, |Vi | = 0), which corresponds to a short-circuit.
In Appendix A, we illustrate steady-state resonance conditions
using a simple LC tank. Note that in all cases, active power
is dissipated only during the learning phase, where Ci and
Li adapt to change the relative magnitude of the voltage
and current variables. Fig. 2(b) shows this resonant condition
of the network in the post-learning stage, whereby active
power sources in the network get electrically isolated from the
rest of the network. The lumped capacitance and inductance
associated with the LC network at the terminal nodes adapt
such that the resonant frequency condition in maintained in
steady state (see Appendix A). This implies that in steady
state, the learned network parameters are stored and sustained
by the resonant electric and magnetic fields of the LC tanks.
The constraint in (8) can be simplified by normalizing with

respect to E0 such that

N∑
i=1

(|Vi |2 + |Ii |2) = 1 (9)

where Vi ← ( Ci
2E0

)1/2
Vi and Ii ← ( Li

2E0

)1/2
Ii represent

the dimension-less voltages and currents. Henceforth, unless
stated otherwise, we will use dimension-less quantities in our
derivations.
We now extend the optimization framework in (7) to include

a general optimization function H as

min{|Vi |,|Ii |,φi }
L({|Vi |, |Ii |, φi }) = H({|Vi |, |Ii |}) + βD

s.t.
N∑

i=1

(|Vi |2 + |Ii |2) = 1, |φi | ≤ π ∀i. (10)

In this formulation, the active-power dissipation D in (10)
acts as a regularization function with β ≥ 0 being a hyper-
parameter. Note that the objective function H({|Vi |, |Ii |})
is only a function of the magnitudes of the voltages and
currents and is independent of the phase angle φi . This
ensures independent control of the magnitudes and the phases
to achieve the desired objective of optimizing the active-
power dissipation. This is shown in Fig. 3, where control-
ling the phase allows different paths from the initial to the
final state, whereas evolution over the real domain allows
only one possible path. The complex-domain approach thus
results in steady-state limit cycle oscillations that encode the
final solution. Compared with other complex-domain machine-
learning frameworks [20], [23], the proposed formulation
avoids nonlinear processing of phase/frequency that produces
unwanted higher order harmonics. This would have made it
difficult to maintain the network in the state of resonance
(at a specific set of frequencies) under steady state.
The two important properties of the optimization framework

in (10) are as follows.

Fig. 3. Illustration showing that operating in the complex domain allows
different possible learning trajectories from an initial state to the final steady
state. Regularization with respect to the phase factor could then be used
to select the trajectory with an optimal active-power dissipation profile and
results in limit cycle oscillations in steady state. The circles indicate the
constant magnitude loci.

1) For a convex cost function H , we have

min{|Vi |,|Ii |,φi }
L({|Vi |, |Ii |, φi })= min{|Vi |,|Ii |}

H({|Vi |, |Ii |}).
(11)

This result follows from the three possible solutions of
optimization problem (7).

2) If β is slowly annealed to a sufficiently high value, then
φi → π/2 under steady state for i : |Vi ||Ii | �= 0.
This implies that network achieves zero active power
dissipation in steady state. Note that the method holds
for nonconvex objective functions as well. In this case,
however, the network might show resonant behavior at
a locally optimal solution.

Example 1: Consider a single-variable quadratic optimiza-
tion problem of the formH1(x) = x2, subject to the constraint
|x | ≤ 1, x ∈ R. Substituting x = |V |2 − |I |2, the problem
can be mapped (please see Appendix B for more details) into
the form equivalent to (10) as

min{|V |,|I |,φ} L1=(|V |2 − |I |2)2+β|V |2|I |2 cos2 φ (12)

s.t. |V |2+|I |2=1, |φ| ≤ π. (13)

Fig. 4(a)–(c) plots L1 for different values of β. As shown
in Fig. 4(a) and as expected for β = 0, the cost function has
several minima (or attractors), whereas for β > 0, the min-
ima corresponds to φ = ±π/2, for which the active-power
dissipation is zero. Fig. 4(b) and (c) shows that controlling
β will control the optimization landscape (without changing
the location of the attractors) and will determine the attractor
trajectory. This feature has been exploited in Sections IV and
V to optimize the active-power dissipation profile during the
learning phase.

IV. COMPLEX GROWTH TRANSFORMS

The problem in (10) involves complex phasors and hence
entails the use of learning models operating in the complex
domain for reaching the optimal solution. To this end, in this
section, we propose a dynamical system that can be used to
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Fig. 4. Cost function L1 plotted for different values of the hyperparameter β. (a) β = 0. (b) β = 1. (c) β = 10.

Algorithm 1: Complex Growth Transform Dynamical System (Proof in Appendix C)
• For an optimization problem of the form:

min{|Vi |,|Ii |,φi }
L({|Vi |, |Ii |, φi }) = H({|Vi |, |Ii |}) + β

N∑
i=1

|Vi |2|Ii |2 cos2 φi

s.t.
N∑

i=1

(
|Vi |2 + |Ii |2

)
= 1, |φi | ≤ π ∀i = 1, . . . , N, β ≥ 0 (14)

• If H({|Vi |, |Ii |}) is Lipschitz continuous in the domain D = {|Vi |, |Ii | : ∑N
i=1

(
|Vi |2 + |Ii |2

)
=1}, the

following system of nonlinear dynamical equations

∂Vi (t)

∂ t
= jωσVi (t)Vi (t) − �σVi (t)Vi (t), (15)

∂ Ii (t)

∂ t
= j (ω + ωφi )σIi (t)Ii (t) − �σIi (t)Ii (t), (16)

and τiωφi + φi (t) = gφi (t) ∀i = 1, . . . , N (17)

ensures that
∂L
∂ t

≤ 0, (18)

where σVi (t) =
√

1

V ∗
i η

(
− ∂L

∂Vi
+ λV ∗

i

)
, σIi (t) =

√
1

I ∗
i η

(
− ∂L

∂ Ii
+ λI ∗

i

)
, ωφi = dφi (t)

dt
, �σVi (t) = 1 − σVi (t),

�σIi (t) = 1 − σIi (t) and gφi (t) = π

λφi − π
∂L
∂φi

−φi
∂L
∂φi

+ λπ

, with η = ∑N
k=1

(
Vk

[
− ∂L

∂Vk
+ λV ∗

k

]
+ Ik

[
− ∂L

∂ Ik
+ λI ∗

k

])
, ω is an

arbitrary angular frequency, and τi is the time-constant associated with the evolution of φi .

solve this optimization problem. The main result is summa-
rized in Algorithm 1, and the details of the proof is given
in Appendix C.

Theorem 1: The system of nonlinear dynamical equations
given by (15)–(18) in Algorithm 1 converge to the optimal
point of (14) in the steady state, with zero energy dissipation,
i.e.,

∑N
n=1|Vi ||Ii | cosφi = 0 (proof given in Appendix C).

Consider an optimization problem that is an multivariable
extension of Example 1, given by (12) and (13):

min{|Vi |,|Ii |,φi }
LN =

N∑
i=1

(|Vi |2−|Ii |2)2+β

N∑
i=1

|Vi |2|Ii |2 cos2 φi (19)

s.t.
N∑

i=1

(|Vi |2 + |Ii |2) = 1, |φi | ≤ π ∀i. (20)

The optimal solution is reached when φi = ±(π/2) ∀i ,
which implies LN = 0. For the sake of comparison, we will
consider two variants: 1) the non-resonant model (Mnr ) where
β = 0, and 2) the resonant model (Mr ) where β �= 0.
Fig. 5(a) and (b) shows a comparison of the cost HN and
the regularization metric DN (

∑N
i=1|Vi |2|Ii |2 for Mnr and∑N

i=1|Vi |2|Ii |2 cos2 φi for Mr ), for N = 5 and ω = π/10.
In the case of Mnr , LN = HN and in the case of Mr ,
LN = HN + βDN , with β = 1. The solid line indicates
the mean response across ten trials with random initializations
of Vi , Ii , and φi . The shaded region shows the standard
deviation across the trials in each case. Also shown in Fig. 5(b)
are the true active-power dissipation profiles (

∑N
n=1|Vi ||Ii |

for Mnr and
∑N

n=1|Vi ||Ii | cosφi for Mr ) over the ten
trials.
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Fig. 5. Comparison of the resonant optimization model (Mr ) with its non-resonant variant (Mnr ) for a quadratic objective function LN shown in (19). For
this experiment, N = 5, input frequency ω = π/10, and the mean response is estimated over ten trials with random initializations of Vi , Ii , φi ∀i = 1, . . . , 5.
(a) Comparison of the time evolution of HN for Mnr and Mr . (b) Comparison of the time evolution of DN (

∑N
i=1 |Vi |2|Ii |2 for Mnr and∑N

i=1 |Vi |2|Ii |2 cos2 φi for Mr ). For all the curves, the line indicates the mean response, while the shaded region shows the standard deviation about
the mean across the ten trials. The true dissipation (

∑N
n=1|Vi ||Ii | for Mnr and

∑N
n=1|Vi ||Ii | cos φi for Mr ) over the ten trials is also shown. Phasor

representations of the LC tank voltages and currents for a single trial. (c) Initial configuration and (d) final configuration for Mr . For Mr , β = 1 for all the
trials.

It can be observed that under steady-state conditions,
the modelMnr dissipates power. However, for the modelMr ,
the steady-state active power goes to zero. This is shown
in Fig. 5(b). Fig. 5(c) shows the initial phasor configuration
for the currents and voltages at each node of the network for a
single trial for Mr . Here, we assume the voltage phasor Vi to
be aligned with the horizontal axis and the current phasor Ii to
be at an angle φi with respect to the horizontal ∀i . Fig. 5(d)
shows the steady-state phasor configuration for Mr for the
same trial. The voltage and current phasors are orthogonal to
each other for all the nodes, thus verifying the zero active-
power dissipation.
In the next set of experiments, we annealed the hyper-

parameter β and evaluated its impact on the active-power
dissipation metric DN and the convergence of the object
function HN for the model Mr . Fig. 6 shows a comparison
of the performance of Mr for different choices of annealing
schedule for β, with the angular frequency ω = π/10 as
before. Fig. 6(a) shows the time evolution of the objective
function HN , Fig. 6(b) shows the time evolution of the
dissipation metric DN , and Fig. 6(c) shows the annealing
schedules adopted for β. In all the cases, the optimization
process starts after time t = 0.1 a.u. from the onset of the
simulation. The curves corresponding to β = 1 denote the case
when β takes a constant value from t = 0.1 a.u.; β = logistic
corresponds to the case when β is slowly increased from
βmin = 0 following a logistic curve of the form β(t) =
βmin+(βmax − βmin)/(1 + exp(−k(t + t0))) from t = 0.1 a.u.
and takes on a maximum value of βmax = 1 (k and t0 are
hyperparameters determining the steepness and midpoint of
the sigmoid, respectively); β = switching corresponds to the
case when β switches from a minimum value (βmin = 0) to a
maximum value (βmax = 1) at t = 0.3 a.u., after the system
has converged to the optimal solution. We can observe that
in all the cases, the model converges to the optimal solution,
irrespective of the choice of β. However, different annealing
schedules for β lead to different active-power dissipation
profiles. For example, a constant value of β throughout the
duration of the experiment would lead to faster minimization
of the active-power dissipation metric but at the cost of slower

convergence. The opposite trend can be seen when β is slowly
annealed to a sufficiently high value throughout the course of
the optimization. The annealing schedule thus acts as a tradeoff
between the speed of convergence and the rate of minimization
of the active power.

A. Model Properties and Extensions

The dynamical system represented by (15)–(18) and the
resonant optimization framework also exhibit the following
properties and extensions.
1) Energy Constraints Can Be Imposed Over Subgroups of

Nodes in the Network: We can have the reactive energy
conservation constraint between subgroups of nodes,
instead of on the network as a whole, i.e.,

∑Nk
i=1(|Vik |2+

|Iik |2) =1 ∀k = 1, . . . , M , where M is the number of
subgroups and Nk = is the number of nodes in the
kth subgroup. The update equations in this case are given
by

∂Vik(t)

∂ t
= jωkσVik (t)Vik(t) − �σVik (t)Vik (t)

∂ Iik(t)

∂ t
= j (ωk +ωφik )σIik (t)Iik (t)

−�σIik (t)Iik (t)

τikωφik + φik(t) = gφik (t) ∀i, k (21)

where ωk is the constant angular frequency of the kth
subgroup of nodes, and ωφik = dφik (t)

dt .
2) System Dynamics and Reactive-Energy Constraints

Remain Invariant Under the Imposition of a Global
Phase: The network dynamics remain invariant to the
imposition of a global phase component on all the
network variables, and the conservation constraint is also
satisfied in this case. The governing equations are given
by

∂Vi (t)

∂ t
= j (ω + ωφg )σVi (t)Vi (t) − �σVi (t)Vi (t),

∂ Ii (t)

∂ t
= j (ω+ωφg +ωφi )σIi (t)Ii (t)−�σIi (t)Ii (t) (22)

where φg is the global phase and ωφg = dφg
dt .
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Fig. 6. Comparison of the performance of the resonant model Mr for
different choices of annealing schedule for β (N = 5, ω = π/10). (a) Time
evolution of HN (inset shows a zoomed-in view of the cost evolution in the
transient phase). (b) Time evolution of DN . (c) Time evolution of β. In all
the cases, the optimization process starts after 0.1 a.u. from the onset of
the simulation. The curves corresponding to β = 1 denotes the case when
β takes a constant value from t = 0.1 a.u., β = logistic corresponds to the
cases when β is slowly increased following a logistic curve from t = 0.1 a.u.
and takes on a maximum value of β = 1, and β = switching corresponds
to the case when β switches from a minimum value(= 0) to a maximum
value(= 1) at t = 0.3 a.u., after the system has converged to the optimal
solution.

3) Reactive-Energy Constraints Remain Invariant With
Varying Network Dynamics Under the Imposition of a
Relative Phase: The conservation constraints are satis-
fied on the introduction of a relative phase component
between the voltage and current phasors of each node,
even though the overall network dynamics change. The
governing equations are given by

∂Vi(t)

∂ t
= j (ω + ωφVi

)σVi (t)Vi (t) − �σVi (t)Vi (t),

∂ Ii (t)

∂ t
= j (ω + ωφIi

+ ωφi )σIi (t)Ii (t) − �σIi (t)Ii (t)

(23)

where φi = φIi − φVi is the relative external phase shift
applied between the voltage and current phasors of the
i th node, ωφVi

= dφVi
dt , and ωφIi

= dφIi
dt .

4) Model Is Dissipative and Converges to Limit Cycle
Oscillations in Steady State: The second-order time
derivatives of (15) and (16) lead to the following:

∂2Vi

∂ t2
= jωσVi V̇i + jωVi ˙σVi − �σVi V̇i + ˙σVi Vi

= −ω2σ 2
Vi

Vi︸ ︷︷ ︸
limit cycles

+ [1 + jω]σ̇Vi Vi −2 jωσVi �σVi Vi +(�σVi )
2Vi︸ ︷︷ ︸

dissipation

(24)
∂2 Ii

∂ t2
= jω′

φi
σIi İi + jω′

φi
Ii σ̇Ii − �σIi İi + σ̇Ii Ii

= −ω′2
φi

σ 2
Ii

Ii︸ ︷︷ ︸
limit cycles

+ [1+ jω′
φi

]σ̇Ii Ii −2 jω′
φi

σIi �σIi Ii +(�σIi )
2 Ii︸ ︷︷ ︸

dissipation

(25)

where ω′
φi

= ω + ωφi . The first terms in the right-
hand side of (24) and (25) correspond to stable limit
cycle oscillations of all the phasors, whereas the other
terms correspond to the dissipative effects in the net-
work. This demonstrates that the network as a whole is
essentially a coupled dissipative system that is capable
of self-sustained oscillations under steady state. Each
individual state variable describing the network thus
returns to the same position in its respective limit cycle
at regular intervals of time, even when subjected to small
perturbations.

V. RESONANT MACHINE-LEARNING FRAMEWORK

In this section, we show how the framework introduced in
Section III can be applied for constructing resonant machine-
learning networks. In general, the framework can be applied
to any learning network that optimizes a cost function defined
over a set of learning variables αi as

min{αi }
H({αi }) + h
({αi })

s.t.
N∑

i=1

αi = 1, αi ≥ 0 ∀i = 1, . . . , N (26)

where H({αi }) represents a loss function [28], which
depends on the learning problem (e.g., supervised, unsuper-
vised, or semisupervised) and the dataset under consideration
(e.g., training data). The second term 
(·) in the objective
function is any linear or nonlinear function which represents
either a regularization function or a penalty function used to
satisfy optimization constraints. h is a hyperparameter that
acts as a tradeoff between H(·) and 
(·). Because αi could
be viewed as probability measure, the optimization frame-
work in (26) naturally lends itself to probabilistic learning
models [29]–[31].
The problem above can be mapped to the reso-

nant learning framework in Section III by substituting
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Fig. 7. Comparison of the active and reactive power dissipated at each node for the non-resonant model Mnr and the resonant model Mr for the synthetic
one-class SVM problem on a two-dimensional dataset (Dataset I), with N = 300, ν = 0.1, ω = π/4, and random initializations for Vi , Ii , φi ∀i = 1, . . . , N .
(a) and (c) Values of the active power metric (= |Vi ||Ii |) at each node in the initial and final stages, respectively, for Mnr . (b) and (d) Values of the reactive
power metric (= 0) at each node in the initial and final stages, respectively, for Mnr . (e) and (g) Values of the active power metric (= |Vi ||Ii | cosφi ) at
each node in the initial and final stages, respectively, for Mr . (f) and (h) Values of the reactive power metric (= |Vi ||Ii | sin φi ) at each node in the initial
and final stages, respectively, for Mr . For both models, K (·, ·) was chosen to be a Gaussian kernel with kernel parameter σ = 1, and β = 1 throughout the
optimization process for Mr .

αi = |Vi |2 + |Ii |2, to arrive at the following problem:

min{|Vi |,|Ii |,φi }
H({|Vi |, |Ii |}) + h
({|Vi |, |Ii |})

+ β

N∑
i=1

|Vi |2|Ii |2 cos2 φi

s.t.
N∑

i=1

(|Vi |2 + |Ii |2)=1, |φ| ≤ π ∀i =1, . . . , N. (27)

Note that non-probabilistic learning problems can also be
mapped to the probabilistic framework by imposing an addi-
tional constraint, as discussed in Appendix A.

A. One-Class Resonant SVM

We now show how the framework in (27) can be used to
design a resonant one-class support vector machine.
The solution of a generic one-class SVM is obtained by

solving the following optimization problem [8], [32], [33]:

min{αi }
1

2

N∑
i=1

N∑
j=1

αi K (xi, xj)αj

s.t.
N∑

i=1

αi = 1, 0 < αi <
1

νN
∀i = 1, . . . , N (28)

where X = [x1, . . . , xi, . . . , xN] ∈ RN×D is the D-dimensi-
onal input dataset of size N , ν ∈ {0, 1} is a parameter that
controls the size of the decision surface, K (·, ·) is a positive-
definite kernel function satisfying Mercer’s conditions, and

αi values are the learning parameters. The optimization prob-
lem above can be reformulated by replacing the inequality
constraint with a smooth penalty or loss function 
(·) such
as the logarithmic barrier, e.g., 
(αi , ν) = − log

( 1
νN − αi

)

min{αi }
H = 1

2

N∑
i=1

N∑
j=1

αi K (xi, xj)αj + h
N∑

i=1


(αi, ν)

s.t.
N∑

i=1

αi = 1. (29)

The parameter h determines the steepness of the penalty
function, where a lower value of h implies an almost-accurate
inequality constraint.
An equivalent complex-domain representation in terms of

voltages and currents in an LC network can be arrived at if
we consider αi = |Vi |2 + |Ii |2 ∀i . In this case, we consider
that the network is globally energy constrained, and all the
individual units in the network have the same frequency ω.
The redefined learning problem is as follows:

min{|Vi |,|Ii |}
H = 1

2

N∑
i=1

N∑
j=1

(|Vi |2 + |Ii |2)K (xi, xj)

× (|Vj |2 + |I j |2) + h
N∑

i=1


(|Vi |, |Ii |, ν)

s.t.
N∑

i=1

(|Vi |2 + |Ii |2) = 1. (30)
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Fig. 8. Comparison of the performance of the resonant model Mr for different choices of annealing schedules for β for the one-class SVM problem,
on three different two-dimensional synthetic datasets for a simulation duration of t = 4 a.u. In all cases, N = 300, ν = 0.1, ω = π/20, and K (·, ·) was
chosen to be a Gaussian kernel with parameter values σ = 1, 10 and 20 for synthetic Datasets I-III, respectively. In addition, for each dataset, Vi , Ii , φi were
randomly initialized ∀i = 1, . . . , N . (a) Contour plot with the decision boundary around the data points and SVs. (b) Time evolution of H (inset shows a
zoomed-in view of the cost evolution in the transient phase). (c) Time evolution of D. (d) Time evolution of β for different annealing schedules. The curves
corresponding to β = 1 and 10 denote the cases when β takes a constant value throughout the simulation duration; β = logistic1 and β = logistic2 correspond
to the cases when β is slowly increased following a logistic curve and takes on maximum values of βmax = 1 and βmax = 10, respectively; β = switching
corresponds to the case when β switches from a minimum value (βmin = 0) to a maximum value (βmax = 10) at t = 2 a.u., after the system has converged
to the optimal solution. (e)–(h) Similar plots on Dataset II. (i)–(l) Plots corresponding to Dataset III.

Introducing the active-power dissipation regularization,
we arrive at the following problem:

min{|Vi |,|Ii |,φi }
L = 1

2

N∑
i=1

N∑
j=1

(|Vi |2 + |Ii |2)K (xi, xj)

× (|Vj |2 + |I j |2) + h
N∑

i=1


(|Vi |, |Ii |, ν)

+ β

N∑
i=1

|Vi |2|Ii |2 cos2 φi

s.t.
N∑

i=1

(|Vi |2 + |Ii |2) = 1, |φi | ≤ π ∀i. (31)

The update equations in this case are of the form shown
in (15)–(18). Fig. 7 shows a comparison of the active and
reactive power metrics of each node of the non-resonant model
Mnr and the resonant model Mr for a synthetic one-class
SVM problem on a two-dimensional dataset (Dataset I). The
dataset was generated by uniformly selecting 300 random

points within a circle having a fixed radius. Here, N =
300, ν = 0.1, and ω = π/4, with random initializations for
Vi , Ii , φi ∀i = 1, . . . , N . A constant value of the regulariza-
tion hyperparameter β = 1 was considered throughout the
duration of the optimization process for Mr . Fig. 7(a) and
(c) shows the values of the active power metric (= |Vi ||Ii |)
at each node in the initial and final stages, respectively, for
Mnr , whereas Fig. 7(b) and (d) shows the values of the
reactive power metric (= 0) at each node in the initial and
final stages, respectively, for Mnr . Similarly, Fig. 7(e) and (g)
shows the values of the active power metric (= |Vi ||Ii | cosφi )
at each node in the initial and final stages, respectively, for
Mr whereas Fig. 7(f) and (h), finally, shows the values of the
reactive power metric (= |Vi ||Ii | sin φi ) at each node in the
initial and final stages, respectively, for Mr .
Fig. 8 shows a comparison of the performance of

the resonant model Mr for different choices of anneal-
ing schedules for β on three different two-dimensional
synthetic datasets for a simulation duration of t = 4 a.u.
In all cases, N = 300, ν = 0.1, ω = π/20, and K (·, ·)
was chosen to be a Gaussian kernel with parameter values
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Fig. 9. Robustness to random initialization. Comparison of (a) time evolution
of the cost H and (b) dissipation metric profile D (

∑N
n=1|Vi |2|Ii |2 for

the non-resonant model Mnr and
∑N

n=1|Vi |2|Ii |2 cos2 φi for the resonant
model Mr , respectively) for the synthetic one-class SVM problem on
Dataset I for N = 300, ν = 0.1, and ω = π/8 over ten random initializations
for Vi , Ii , φi ∀i = 1, . . . , N . The regularization parameter was chosen to be
β = 1 for the entire simulation duration of t = 4 a.u. of the optimization
process for Mr . For all the curves, the solid line indicates the mean response,
whereas the shaded region shows the standard deviation about the mean across
the trials.

σ = 1, 10, and 20, respectively, for synthetic Datasets I, II
and III. In addition, for each dataset, Vi , Ii , and φi were
randomly initialized ∀i = 1, . . . , N . Fig. 8(a) shows the
contour plot with the decision boundary around the data
points, along with the support vectors (SVs) for Dataset I,
whereas Fig. 8(b)–(d) shows the time evolutions of the costH,
the dissipation metric D, and the hyperparameter β for
different annealing schedules. The curves corresponding to
β = 1 and 10 denote the cases when β takes a constant
value throughout the simulation duration. β = logistic1 and
β = logistic2 correspond to the cases when β is slowly
increased following a logistic curve of the form β(t) = βmin+
(βmax − βmin)/(1 + exp(−k(t + t0))) and takes on maximum
values of βmax = 1 and βmax = 10, respectively, starting
from βmin = 0. Finally, β = switching corresponds to the
case when β switches from a minimum value (βmin = 0)
to a maximum value (βmax = 10) at t = 2 a.u., after the
system has converged to the optimal solution. Fig. 8(e)–(h)
shows the similar plots for Dataset II, whereas Fig. 8(i)–(l)
shows the plots corresponding to Dataset III. Dataset I,
as described before, was generated by selecting 300 points
uniformly within a two-dimensional circle having a fixed
radius. Datasets II and III also consist of 300 data points
generated using a Gaussian mixture model consisting of four
different clusters, with a fixed cluster mean and variance
associated with each cluster. Datasets II and III differ only
in terms of the cluster means associated with their respective

TABLE II

PERFORMANCE ON REAL BENCHMARK DATASETS FOR ν = 0.1

constituent clusters, while the cluster variances are the same
for all the clusters for both the datasets. It can be seen that
since the optimization problem is convex, the model always
converges to the optimal solution for every dataset, irrespective
of the annealing schedule for β or the dataset complexity.
However, the dissipation profiles corresponding to a particular
annealing schedule strongly depend on the complexity of the
dataset. In general, however, higher values of β would lead to
lower dissipation profiles during the learning process. Also,
the model shows a much slower convergence in terms of
the actual objective function for a constant nonzero value of
β throughout the optimization, compared with the case when
β is slowly annealed to a sufficiently high value. The choice
of a proper annealing schedule for β would thus involve a
tradeoff between the speed of convergence and the rate of
power dissipation.
Finally, Fig. 9(a) and (b) shows the robustness of the

proposed framework to different initial conditions by providing
a comparison of the time evolutions of the cost H and the
dissipation metric D (

∑N
n=1|Vi |2|Ii |2 for the non-resonant

modelMnr and
∑N

n=1|Vi |2|Ii |2 cos2 φi for the resonant model
Mr ), when applied to Dataset I. We show the results for
ten random initializations of Vi , Ii and φi , ∀i . In all cases,
ν = 0.1, ω = π/8, and K (·, ·) was chosen to be a Gaussian
kernel with parameter value σ = 1. Note that even though
the ten trails had different initializations of Vi and Ii , they
were chosen to have the same initial value of α′

is in all
cases, because of which there is no deviation between the
cost evolution curves for both Mnr and Mr . The dissipation
evolution is, however, different across different trials for both
the models. However, the dissipation attains a final value of
zero for Mr for all the trials, while there is a finite dissipation
for Mnr in all cases.
We also conducted experiments on real-life benchmark

datasets of varying sizes and dimensionality, considering the
majority class as inliers in all cases. In all the experiments,
we used similar parameter settings and annealing schedules
as used in the experiments shown in Fig. 8, and ν = 0.1.
Table II shows the dataset description along with the perfor-
mance [number of inliers, number of outliers, and number
of support vectors (SVs)] of the one-class SVM classifier
for the following datasets: “Iris” (inlier: class “setosa”),
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Fig. 10. Comparison of the dissipation profiles of the resonant model Mr for different choices of annealing schedules for β for different real-life benchmark
datasets. (a) ‘Iris’. (b) ‘Heart’. (c) ‘Diabetes’. (d) ‘Ecoli’. (e) ‘Adulta3a’. (f) ‘Mammography’.

Fig. 11. Circuit- and phasor-based representations for a one-class SVM
problem. (a) Support vectors, corresponding to resonant LC tanks. (b) Interior
points, corresponding to sinks/ground (Vi , Ii = 0).

“Heart” (inlier: “healthy” heart), “Diabetes” (inlier: non-
diabetic patients), “Ecoli” (inlier: classes “cp,” “im,” ‘pp,”
“imU,” and “om”), “Adulta3a” (inlier: individuals with income
≤ $50K ), and “Mammography” (inlier: non-calcifications)
[34], [35]. Fig. 10(a)–(f) shows the dissipation profiles cor-
responding to different annealing schedules for the different
datasets. It can be seen that an optimal choice of the annealing
schedule depends on both the dataset size and complexity, even
though the dissipation decreases over time for all the cases,
irrespective of the schedule chosen.
Interestingly, the solution of the one-class SVM can be

interpreted in terms of an electrical network as follows,
as shown in Fig. 11: 1) the support vectors have voltage
and current magnitudes with a ±π/2 phase shift between
them, and hence can be interpreted as resonant LC tanks; and
2) the interior points well inside the boundary have both zero
voltage and current magnitudes and can be essentially treated
as floating sinks.

VI. CONCLUSION AND DISCUSSION

In this article, we proposed a complex-domain formulation
of a machine-learning network that ensures that the network’s
active power is dissipated only during the process of learning,
whereas the network’s reactive power is maintained to be zero
at all times. We showed that the active power dissipation
during learning can be controlled using a phase regularization
parameter. Also, the framework is robust to variations in
the initial conditions and to the choice of the input/driving
frequency ω. The proposed approach thus provides a physi-
cal interpretation of machine-learning algorithms, where the
energy required for storing learned parameters is sustained
by electrical resonances due to nodal inductances and nodal
capacitances. Using the one-class support vector machine
problem as a case study, we have shown how the steady-state
solution of a learning problem can be interpreted in terms of
these nodal circuit elements.
Future directions involve exploring the implications of

incorporating network dynamics in the free frequency vari-
able ω, and utilizing the phase information associated with
each node in the learning process. Also, the experimental
results presented in this article were based on an unsupervised
learning setting. Exploring an energy-efficient framework for
supervised learning problems would also be a part of our future
work.
In this paper, we also proposed a dynamical system model

based on complex-domain growth transforms. The formulation
is general enough to be applicable to other complex-domain
learning models [19]–[23]. Our proposed framework also
preserves both the magnitude and phase information
and provides additional flexibility compared with other
complex-domain learning models in terms of phase
manipulation/cancellation [20].
In addition to implementing classic machine learning algo-

rithms, the complex growth transform dynamical system can
also be used for designing synchronized networks of coupled
oscillators. Such networks can be potentially used for solving
different computing tasks such as optimization, pattern match-
ing etc., as is achievable using coupled oscillatory computing
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Fig. 12. LC tank resonator.

models [36], [37]. An oscillator network designed in this
fashion is capable of demonstrating stable, self-sustaining
oscillatory dynamics, whereby the network can return to its
initial stable limit cycle configuration following small per-
turbations, while simultaneously minimizing some underlying
system-level objective function. The framework could also
be used to study connections between learning and synchro-
nization, or the emergence of a rhythmic periodic pattern
exhibited by a group of coupled oscillators, which provides
the key to understanding periodic processes pervading com-
plex networks of different biological, physical, social, and
quantum ensembles [9], [38]. In this regard, the existing
mathematical models for such collective behavior are mostly
phenomenological or bottom–up, and in general, do not pro-
vide a network-level perspective of the underlying physical
process. The proposed growth transform formulation, thus,
could provide new network-level insights into the emergence
of phase synchronization, phase cohesiveness, and frequency
synchronization in coupled-oscillator networks.
Note here that since we are implicitly assuming an analog

implementation, the learning network should converge to the
steady-state solution of the optimization, where the time of
convergence depends on the network’s time constant [39].
Hence, the notion of time complexity is not well defined.
However, in a digital implementation, the time complexity
would depend on the learning algorithm under consideration,
dataset size and dimensionality, angular frequency ω, and time
constants τi for the phase updates.

APPENDIX

A. Resonance in an LC Tank

Consider the parallel LC tank circuit shown in Fig. 12,
with VC and VL being the voltages across the capacitor C and
inductor L, respectively. IC and IL denote the corresponding
currents flowing through the elements. Thus, VS = VL = VC

and IS = IL + IC . Considering the LC tank to be driven by
the voltage source VS at frequency ω, we have the following
condition in steady state:

IS(ω) = VS(ω)

jωL
[1 − ω2LC]. (32)

Resonant condition of the circuit is achieved when

ω = 1√
LC

�⇒ IS(ω) = 0. (33)

This implies that the apparent power SN = PN + j QN =
VS I ∗

S +VL I ∗
L +VC I ∗

C , where the active power PN = 0. In addi-
tion, at resonance, the reactive power QN = QC + QL =
VL I ∗

L + VC I ∗
C = −( j/ωL)|V (ω)|2 + ( j/ωL)|V (ω)|2 = 0,

where QC and QL are the reactive powers associated with
the capacitance and inductance, respectively.

B. Mapping a Generic Optimization Problem to the
Equivalent Network Model

Let us consider an optimization problem defined over a
probabilistic domain, given by the following generic form:

min{xi }
H({xi})

s.t.
N∑

i=1

xi = 1, xi ≥ 0. (34)

We can map the above to the electrical network-based model
introduced in Section III by replacing xi = |Vi |2+|Ii |2, which
leads to the following problem in the {|Vi |2, |Ii |2} domain:

min{|Vi |,|Ii |}
H({|Vi |, |Ii |})

s.t.
N∑

i=1

(|Vi |2 + |Ii |2) = 1. (35)

Note that the method also works for optimization problems
defined over non-probabilistic domains of the following form:

min{xi }
H({xi })

s.t. |xi | ≤ 1, xi ∈ R ∀i = 1, . . . , N. (36)

This can be done by considering xi = x+
i − x−

i ∀i , where
both x+

i , x−
i ≥ 0. Since by triangle inequality, |xi | ≤ |x+

i | +
|x−

i |, enforcing x+
i + x−

i = 1 ∀i would automatically ensure
|xi | ≤1 ∀i . Thus we have

argmin
{xi }

H({xi }) ≡ argmin{
x+

i ,x−
i

} H({
x+

i , x−
i

})
s.t. |xi |≤1, xi ∈ R s.t. x+

i + x−
i = 1, x+

i , x−
i ≥0.

(37)

In this case, we replace x+
i = |Vi |2, x−

i = |Ii |2, and
the equivalent problem in the {|Vi |2, |Ii |2} domain is thus as
follows:

min{|Vi |,|Ii |}
H({|Vi |, |Ii |})

s.t. |Vi |2 + |Ii |2 = 1 ∀i = 1, . . . , N. (38)

For example, the variables {xi} can represent the Lagrangian
multipliers in the primal space of a support vector machine
network, or the weights and biases of a generic neural network.

C. Complex Growth Transform Dynamical System
(Algorithm 1)

Let us consider the optimization problem in (34) again.
We can use the Baum–Eagon inequality [40], [41] to converge
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to the optimal point of H in steady state, by using updates of
the form

xi ←
xi

(
− ∂H({xi})

∂xi
+ λ

)
∑N

k=1 xk

(
− ∂H({xk})

∂xk
+ λ

) . (39)

where H is assumed to be Lipschitz continuous [7] on the
domain D = {x1, . . . , xN : ∑N

i=1 xi = 1, xi ≥0 ∀i} ⊂ R
N+ .

The constant λ ∈ R+ is chosen such that |− ∂H({xi })
∂xi

+ λ| >
0 ∀i .
We can solve the optimization problem given by (10) by

using the growth transforms discussed earlier. The outline of
the proof is as follows.
1) We will start with a generic magnitude domain opti-

mization problem without any phase regularizer and
derive the form for the growth transform dynamical
system which would converge to the optimal point
asymptotically.

2) We derive a complex-domain counterpart of the above,
again without phase constraints.

3) We derive the complex-domain dynamical system by
incorporating a phase regularizer in the objective func-
tion.

Since the time evolutions of Vi and Ii are symmetric
because of the conservation constraints, for the rest of the
section, we will consider only the update equations for the
voltages Vi , and similar results would also apply to the updates
for Ii .

1) Condition 1: Considering β = 0 in (10) and
H({|Vi |, |Ii |}) to be Lipschitz continuous over the domain
D = {|Vi |, |Ii | : ∑N

i=1(|Vi |2 + |Ii |2) = 1}, we can use
the growth transforms to arrive at the following discrete-
time update equations in terms of the voltage and current
magnitudes:

|Vi,n |2 ← gVi ,n−1({|Vi,n−1|2, |Ii,n−1|2}) (40)

where

gVi ,n−1({|Vi,n−1|2, |Ii,n−1|2})
= |Vi,n−1|2

μn−1

(
− ∂H

∂|Vi,n−1|2 + λ

)
(41)

μn−1 =
N∑

k=1

(
|Vk,n−1|2

[
− ∂H

∂|Vk,n−1|2 + λ

]

+ |Ik,n−1|2
[

− ∂H
∂|Ik,n−1|2 + λ

])
(42)

and λ ∈ R+ is chosen to ensure that
( − ∂H

∂|Vi |2 + λ
)

> 0 and( − ∂H
∂|Ii |2 + λ

)
> 0 ∀i .

Writing gVi ,n−1 = gVi ,n−1({|Vi,n−1|2, |Ii,n−1 |2}) for nota-
tional convenience and taking gVi ,n−1 = |Vi,n−1|2σ 2

Vi ,n−1,
we get

|Vi,n |2 ← |Vi,n−1|2σ 2
Vi ,n−1. (43)

2) Condition 2: Considering β = 0 in (10) and Vi , Ii ∈
DC = {Vi , Ii ∈ C : ∑N

i=1(|Vi |2 + |Ii |2) = 1}, a time
evolution of the form given below converges to limit cycles
corresponding to the optimal point of a Lipschitz continuous
objective function H({|Vi |, |Ii |}):

Vi,n ← Vi,n−1σVi ,n−1e jθ

Ii,n ← Ii,n−1σIi ,n−1e j (θ+φi ) (44)

where σVi , σIi →1 ∀i = 1, . . . , N, in steady state, θ is the
instantaneous global phase difference of the system of phasors
with respect to an absolute stationary reference frame, and
φi is the instantaneous phase difference between Vi and Ii .

Proof: Since |Vi,n |2 = Vi,n V ∗
i,n and |Ii,n |2 = Ii,n I ∗

i,n ,
the update equations can be rewritten as

Vi,n V ∗
i,n ← [Vi,n−1σVi ,n−1e jθ ] × [Vi,n−1σVi ,n−1e jθ ]∗

Ii,n I ∗
i,n ← [Ii,n−1σIi ,n−1e j (θ+φi )]×[Ii,n−1σIi ,n−1e j (θ+φi )]∗

(45)

where σVi ,n−1 is used to represent σVi ,n−1({Vi,n V ∗
i,n , Ii,n I ∗

i,n})
for ease of notation, and similarly for σIi ,n−1. Considering
H({Vi V ∗

i , Ii I ∗
i }) to be analytic in DC and applyingWirtinger’s

calculus [42], since

∂H
∂Vi,n−1

= ∂H
∂Vi,n−1V ∗

i,n−1
.

(
∂Vi,n−1V ∗

i,n−1

∂Vi,n−1

)

= ∂H
∂Vi,n−1V ∗

i,n−1
.V ∗

i,n−1 (46)

we have

σVi ,n−1 =
√

1

V ∗
i,n−1η

(
− ∂H

∂Vi,n−1
+ λV ∗

i,n−1

)
(47)

where

η =
N∑

k=1

(
Vk,n−1

[
− ∂H

∂Vk,n−1
+ λV ∗

k,n−1

]

+Ik,n−1

[
− ∂H

∂ Ik,n−1
+ λI ∗

k,n−1

])
. (48)

The discrete-time update equations for Vi,n are thus given by

Vi,n ← Vi,n−1σVi ,n−1e jθ . (49)

Similar expressions can also be derived for the current phasors.

Lemma: A continuous-time variant of the model given
by (44) is given by

∂Vi (t)

∂ t
= jωσVi (t)Vi (t) − �σVi (t)Vi (t). (50)

Proof: The difference equations for the voltage phasors
are given by

Vi,n −Vi,n−1←Vi,n−1σVi ,n−1[e jθ − 1]+Vi,n−1[σVi ,n−1−1]
(51)

which can be rewritten as

Vi,n−Vi,n−1←Vi,n−1σVi ,n−1[e jω�t −1]−Vi,n−1�σVi ,n−1 (52)
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where �σVi ,n−1 = 1 − σVi ,n−1 and θ = ω�t , ω being the
common oscillation frequency of all the phasors, and �t the
time increment. In the limiting case, when �t → 0, this
reduces to the following continuous-time differential equation
for the complex variable Vi (t):

∂Vi (t)

∂ t
= jωσVi (t)Vi (t) − �σVi (t)Vi (t). (53)

In the steady state, since H is Lipschitz continuous in D,
σVi (t)

t→∞−→ 1, hence the dynamical system above reduces to

∂Vi (t)

∂ t
= jωVi(t) (54)

which implies that the steady-state response of the complex
variable Vi (t) corresponds to limit cycle oscillations with a
constant angular frequency of ω.
The difference equations in terms of the nodal currents can

be similarly written as

Ii,n − Ii,n−1 ← Ii,n−1σIi ,n−1[e j (ω+ωφi )�t −1]− Ii,n−1�σIi ,n−1

(55)

where ωφi = dφi
dt . The equivalent continuous domain differen-

tial equation is then given by

∂ Ii (t)

∂ t
= j (ω + ωφi )σIi (t)Ii (t) − �σIi (t)Ii (t). (56)

3) Condition 3: Considering β �= 0 in (10), additional
phase constraints can be incorporated in the dynamical
system represented by Equations (15)–(18). In steady state,
for |Vi |2|Ii |2 �= 0, the system settles to φi = ±π/2 ∀i .
Additionally, for sufficiently small values of β (or if β is
slowly increased during the optimization process), the system
converges to the optimal point of the modified objective
function H({|Vi |, |Ii |}).

Proof: Since L({|Vi |, |Ii |, φi }) is Lipschitz continuous in
both |Vi |2 and |Ii |2, the same form of the update equations
proved in Lemma 2 can be applied. For arriving at the updates
for the phase angles φi , we will use a similar approach as
shown in (37). We can split φi as φi = φ+

i −φ−
i , φ+

i , φ−
i > 0,

which implies that φ+
i + φ−

i = π . We can then apply the
growth transform dynamical system [7] to get

τiωφi + φi (t) = gφi (t) (57)

where ωφi = dφi (t)
dt and

gφi = π

φ+
i

(
− ∂L

∂φ+
i

+ λ

)
− φ−

i

(
− ∂L

∂φ−
i

+ λ

)

φ+
i

(
− ∂L

∂φ+
i

+ λ

)
+ φ−

i

(
− ∂L

∂φ−
i

+ λ

) . (58)

Since ∂L
∂φi

= ∂L
∂φ+

i
= − ∂L

∂φ−
i
, the above can be simplified to

gφi =π(λφi − π(∂L/∂φi ))/(−φi (∂L/∂φi )+λπ). This implies
that the voltage and current phasors corresponding to the i th
node in the network may be phase shifted by an additional
amount φi with respect to the absolute reference.
Since for optimality, φi = ±π/2 for |Vi |2|Ii |2 �= 0 in the

steady state, the net energy dissipation in steady state is zero,

i.e.,
∑N

n=1|Vi |2|Ii |2 cos2 φi = 0. Also, in the steady state, for
sufficiently small values of the hyperparameter β

min{|Vi |,|Ii |,φi }
L({|Vi |, |Ii |, φi }) = min{|Vi |,|Ii |}

H({|Vi |, |Ii |}) (59)

which implies that the system reaches the optimal solution
with zero active power in the post-learning stage.
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