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ABSTRACT

The popularity of hardware-based Trusted Execution Environments
(TEEs) has recently skyrocketed with the introduction of Intel’s Soft-
ware Guard Extensions (SGX). In SGX, the user process is protected
from supervisor software, such as the operating system, through
an isolated execution environment called an enclave. Despite the
isolation guarantees provided by TEEs, numerous microarchitec-
tural side channel attacks have been demonstrated that bypass
their defense mechanisms. But, not all hope is lost for defenders:
many modern fine-grain, high-resolution side channels—e.g., ex-
ecution unit port contention—introduce large amounts of noise,
complicating the adversary’s task to reliably extract secrets.

In this work, we introduce Microarchitectural Replay Attacks,
whereby an SGX adversary can denoise nearly arbitrary microar-
chitectural side channels in a single run of the victim, by causing the
victim to repeatedly replay on a page faulting instruction. We de-
sign, implement, and demonstrate our ideas in a framework, called
MicroScope, and use it to denoise notoriously noisy side channels.
Our main result shows how MicroScope can denoise the execution
unit port contention channel. Specifically, we show how Micro-
Scope can reliably detect the presence or absence of as few as two
divide instructions in a single logical run of the victim program.
Such an attack could be used to detect subnormal input to individual
floating-point instructions, or infer branch directions in an enclave
despite today’s countermeasures that flush the branch predictor at
the enclave boundary. We also use MicroScope to single-step and
denoise a cache-based attack on the OpenSSL implementation of
AES. Finally, we discuss the broader implications of microarchitec-
tural replay attacks—as well as discuss other mechanisms that can
cause replays.
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« Security and privacy — Side-channel analysis and counter-
measures; Trusted computing; - Software and its engineer-
ing — Virtual memory.
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1 INTRODUCTION

The past several years have seen a surge of interest in hardware-
based Trusted Execution Environments (TEEs) and, in particular,
the notion of enclave programming [27, 28, 53]. In enclave program-
ming, embodied commercially in Intel’s Software Guard Extensions
(SGX) [14, 21, 27, 28], outsourced software is guaranteed virtual-
memory isolation from supervisor software—i.e., the Operating
System (OS), hypervisor, and firmware. This support reduces the
trusted computing base to the processor and the sensitive out-
sourced application. Since SGX’s announcement five years ago,
there have been major efforts in the community to map programs
to enclaves, and to SGX in particular (e.g., [4, 8, 38, 43, 48, 49, 52,
54, 56, 66]).

Despite its promise to improve security in malicious environ-
ments, however, SGX has recently been under a barrage of microar-
chitectural side channel attacks. Such attacks allow co-resident
software-based attackers to learn a victim process’ secrets by mon-
itoring how that victim uses system and hardware resources—e.g.,
the cache [36, 45, 62-64] or branch predictor [1, 17], among other
structures [5, 7, 7, 20, 39, 46]. Some recent work has shown how
SGX’s design actually exacerbates these attacks. In particular, since
the supervisor-level SGX adversary controls victim scheduling and
demand paging, it can exert precise control on the victim and its
environment [9, 15, 40, 58, 60].

Yet, not all hope is lost. There is scant literature on how much
secret information the adversary can exfiltrate if the victim appli-
cation only runs once, or for that matter if the instructions forming
the side channel only execute once, i.e., not in a loop. Even in
the SGX setting, many modern, fine-grain side channels—e.g., 4K
aliasing [39], cache banking [64], and execution unit usage [5, 7]—
introduce significant noise, forcing the adversary to run the victim
many (potentially hundreds of) times to reliably exfiltrate secrets.
Even for less noisy channels, such as the cache, SGX adversaries
still often need more than one trace to reliably extract secrets [40].
This is good news for defenders. It is reasonable to expect that many
outsourced applications, e.g., filing tax returns or performing tasks
in personalized medicine, will only be run once per input. Further,
since SGX can defend against conventional replay attacks using a
combination of secure channels, attestation, and non-volatile coun-
ters [37], users have assurance that applications meant to run once
will only run once.
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1.1 This Paper

Despite the assurances made in the previous paragraph, this paper
introduces Microarchitectural Replay Attacks, which enable the SGX
adversary to denoise (nearly) any microarchitectural side channel
inside of an SGX enclave, even if the victim application is only run
once. The key observation is that a fundamental aspect to SGX’s
design enables an adversary to replay (nearly) arbitrary victim code,
without needing to restart the victim after each replay, thereby
bypassing SGX’s replay defense mechanisms.

Atahigh level, the attack works as follows. In SGX, the adversary
manages demand paging. We refer to a load that will result in a
page fault as a replay handle—e.g., one whose data page has the
Present bit cleared. In the time between when the victim issues a
replay handle and the page fault is triggered, i.e., after the page
table walk concludes, the processor will have issued instructions
that are younger than the replay handle in program order. Once the
page fault is signaled, the adversary can opt to keep the present bit
cleared. In that case, due to precise exception handling and in-order
commit, the victim will resume execution at the replay handle and
the process will repeat a potentially unbounded number of times.

The adversary can use this sequence of actions to denoise mi-
croarchitectural side channels by searching for replay handles that
occur before sensitive instructions or sensitive sequences of in-
structions. Importantly, the SGX threat model gives the adversary
sufficient control to carry out these tasks. For example, the adver-
sary can arrange for a load to cause a page fault if it knows the
load address, and can even control the page walk time by priming
the cache with select page table entries. Each replay provides the
adversary with a noisy sample. By replaying an appropriate number
of times, the adversary can disambiguate the secret from the noise.

We design and implement MicroScope, a framework for conduct-
ing microarchitectural replay attacks, and demonstrate our attacks
on real hardware.! Our main result is that MicroScope can be used
to reliably reveal execution unit port contention, i.e., similar to
the PortSmash covert channel [5], even if the victim is only run
once. In particular, with SMT enabled, our attack can detect the
presence or absence of as few as two divide instructions in the victim.
With further tuning, we believe we will be able to reliably detect
one divide instruction. Such an attack could be used to detect sub-
normal input to individual floating-point instructions [7], or infer
branch directions in an enclave despite countermeasures to flush
the branch predictor at the enclave boundary [12]. Beyond port
contention, we also show how our attack can be used to single-step
and perform zero-noise cache-based side channels in AES, allowing
an adversary to construct a denoised trace given a single run of
that application.

Contributions. This paper makes the following contributions.
(1) We introduce microarchitectural replay attacks, whereby
an SGX adversary can denoise nearly arbitrary microarchi-
tectual side channels by causing the victim to replay on a
page-faulting instruction.

!The name MicroScope comes from the attack’s ability to peer inside nearly any
microarchitectural side channel.
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(2) We design and implement a kernel module called MicroScope,
which can be used to perform microarchitectural replay at-
tacks in an automated fashion, given attacker-specified re-
play handles.

(3) We demonstrate that MicroScope is able denoise notoriously
noisy side channels. In particular, our attack is able to de-
tect the presence or absence of two divide instructions. For
completeness, we also show single-stepping and denoising
cache-based attacks on AES.

(4) We discuss the broader implications of microarchitectural
replay attacks, and discuss different attack vectors beyond
denoising microarchitectural side channels with page faults.

The source code for the MicroScope framework is available at

https://github.com/dskarlatos/MicroScope.

2 BACKGROUND

2.1 Virtual Memory Management in x86

A conventional TLB organization is shown in Figure 1. Each entry
contains a Valid bit, the Virtual Page Number (VPN), the Physical
Page Number (PPN), a set of flags, and the Process Context ID
(PCID). The latter is unique to each process. The flags stored in
a TLB entry usually include the Read/Write permission bit, the
User bit that defines the privilege level required to use the entry,
and other bits. The TLB is indexed using a subset of the virtual
address bits. A hit is declared when the VPN and the PCID match
the values stored in a TLB entry. Intel processors often deploy
separate instruction and data L1 TLBs and a unified L2 TLB.

[ virtual Page Number | Offset | [ pCID |

Valid | VPN | PPN | Flags | PCID

Figure 1: Conventional TLB organization.

If an access misses on both L1 and L2 TLBs, a page table walk is
initiated to locate the missing translation. The hardware Memory
Management Unit (MMU) performs this process. Figure 2 shows the
page table walk for address A. The hardware first reads a physical
address from the CR3 control register. This address corresponds to
the process-private Page Global Directory (PGD). The page walker
hardware adds the 40-bit CR3 register to bits 47-39 of the requested
virtual address. The result is the physical address of the relevant
pgd_t entry. Then, the page walker issues a request to the memory
hierarchy to obtain the pgd_t. This memory request either hits
in the data caches or is sent to main memory. The contents of
pgd_t is the address of the next page table level, called Page Upper
Directory (PUD). The same process is repeated for all the page table
levels. Eventually, the page walker fetches the leaf pte_t entry that
provides the PPN and flags. The hardware stores such informantion
in the TLB.

Modern MMUs have a translation cache called the Page Walk
Cache (PWC) that stores recent page table entries of the three upper
levels. This can potentially reduce the number of memory accesses
required to fetch a translation.
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Figure 2: Page table walk.

A pte_t entry includes the present bit. If the bit is cleared, then
the translation process fails and a page fault exception is raised.
The OS is then invoked to handle it. After the OS services the page
fault and updates the pte_t entry, control is yielded back to the
process. Then, the memory request that caused the page fault is
re-issued by the core. Once again, the request will miss in the TLB
and initiate a page walk. At the end of the page walk, the updated
pte_t will be stored in the TLB.

The OS is responsible for maintaining TLB coherence. This is
done by flushing potentially-stale entries from the TLB. The IN-
VLPG instruction [29] allows the OS to selectively flush a single TLB
entry. When the OS needs to update a page table entry, it locates
the leaf page table entry by performing a page walk following the
same steps as the hardware page walker. Updating the page table
causes the corresponding TLB entry to become stale. Consequently,
the OS also invalidates the TLB entry before yielding control back
to the process.

2.2 Out-of-Order Execution

Dynamically-scheduled processors execute instructions in parallel
and out of program order to improve performance [55]. Instruc-
tions are fetched and enter the scheduling system in program order.
However, they perform their operations and produce their results
possibly out of program order. Finally, they retire—i.e., make their
operation externally visible by irrevocably modifying the archi-
tected system state—in program order. In-order retirement is im-
plemented by queueing instructions in program order in a reorder
buffer (ROB) [30], and removing a completed instruction from the
ROB only once it reaches the ROB head, i.e., after all prior instruc-
tions have retired.

Relevant to this paper, out-of-order machines continue execution
during a TLB miss and page walk. When a TLB miss occurs, the
access causing the miss queues a hardware page walk. The processor
continues fetching and executing younger instructions, potentially
filling up the ROB to capacity. If a page fault is detected, before
it can be serviced, the page-faulting instruction has to reach the
head of the ROB. Then, all the instructions younger than it are
squashed. After the page fault is serviced, the program restarts at
the page-faulting instruction.

2.3 Shielded Execution via Enclaves

Secure enclaves [53], such as Intel’s Software Guard Extensions
(SGX) [14, 27, 28], are reverse sandboxes that allow sensitive user-
level code to run securely on a platform alongside an untrusted
supervisor (i.e., an OS and/or hypervisor).

Relative to earlier TEEs such as Intel’s TPM+TXT [26] and ARM
TrustZone [6], a major appeal in enclave-based TEEs is that they
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are compatible with mostly unmodified legacy user-space software,
and expose a similar process-OS interface to the supervisor as a
normal user-level process. To run code in enclaves, the user writes
enclave code and declares entry and exit points into that code,
which may have arguments and return values. User-level code can
jump into the enclave at one of the pre-defined entry points. This
is similar to context switching into a new hardware context from
the OS point of view. While the enclave code is running, the OS
performs demand paging on behalf of the enclave context as if it
were a normal process.

Enclave security is broken into attestation at bootup and priva-
cy/integrity guarantees at runtime [53]. The runtime protections
give enclave code access to a dedicated region of virtual memory
which cannot be read or written except by that enclave code. Intel
SGX implements these memory protections using virtual memory
isolation for on-chip data and cryptographic mechanisms for off-
chip data [21, 27]. For ease of use and information passing, SGX’s
design also allows enclave code to access user-level memory, owned
by the host process, outside of the private enclave memory region.

For MicroScope to attack an enclave-based TEE, the only require-
ment is that the OS handles page faults during enclave execution,
when trying to access either private enclave pages or insecure user-
level pages. Intel SGX uses the OS for both of these cases. When
a page fault occurs during enclave execution in SGX, the enclave
signals an AEX (asynchronous exit), and the OS receives the VPN of
the faulting page. To service the fault, the OS has complete control
over the translation pages (PGD, PUD, etc.). If the faulting page
is in the enclave’s private memory region, additional checks are
performed when the OS loads the page, e.g., to make sure it corre-
sponds to the correct VPN [14]. MicroScope does not rely on the OS
changing page mappings maliciously, and thus is not impacted by
these defenses. If loading a new page requires displacing another
page, the OS is responsible for TLB invalidations.

2.4 Side Channel Attacks

While enclave-based TEEs provide strong memory isolation mecha-
nisms, they do not explicitly mitigate microarchitectural side chan-
nel attacks. Here, we review known side channel attacks that can
apply to enclaves in Intel SGX. These attacks differ in their spatial
granularity, temporal resolution, and noise level. We classify these
attacks according to their capabilities in Table 1.

We classify an attack as providing fine-grain spatial granularity
if the attack can be used to monitor victim access patterns at the
granularity of cache lines or finer. We classify an attack as providing
coarse-grain spatial granularity if it can only observe victim access
patterns at coarser granularity, such as pages.

Coarse spatial granularity. Xu et al. [60] proposed controlled
side channels to observe a victim’s page-level access patterns by
monitoring its page faults. Further, Wang et al. [58] proposed several
new attack vectors, called Sneaky Page Monitoring (SPM). Instead
of leveraging page faults to monitor the accesses that trigger many
AEXs, SPM monitors the Access and Dirty bits in the page tables.
Both attacks target page tables, and can only achieve page-level
granularity, i.e., 4KB. In terms of noise, these attacks can construct
noiseless channels, since the OS can manipulate the status of pages
and can observe every page access.
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Noise Sneaky Page Monitoring [58]

Spatial Coarse Grain Fine Grain
Temporal — Low Resolution Medium/High Resolution
No Controlled side-channel [60] MicroScope (this work)

With TLBleed [20]
Noise TLB contention [25]
DRAMA [46]

SGX Prime+Probe [18], Software Grand Exposure [9]
Cache Bleed [64], Mem]Jam [39], PortSmash [5]

FPU subnormal attack [7], Execution unit contention [3, 59]
BTB contention [1, 2], BTB collision [16], Leaky Cauldron [58] | SGX-Step [57]

Cache Games [22]
CacheZoom [40]
Hahnel et al. [23]

Table 1: Characterization of side channel attacks on Intel SGX.

Gras et al. [20] and Hund et al. [25] proposed side channel attacks
targeting TLB states. They create contention on the L1 DTLB and L2
TLB, which are shared across logical cores in an SMT core, to recover
secret keys in cryptography algorithms and defeat ASLR. Similar
to page table attacks, they can only achieve page-level granularity.
Moreover, these two attacks suffer medium noise due to the races
between attacker and victim TLB accesses. DRAMA [46] is another
coarse-grain side channel attack that exploits DRAM row buffer
reuse and contention. It can provide a granularity equal to the row
buffer size (e.g., 2KB or 4KB).

Fine spatial granularity. There have been a number of works
that exploit SGX to create fine spatial granularity side channel
attacks that target the cache states or execution units (see Table 1).
However, they all have sources of noise. Therefore, the victim must
be run multiple times to obtain multiple traces, and intelligent
post-processing techniques are required to minimize attack errors.

We further classify fine spatial granularity attacks according to
the level of temporal resolution that they can achieve. We consider
an attack to have high temporal resolution if it is able to monitor the
execution of every single instruction. These attacks almost always
require the attacker to have the ability to single-step the victim
program. We define an attack to have low temporal resolution if it is
only able to monitor the aggregated effects of multiple instructions.

Low temporal resolution. Several cache attacks on SGX [9, 18]
use the Prime+Probe attack strategy and the PMU (performance
monitoring unit) to observe a victim’s access patterns at the cache
line level. Leaky Cauldron [58] proposed combining cache attacks
and DRAMA attacks to achieve fine-grain spatial granularity. These
attacks cannot attain high resolution, since the attacker does not
have a reliable way to synchronize with the victim, and the prime
and probe steps generally take multiple hundreds of cycles. More-
over, these attacks suffer from high noise, due to cache pollution
and coarse-grain PMU statistics. Generally, they require hundreds
of traces to get modestly reliable results—e.g., 300 traces in the SGX
Software Grand Exposure attack [9].

CacheBleed [64] and MemJam [39] can distinguish a victim’s
access patterns at even finer spatial granularity, i.e., sub-cache
line granularity. Specifically, CacheBleed exploits L1 cache bank
contention, while MemJam exploits false aliasing between load and
store addresses from two threads in two different SMT contexts.
However, in these attacks, the attacker analyzes the bank contention
or load-store forwarding effects by measuring the total execution
time of the victim. Thus, these attacks have low temporal resolution,
as such information can only be used to analyze the accumulated

effects of many data accesses. Moreover, such attacks are high noise,
and require thousands of traces or thousands of events per trace.

There are several attacks that exploit contention on execution
units [3, 5, 59], including through subnormal floating-point num-
bers [7], and collisions and contention on the BTB (branch target
buffer) [1, 2, 16]. As they exploit contention in the system, they have
similar challenges as CacheBleed. Even though these attacks can
achieve fine spatial granularity, they have low temporal resolution
and suffer from high noise.

Medium/high temporal resolution. Very few attacks can achieve
both fine spatial granularity and high temporal resolution. Cache
Games [22] exploits a vulnerability in the Completely Fair Sched-
uler (CFS) of Linux to slow victim execution, and achieve high
temporal resolution. CacheZoom [40] and Hahnel et al. [23] and
SGX-Step [57] use high-resolution timer interrupts to frequently
stop the victim process, at the granularity of a few memory accesses,
and collect L1 access information using Prime+Probe. Although
these techniques encounter relatively low noise, they still require
multiple runs of the application to denoise the exfiltrated informa-
tion.

In summary, none of the prior works can simultaneously achieve
fine spatial granularity, high temporal resolution, and no noise. We
propose MicroScope to boost the effectiveness of almost all of the
above attacks by de-noising them while, importantly, requiring only
one run of the victim application. MicroScope is sufficiently general
to be applicable to both cache attacks and contention-based attacks
on various hardware components, such as execution units [7], cache
banks [64], and load-store units [39].

3 THREAT MODEL

We adopt a standard threat model used when evaluating Intel
SGX [9, 19, 24, 40, 43, 47, 48, 58, 65], namely, a victim program
running within an SGX enclave alongside malicious supervisor
software (i.e., the OS or a hypervisor). This gives the adversary
complete control over the platform, except for the ability to di-
rectly introspect or tamper enclave private memory as described in
Section 2.3. The adversary’s goal is to break privacy, and learn as
much about the secret enclave data as possible. For this purpose,
the adversary may monitor any microarchitectural side channel
(e.g., those in Section 2.4) while the enclave runs.

We restrict the adversary to run victim enclave code only one
time per sensitive input. This follows the intent of many applica-
tions, such as tax filings and personalized health care. The victim
can defend against the adversary replaying the entire enclave code
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Figure 3: Timeline of a MicroScope attack. The Replayer is an untrusted OS or hypervisor process that forces the Victim code
to replay, enabling the Monitor to denoise and extract the secret information.

by using a combination of secure channels and SGX attestation
mechanisms, or through more advanced techniques [37].

Integrity of computation and physical side channels. Our
main presentation is focused on breaking privacy over microarchi-
tectural (digital) side channels. While we do not focus on program
integrity, or physical attacks such as power/EM [34, 42], we discuss
how microarchitectural replay attacks can be extended to these
threat models in Section 7.

4 THE MICROSCOPE ATTACK

MicroScope is based on the key observation that modern hard-
ware allows recently executed, but not retired, instructions to be
rolled back and replayed if certain conditions are met. This behavior
can be easily exploited by an untrusted OS to denoise side channels.

4.1 Overview

A MicroScope attack has three actors: Replayer, Victim, and Monitor.
The Replayer is a malicious OS or hypervisor that is responsible for
page table management. The Victim is an application process that
executes some secret code that we wish to exfiltrate. The Monitor
is a process that performs auxiliary operations, such as causing
contention and monitoring shared resources.

4.1.1 Attack Setup: The Replay Handle. MicroScope is enabled by
what we call a Replay Handle. A replay handle can be any memory
access instruction that occurs shortly before a sensitive instruction
in program order, and that satisfies two conditions. First, it accesses
data from a different page than the sensitive instruction. Second,
the sensitive instruction is not data dependent on the replay handle.
Programs have many potential replay handles, including accesses
to the program stack or heap, or memory access instructions that
are unrelated to the sensitive instruction.

In MicroScope, the OS forces the replay handle to perform a page
walk and incur a minor page fault. In the meantime, instructions that
are younger than the replay handle, such as the sensitive instruction,
can execute. More precisely, they can be inserted in the ROB and
execute until the page fault is identified and the replay handle is at
the head of the ROB, or until the ROB is full. Of course, instructions
that are dependent on the replay handle do not execute.

Figure 3 shows the timeline of the interleaved execution of the
Replayer, Victim, and Monitor. To initiate an attack, the adversary
first identifies a replay handle close to the sensitive instruction.
The adversary then needs to know the approximate time at which
the replay handle will be executed, e.g., by single-stepping the
Victim at page-fault [60] or close-to-instruction [40] granularity.
The Replayer then pauses the Victim program before this point, and
sets up the attack that triggers a page fault on the replay handle.

The Replayer sets up the attack by locating the page table entries
required for virtual-to-physical translation of the replay handle—
ie., its pgd_t, pud_t, pmd_t, pte_t in Figure 2. The Replayer can
easily do so by using the replay handle’s virtual address. Then, the
Replayer performs the following steps, shown in the timeline D of
Figure 3. First, it flushes from the caches the data to be accessed by
the replay handle. This can be done by priming the caches. Second,
it clears the present bit in the leaf page table entry (pte_t). Next,
it flushes from the cache subsystem the four page table entries in
the PDG, PUD, PMD, and PTE required for translation. Finally, it
flushes the TLB entry that stores the {VPN, PPN} translation for the
replay handle access. Together, these steps will cause the replay
handle to miss in the TLB, and induce a hardware page walk to
locate the translation, which will miss in the Page Walk Cache
(PWC) and eventually result in a minor page fault.

Sometimes, it is also possible for the Replayer to use an instruc-
tion with a naturally occurring page fault as the replay handle.

4.1.2  Page Walk and Speculative Execution. After the attack is set-
up, the Replayer allows the Victim to resume execution and issue
the replay handle. The operation is shown in timeline 3 of Figure 3.
The replay handle access misses in the L1 TLB, L2 TLB, and PWC,
and initiates a page walk. The hardware page walker fetches the
necessary page table entries sequentially, starting from PGD, then
PUD, PMD, and finally PTE. The Replayer can tune the duration of
the page walk time to take from a few cycles to over one thousand
cycles, by ensuring that the desired page table entries are either
present or absent from the cache hierarchy (shown in the arrows
above timeline 3 of Figure 3).

In the shadow of the page walk, due to speculative execution,
the Victim continues executing subsequent instructions, which
perform the secret code computation. Such speculative instructions
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1for i in ...
1//public address 2 handle(pub_addrA); 1 handle(pub_addrA);
2 handle (pub_addr); 3 R 2if (secret)
3., 4 transmit(secret[i]); 3 transmit(pub_addrB)
stransmit(secret); 5 R selse
5... 6 pivot(pub_addrB); 5 transmit (pub_addrC)
(a) Single secret. 7 (c) Control flow secret.

(b) Loop secret.

Figure 4: Simple examples of codes that present opportunities for microarchitectural replay attacks.

execute but will not retire. They leave some state in the cache
subsystem and/or create contention for hardware structures in
the core. When the hardware page walker locates the leaf PTE
that contains the translation, it finds that the present bit is clear.
This finding eventually causes the hardware to raise a page fault
exception and squash all of the speculative state in the pipeline.

The Replayer is then invoked to execute the page fault handler
and handle the page fault. The Replayer could now set the present
bit and allow the Victim to make forward progress. Alternatively,
as shown in timeline 2) of Figure 3, MicroScope’s Replayer keeps
the present bit clear and re-flushes the PGD, PUD, PMD, and PTE
page table entries from the cache subsystem. As a result, as the
Victim resumes and re-issues the replay handle, the whole process
repeats. Timeline @ of Figure 3 shows the actions of the Victim.
This process can be repeated as many times as desired to denoise
and extract the secret information.

4.1.3  Monitoring Execution. The Monitor is responsible for extract-
ing the secret information of the Victim. Depending on the Victim
application and the side channel being exploited, we distinguish
two configurations. In the first one, shown in timeline & of Fig-
ure 3, the Monitor executes in parallel with the Victim’s speculative
execution. The Monitor can cause contention on shared hardware
resources and monitor the behavior of the hardware. For example,
an attack that monitors contention in the execution units uses this
configuration.

In the second configuration, the Monitor is part of the Replayer.
After the Victim has yielded control back to the Replayer, the latter
inspects the result of the speculative execution, such as the state
of specific cache sets. A cache-based side channel attack could use
this configuration.

4.1.4  Summary of a MicroScope Attack. The attack consists of the
following steps:

(1) The Replayer identifies the replay handle and prepares the
attack.

(2) When the Victim executes the replay handle, it suffers a TLB
miss followed by a page walk. The time taken by this step
can be over one thousand cycles. It can be tuned as per the
requirements of the attack.

(3) In the shadow of the page walk and until the page fault is
serviced, the Victim continues executing speculatively past
the replay handle into the sensitive region, potentially until
the ROB is full.

(4) The Monitor can cause and measure contention on shared
hardware resources during the Victim’s speculative execu-
tion, or inspect the hardware state at the end of the Victim’s
speculative execution.

(5) When the Replayer gains control after the replay handle
causes a page fault, it can optionally leave the present bit
cleared in the PTE entry. This will induce another replay
cycle that the Monitor can leverage to collect more informa-
tion. Before the replay, the adversary may also prime the
processor state for the next measurement. For example, if it
uses a Prime+Probe cache-based attack, it can re-prime the
cache.

(6) When sufficient traces have been gathered, the Replayer sets
the present bit in the PTE entry. This enables the Victim to
make forward progress.

With these steps, MicroScope can generate a large number of
execution traces for one “logical” execution trace. It can denoise a
side channel formed by, potentially, any instruction(s)—even ones
that expose a secret only once in straight-line code.

4.2 Simple Attack Examples

Figure 4 shows several examples of codes that present opportunities
for MicroScope attacks. Each example showcases a different use
case.

4.2.1 Single-Secret Attack. Figure 4a shows a simple code that
has a single secret. Line 2 accesses a public address (i.e., known
to the OS). This access is the replay handle. After a few other
instructions, sensitive code at Line 4 processes some secret data. We
call this computation the transmit computation of the Victim, using
terminology from [32]. The transmit computation may leave some
state in the cache or may use specific functional units that create
observable contention. The goal of the adversary is to extract the
secret information. The adversary can obtain it by using MicroScope
to repeatedly perform steps (2)—-(5) from Section 4.1.4.

To gain more insight, consider a more detailed example of the
single-secret code (Figure 5). The figure shows function getSecret
in C source code (Figure 5a) and in assembly (Figure 5b). In Fig-
ure 5a, we see that the function increments count and returns
secrets[id]/key.

With MicroScope, the adversary can leverage the read to count
as a replay handle. In Figure 5b, the replay handle is the mov instruc-
tion at Line 6. Then, MicroScope can be used to monitor the port
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1 _getSecret:
2 push  %rbp
1static uint64_t count; 3 MoV %rsp, %rbp
2 static float secrets[512]; 4mov %edi, -0x4(%rbp)
3 5MOVSS %xmm@,-0x8(%rbp)
4+ float getSecret(int id, 6 MOV 0x200b27 (%rip) ,%rax
5 float key){ 7 add $0x1,%rax
¢ //replay handle smov  %rax,0x200blc(%rip)
7 count++; 9 mov -0x4(%rbp) ,%eax
s //measurement access 10 cltq
9 return secrets[id]/key; 11movss 0x601080(,%rax,4),%xmmo
10} 12divss -0x8(%rbp), %xmmo
(a) Single-secret source. 13 POP %rbp
14 retq

(b) Single-secret assembly.

Figure 5: Single-secret detailed code.

contention in the floating-point division functional unit that exe-
cutes secrets[id]/key. In Figure 5b, the division instruction is at
Line 12. This is the transmit instruction. With this support, the ad-
versary can determine whether secrets[id]/key is a subnormal
floating-point operation, which has a different latency.

Alternatively, MicroScope can be used to monitor the cache
access made by secrets[id]. In Figure 5b, the access secrets[id]
is at Line 11. With MicroScope, the adversary can extract the cache
line address of secrets[id].

4.2.2  Loop-Secret Attack. We now consider the scenario where we
want to monitor a given instruction in different iterations of a loop.
We call this case Loop Secret, and show an example in Figure 4b. In
the code, the loop body has a replay handle and a transmit operation.
In each iteration, the transmit operation accesses a different secret.
The adversary wants to obtain the secrets of all the iterations. The
challenging case is when the address of the replay handle maps to
the same physical data page in all the iterations.

This scenario highlights a common problem in side channel
attacks: secret[i] and secret[i+1] may induce similar effects,
making it hard to disambiguate between the two. For example, both
secrets may co-locate in the same cache line, or induce similar
pressure on the execution units. This fact severely impedes the
ability to distinguish the two accesses.

MicroScope addresses this challenge through two capabilities.
The first one, discussed in Section 4.1.2, is that the Replayer can
dynamically tune the duration of the speculative execution, by
controlling the page walk duration. In particular, the speculative
execution window can be tuned to be short enough to allow the
execution of only a single secret transmission per replay. This allows
the Replayer to extract secret[i] without any noise.

The second capability is that the Replayer can use a second mem-
ory instruction to move between the replay handles in different
iterations. This second instruction is located after the transmit in-
struction in program order, and we call it the Pivot instruction. For
example, in Figure 4b, the instruction at Line 6 can act as the pivot.
The only condition that the pivot has to satisfy is that its address
should map to a different physical page than the replay handle.
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MicroScope uses the pivot as follows. After the adversary in-
fers secret[i] and is ready to proceed to extract secret[i+1],
the adversary performs one additional action during step 6 in Sec-
tion 4.1.4. Specifically, after setting the present bit in the PTE entry
for the replay handle, it clears the present bit in the PTE entry for
the pivot, and resumes the Victim’s execution. As a result, all the
Victim instructions before the pivot are retired, and a new page
fault is incurred for the pivot.

When the Replayer is invoked to handle the pivot’s page fault, it
sets the present bit for the pivot and clears the present bit for the
replay handle. This is possible because we choose the pivot from a
different page than the replay handle. When the Victim resumes
execution, it retires all the instructions of the current iteration
and proceeds to the next iteration, suffering a page fault in the
replay handle. Steps 2- 5 repeat again, enabling the monitoring of
secret[i+1]. The process is repeated for all the iterations.

As a special case of this attack scenario, when the transmit
instruction (Line 4) is itself a memory instruction, MicroScope can
simply use the transmit instruction as the pivot. This eliminates
the need for a third instruction to act as pivot.

4.2.3 Control Flow Secret Attack. A final scenario that is commonly
exploited using side channels is a secret-dependent branch condi-
tion. We call this case Control Flow Secret, and show an example
in Figure 4c. In the code, the direction of the branch is determined
by a secret, which the adversary wants to extract.

As shown in the figure, the adversary uses a replay handle before
the branch, and a transmit operation in both paths out of the branch.
The adversary can extract the direction taken by the branch using
at least two different types of side channels. First, if Lines 3 and
5 in Figure 4c access different cache lines, then the Monitor can
perform a cache based side-channel attack to identify the cache
line accessed, and deduce the branch direction.

A second case is when the two paths out of the branch access the
same addresses but perform different computations—e.g., one path
performs a multiplication and the other performs a division. In this
case, the transmit instructions are instructions that use the func-
tional units. The Monitor can apply pressure on the functional units
and, by monitoring the contention observed, deduce the operation
that the code performs.

Prediction. The above situation is slightly more complicated in the
presence of control-flow prediction such as branch prediction. With
a branch predictor, the branch direction will initially be a function
of the predictor state, not the secret. If the secret does not match
the prediction, execution will squash. In this case both sides of the
branch will execute, complicating the adversary’s measurement.

MicroScope deals with this situation using the following in-
sight: If the branch predictor state is public, whether there is a
misprediction (re-execution) leaks the secret value, i.e., reveals
secret==predictor state. The adversary can measure whether
there is a misprediction by monitoring side channels for both sides
of the branch in different replays.

The branch predictor state will likely be public in our setting. For
example, the adversary can prime the predictor to a known state as
in [33]. Likewise, if the predictor is flushed at enclave entry [12]
the very act of flushing it puts it into a known state.
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4.3 Exploiting Port Contention

To show the capabilities of MicroScope, we implement two popular
attacks: in this section, we perform a port contention attack similar
to PortSmash [5] without noise; in the next section, we use a cache-
based side channel to attack AES.

In a port contention attack, the attacker tries to infer a few arith-
metic operations performed by the Victim. Typically, the Monitor
executes different types of instructions on the same core as the
Victim, to create contention on the functional units, and observes
the resulting contention. These attacks can have very high reso-
lution [5], since they can potentially leak secrets at instruction
granularity—even if the Victim code is fully contained in a single
instruction and data cache line. However, they suffer from high
noise due to the difficulty of perfectly aligning the timing of the
execution of Victim and Monitor instructions.

We build the attack using the Control Flow Secret code of
Figure 4c. One side of the branch performs two integer multiplica-
tions, while the other side performs two floating-point divisions.
Importantly, there is no loop in the code; each side of the branch
simply performs the two operations. The assembly code for the two
sides of the branch is shown in Figure 6a (multiplication) and 6b
(division). For clarity, each code snippet also includes the replay
handle instruction in Line 1. Such instruction is executed before the
branch. We can see that, in Lines 13 and 15, one code performs two
integer multiplications and the other two floating-point divisions.

1addg  $0x1,0x20(%rbp) 1addg $0x1,0x20 (%rbp)
2... 2...

3 __victim_div
0x201548(%rip) ,%rax

3 __victim_mul
4 mov 0x2014b1(%rip),%rax  amov

5 MoV %rax, 0x20(%rsp) 5 MoV %rax,0x10(%rsp)
6 MoV 0x201498(%rip),%rax ¢ mov 0x20153f (%rip) ,%rax
7mov  %rax,@x28(%rsp) 7mov  %rax,@x18(%rsp)
3 MoV 0x20(%rsp),%rsi 3 MOV 0x10(%rsp) ,%rax
9 mov Ox28(%rsp),%rdi 9 mov 0x18(%rsp) , %rbx

10 MOV (%rsi),%rbx
11 MoV (%rdi),%rcx

1omovsd (%rax),%xmmo
11movsd (%rbx),%xmmi
12 MOV %rex, %rax 1zmovsd  %xmm1, %xmm2
13 mul %rbx 13divsd %xmm@, %xmm2
14 MOV %rex, %rax amovsd %xmm1,%xmm3

15 mul %rbx 15 divsd %xmm@, %xmm3

(a) Multiplication side. (b) Division side.
Figure 6: Victim code executing two multiplications (a) or
two divisions (b). Note that code is not in a loop.

The goal of the adversary is to extract the secret that decides the
direction of the branch.? To do so, the Monitor executes the simple
port contention monitor code of Figure 7a. The code is a loop where
each iteration repeatedly invokes unit_div_contention(), which
performs a single floating-point division operation. The code mea-
sures the time taken by these operations and stores the time in an ar-

ray. Figure 7b shows the assembly code of unit_div_contention().

2We note that prior work demonstrated how to infer branch directions in SGX. Their
approach, however, is no longer effective with today’s countermeasures that flush
branch predictor state at the enclave boundary [12].
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Line 11 performs the single division, which creates port contention
in the division functional unit.

1__unit_div_contention
1for (j = @; j < buff; j++){ 2mov 0x2012f1(%rip) , %rax
%rax,-0xc@(%rbp)

2 t1 = read_timer(); 3 MoV
3 for (i = 0; 1 < cont; i++){ amov 0x2012eb(%rip), %rax

4+ // cause contention 5 MoV %rax,-0xb8(%rbp)
5 unit_div_contention(); 6 MOV -0xc@(%rbp) , %rax
6 ) 7 MoV -0xb8(%rbp) , %rbx

smovsd (%rax),%xmmo
9movsd (%rbx),%xmm1

7 t2 = read_timer();
s buffer[j] = t2 - t1;
9} 10 movsd %xmm1, %xmm2

(a) Monitor source code. udivsd %xmmo, %xmm2

(b) Assembly code for the divi-
sion operation.

Figure 7: Monitor code that creates and measures port con-
tention in the division functional unit.

The attack begins with the Replayer causing a page fault at Line 1
of Figure 6. MicroScope forces the victim to keep replaying the code
that follows, which is either 6a or 6b, depending on the value of the
secret. On a different SMT context of the same physical core, the
Monitor concurrently executes the code in Figure 7a. The Monitor’s
divsd instruction at Line 11 of Figure 7b may or may not experience
contention depending on the execution path of the Victim. If the
Victim takes the path with mul (Figure 6a), the Monitor does not
experience any contention and executes fast. If it takes the path
with divsd (Figure 6b), the Monitor experiences contention and
executes slower. Based on the execution time of the Monitor code,
MicroScope reliably identifies the operation executed by the Victim,
and thus the secret, after a few replay iterations.

This attack can also be used to discover fine-grain properties
about an instruction’s execution. As indicated before, one example
is whether an individual floating-point operation receives a sub-
normal input. Prior attacks in this space are very course-grained,
and can only measure whole-program timing [7].

4.4 Attacking AES

This section shows how MicroScope is used to attack AES de-
cryption. We consider the AES decryption implementation from
OpenSSL 0.9.8. [44]. For key sizes equal to 128, 192, and 256 bits,
the algorithm performs 10, 12, and 14 rounds of computation, re-
spectively. During each round, a set of pre-computed tables are
used to generate the substitution and permutation values. Figure 8a
shows the upper part of a computation round. For simplicity, we
only focus on the upper part of a computation round; the lower
part is similar. In the code shown in Figure 8a, each of the tables
Tdo, Td1, Td2, and Td3 stores 256 unsigned integer values, and rk
is an array of 60 unsigned integer elements. Our goal in this attack
is to extract which entries of the Td0-Td3 tables are read in each
assignment in Figure 8a.

MicroScope attacks the AES decryption function using two main
observations. First, the Td0-Td3 tables and the rk array are stored
in different physical pages. Therefore, MicroScope uses an access to
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1for (5;) {

2 t0 = TdO[(s0 >> 24)] * Td1[(s3 >> 16) & Oxff] *

3 Td2[(s2 >> 8) & oxff]l * Td3[(s1)&exff]l * rk[4];
4 t1 = Tdo[(s1 >> 24)] ~ Td1[(s0 >> 16) & Oxff] *

5 Td2[(s3 >> 8) & oxff] * Td3[(s2)&oxff]l * rk[5];
s t2 = Tdo[(s2 >> 24)] * Td1[(s1 >> 16) & Oxff] *

7 Td2[(s0 >> 8) & OxFf] * Td3[(s3)&xff] * rk[6]1;
s t3 = TdO[(s3 >> 24)] * Td1[(s2 >> 16) & Oxff] *

9 Td2[(s1 >> 8) & oxff]l ~ Td3[(s@)&exff]l * rk[7];
10

n rk += 8;

12 if (--r == 0) {

13 break;

4}

15

16 .

17 }

(a) AES decryption code from OpenSSL.

0= T99_[1_A_T£1_1_[_]_A__T_<1%D_fI‘_i;”_[l_“_E []

6 - T%of]?' A1) A Td20] A Td3() ~ T[]

(b) MicroScope’s replay handle and pivot path.

Figure 8: Using MicroScope to attack AES decryption.

rk as a replay handle, and an access to one of the Td tables as a pivot.
This approach was described in Section 4.2.2. Second, the Replayer
can fine-tune the page walk duration so that a replay covers only
a small number of instructions. Hence, with such a small replay
window, MicroScope can extract the desired information without
noise. Overall, with these two strategies, we mount an attack where
the adversary single steps the decryption function, extracting all
the information without noise.

Specifically, the Replayer starts by utilizing the access to rk[4]
in Line 3 of Figure 8a as the replay handle, and tunes the page walk
duration so that the replay covers the instructions from Line 4 to
Line 9. After each page fault is triggered, the Replayer acts as the
Monitor, and accesses all the cache lines of all the Td tables. Based
on the access times, after several replays, the Replayer can reliably
deduce the lines accessed speculatively by the Victim. However, it
does not know if a given line was accessed in the assignment to t1,
t2, or t3.

After extracting this information, the Replayer sets the present
bit for the rk[4] page, and clears the present bit for the Td@ page.
As explained in the Loop Secret attack of Section 4.2.2, Td@ in
Line 4 is a pivot. When the Victim resumes execution, the rk[4]
access in Line 3 commits, and a page fault is triggered at the Tdo
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access in Line 4. Now, the Replayer sets the present bit for the Tde
page, and clears the present bit for the rk[5] page. As execution
resumes, the Replayer now measures the accesses in Lines 6 to 9
of this iteration, and in Lines 2 to 3 of the next iteration. Hence, it
can disambiguate any overlapping accesses from the instructions
in Lines 4 to 5, since these instructions are no longer replayed.

The process repeats for the next lines and across loop iterations.
Figure 8b shows a graphical representation of the path followed by
the replay handle and pivot in one iteration. Note that, as described,
this algorithm misses the accesses to tables Td0-Td3 in Lines 2
and 3 for the first iteration. However, such values are obtained by
using a replay handle before the loop.

Overall, with this approach, MicroScope reliably extracts all
the cache accesses performed during the decryption. Importantly,
MicroScope does it with only a single execution of AES decryption.

5 MICROSCOPE IMPLEMENTATION

In this section, we present the MicroScope framework that we
implemented in the Linux kernel.

5.1 Attack Execution Path

Figure 9 shows a high-level view of the execution path of a Micro-
Scope attack. The figure shows the user space, the kernel space,
and the MicroScope module that we implemented in the kernel.

Page Fault
User Space Kernel Space , Attack Recipe
Process @ Attack Microscope rfplay_handle[]
1 Issue 1d & () ttacl Module A | _[Pivotl]
2 Issue mul Page Fault PTE :
Handl monitor_addrl ]
i i el Attack |/ confidence
4 Issue 1d B @ Changes Recive |-
Completed “J..| *attack_func[]1()

Restart
Execution

Figure 9: Execution path of a MicroScope attack.

Applications issue memory accesses using virtual addresses,
which are later translated to physical ones (). When the MMU
identifies a page fault, it raises an exception and yields control to
the OS to handle it (2)). The page fault handler in the OS identifies
what type of page fault it is, and calls the appropriate routine to
service it (®). If it is a fault due to the present bit being clear, our
modified page fault handler compares the faulting PTE entry to the
ones currently marked as under attack. On a match, trampoline
code redirects the page fault handler to the MicroScope module
that we implemented (@). The MicroScope module may change the
present bits of the PTE entries under attack (3), and prevents the
OS page handler from interfering with them. After the MicroScope
module completes its operations, the page fault handler is allowed
to continue ((®). Finally, control returns to the application ((7).

5.2 MicroScope Module

The MicroScope module in the kernel uses a set of structures de-
scribed below.

5.2.1 Attack Recipes. The Attack Recipes is a structure in the
MicroScope module that stores all the required information for
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specific microarchitectural replay attacks. For a given attack, it
stores the replay handle, the pivot, and addresses to monitor for
cache based side-channel attacks. It also includes a confidence
threshold that is used to decide when the noise is low enough to
stop the replays. Finally, each recipe defines a set of attack functions
that are used to perform the attack.

This modular design allows an attacker to use a variety of ap-
proaches to perform an attack, and to dynamically change the attack
recipe depending on the victim behavior. For example, if a side-
channel attack is unsuccessful for a number of replays, the attacker
can switch from a long page walk to a short one.

5.2.2  Attack Operations. MicroScope performs a number of oper-
ations to successfully carry-out microarchitectural replay attacks.
The MicroScope module contains the code needed to execute such
operations. The operations are as follows. First, MicroScope can
identify the page table entries required for a virtual memory transla-
tion. This is achieved by performing a software page walk through
the page table entries. Second, MicroScope can flush specific page ta-
ble entries from the PWC and from the cache hierarchy. Third, it can
invalidate TLB entries. Fourth, it can communicate through shared
memory or signals with the Monitor that runs concurrently with
the Victim; it sends stop and start signals to the Monitor when the
Victim pauses and resumes, respectively, as well as other informa-
tion based on the attack recipe. Finally, in cache based side-channel
attacks, MicroScope can prime the cache system.

5.2.3 Interface to the User for Attack Exploration. To enable mi-
croarchitectural replay attack exploration, MicroScope provides an
interface for the user to pass information to the MicroScope module.
This interface enables the operations in Table 2. Some operations
allow a user to provide a replay handle, a pivot, and addresses to
monitor for cache based side-channel attacks. In addition, the user
can force a specific address to initiate a page walk of length page-
table levels, where length can vary from 1 to 4. Finally, the user can
force a specific address to suffer a page fault.

Function H Operands [ Semantics H

provide_replay_handle || addr
provide_pivot addr
provide_monitor_addr addr
initiate_page_walk addr, length | Initiate a walk of length
initiate_page_fault addr

Provide a replay handle
Provide a pivot
Provide address to monitor

Initiate a page fault

Table 2: API used by a user process to access MicroScope.

6 EVALUATION

We evaluate MicroScope on a Dell Precision Tower 5810 with an
Intel Xeon E5-1630 v3 processor running Ubuntu with the 4.4 Linux
kernel. We note that while our current prototype is not on an
SGX-equipped machine, our attack framework uses an abstraction
equivalent to the one defined by the SGX enclaves, as discussed
in Section 3. Related work makes similar assumptions [60]. In this
section, we evaluate two attacks: the port contention attack of
Section 4.3, and the AES attack of Section 4.4.
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6.1 Port Contention Attack

In this attack, the Monitor performs the computation shown in
Figure 7a. Concurrently, MicroScope forces the Victim to replay
either the code in Figure 6a or the one in Figure 6b. The Monitor
performs 10, 000 measurements. They measure a single logical run
of the Victim, as the Victim code snippet is replayed many times.

Figure 10 shows the latency in cycles of each of the 10,000
Monitor measurements while the Victim runs the code with the
two multiplications (Figure 6a), or the one with the two divisions
(Figure 6b). When the victim executes the code with the two multi-
plications, the latency measurements in Figure 10a show that all
but 4 of the samples take less than 120 cycles. Hence, we set the
contention threshold to slightly less than 120 cycles, as shown by
the horizontal line.

Sample ID

(a) Victim executes two multiply operations as shown in Figure 6a.

00 600
Sample ID

(b) Victim executes two division operations as shown in Figure 6b.

Figure 10: Latencies measured by performing a port con-
tention attack.

When the victim executes the code with the two divisions, the
latency measurements in Figure 10b show that 64 measurements
are above the threshold of 120 cycles. To understand this result, note
that most Monitor samples are taken while the page fault handling
code is running, rather than when the Victim code is running. The
reason is that the page fault handling code executes for considerably
longer than the Victim code in each replay iteration, and we use a
simple free-running Monitor. For this reason, many measurements
are below the threshold for both figures.

However, there is substantial difference between Figure 10b and
Figure 10a. The former has 16x more samples over the threshold.
This makes the two cases clearly distinguishable.

Overall, MicroScope is able to detect the presence or absence of
two divide instructions, without any loop. It does so by denoising a
notoriously noisy side channel through replay.

6.2 AES Attack

We use MicroScope to perform the cache side-channel attack on
AES described in Section 4.4. We focus on one iteration of the loop
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in Figure 8a, and replay three times to obtain the addresses of the
cache lines accessed by the Td@-Td3 tables. Each of these tables
uses 16 cache lines.

Before the first replay (Replay 0), the Replayer does not prime
the cache hierarchy. Hence, when the Replayer probes the cache
after the replay, it finds the cache lines of the tables in different
levels of the cache hierarchy. Before each of the next two replays
(Replay 1andReplay 2), the Replayer primes the cache hierarchy,
evicting all the lines of the tables to main memory. Therefore, when
the Replayer probes the cache after each replay, it finds the lines
of the tables accessed by the Victim in the L1 cache, and the rest
of the lines in main memory. As a result, the Replayer is able to
identify the lines accessed by the victim.

Figure 11 shows the latency in cycles (Y axis) observed by the
Replayer as it accesses each of the 16 lines of table Td1 (X axis) after
each replay. We see that, after Replay 0, some lines have a latency
lower than 60 cycles, others between 100 and 200 cycles, and one
over 300. They correspond to hits in the L1, hits in L2/L3, and misses
in L3, respectively. After Replay 1 and Replay 2, however, the
picture is very clear and consistent. Only lines 4, 5, 7, and 9 hit in
the L1, and all the other lines miss in L3. This experiment shows
that MicroScope is able to extract the lines accessed in the AES
tables without noise in a single logical run.
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Figure 11: Latency of the accesses to the Td1 table after each
of three replays of one iteration of AES.

7 GENERALIZING MICROARCHITECTURAL
REPLAY ATTACKS

While this paper focused on a specific family of attacks (denoising
microarchitectural side channels using page fault-inducing loads),
the notion of replaying snippets in a program’s execution is even
more general and can be used to mount other privacy- or integrity-
based attacks. Figure 12 gives a framework illustrating the different
components in a microarchitectural replay attack. In our attack,
the replay handle is a page fault-inducing load, the replayed code
contains instructions that leak privacy over microarchitectural side
channels, and the attacker’s strategy is to unconditionally clear
the page table present bit until it has high confidence that it has
extracted the secret. We now discuss how to create different attacks
by changing each of these components.

7.1 Attacks on Program Integrity

Our original goal with microarchitectural replay attacks was to
bias non-deterministic instructions such as the Intel true random
number generator RDRAND. Suppose the replayed code contains a
RDRAND instruction. If the attacker learns the RDRAND return value
over a side channel, its strategy is to selectively replay the Victim
depending on the returned value (e.g., if it is odd, or satisfies some
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Figure 12: Generalized microarchitectural replay attacks.

other requirement). This is within the attacker’s power: to selec-
tively replay the Victim, the OS can access the last level page table
(the PTE) directly and set/clear the present bit before the hardware
page walker reaches it. The result is that the attacker can prevent
the victim from obtaining certain values, effectively biasing the
RDRAND from the Victim’s perspective.

We managed to get all the components of such an attack to work
correctly. However, it turns out that the current implementation of
RDRAND on Intel platforms includes a form of fence. This fence pre-
vents speculation after RDRAND, and the attack does not go through.
In discussions with Intel, it appears that the reason for including
this fence was not related to security. The lesson is that there should
be such a fence, for security reasons.

More generally, the above discussion on integrity applies when
there is any instruction in the replayed code that is non-deterministic.
For example: RDRAND, RDSEED, RDTSC, or memory accesses to shared,
writeable variables.

7.2 Attacks Using Different Replay Handles

While this paper uses page fault-inducing loads as replay handles,
there are other instructions which can similarly cause a subsequent
dynamic instruction to execute multiple times. For example, en-
tering a transaction using transactional memory may cause code
within the transaction to replay if the transaction aborts (e.g., if
there are write set conflicts). Intel’s Transactional Synchronization
Extensions (TSX) in particular will abort a transaction if dirty data
is evicted from the private cache, which can be easily controlled by
an attacker. (We note that prior work has proposed using TSX in
conjunction with SGX for defensive purposes [50].) One benefit of
using TSX enter as a replay handle is that the window of replayed
code is large, i.e., potentially the number of instructions in the
transaction as opposed to the ROB size. This changes mitigations
strategies. For example, fencing RDRAND (see above) will no longer
be effective.

Other instructions can cause a limited number of replays. For ex-
ample, any instruction which can squash speculative execution [11],
e.g., a branch that mispredicts, can cause some subsequent code to
be replayed. Since a branch will not mispredict an infinite number
of times, the application will eventually make forward progress.
However, the number of replays may still be large, e.g., if there
are multiple branches in-flight, all of which mispredict. To maxi-
mize replays, the adversary can perform setup before the victim
runs. For example, it can prime the branch predictor (similar to
[33]) to mispredict if there are not already mechanisms to flush the
predictors on context switches [12].
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7.3 Amplifying Physical Side Channels

While our focus was to amplify microarchitecture side channels,
microarchitectural replay attacks may also be an effective tool to
amplify physical channels such as power and EM [34, 42]. For ex-
ample, in the limit, the replayed code may be as little as a single
instruction in the Victim, plus the attacker instructions needed
to setup the next replay. Unsurprisingly, reducing Victim execu-
tion to fewer irrelevant instructions can improve physical attack
effectiveness by denoising attack traces [41].

8 POSSIBLE COUNTERMEASURES

We now overview possible defense solutions and discuss their per-
formance and security implications.

The root cause of microarchitectural replay attacks is that each
dynamic instruction may execute more than one time. Based on the
discussion in Section 7, this can be for a variety of reasons (e.g., a
page fault, transaction abort, squash during speculative execution).
Thus, it is clear that new, general security properties are required
to comprehensively address these vulnerabilities. While we are
working to design a comprehensive solution, we review some point
mitigation strategies below that can be helpful to prevent specific
attacks.

Fences on Pipeline Flushes. The obvious defense against attack
variants, whose replayed code is contained within the ROB (see
Section 7), is for the hardware or the OS to insert a fence after each
pipeline flush. However, there are many corner cases that need
to be considered. For example, it is possible that multiple instruc-
tions in a row induce a pipeline flush. This can be due to different
causes, such as multiple page faults and/or branch mispredictions
in close proximity. In these cases, even if a fence is introduced after
every pipeline flush, the adversary can extract information from
the resulting multiple replays.

Speculative Execution Defenses. MicroScope relies on specula-
tive execution to replay Victim instructions. Therefore, a defense
solution that holistically blocks side effects caused by speculative
execution can effectively block MicroScope. However, existing de-
fense solutions either have limited defense coverage or introduce
substantial performance overhead. For example, using fences [29]
or mechanisms such as InvisiSpec [61] or SafeSpec [31] only block
specific covert channels such as the cache, and apply protections
to all loads, which incurs large overhead. One idea to adapt these
works to our attack is to only enable defenses while page faults
are outstanding. Even with such an idea, however, these protec-
tions do not address side channels on the other shared processor
resources, such as port contention [5]. Further, there may be a large
gap in time between when an instruction executes and an older
load misses in the TLB.

Page Fault Protection Schemes. As MicroScope relies on page
faults to trigger replays, we consider whether page fault oriented
defense mechanisms could be effective to defeat MicroScope. In
particular, T-SGX [50] uses Intel’s Transactional Synchronization
Extensions (TSX) to capture page faults within an SGX application,
and redirect their handling to a user-level code instead of the OS.
The goal of T-SGX is to mitigate a controlled side-channel attack
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that leaks information through the sequence of page faults. How-
ever, T-SGX does not mitigate other types of side channels such as
cache- or contention-based side channels.

The T-SGX authors are unable to distinguish between page faults
and regular interrupts as the cause of transaction aborts. Hence,
they use a threshold N = 10 of failed transactions to terminate
the application. This design decision still provides N — 1 replays to
MicroScope. Such number can be sufficient in many attacks.

Déja Vu [13] is a technique that finds out whether a program
is compromised by measuring with a clock if it takes an abnor-
mal amount of time to execute. Déja Vu uses TSX to protect the
reference-clock thread. However, Déja Vu presents two challenges.
First, since the time to service an actual page fault is much longer
than the time to perform a MicroScope replay, replays can be
masked by ordinary application page faults. Second, to update
state in Déja Vu, the clock instructions need to retire. Thus, the at-
tacker can potentially replay indefinitely on a replay handle, while
concurrently preventing the clock instructions from retiring until
the secret is extracted.

Both of the above defenses rely on Intel TSX. As discussed in
Section 7, TSX itself creates a new mechanism with which to cre-
ate replays, through transaction aborts. Thus, we believe further
research is needed before applying either of the above defenses to
any variant of microarchitectural replay attack.

Finally, Shinde et. al. [51] proposed a mitigation scheme to ob-
fuscate page-granularity access patterns by providing page-fault
obliviousness (or PF-obliviousness). The main idea is to change the
program to have the same page access patterns for different input
values, by inserting redundant memory accesses. Interestingly, this
mechanism makes it easier for MicroScope to perform an attack, as
the added memory accesses provide more replay handles.

9 RELATED WORK

We discuss several related works on exploiting speculative execu-
tion and improving side-channel attack accuracy.

Transient Execution Attacks. Starting with Meltdown [35] and
Spectre [33], out-of-order speculative execution has created a new
attack class known as transient execution attacks. These attacks
rely on a victim executing code that it would not have executed at
program level—e.g., instructions after a faulting load [35] or mispre-
dicted branch [33]. The Foreshadow [10] attack is a Meltdown-style
attack on SGX.

MicroScope is fundamentally different from transient execution
attacks as it uses out-of-order speculative execution to create a
replay engine. Replayed instructions may or may not be transient—
e.g., instructions after a page faulting load may retire once the page
fault is satisfied. Further, while Foreshadow exploits an implemen-
tation defect (L1TF), MicroScope exploits SGX’s design, namely
how the attacker is allowed to control demand paging.

Improving Side-Channel Attack Accuracy. As side channel at-
tacks are generally noisy, there are several works that try to improve
the temporal resolution and decrease the noise of cache attacks.
Cache games [22] exploits the OS scheduler to slow down the victim
execution and achieve higher attack resolution. CacheZoom [40]
inserts frequent interrupts in the victim SGX application to stop
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the program every several data access instructions. SGX Grand Ex-
posure [9] tries to minimize the noise during an attack by disabling
interrupts, and uses performance monitoring counters to detect
cache evictions. We provide more background on like attacks in
Section 2.4.

All of the mechanisms mentioned can only improve the attack
resolution in a limited manner. Also, they are helpful only for
cache attacks. Compared to these approaches, MicroScope attains
the highest temporal resolution with the minimum noise, since
it replays the Victim execution in a fine-grained manner many
times. In addition, MicroScope is the first framework that is general
enough to be applicable to both cache attacks and other contention-
based attacks on various hardware components [5, 39, 64].

10 CONCLUSION

Side-channel attacks are popular approaches to attack applications.
However, many modern fine-grained side channels introduce too
much noise to reliably leak secrets, even when the victim is run
hundreds of times.

In this paper, we introduced Microarchitectural Replay Attacks
targeting hardware-based Trusted Execution Environments such as
Intel’s SGX. We presented a framework, called MicroScope, which
can denoise nearly arbitrary microarchitectural side channels in
a single run, by causing the victim to replay on a page faulting
instruction. We used MicroScope to denoise notoriously noisy side
channels. In particular, our attack was able to detect the presence or
absence of two divide instructions in a single run. Finally, we showed
that MicroScope is able to single-step and denoise a cache-based
attack on the AES implementation of OpenSSL.
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