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Abstract

We present an improved continuum model for transient processes in granular simple shearing, which predicts the coupled
evolution of the effective friction coefficient and fabric tensor. Specifically, the model gives the transient strength associated
to the kinematics and the structure of the granular media for the quasi-static regime. The results of the continuum model were
compared against molecular dynamic simulations. The comparison for the modulus and the angle of the principal directions
of the fabric tensor showed a very good agreement for all the cases analyzed. The new fabric evolution model is capable of
capturing the abrupt fall in the fabric modulus and in the effective friction coefficient at the beginning of reversal processes,
when the network is destroyed. The model also predicts the right spin direction of the fabric angle, when the force chains
move from one steady state to another, during reversal. Improvement in modeling the stress is obtained by relating the fric-

tion coefficient to the fabric and the unit shear rate tensors.
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1 Introduction

Dense granular flows are the focus of enormous interest due
their numerous applications in industrial and geophysical
processes. Despite this, the behaviour of particle flows
remains not totally understood and a general constitutive law
to represent its behaviour has remained elusive. A crucial
advance to elucidate this issue was to establish the inertial
rheology for the case of quasi-rigid particles flowing steadily
in a simple shear cell [1-3]. In this case it is possible to form
just one dimensionless parameter called the ‘inertial num-
ber’ I =d|y|/4/p/p,, where d represents the mean diameter

of the particles, y corresponds to the shear rate, p is the
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confining pressure exerted by the walls, and p,, is the mass
density of the particles. Hence, output variables like the
effective friction coefficient u = |o,,|/p, where o, repre-
sents the shear component of the stress tensor o, as well as
the packing fraction ¢, are sole functions of the inertial num-
ber, that is: u(I) and ¢().

Dense particle flows occur for I < 0.1, while quasi-static
flows are commonly assumed at / < 10~* [4]. The dense
flows which are not quasi-static correspond to the inertial
regime where the rheology u = u(/) was obtained. This
inertial rheology and its extension to 3D (see [5]) have been
intensively tested in steady state conditions. The test results
show that the inertial rheology is not always satisfied for
inhomogeneous fields at low or moderate shear rate where
non-local effects cannot be neglected [6—8]. The 3D exten-
sion to the inertial rheology, which assumes that stress and
shear rate tensors remain aligned, is also not satisfied for
some cases like rotating drums, but still the invariants of
these two tensors are generally related well via the u(7) rela-
tion in regions of faster flow [9].

On the other hand, transient processes for granular flows
are not within the purview of these steady rheological mod-
els. There is a general agreement that the granular micro-
structure is important for modeling transient processes.
While elasto-plastic and elasto-visco-plastic models have
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been adapted to introduce microstructure [10, 11], there
are some models that add a new and independent equation.
These equations have been formulated in an incremental
form for a so-called anisotropy modulus scalar variable as
n [12, 13], and also, in a differential form applied to the
fabric tensor as in [14-18].

In this study, a general continuum model is presented
for unsteady shear processes in a dense granular medium.
The model assumes that during transients, the granular
structure, represented by the fabric tensor, changes accord-
ing a differential evolution equation. Also, we establish a
relationship between the stresses, specifically the effective
friction coefficient y, and the structure. We have rooted our
work in relationships obtained previously in [15]. Important
changes were made to obtain improved accuracy, and we
have applied stringent shear reversal tests as part of our vali-
dation to achieve better qualitative and quantitative agree-
ment between continuum and discrete simulations.

2 Numerical set-up

The numerical experiment consists of a two-dimensional dry
granular medium confined between two rough walls in the
absence of gravity (see Fig. 1a). The medium is made of a
polydisperse mixture of circular grains with uniform mass
density and diameters that are uniformly distributed in the
range [0.5d, 1.5d], where d is the average diameter. This
distribution allows the system to have stable mixtures that
do not present segregation or crystallization. The walls are
made of particles of diameter d, which are forced to move
at imposed velocities & U,, to produce a Couette flow. The
pressure p on the walls is controlled in order to keep it con-
stant during the transient process. The height of the system
is H = 37d while the base width is W = 4H.
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Fig. 1 a Numerical set-up. The height of the system is H = 37d while
the base width is W = 4H. The imposed wall velocities are: b Heavi-
side reversal and ¢ sinusoidal reversal
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The transient is achieved by changing the velocity of
the walls in two ways: (a) an instantaneous reversal of the
velocity or Heaviside signal and (b) a sinusoidal signal (see
Fig. 1b and c). Thereby we impose a shear rate in the media
that is a function of time y(#). The inertial number / is on
the order of 107, small enough to ensure the quasi-static
regime.

The discrete element method (DEM) used in this work
considers a usual contact model, where normal and tangen-
tial elastic forces are linear with elastic constants k,, and k,,
respectively. The spring constant for the normal force is set
to obtain an overlap of the particles 6 = 2 - 107°d, ensur-
ing we remain in the hard particle limit. The tangential
spring constant is fixed to k, = 0.5k, and the dissipative
terms are fixed to obtain a restitution coefficient e = 0.5
for the collision between two particles of diameter d. The
Coulomb friction coefficient is chosen equal to u, = 0.45.
The simulations were run using the YADE discrete element
code [19].

3 Model

Below, we present a contact network dependent model
for the stress ratio specialized for shear dominated flows.
A generalization that includes volumetric effects is dis-
cussed briefly thereafter. The network is represented by
the fabric tensor obtained from the unit contact vectors
between particles. As the contact structure during the
transient evolves, we also include an evolution equation
for the fabric, which represents a relationship between
the fabric, shear rate and spin tensors. We define the
(deviatoric) fabric tensor as the symmetric traceless sec-
ond order tensor:

11
A=—§I+]72n®n, (1)

¢ cev

where n is the unit contact vector and N, corresponds to the
number of contacts ¢ inside of the volume V. We denote the
strain- rate tensor by D = (VV + (VV)T) and the spin tensor
by W = ( v—(Vw)7), where v corresponds to the velocity
field. For a 2D system, the deviatoric part of the shear rate
tensor is given by D’ =D — %tr(D)I. In our DEM simula-
tions the vertical gradient of the vertical velocity associated
to dilation was essentially noise around zero, hence we con-
side:D~D' = 0571 ®j+j Q1)

3.1 Friction model
We find from the molecular dynamics simulations that

there is not a one-to-one relationship between the (signed)
stress ratio o, /p and the off-diagonal fabric component in
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the presence of shear reversals (see Fig. 2a). Better agree-
ment is achieved by relating 4 = |o,,|/p with a new variable
X = A : D'/|D/| (see Fig. 2b). Here, colon corresponds to
the inner product defined for tensors (e.g. M : N = M, N,),
and| - | represents tensorial modulus (e.g. [M| = VM : M).
This new variable represents the part of A in the direction of
D’ and it is negative at steady state because these tensors are
almost proportional but point in opposite directions. Also, at
steady state, one of the principal directions of A is parallel to
the average direction of contacts. In this study, we are going
to consider this principal direction 6, as the direction of A
(measured counterclockwise respect to the x axis).

Figure 2b shows the sequence of the transient process
for both Heaviside and sinusoidal strain rate reversals.
Here, the yellow point represents the steady state condition
before the reversal. As the inertial number tends to zero
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Fig.2 Effective friction coefficient u versus fabric (from DEM simu-
lations). a Signed stress ratio o,,/p versus the xy component of the
fabric tensor, A,,. b u versus X = A : D'/|D'|. The yellow point cor-
responds to the steady state condition. Solid gray line represents the
fit u(X) given in Eq. (2)

for the entire process, the steady state effective friction
coefficient takes the threshold value . = p(I = 0). When
the strain changes its direction, the reversal occurs and the
variable X becomes instantaneously positive (reversal 1). In
this moment, the fabric and the shear rate tensors point for
one instant in the same direction. This condition generates
compression perpendicular to the force chains, starting a
fast process of grain network destruction, which causes the
strength to decay (trajectory 2). Finally, there is a slower
process where the effective friction coefficient comes back
to its steady value and the force network reaches a new
steady state direction, perpendicular to the previous one
(trajectory 3).

The fit 4(X) for the curve shown in Fig. 2b, constitutes the
model for u written below as a function of y(X) = X — 0.028:

— 3
M<X)={ 27yX) +20yX)°  y(X) <0

2.7 9(X) +9.0 - 10* y(X)5 , y(X) > 0. @

The y = p(X) relationship in our model replaces the quad-
ratic form of the similar variable y = a; + a,X + a;X? from
[15], where the a; are constant values. Indeed, the variable X
has some beneficial characteristics for the analysis at hand:
it is dimensionless, it is independent of shear rate direction
at steady state, and it is independent of shear rate magnitude.

Assuming that the deviatoric part of the stress and the strain
rate are aligned, it is possible to write a generalized friction
law:

, _ HX)p D
o =

a2 DT

The shear-specialized formulation we have presented above
is not valid when the system is static or when the strain-rate
deviator is otherwise null. In these cases, the shear stress 6’
could be equal to the null tensor, but ¢’ also could be finite,
given by a solid-like model such as elasticity [20, 21], which
is beyond of the objectives of this work. Equation (3) would
also not apply in isotropic compression/extension, where the
shear stress ¢’ and the deviator of the shear rate tensor D’ are
null, but D is not. In this particular case, one option is to
consider a modified model as in [15] where ¢’ = & D The

V2 DI’

scalar variable 7 is related to the effective friction coefficient

via the modulus of D and D’, but both g and # should be very
similar in shear-dominated flow, i.e. = y% SR

3

3.2 Fabric tensor model
We assume that the fabric tensor is governed by an independ-

ent evolution equation during the transient with the following
form:

v
A=YAD)=aD +a,|D|A, )
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where X = A + AW — WA is the Jaumann Rate and A is the
material time derivative of A. The Jaumann or co-rotational
rate, in contrast with the material time derivative, is a frame-
indifferent tensorial rate, which vanishes for all rigid-body
motions of the material. The function for ¥ shown above on
the right-hand side was arrived at by first applying a well-
known representation theorem for symmetric tensors [22],
which limits the possible ways ¥ can depend on its inputs.
We then keep only the lowest order terms in this expansion
and, in accord with the representation theorem, allow the
scalar prefactors for each term to depend only on joint scalar
invariants of A and D’. By expressing those prefactors as «;
and a,|D’|, as shown above, where the a; , are functions of
only rate-independent invariants, the entire evolution model
is assured to be rate independent.

In general, the first term on the right side of Eq. (4)
pushes the fabric to grow in the direction of principal
compression of the flow, while the second one opposes
its growth and eventually stops the fabric evolution under
continual shearing, admitting a steady fabric state. In this
equation, if the coefficients a; are chosen as @, = c¢; and
a, = ¢, +c3(A : D')/|D|, where c; are constant values, and
if we consider that |D| is approximately |D’| in our shear
flows, we would arrive at the same equation in [15] for the
fabric deviator, i.e.

v
A =c,D +c)|D|A + c5(A : DA, (5)

Using the information available from DEM simulations, we
solved Eq. (4) considering the coefficients a; as unknowns
for two kinds of shear reversal: Heaviside and sinusoidal.
It was found that the coefficients of the evolution equation
are not constants but are rather well-represented as a single
function of the new variable X = A : D’ /|D’|, noting that X
is a valid, joint scalar invariant of A and D’. Figure 3 shows
two regions where the coefficients a; behave in a different
way. The right side of region B represents the beginning of
the reversal, while region A represents a zone near the steady
state (points where X < —0.05 were omitted because of the
noise of the results in this zone). In region A, a; was fitted
as a negative constant value, while a, was fitted as a linear
function of X. Region B is noisy but the coefficients clearly
show a strong tendency to decrease for «; and increase for
a, until point X, = 0.0827, where both coefficients diverge.
The fit functions we choose for a; are:

a;+bX ,X<0
;= X4 (6)
a;+bX + Cixx; * X >0,

where the constant parameters involved are shown in
Table 1. Note the function is continuous and differentiable
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Table 1 Fitting parameters for i b
the coefficients a; of the Eq. (6)
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Fig.3 Coefficients «; obtained from Eq. (4). Solid gray line rep-
resents the fit considered in this work (Model 1), while dashed
orange line represents the model given in [15] (Model 2). a a; versus
X=A:D'/ID'|.bayversus X =A : D'/|D'|

at X = 0. Figure 3 also shows the best fits found for the evo-
lution model given in [15] (see Eq. 5).

4 Results

We solved the fabric evolution equation numerically for the
model presented in this work (Model 1) and for the previ-
ous one given in [15] (Model 2), by using the fourth-order
Runge-Kutta method. For both cases, Eq. (2) was used to
obtain the shear stress ratio u. We express the fabric tensor
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in terms of its modulus |A| and the angle of its major prin-
cipal vector 8,, which corresponds approximately to the
compression direction of the force chains.

Figures 4 and 5 show the results for the fabric tensor
models and the effective friction coefficient y, in compari-
son with DEM simulations, for an imposed Heaviside and
sinusoidal reversal, respectively. Both Model 1 and 2 pre-
sent a good agreement with DEM simulation for |A|. How-
ever, in general Model 1 captures more accurately the very
strong fall just after the reversal. The transient of the fabric
angle is not captured for the previous model and turns in the
opposite direction in some cases. Instead, the data shows
the fabric angle always passes through a vertical orienta-
tion, which the new model captures and it is attributed to
the more robust fit of the coefficients a; when the variable
X is in zone B of Fig. 3. The sinusoidal shear test shows
that the width of the transition in 6, during reversal is too
sharp in Model 2, and is closer to the data in the new model.
Finally, the correlation presented in Eq. 2 for y shows the
new model does a better job at the beginning of the reversal
process where the change in y happens very quickly (see
zoom-in inserted in Fig 4c).

5 Conclusion

In this paper, the rheology for unsteady dry granular flows
in a Couette cell is studied in the quasi-static limit. We find
that the rheology in this case depends on the structure of the
granular medium represented by the fabric tensor, A. We
also find that the effective friction coefficient u is a one-to-
one function of the fabric tensor contracted with the shear
rate tensor direction, X = A : D’/|D/|.

We have presented an improved evolution equation to pre-
dict the fabric tensor behaviour and friction evolution dur-
ing the transient, including coefficients that depend on the
structure through the variable X. This offers certain improve-
ments over a previous model proposed in [15]. The model
is capable of capturing the abrupt fall in the fabric modulus
and in the effective friction coefficient just after flow rever-
sal, when the network is destroyed and the medium becomes
almost isotropic. During this starting lapse of time, the angle
of the fabric changes its direction to the opposite steady-state
value in a soft way. This behaviour is well predicted by our
non-constant coefficient model. Aside from predicting the
effective friction, our improvement to the fabric evolution
could be useful in problems where the network orientation
plays a direct role in some physical phenomenon, e.g. in
determining macroscopic conductivity in flowing granular
systems of conductive particles, or in predicting anisotropic
passage of pressure waves. However, the new fabric model
is very sensitive to small changes in the coefficients. This
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Fig.4 Results for the Heaviside reversal case. Solid black line repre-
sents DEM simulation results, dashed red line results obtained using
the model developed in this work (Model 1), while dotted blue line
results obtained using the model given in [15] (Model 2) (color figure
online)
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could be related to the fact that the coefficients diverge at
X = X, necessitating high accuracy numerical integration.
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