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Abstract
We present an improved continuum model for transient processes in granular simple shearing, which predicts the coupled 
evolution of the effective friction coefficient and fabric tensor. Specifically, the model gives the transient strength associated 
to the kinematics and the structure of the granular media for the quasi-static regime. The results of the continuum model were 
compared against molecular dynamic simulations. The comparison for the modulus and the angle of the principal directions 
of the fabric tensor showed a very good agreement for all the cases analyzed. The new fabric evolution model is capable of 
capturing the abrupt fall in the fabric modulus and in the effective friction coefficient at the beginning of reversal processes, 
when the network is destroyed. The model also predicts the right spin direction of the fabric angle, when the force chains 
move from one steady state to another, during reversal. Improvement in modeling the stress is obtained by relating the fric-
tion coefficient to the fabric and the unit shear rate tensors.
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1  Introduction

Dense granular flows are the focus of enormous interest due 
their numerous applications in industrial and geophysical 
processes. Despite this, the behaviour of particle flows 
remains not totally understood and a general constitutive law 
to represent its behaviour has remained elusive. A crucial 
advance to elucidate this issue was to establish the inertial 
rheology for the case of quasi-rigid particles flowing steadily 
in a simple shear cell [1–3]. In this case it is possible to form 
just one dimensionless parameter called the ‘inertial num-
ber’ I = d|𝛾̇|∕

√
p∕𝜌p , where d represents the mean diameter 

of the particles, 𝛾̇ corresponds to the shear rate, p is the 

confining pressure exerted by the walls, and �p is the mass 
density of the particles. Hence, output variables like the 
effective friction coefficient � = |�xy|∕p , where �xy repre-
sents the shear component of the stress tensor � , as well as 
the packing fraction � , are sole functions of the inertial num-
ber, that is: �(I) and �(I).

Dense particle flows occur for I ≤ 0.1 , while quasi-static 
flows are commonly assumed at I ≤ 10−4 [4]. The dense 
flows which are not quasi-static correspond to the inertial 
regime where the rheology � = �(I) was obtained. This 
inertial rheology and its extension to 3D (see [5]) have been 
intensively tested in steady state conditions. The test results 
show that the inertial rheology is not always satisfied for 
inhomogeneous fields at low or moderate shear rate where 
non-local effects cannot be neglected [6–8]. The 3D exten-
sion to the inertial rheology, which assumes that stress and 
shear rate tensors remain aligned, is also not satisfied for 
some cases like rotating drums, but still the invariants of 
these two tensors are generally related well via the �(I) rela-
tion in regions of faster flow [9].

On the other hand, transient processes for granular flows 
are not within the purview of these steady rheological mod-
els. There is a general agreement that the granular micro-
structure is important for modeling transient processes. 
While elasto-plastic and elasto-visco-plastic models have 

This article is part of the Topical Collection: In Memoriam of 
Robert P. Behringer.

 *	 Ken Kamrin 
	 kkamrin@mit.edu

	 Eduardo Rojas Parra 
	 eduardo.rojas@uantof.cl

1	 Department of Mechanical Engineering, University 
of Antofagasta, Antofagasta, Chile

2	 Department of Mechanical Engineering, Massachusetts 
Institute of Technology, Cambridge, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10035-019-0948-9&domain=pdf


	 E. Rojas Parra, K. Kamrin 

1 3

   89   Page 2 of 7

been adapted to introduce microstructure [10, 11], there 
are some models that add a new and independent equation. 
These equations have been formulated in an incremental 
form for a so-called anisotropy modulus scalar variable as 
in [12, 13], and also, in a differential form applied to the 
fabric tensor as in [14–18].

In this study, a general continuum model is presented 
for unsteady shear processes in a dense granular medium. 
The model assumes that during transients, the granular 
structure, represented by the fabric tensor, changes accord-
ing a differential evolution equation. Also, we establish a 
relationship between the stresses, specifically the effective 
friction coefficient � , and the structure. We have rooted our 
work in relationships obtained previously in [15]. Important 
changes were made to obtain improved accuracy, and we 
have applied stringent shear reversal tests as part of our vali-
dation to achieve better qualitative and quantitative agree-
ment between continuum and discrete simulations.

2 � Numerical set‑up

The numerical experiment consists of a two-dimensional dry 
granular medium confined between two rough walls in the 
absence of gravity (see Fig. 1a). The medium is made of a 
polydisperse mixture of circular grains with uniform mass 
density and diameters that are uniformly distributed in the 
range [0.5d, 1.5d], where d is the average diameter. This 
distribution allows the system to have stable mixtures that 
do not present segregation or crystallization. The walls are 
made of particles of diameter d, which are forced to move 
at imposed velocities ±Uw to produce a Couette flow. The 
pressure p on the walls is controlled in order to keep it con-
stant during the transient process. The height of the system 
is H = 37d while the base width is W = 4H.

The transient is achieved by changing the velocity of 
the walls in two ways: (a) an instantaneous reversal of the 
velocity or Heaviside signal and (b) a sinusoidal signal (see 
Fig. 1b and c). Thereby we impose a shear rate in the media 
that is a function of time 𝛾̇(t) . The inertial number I is on 
the order of 10−4 , small enough to ensure the quasi-static 
regime.

The discrete element method (DEM) used in this work 
considers a usual contact model, where normal and tangen-
tial elastic forces are linear with elastic constants kn and kt , 
respectively. The spring constant for the normal force is set 
to obtain an overlap of the particles � = 2 ⋅ 10−5d , ensur-
ing we remain in the hard particle limit. The tangential 
spring constant is fixed to kt = 0.5kn and the dissipative 
terms are fixed to obtain a restitution coefficient e = 0.5 
for the collision between two particles of diameter d. The 
Coulomb friction coefficient is chosen equal to �p = 0.45 . 
The simulations were run using the YADE discrete element 
code [19].

3 � Model

Below, we present a contact network dependent model 
for the stress ratio specialized for shear dominated flows. 
A generalization that includes volumetric effects is dis-
cussed briefly thereafter. The network is represented by 
the fabric tensor obtained from the unit contact vectors 
between particles. As the contact structure during the 
transient evolves, we also include an evolution equation 
for the fabric, which represents a relationship between 
the  fabric, shear rate and spin tensors. We define the 
(deviatoric) fabric tensor as the symmetric traceless sec-
ond order tensor:

where � is the unit contact vector and Nc corresponds to the 
number of contacts c inside of the volume V. We denote the 
strain-rate tensor by � =

1

2

(
∇� + (∇�)T

)
 and the spin tensor 

by � =
1

2

(
∇� − (∇�)T

)
 , where � corresponds to the velocity 

field. For a 2D system, the deviatoric part of the shear rate 
tensor is given by �� = � −

1

2
��(�)� . In our DEM simula-

tions the vertical gradient of the vertical velocity associated 
to dilation was essentially noise around zero, hence we con-
sider: � ≈ �� ≈ 0.5𝛾̇(ı̂ ⊗ ȷ̂ + ȷ̂⊗ ı̂).

3.1 � Friction model

We find from the molecular dynamics simulations that 
there is not a one-to-one relationship between the (signed) 
stress ratio �xy∕p and the off-diagonal fabric component in 

(1)� = −
1

2
� +

1

Nc

∑

c∈V

�⊗ �,

(a)

(b) (c)

Fig. 1   a Numerical set-up. The height of the system is H = 37d while 
the base width is W = 4H . The imposed wall velocities are: b Heavi-
side reversal and c sinusoidal reversal
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the presence of shear reversals (see Fig. 2a). Better agree-
ment is achieved by relating � = |�xy|∕p with a new variable 
X = � ∶ ��∕|��| (see Fig. 2b). Here, colon corresponds to 
the inner product defined for tensors (e.g. � ∶ � = MijNij ), 
and | ⋅ | represents tensorial modulus (e.g. ��� ≡

√
� ∶ � ). 

This new variable represents the part of � in the direction of 
�′ and it is negative at steady state because these tensors are 
almost proportional but point in opposite directions. Also, at 
steady state, one of the principal directions of � is parallel to 
the average direction of contacts. In this study, we are going 
to consider this principal direction �A as the direction of � 
(measured counterclockwise respect to the x axis).

Figure 2b shows the sequence of the transient process 
for both Heaviside and sinusoidal strain rate reversals. 
Here, the yellow point represents the steady state condition 
before the reversal. As the inertial number tends to zero 

for the entire process, the steady state effective friction 
coefficient takes the threshold value �c = �(I ≅ 0) . When 
the strain changes its direction, the reversal occurs and the 
variable X becomes instantaneously positive (reversal 1 ). In 
this moment, the fabric and the shear rate tensors point for 
one instant in the same direction. This condition generates 
compression perpendicular to the force chains, starting a 
fast process of grain network destruction, which causes the 
strength to decay (trajectory 2 ). Finally, there is a slower 
process where the effective friction coefficient comes back 
to its steady value and the force network reaches a new 
steady state direction, perpendicular to the previous one 
(trajectory 3).

The fit �(X) for the curve shown in Fig. 2b, constitutes the 
model for � written below as a function of y(X) = X − 0.028:

The � = �(X) relationship in our model replaces the quad-
ratic form of the similar variable � = a1 + a2X + a3X

2 from 
[15], where the ai are constant values. Indeed, the variable X 
has some beneficial characteristics for the analysis at hand: 
it is dimensionless, it is independent of shear rate direction 
at steady state, and it is independent of shear rate magnitude.

Assuming that the deviatoric part of the stress and the strain 
rate are aligned, it is possible to write a generalized friction 
law:

The shear-specialized formulation we have presented above 
is not valid when the system is static or when the strain-rate 
deviator is otherwise null. In these cases, the shear stress �′ 
could be equal to the null tensor, but �′ also could be finite, 
given by a solid-like model such as elasticity [20, 21], which 
is beyond of the objectives of this work. Equation (3) would 
also not apply in isotropic compression/extension, where the 
shear stress �′ and the deviator of the shear rate tensor �′ are 
null, but � is not. In this particular case, one option is to 
consider a modified model as in [15] where �� =

�p√
2

��

��� . The 

scalar variable � is related to the effective friction coefficient 
via the modulus of � and �′ , but both � and � should be very 
similar in shear-dominated flow, i.e. � = �

|�|
|��| ≈ �.

3.2 � Fabric tensor model

We assume that the fabric tensor is governed by an independ-
ent evolution equation during the transient with the following 
form:

(2)𝜇(X) =

{
−2.7 y(X) + 20 y(X)3 , y(X) < 0

2.7 y(X) + 9.0 ⋅ 104 y(X)5 , y(X) ≥ 0.

(3)�
� =

�(X)p
√
2

��

����
.

(4)
▿

� = � (�,��) ≡ �1�
� + �2|��|�,

(a)

(b)

Fig. 2   Effective friction coefficient � versus fabric (from DEM simu-
lations). a Signed stress ratio �xy∕p versus the xy component of the 
fabric tensor, Axy . b � versus X = � ∶ ��∕|��| . The yellow point cor-
responds to the steady state condition. Solid gray line represents the 
fit �(X) given in Eq. (2)
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where 
▿

� = �̇ + �� −�� is the Jaumann Rate and �̇ is the 
material time derivative of � . The Jaumann or co-rotational 
rate, in contrast with the material time derivative, is a frame-
indifferent tensorial rate, which vanishes for all rigid-body 
motions of the material. The function for Ψ shown above on 
the right-hand side was arrived at by first applying a well-
known representation theorem for symmetric tensors [22], 
which limits the possible ways Ψ can depend on its inputs. 
We then keep only the lowest order terms in this expansion 
and, in accord with the representation theorem, allow the 
scalar prefactors for each term to depend only on joint scalar 
invariants of � and �′ . By expressing those prefactors as �1 
and �2|�′| , as shown above, where the �1,2 are functions of 
only rate-independent invariants, the entire evolution model 
is assured to be rate independent.

In general, the first term on the right side of Eq. (4) 
pushes the fabric to grow in the direction of principal 
compression of the flow, while the second one opposes 
its growth and eventually stops the fabric evolution under 
continual shearing, admitting a steady fabric state. In this 
equation, if the coefficients �i are chosen as �1 = c1 and 
�2 = c2 + c3(� ∶ ��)∕|�| , where ci are constant values, and 
if we consider that |�| is approximately |�′| in our shear 
flows, we would arrive at the same equation in [15] for the 
fabric deviator, i.e.

Using the information available from DEM simulations, we 
solved Eq. (4) considering the coefficients �i as unknowns 
for two kinds of shear reversal: Heaviside and sinusoidal. 
It was found that the coefficients of the evolution equation 
are not constants but are rather well-represented as a single 
function of the new variable X = � ∶ ��∕|��| , noting that X 
is a valid, joint scalar invariant of � and �′ . Figure 3 shows 
two regions where the coefficients �i behave in a different 
way. The right side of region B represents the beginning of 
the reversal, while region A represents a zone near the steady 
state (points where X < −0.05 were omitted because of the 
noise of the results in this zone). In region A, �1 was fitted 
as a negative constant value, while �2 was fitted as a linear 
function of X. Region B is noisy but the coefficients clearly 
show a strong tendency to decrease for �1 and increase for 
�2 until point X0 = 0.0827 , where both coefficients diverge. 
The fit functions we choose for �i are:

where the constant parameters involved are shown in 
Table 1. Note the function is continuous and differentiable 

(5)
▿

� = c1�
� + c2|�|� + c3(� ∶ �

�)�.

(6)𝛼i =

{
ai + biX , X ≤ 0

ai + biX + ci
Xdi

X−X0

, X > 0,

at X = 0 . Figure 3 also shows the best fits found for the evo-
lution model given in [15] (see Eq. 5).

4 � Results

We solved the fabric evolution equation numerically for the 
model presented in this work (Model 1) and for the previ-
ous one given in [15] (Model 2), by using the fourth-order 
Runge-Kutta method. For both cases, Eq. (2) was used to 
obtain the shear stress ratio � . We express the fabric tensor 

Table 1   Fitting parameters for 
the coefficients �

i
 of the Eq. (6)

i a
i

b
i

c
i

d
i

1 − 1.8 0 21 1.5
2 − 9.0 100 − 900 2.0

(a)

(b)

Fig. 3   Coefficients �i obtained from Eq.  (4). Solid gray line rep-
resents the fit considered in this work (Model 1), while dashed 
orange line represents the model given in [15] (Model 2). a �1 versus 
X = � ∶ ��∕|��| . b �2 versus X = � ∶ ��∕|��|
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in terms of its modulus |�| and the angle of its major prin-
cipal vector �

�
 , which corresponds approximately to the 

compression direction of the force chains.
Figures 4 and 5 show the results for the fabric tensor 

models and the effective friction coefficient � , in compari-
son with DEM simulations, for an imposed Heaviside and 
sinusoidal reversal, respectively. Both Model 1 and 2 pre-
sent a good agreement with DEM simulation for |�| . How-
ever, in general Model 1 captures more accurately the very 
strong fall just after the reversal. The transient of the fabric 
angle is not captured for the previous model and turns in the 
opposite direction in some cases. Instead, the data shows 
the fabric angle always passes through a vertical orienta-
tion, which the new model captures and it is attributed to 
the more robust fit of the coefficients �i when the variable 
X is in zone B of Fig. 3. The sinusoidal shear test shows 
that the width of the transition in �A during reversal is too 
sharp in Model 2, and is closer to the data in the new model. 
Finally, the correlation presented in Eq. 2 for �  shows the 
new model does a better job at the beginning of the reversal 
process where the change in � happens very quickly (see 
zoom-in inserted in Fig 4c). 

5 � Conclusion

In this paper, the rheology for unsteady dry granular flows 
in a Couette cell is studied in the quasi-static limit. We find 
that the rheology in this case depends on the structure of the 
granular medium represented by the fabric tensor, � . We 
also find that the effective friction coefficient � is a one-to-
one function of the fabric tensor contracted with the shear 
rate tensor direction, X = � ∶ ��∕|��|.

We have presented an improved evolution equation to pre-
dict the fabric tensor behaviour and friction evolution dur-
ing the transient, including coefficients that depend on the 
structure through the variable X. This offers certain improve-
ments over a previous model proposed in [15]. The model 
is capable of capturing the abrupt fall in the fabric modulus 
and in the effective friction coefficient just after flow rever-
sal, when the network is destroyed and the medium becomes 
almost isotropic. During this starting lapse of time, the angle 
of the fabric changes its direction to the opposite steady-state 
value in a soft way. This behaviour is well predicted by our 
non-constant coefficient model. Aside from predicting the 
effective friction, our improvement to the fabric evolution 
could be useful in problems where the network orientation 
plays a direct role in some physical phenomenon, e.g. in 
determining macroscopic conductivity in flowing granular 
systems of conductive particles, or in predicting anisotropic 
passage of pressure waves. However, the new fabric model 
is very sensitive to small changes in the coefficients. This 

(a)

(b)

(c)

Fig. 4   Results for the Heaviside reversal case. Solid black line repre-
sents DEM simulation results, dashed red line results obtained using 
the model developed in this work (Model 1), while dotted blue line 
results obtained using the model given in [15] (Model 2) (color figure 
online)
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could be related to the fact that the coefficients diverge at 
X = X0 , necessitating high accuracy numerical integration.
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