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1 Introduction

Let M be an irreducible n—dimensional Hermitian symmetric space of compact type, equipped
with a canonical Kéhler-Einstein metric w. Write w™ for the associated volume form (up to a
positive constant depending only on n). The purpose of this paper is to prove the following
rigidity theorem:

Theorem 1.1. Let (M,w) be an irreducible n—dimensional Hermitian symmetric space of
compact type as above. Let F' = (Fy, ..., Fy,) be a holomorphic mapping from a connected open
subset U C M into the m-Cartesian product M x ... x M of M. Assume that each F; is
generically non-degenerate in the sense that Ff(w") # 0 over U. Assume that F' satisfies the
following volume-preserving (or measure-preserving) equation.:

= Y ONFW"), (1)

for certain constants \; > 0. Then for each j with 1 < j < m, F; extends to a holomorphic
isometry of (M,w). In particular, the conformal factors satisfy the identity: 2721 A =1

Rigidity properties are among the fundamental phenomena in Complex Analysis and Geom-
etry of several variables, that study the global extension and uniqueness for various holomorphic
objects up to certain group actions. The rigidity problem that we consider in this paper was
initiated by a celebrated paper of Calabi [Cal. In [Cal], Calabi studied the global holomorphic
extension and uniqueness (up to the action of the holomorphic isometric group of the target
space) for a local holomorphic isometric embedding from a Ké&hler manifold into a complex
space form. He established the global extension and the Bonnet type rigidity theorem for a
local holomorphic isometric embedding from a complex manifold with a real analytic Kahler
metric into a standard complex space form. The phenomenon discovered by Calabi [Ca] has
been further explored in the past several decades due to its extensive connection with problems
in Analysis and Geometry. (See [U] [DL] [DL1], for instance).



In 2004, motivated by the modularity problem of the algebraic correspondences in alge-
braic number theory, Clozel and Ullmo [CU]| were led to study the rigidity problems for local
holomorphic isometric maps and even much more general volume-preserving maps between
bounded symmetric domains equipped with their Bergman metrics. By reducing the modu-
larity problem to the rigidity problem for local holomorphic isometries, Clozel-Ullmo proved
that an algebraic correspondence in the quotient of a bounded symmetric domain preserving
the Bergman metric has to be a modular correspondence in the case of the unit disc in the
complex plane and in the case of bounded symmetric domains of rank > 2. Notice that in the
one dimensional setting, volume preserving maps are identical to the metric preserving maps.
Thus the Clozel-Ullmo result also applies to the volume preserving algebraic correspondences
in the lowest dimensional case. Motivated by the work in [CU], Mok carried out a systematic
study of the rigidity problem for local isometric embeddings in a very general setting. Mok in
[Mo2-4] proved the total geodesy for a local holomorphic isometric embedding between bounded
symmetric domains D and ) when either (i) the rank of each irreducible component of D is
at least two or (ii) D = B" and 2 = (B")? for n > 2. In a paper of Yuan-Zhang [YZ], the
total geodesy is obtained in the case of D = B" and Q = B™ x ... x B with n > 2 and
N, arbitrary for 1 <1 < p. Earlier, Ng in [Ng2] had established a similar result when p = 2
and 2 <n < Ny, Ny < 2n — 1. In a paper of Yuan and the second author of this paper [HY1],
we established the rigidity result for local holomorphic isometric embeddings from a Hermitian
symmetric space of compact type into the product of Hermitian symmetric spaces of compact
type with even negative conformal factors where certain non-cancellation property for the con-
formal factors holds. (This cancellation condition turns out be the necessary and sufficient
condition for the rigidity to hold due to the presence of negative conformal factors.) In a recent
paper of Ebenfelt [E], a certain classification, as well as its connection with problems in CR
geometry, has been studied for local isometric maps when the cancellation property fails to
hold. The recent paper of Yuan [Y] studied the rigidity problem for local holomorphic maps
preserving the (p, p)-forms between Hermitian symmetric spaces of non-compact type. At this
point, we should also mention other related studies for the rigidity of holomorphic mappings.
Here, we quote the papers by Chan-Xiao-Yuan [CXY], Dinh-Sibony [DS], Huang [Hul-2], Ji
[Ji], Kim-Zaitsev [KZ]|, Mok [Mol][Mo5], Mok-Ng[MN1], Ng [Ng1-2], Xiao-Yuan [XY1-2] and
many references therein, to name a few.

The work of Clozel and Ullmo has left open an important question of understanding the
modularity problem for volume-preserving correspondences in the quotient of Hermitian sym-
metric spaces of higher dimension equipped with their Bergman metrics. In 2012, Mok and
Ng answered, in the affirmative, the question of Clozel and Ullmo in [MN] by establishing the
rigidity property for local holomorphic volume preserving maps from an irreducible Hermitian
manifold of non-compact type into its Cartesian products.

The present paper continues the above mentioned investigations, especially those in [CU],
[MN] and [HY1]. Our main purpose is to establish the Clozel-Ullmo and Mok-Ng results for
local measure preserving maps between Hermitian symmetric spaces of compact type. Notice
that in the Riemann sphere setting, Theorem 1.1 also follows from the isometric rigidity result



obtained in an earlier paper of the second author with Yuan [HY1]. However, the basic approach
in this paper fundamentally differs from that in [HY1]. The method used in [HY1] is to first
obtain the result in the simplest projective space setting and then use the minimal rational
curves to reduce the general case to the much simpler projective space case. On the other
hand, restrictions of volume preserving maps are no longer volume preserving and thus the
reduction method in [HY1] can not be applied here. The approach we use in this paper is first
to establish general results under certain geometric and analytic assumptions (i.e., Proposition
(I)-(IIT)) and then verify that these assumptions are automatically satisfied based on a case by
case argument in terms of the type of the Hermitian space.

We now briefly describe the organization of the paper and the basic ideas for the proof of
Theorem 1.1. The major part of the paper is devoted to showing the algebraicity for a certain
component F; in Theorem 1.1 with total degree depending only on the geometry of (M,w). For
this, we introduce the concept of Segre family for an embedded projective subvariety. Notice
that in the previous work, Segre varieties were only defined for a real submanifold in a complex
space through complexification. Our Segre family is defined by slicing the minimal embedding
with a hyperplane in the ambient projective space, associated with points in its conjugate
space. The Segre family thus defined is invariant under holomorphic isometric transformations,
whose defining function is closely related to the complexification of the potential function of the
canonical metric. The first step in our proof is to show that a certain component Fj preserves
at least locally the Segre family. The next difficult step is then to show that preservation of the
Segre foliation gives the algebraicity of F. To obtain the algebraicity of F}, we need to study
the size that the space of the jets of the map Fj along the Segre variety directions. Indeed, an
important part of the paper is to show that the space of the jets of an associated embedding
map rp along the Segre direction up to a certain order depending only on M and its minimal
embedding spans the whole target tangent space. This is a main reason we need to describe
precisely what the minimal embedding is for each M. Once this is done, we can then show that
the map, when restricted to each Segre variety, stays in the field generated by rational functions
and the differentiations of their defining functions as well as their inverse, and thus must be
algebraic by a modified version of the Hurwitz theorem. The uniform bound of the total degree
of Fj is obtained by the fact that we need only a fixed number of steps to perform algebraic
and differential operations to reproduce the map from the minimal embedding functions. After
obtaining the algebraicity, we further show that F} extends to a birational self-map of the
space by a monodromy argument, the geometry of the Segre foliation, an iteration argument
and the classical Bezout theorem. Finally, a simple argument shows that a birational map which
preserves the Segre foliation is the restriction of a holomorphic self-isometry of the space. Once
F} is proved to be an isometry, we can delete F; from the original equation and then apply an
induction argument to conclude the rigidity for other components.

The organization of the paper is as follows: In §2, we first introduce the Segre family for
a polarized projective variety. We then describe the canonical and minimal embedding of the
space into a complex projective space in terms of the type of the space. In §3, we derive a
general theorem for partially degenerate holomorphic embeddings which will play a fundamental
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role in the later development. In §4, we provide the algebraicity for one of the components
of the holomorphic mapping F' under additional assumptions which include the partial non-
degeneracy condition introduced in §3, the generic transversality of the Segre varieties and the
irreducibility of the Segre family. In §5, we show that the partial non-degeneracy holds for local
biholomorphisms between any irreducible Hermitian space of compact type. §6 is devoted to
proving the generic transversality for the intersection of the Segre varieties. We prove in §7 the
irreducibility of the potential functions pulled back to a complex Euclidean space, which has
consequences on the irreducibility of the Segre varieties and the Segre families. The argument
in §5-§7 varies as the type of the space varies and thus has to be done case by case.

We include several Appendices for convenience of the reader. In Appendix I, we give the
concrete functions for a minimal holomorphic embedding of a Hermitian symmetric space of
exceptional type into a projective space. In Appendix II, we continue to establish Proposition
(I) for the rest cases. In Appendix III, we provide the verification on the transversality for the
Segre varieties for the remaining cases not covered in §6.

Acknowledgement: The authors would like to thank A. Buch, J. Lu, L. Manivel, X. Yang
and Z. Zhang for many discussions during the preparation of this work. In particular, the first
author would like to express his gratitude to R. Bryant for answering many of his questions on
Hermitian symmetric spaces through the mathoverflow website.

2 Irreducible Hermitian symmetric spaces and their Segre
varieties

2.1 Segre varieties of projective subvarieties

Write 2 = (21, , Zn, 2nt1) for the coordinates of C"*! and [2] = [21, - , 2, Zn41] for the ho-
mogeneous coordinates of CP". For a polynomial p(z), we define p(z) := p(%). For a connected
projective variety V' C CP", write Zy for the ideal consisting of homogeneous polynomials in z
that vanish on V. We define the conjugate variety VV* of V' to be the projective variety defined
by I == {f : f € Zy'}. Apparently the map z — Z defines a diffeomorphism from V to V*.
When 7y has a basis consisting of polynomials with real coefficients, V* = V. Also if V is
irreducible and has a smooth piece parametrized by a neighborhood of the origin of a complex
Euclidean space through polynomials with real coefficients, then V* = V.

Next for [£] € V*, we define the Segre variety ()¢ of V associated with & by Q¢ = {[z] €
V. Z;L;l z;€; = 0} which is a subvariety of codimension one in V. Similarly, for [z] € V, we
define the Segre variety Q% of V* associated with z by Q% = {[¢] € V*: Z;L;rll z;&; = 0}. It is
clear that [z] € Q¢ if and only if [¢] € Qf. The Segre family of V' is defined to be the projective
variety M = {([2], [§]) € V x V*,[2] € Q¢}.

Now, we let (M, w) be an irreducible Hermitian symmetric space of compact type canonically
embedded in a certain minimal projective space CPY, that we will describe in detail later in

this section. Then under this embedding, its conjugate space M* is just M itself. Taking w to

5



be the natural restriction of the Fubini-Study metric to M, the holomorphic isometric group
of M is then the restriction of a certain subgroup of the unitary actions of the ambient space.
Now, for two points py1,p2 € M, let U be an (N + 1) x (N + 1) unitary matrix such that
o([z]) = [¢] - U is an isometry sending p; to po. Then o*([¢]) = [€]U is an isometry of M*. By
a straightforward verification, we see that o biholomorphically sends @5 to @);,. Similarly,
for any q1,q2 € M*, (), is unitary equivalent to ();,. In the canonical embeddings which we
will describe later, the hyperplane section at infinity of the manifold is a Segre variety. Since
the one at infinity is built up from Schubert cells and all Segre varieties are holomorphically
equivalent to each other, one deduces that each Segre variety of M is irreducible. This fact will
play a role in the proof of our main theorem.

2.2 Canonical embeddings and explicit coordinate functions

We now describe a special type of canonical embedding of the Hermitian symmetric space
M of compact type into CPY. This embedding will play a crucial role in our computation
leading to the proof of Theorem 1.1. See [He] for the classification of the irreducible Hermitian
symmetric spaces of compact type. See also [Lol], [Lo2] on the typical canonical embeddings
of the Heritian symmetric spaces of compact type and the related theory of Hermitian positive
Jordan triple system.

& 1. Grassmannians (spaces of type I): Write G(p, q) for the Grassmannian space consisting
of p planes in CP*2. (Since G(p,q) is biholomorphically equivalent to G(q,p), we will assume
p < ¢ in what follows). There is a matrix representation of G(p, q) as the equivalence classes of
p X (p+ q) non-degenerate matrices under the matrix multiplication from the left by elements
of GL(p,C). A Zariski open affine chart A for G(p,q) is identified with CP? with coordinates
Z for elements of the form:

100 ---0 211”12t Zl1q
(Ipxp Z) = 010 -0 2 2 - 2 , where Z is a p X ¢ matrix.
00 0 -+ 1 zp 2p2 -+ Zpy

The Pliicker embedding G(p, ¢) — CP(APCP*?) is given by mapping the p—plane A spanned
by vectors vy, ..., v, € CPT¥ into the wedge product vy AvaA...Av, € APCPH2. The action induced
by the multiplication through elements of SU(p + ¢) from the right induces a unitary action in
the embedded ambient projective space. In homogenous coordinates, the embedding is given
by the p x p minors of the p x (p + ¢) matrices (up to a sign). More specifically, in the above
local affine chart, we have the following (up to a sign in front of the components):

B o i
z -z kYL 2

IR NS @

which is denoted for simplicity of notation, in what follows, by [1,r,] = [1, 41,9, ...,¢n] . Here

and in what follows, Z (J is the determinant of the submatrix of Z formed by its
1



ith . it rows and j, ..., i columns, where the indices run through

k:1,2,...,p,1§i1<i2<...<ikSp,1Sj1 <Jo<...<jr<q.

In particular when k£ = 1, (Z.l) = 2;,;,- Notice that under such an embedding into the projective

space, (G(p,q))* = G(p,q). \]7\1/e thus have the same affine coordinates for (G(p, q))*:
100 - 0 & G o &

(Ixp E) = 010 0 & 522 RS , Zis ap X ¢ matrix.
000 -+ 1 &1 & - &g

By the definition in §2.1, it follows that the restriction of the Segre family to the product of
these Zariski open affine subsets has the following canonical defining function:

SRR D g

1< <i2<... <1 <p,
1<j1<ge<...<jr<q
k=1,....p
Here z = (211, 212, -y 2pq), € = (&11,&12, ..., &pq). For simplicity of notation and terminology, we
call this quasi-projective algebraic variety embedded in CP? x CP4, which is defined by (3), the
Segre family of G(p, ¢). Our defining function p(z, £) of the Segre family is closely related to the
generic norm of the corresponding Hermitian positive Jordan triple system(cf. [Lol], [Lo2]).

&2. Orthogonal Grassmannians (type II): Write G7(n, n) for the submanifold of the Grass-
mannian G(n, n) consisting of isotropic n-dimensional subspaces of C*". Then S € Gy;(n,n) if

and only if
o 0 Inxn oT
S ([an 0 ) ST =0. (4)

In the aforementioned open affine piece of the Grassmannian G(n,n) with S = (I,5), S e
Grr(n,n) if and only if S is an n X n antisymmetric matrix. We identify this open affine chart

A of Grr(n,n) with cH5 through the holomorphic coordinate map:

1 00 0 0 Z12 tt ZIn
010 -0 —z¢ 0 - 29
(Inxn Z) = e " e = (212, Z(n-1)n)- ()
000 -+ 1 —2, —29, -+ 0
Later in the paper we will sometimes use the notation zj; := —z;; if 7 > ¢ for this type II case.

The Pliicker embedding of G(n,n) gives a 2-canonical embedding of G;;(n,n). Unfortunately
this embedding is not good enough for our purposes later. Therefore, we will use a different
embedding in this paper, which is given by the spin representation of Os,. This embedding is
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what is called a one-canonical embedding of Gr(n,n). We briefly describe this embedding as
following. More details can be found in [Chapter 12; PS].

Let V' be a real vector space of dimension 2n with a given inner product, and let (V') be
the space consisting of all orthogonal complex structures on V preserving this inner product.
An element of (V) is a linear orthogonal transformation J : V' — V such that J? = —1.
Any two choices of J are conjugate in the orthogonal group O(V') = O,,, and thus (V') can
be identified with the homogeneous space Os,/U,. On the other hand, there is a one-to-one
correspondence assigning the complex J to a complex n-dimensional isotropic subspace W
of Ve(= VR C). £(V) has two connected components Ko (V') : Noticing that any complex
structure defines an orientation on V', these two components correspond to the two possible
orientations on V. Write one for I, (V'), which is actually our G;;(n,n).

Now fix an isotropic n-dimensional subspace W C Vi with the associated complex structure
J of V¢ and pick a basis for V: {z1,....,2n,y1, ..., yn} with J(z;) = v;, J(y;) = —z;. Then
W is spanned by {z; — v/—1y;}7_,. Define W to be the space spanned by {z; + v/—1y;}7",.
As shown in [PS], there is a holomorphic embedding (V) — CP(A(W)), where A(W) is
the exterior algebra of W. This embedding is equivariant under the action of O(V'). Thus
K4 (V) — CP(A(W)) is equivariant under SO(V'). Choose the open affine cell of K (V') such
that {Y € K. (V)|[Y "W = @}. Then it can be identified with (5).

We next describe the 1-canonical embedding by Pfaffians as following: Let Il be the set
of all partitions of {1,2,...,2n} into pairs without regard to order. An element a € II can be
written as a = {(i1, 1), (i2, J2), -+, (in, Jn) } With ix < jx and i; < iy < ... <1i,. Let

WZ[.l 25 2”]
o Jr o2 J2 - Jn
be the corresponding permutation. Given a partition a as above and a (2n) x (2n) matrix
A = (ajx) , define
Ao = g0 (T) iy Qi -+ Wi -
The Pfaffian of A is then given by
pi(A) =) Aa.

acll

The Pfaffian of an m x m skew-symmetric matrix for m odd is defined to be zero.
Therefore in the coordinate system (5), the embedding of A is given by

1., ... pf(Z,), . (6)

Write Sy for the collection of all subsets of {1,...,n} with k elements. The o in (6) runs
through all elements of S with 2 < k < n and k even. For 0 = {i; < -+ < iy}, Z, is defined
11 )

as the submatrix Z(Z 2’“) For instance, (pf(Z,)),eg, = (2125 -+ 2(n—1)n). We also write (6)
1 k

as [1,7.] = [1,91,19,...,¥N] for simplicity of notation. We choose the local coordinates for



(Grr(n,n))* in a similar way

100 ---0 0 &2 0 &

- 010 -0 — 0 - Lo
(Tn Z) = SR B ()

000 - 1 ~&, € -+ 0

The defining function for the Segre family (in the product of such affine pieces) is given by

p(z,§) =1+ Y PHZ,)PL(E,). (8)
2§2€gsrf,’2\k

&3. Symplectic Grassmannians (type I11): Write G;;(n, n) for the submanifold of the Grass-
mannian space G(n,n) defined as follows: Take the matrix representation of each element of
the Grassmannian G(n,n) as an n X 2n non-degenerate matrix. Then A € G;(n,n), if and

only if,
;1/ <_ 0 ]n(;(n) AXT —0. (9)

[’I’LX’I’L

In the Zariski open affine piece of the Grassmannian G(n,n) defined before, we can take a

representative matrix of the form: A = (I, 7). Then we conclude that A € Grr(n,n) if and

only if Z is an n xn symmetric matrix. We identify this Zariski open affine chart A of G;;;(n, n)
n(n+1)

with C~ 2 through the holomorphic coordinate map:

1 00 0 211 R12 " Zln
- 010 -+ 0 219 209 -+ 2o
A= (I”X” Z) = . 22 ’ - (2117"' >Z7m)'
000 -~ 1 2z, 29 - Znn
Later in the paper we sometimes use the notation zj := z;; if j > ¢ for this type III case.

Through the Pliicker embedding of the Grassmannian, Gyr7(n, n) is embedded into CP(A"C?")(2
CP""). In the above local coordinates, we write down the embedding as (up to a sign)

Z ol ’Z(;i - ;z) L= (L ], (10)

Choose the local affine open piece of (G;(n,n))* consisting of elements in the following form:

100 -+ 0 &1 &2 -+ &
_ 010 ---0 e by
(nen Z) = e e



The defining function of Segre family in the product of such affine open pieces is given by

P =1+ > zC ot (1)

1< <9 <... <1 <n,
1<1<g2<...<jr<n
k=1,....,n

However the Pliicker embedding is not a useful canonical embedding to us for Gy;;(n,n), due
to the fact that {1;} is not a linearly independent system. For instance,

(53)2(3)=7(2 1)

This embedding can not serve our purposes here. We therefore derive from this embedding a
minimal embedding into a certain projective subspace in CP(A"C?")(=2 CP""). We denote this
minimal projective subspace by H = CP", which is discussed in detail below. We notice that
the embedding Gy7(n,n) < CPY is equivariant under the transitive action of Sp(n).

Following the notations we set up in the Grassmannian case, we write [1, )y, - - - 1n~] for the
map of the Pliicker embedding into CPY . Write (Vi ey wimk) for those components of degree
k in z among {wj};y:*l_ Here 1 < k < n, and {iy, ..., %, } depends on k. For instance, if k = 1,
then

(77/)1'1, “'7¢im1) = (211’ e Zrm)»

where z;; is repeated twice if i # j. Let {z/é’“’, e ,wa%} be a maximally linearly independent
subset of {4, ..., ¥, } over R (and thus also over C). For instance,

1 1
iV, ) = {aihiey.

Let Ay, be the my x my matrix such that (¢;,, - ¢y, ) = ( Yf), - @/}7(7’2) - Aj. Apparently Ay
has real entries and is of full rank. Hence Ay, - A} is positive definite.
Then {¢T7 cee ﬂqu)}k\f} = {d)gk)? e 7w£rlf]%}1§k§n forms a basis of {¢17 o 77Z}N*}7 where N =

mj + ... +m’. Moreover, if we write A as the (m} + ... + m}) x (m; + ... + m,,) matrix:

A
A —=
An

Then A has full rank and we have a real orthogonal matrix U such that
Uy H1

U= , U'(A-AYU = with each p; > 0.
U, KN

10



Here Uy, 1 < k <mn, is an mj, X mj, orthogonal matrix. Now we define

Vi
(w%7 "'7w]1\717’l/}%7 "'J¢Z2V27 sy ?717 sy %;}an) = (1”7 te w}k\f> U - \/ITQ
N

Here Ny +...4+ Nyp_1 + N,, = N*, where we set IV, = 1. We will also sometimes write ¢y, = ¢".
As a direct consequence,

(wia'“:w]l\flaw%a“ww?\fga' °) 1 7 7¢Nn 1>¢”) (w_%a"'aw_}waw_%a"'a¢?v27' °) 1 7 7¢Nn 17¢")
= (1, ne) - (P, ) = det(I + ZZ') = p(z,%).

(12)

Moreover {1, ...,¢}V1,¢%, . 1Z1N2, T/ K,il,g/)"} forms a linearly independent sys-

tem; and {¢F, ...,1/}&} are polynomlals in z of degree k for k = 1,...,n. Now our canonical
embedding of the aforementioned affine piece A of Grr(n,n) is taken as

n(n+1) TL n
ze€C [171/1%7.--71?]1\/171?%7- 7¢N27‘” 17 =z Nn 172/} ]
For simplicity, we will still denote (¥f, ..., 0N, 7, ..., 3, -, VT, ,wNn L Y") by
Ty = (wbw?’ 7¢N> = <¢i7 -~-,¢11\717¢%7 ~--;¢]2v2; ) ?717 L) %:an) : (13>

Here, for instance, (¢1,...,0nm+n) = (U1, ..., ¥N,) = (aij2i)1<i<j<n, Where a;; equals to 1 if
i =7, equals to V2 if i < j. Heilce the defining function of the Segre family, which is the same
as (11), is given by p(z,&) =1+ SO0, ¢;(2)1s(€).

&4. Hyperquadrics (type IV): Let Q" be the hypersurface in CP™*! defined by

{[xo, oy Tpy1] € CP™TL vaf — 2T0Tpy1 = 0} ;

=1

where [z1, ..., T, 2] are the homogeneous coordinates for CP"™™!. Tt is invariant under the action
of the group SO(n + 2). We mention that under the present embedding, the action is not the
standard SO(n+2) in GL(n+2). However it is conjugate to the standard SO(n+2) action by
a certain element g € U(n+2). An Zariski open afﬁne piece A C Q" identified with C” is given
by (21, 20) = (L1, ey Ypga] = [1, 21, o0 20, 5 Doty 27), which will be denoted by 1,r,] =

(1,41, s, ..., ¥ps1]. Choose the same local chart for (Q™)* : (&1, ..., &) — [1, &1, o, &ny 5 Doy E2.
Then the defining function of the Segre family restricted to C" x C" — Q" x (Q™)* is given by

P8 =1+ ) s+ 1A (149)
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&5. The exceptional manifold Mg := Eg/SO(10) x SO(2) : As shown in [IM1],[IM2], this
exceptional Hermitian symmetric space can be realize as the Cayley plane. Take the exceptional
3 x 3 complex Jordan algebra

Ci X3 T3
jg(@) = j]g Cy T G € C,l’i € O = 627. (15)

Tog T1 C3

Here O is the complexified algebra of octonions, which is a complex vector space of dimension
8. Denote a standard basis of O by {eg, e1, ..., e7}. The multiplication rule in terms of this basis
is given in Appendix I. The conjugation operator appeared in (15) is for octonions, which is
defined as follows: T = zge; — x161 — ... — x7€7, if © = x9€0 + 2161 + T2 + ... + X767, 7; € C.
Moreover under this basis, J3(Q) = C?7 is realized by identifying each matrix

& n K
X=|m & 7| €J30)
K T 53

with the point (£1, &, €3, 70, W15 - - -, N7y Koy K2y + - -5 K7, Tos T,y - - -, T7) € C¥, where n = Zi?:O Ni€i, K =
ZZ:O kie; and T = 21'7:0 Ti€;.

The Jordan multiplication is defined as Ao B = $(AB 4 BA) for A, B € J3(0) . The
subgroup SL(Q) of GL(J3(0)) consisting of automorphisms preserving the determinant is the
adjoint group of type Es. The action of Eg on the projectivization CPJ3(Q) has exactly three
orbits: the complement of the determinantal hypersurface, the regular part of this hypersurface,
and its singular part which is the closed Eg—orbit. The closed orbit is the Cayley plane or the
hermitian symmetric space of compact type corresponding to Es. It can be defined by the
quadratic equation

X? = trace(X)X, X € J5(0),

or as the closure of the affine cell A

1 =z g
OP? =< |z 27 yz| :2,yc Q) =C'®
y xy yy

in the local coordinates (xg, 1, ..., 7, Yo, ..., y7). The precise formula for the canonical embed-
ding map is given in Appendix II. We denote this embedding by [1,7,] = [1, 41, 19, ..., ¥n] .

To find the defining function for its Segre family over the product of such standard affine
sets, we choose local coordinates for the conjugate Cayley plane to be (Ko, K1, ..., K7, 105 M1y - 17
Then

7 7 7
P(Z,f) = 1+Z xz"@"’Z yznz_‘_ZAZ(xvy)Az(Kan)—{—BO(may)BO(’%7n)+B1(I7y)B1(K’7 77>’ (16)
=0 =0 1=0
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where A;, B; are defined as in Appendix I, z = (o, ..., %7, Yo, ..., y7) and § = (Ko, ..., K7, M0 .-, 7).

&6. The other exceptional manifold My; = E;/Eg x SO(2) : As shown in [CMP], it can be
realized as the Freudenthal variety. Consider the Zorn algebra

2,(0)=CP RO P HO)PC

One can prove that there exists an action of E; on that 56—dimensional vector space (see
[Fr]). The closed E;—orbit inside CPZ5(Q) is the Freudenthal variety E7/FEgs x SO(2). An
affine cell A of Freudenthal variety is [1, X, Com(X),det(X)] € CPZ,(0). Here X belongs
to J5(0); Com(X) is the comatrix of X such that XCom(X) = det(X)I under the usual
matrix multiplication rule. Notice that Com(X) = X x X, where X x X is the Freudenthal
multiplication defined as follows (see [O]):

1
XxX:i=X—tr(X)X + §(tr(X)2 —tr(X?)I.

For explicit expressions for X x X and det(X) in terms of the entries of X, see [O] or Appendix
I in this paper.

The embedding of E;/Es x SO(2) — CP" in local coordinates z is given in Appendix I.
Choose the local affine open piece for (E;/Eg x SO(2))* with coordinates

f = (5175275377707 -y N7y Roy -y K74 To, "'77—7>‘

We denote this embedding by [1,7,] = [1, 11,12, ...,%N]|. The defining function for the Segre
family is then p(z,&) =147, - re, where

T, = (T1, %2, T3, Yo, .-y Y7, L0, -y t7, Wo, .., w7, A(2), B(2),C(2), Do(2), ...D7(2),
Eo(2), ..., B7(2), Fo(2), ..., F7(2), G(2))
re = (¥1(8),¥2(8), s UN(E)) = (1,82, 83,0, -5 75 K0y -0y KT, T, -, T
A(€), B(§),C(&), Do(§), -s D7(€), Eo(§), - E7(§), Fo(€), -, F7(§), G(§))

Here see Appendix I for the definition of the functions appeared in the formula.

(17)

Summarizing the above, for each irreducible Hermitian symmetric space of compact type M
of dimension n, we now have described a canonical embedding from M into a projective space
PV which restricted to a certain Zariski open affine piece .4 holomorphically equivalent to C"
takes the form: z(€ C") > [1,K121, "+ ,KiZi, ", knzn, O(2%)]. Here k; = 1 for all i except
in the case of type III where x; can be 1 or /2. This is the embedding we will use in later
discussions. Notice in our embedding, the conjugate space M* is the same as M. For simplicity
of notation, we will also write M for the restriction of the Segre family of M restricted to
A x A* = C" x C". From this embedding and the invariant property of Segre varieties, we
immediately conclude the following:

13



Lemma 2.1. Assume A and B are two distinct points of M. Then their associated Segre
varieties are different, namely, Q4 # @B.

Proof of Lemma 2.1: Since the holomorphic isometric group acts transitively on M, we can
assume A = (0,0,...,0) € C" = A C M. Therefore Q4 is the hyperplane section of M — PV
at infinity, namely, Q4 = M\A. Now if B € A, because B # (0,0, ...,0), there are non-trivial
linear terms in the defining function of Q. This leads to the fact that the defining function
of @p has to be a non-constant polynomial in C[{y,...,&,]. Therefore Qg N C" # () and thus
does not coincide with Q4. If B € M\ A, by the symmetric property of Segre varieties, we have
(0,...,0) € Qp. Therefore Qp # Q4. We then arrive at the conclusion. B

Finally, since in our setting, M* = M and the Segre family on M and M* are the same.
For simplicity of notation, we do not distinguish, in what follows, Q* and M* from ) and M,
respectively.

2.3 Explicit expression of the volume forms

From now on, we assume that M is an irreducible Hermitian symmetric space of compact type
and we choose the canonical embedding M «— CPY as described in §2.2 according to its type.
We denote the metric on M induced from Fubini-Study of CPY by w, and the volume form by
dp = w" (up to a positive constant). Notice that the metric we obtained is always invariant
under the action of a certain transitive subgroup G C Aut(M) (which comes from the restriction
of a subgroup of the unitary group of the ambient projective space). Hence by a theorem of
Wolf [W], w is the unique G invariant metric on M up to a scale. We claim w must be Kéhler-
Einstein. Indeed, since the Ricci form Ric(w) of w is invariant under G, for a small €, w+€eRic(w)
is thus also a G invariant metric on M. By [W], it is a multiple of w, and thus Ric(w) = Aw.
Write dp as the product of V' and the standard Euclidean volume form over the affine subspace
A, where V is a positive function in z. Since Ric(w) = —i0dlogV, —iddlogV = Aw. Notice
that A > 0. In the local affine open piece A defined before, w = i90log p(z, ), where p(z, &)
is the defining function for the associated Segre family. As we will see later (§7), p(z,&) is an
irreducible polynomial in (z,&). Then we have

9001og(Vp(z,2)*) = 0.

Hence, log(Vp(z, 2)*) = ¢(2) +1(2), where both ¢ and 9 are holomorphic functions. Therefore

V= %. Because p(z, &) is an irreducible polynomial, from the way V' is defined, V' must
(2.2)

be a rational function of the form pIZz,i)m with p, p relatively prime to each other. Since ¢, are
globally defined, by a monodromy argument, it is clear that A\ has to be an integer. Also both
e??) and e¥© must be rational functions. Again, since ¢, 1) are also globally defined, this forces
¢, to be constant functions. Therefore, we conclude that V = cp(z, 2)~*. Here ) is a certain
positive integer and ¢ is a positive constant. Next by a well-known result (see [BaMa]), two

Kahler-Einstein metrics of M are different by an automorphism of M (up to a positive scalar
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multiple). Therefore, to prove Theorem 1.1, we can assume, without loss of generality, that the
Kéhler-Einstein metric in Theorem 1.1 is the metric obtained by restricting the Fubini-Study
metric to M through the embedding described in this section.

3 A basic property for partially degenerate holomorphic
maps

In this section, we introduce a notion of degeneracy for holomorphic maps and derive an im-
portant consequence, which will be fundamentally applied in the proof of our main theorem.
Let (2) := (¢1(2), ..., n(2)) be a vector-valued holomorphic function from a neighborhood
U of 0in C™,m > 2, into CN¥, N > m, with ¢(0) = 0. Here we write z = (21, ..., 2,,) for the
coordinates of C™. In the following, we will write z = (21, ..., zZm_1), i.e., the vector z with the

glal glel

last component z,, being dropped out. Write = = for an (m — 1)—multiindex «,

aq XAm—1
0z .0z,

where o = (v, ..., 1) Write

olel olel olal
@zﬁ(z) = (@%(2’), o @¢N(z)> :
We introduce the following definition.

Definition 3.1. Let k > 0. For a point p € U, write Ex(p) = Spanc{% (2)|s=p : 0 < || < K}
We write v for the greatest number such that for any neighborhood O of 0, there exists p € O
with dimc Ey(p) = 7. 7 is called the k—th Z—rank of ¢ at 0, which is written as ranky (¢, z). F

is called Z—nondegenerate if ranky, (1, 2) = N for some ko > 1.

Remark 3.2. [t is easy to see that ranky (1, 2) = r if and only if the following matrix

2 (2)

P (2)
has an r x r submatriz with determinant not identically zero for z € U for some multiindices
{a® ..., af} with all 0 < || < k. Moreover, any | x 1 (I > r) submatriz of the matriz has
identically zero determinant for any choice of {a®; ..., a*} with 0 < || < k.
In particular, 1 is Z—nondegenerate if and only if there exist multiindices 3, ..., BN such
that

18 184
Srn(2) . Sorew(2)

IBNI. 18N
ggw%(z) gzw%v(z)

is not identically zero. Moreover, rank, 1 (v, z) > rank; (v, z) for any i > 0.
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For the rest of this section, we further assume that the first m components of ¥, i.e.,
(1, ey ) : C™ — C™ is a biholomorphic map in a neighborhood of 0 € C™. Then we have,

Lemma 3.3. [t holds that ranky(), z) = 1,rank, (¢, 2) = m, and for k > 1,rank(¢,2) > m.

Proof of Lemma 8.3: We first notice that it holds trivially that rankq (¢, z2) = 1, for F'is not
identically zero. We now prove rank; (¢, z) = m. First notice that rank; (¢, z2) < m as there are
only m distinct multiindices 3 such that |3| < 1. On the other hand, since ¢ has full rank at
0, we have,

vy O
0z1 0z1
Ly Om
Ozm 77 Ozm
This together with the fact ¢(0) = 0 implies that the z,, derivative of
v Uy
1 m
0z1 0z1 (18)
o Om
0zZm—1 0zZm—1

is nonzero at p = 0. Consequently, the quantity in (18) is not identically zero in U. By the
definition of the z-rank, we then arrive at the conclusion. W

We now prove the following degeneracy theorem in terms of its z-rank, which will be used
to derive Theorem 3.10.

Theorem 3.4. Let v = (Y1, ..., U, U1, -, W) be a holomorphic map from a neighborhood
of 0 € C™ into CN with ¥(0) = 0. Recall that Z = (21, ..., Zm_1), i.e., the vector z with the
last component z,, being dropped out. Assume that (V1 ...,¢n) is a biholomorphic map from a
netghborhood of 0 € C™ into a neighborhood of 0 € C™. Suppose

ranky _,11(¥,2) < N. (19)

Then there exist N holomorphic functions gi(zm), ..., gn(zm) near 0 in the z,— Gauss plane
with {g1(0), ..., gn(0)} not all zero such that the following holds for any (21, ..., zm) near 0.

Z Gi(zn)0i(21, ooy 2m) = 0. (20)

In particular, one can make one of the {g;}, to be identically one.

The geometric intuition for the theorem is as follows: The space of 1-jets has dimension m
by Lemma 3.3. We expect that at least one more dimension is increased when we go from the
space of k-jets to the space of (k4 1)— jets until we reach the maximum possible value N. The
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theorem says that if this process fails, namely, the assumption in (19) holds, we then end up
with a function relationship as in (20).

Proof of Theorem 3.4: We consider the following set,
S={l>1:rank)(¢,2) <1+ m —2}.

Note that 1 ¢ S, for rank; (F') = m. We claim that S is not empty. Indeed, we have 1+ N —m €
S by (19). Now write ¢’ for the minimum number in §. Then 2 < ' <1+ N — m. Moreover,
by the choice of #/,

ranky (¢, 2) <t' +m — 2, ranky_1(¢),2) >t +m —2. (21)

This yields that
ranky (¢, 2) = ranky_1(¢,2) =t' +m — 2. (22)

We write t :=t' — 1, n:=t +m — 2. Here we note t > 1,m < n < N — 1. Then there exist
multiindices {~!,...,7"} with each || <t and ji, ..., J, such that

8|’Yl‘¢j1 ahllw]'n
1 n| - . 6271 " 32’\/1 . . . .
A Y Ty e dn) = is not identically zero in U. (23)
alwnw’h ahnlen
8'2,)/"1/ e 82,\,”

Since rank; (1, 2) = m, we can choose (v',...,7"|J1, ..., jn) sSuch that
v =(0,..,0),7* = (1,0,...,0),...,4™ = (0, ...,0, 1).

For any !, ...,a"™! with [of| <t + 1, and Iy, ..., 1,41, we have

a1y olotlyy, 0wy,
dzal dzot dzol!
Ala, . ™, ly) = =0in U. (24)
alan+1 "lf)ll a‘an+l‘wln 8‘an+1 lwln+1
TozantL e Hzantl Hzan Tl

We write I" for the collection of (4, ...,y |41, -+, Jn), 41 < oo < Jin, With ! = (0, .., 0) and with
(23) being held. We associate each (v, ...,y"|j1, ..., jn) With an integer s(y', ..., [J1; .-, Jn) :=
So where s is the least number s > 0 such that

asl+..-+5m—1+8A<’yl, ceey ’yn|j17 7]”)

81 S92 Sm—1
02710257 ...02,," 1 0z5,

(0) # 0.

for some integers sy, ..., Sm_1. Then s(y!, ..., ¥ |1, ..., jn) = 0 for any (%, ..., Y[ J1, -y jn) € I
Let (B',...,8"i1,...,7,) € I,iy < ... < i, be indices with the least s(y,...,v"|j1, .-, Jn)
among all (v, ...,v"|j1, ..., Jn) € I
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We write {ips1,....in} = {1,..., N}\ {i1, ... in}, where ipq < ... < iy. Write U = {z € U :
A(BY, ..., i1, ..., i) # 0}. We then have the following:

Lemma 3.5. Fiz j € {int1,...,in}. Let i € {iy,..,in}. Write {i\,....3 1} = {i1,...,in} \ {i}.

There exists a holomorphic function gf(zm) in U which only depends on z,, such that the

following holds for z € U :

1 1 1 1
5l ‘wi’l alB \w%_l 8wlle o8 I¢Z_,1 918 I¢i,_1 8'51‘%
9z8! - az8! az8! az8! o az6! az8!
“en cee cee (Z) — gg(zm) cee “ee “ee “en (Z)7 (25)
8\5n\¢i,1 8|5n\wi%71 3‘371'%' alﬁ”lwi/l a\ﬁ"lwi;ﬂ DB Iap,
T T R T T o R
or equivalently,
! 1841 ;
o vy O Wy 0 (=gl (am))
oz8' " az8! az8!
= 0. (26)
n 167
0wy OF W\ 0" g (zm i)
L =
Proof of Lemma 3.5 For simplicity of notation, we write o w for 8@, and for u =i or 7,
write the matrix
Ovs AL
ozt Tzl 9pl v,
Vo= | o S e
0vi aw; 1 Oy M
g TR g
where v}“ -+, v, are the row vectors of V},. To prove (25), one just needs to show that, for each
1<v<m-—1,
0 det(V; .~
det(V;) =0in U. (27)
9z, det(V;)

Indeed, by the quotient rule, the numerator of the left-hand side of (27) equals to

det(V;) det(V})
det( det(V}) aidew)
)

det(\/; det(V) det(V;) det(V)
)
2z ”2V %2‘91 Vi vj
= det A\ \& .o+ det :
“laet | 7| det| 7| [T T det | | det|
: n— n—1
: : \s s
V? A Vi 5o V)
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By (24) and Lemma 4.4 in [BX], each term on the right-hand side of the equation above equals
0. For instance, the last term above equals to

Oy Wiy ow Oy O v
gzt gzst 98! gzt gzst azh!
vy iy ow Oy Wy oy
GEC 38" Hzo” 9z8" . THzBT 9" 93
Oy oy, o0, o0y By, on, || (28)
958! " o781 938! 938! " 981 98!
81/12"1 Oy 1 O, 8"/’1"1 67/}1';171 O
azﬁg—l azan 1 9z8" 1 azen—t T azan 1 928" 1
O (7)o (o) A ()| ) . (o) (2%
Oz, \Oz8™ Tt Oz, N 938" Oz, \Oz8™ Oz, \Oz8™ Tt Oz, N 98T Oz, \Oz8™

It is a multiple of the following determinant (by Lemme 4.4 in [BX]):

O Wi,y I pj
oz81 936! 928" 828"
Ou 0, I Y, ’ (29)
ozr™ o 9Eh" YR z8"
] Wi, s pj
9za™ T gaan Tl gzt gzan
where ag%ﬂ = %(82%), which is identically zero by (24). This establishes Lemma 3.5. R

The extendability of gg (2 ) will be needed for our later argument:

Lemma 3.6. For any t,j as above, the holomorphic function gf(zm) can be extended holomor-
phically to a neighborhood of 0 in the z,,—plane.

Proof of Lemma 3.6: First, gf is defined on the projection Wm(U ) of U, where 7,, is the

natural projection of (zi,...,2,) to its last component z,,. If 0 € 7,,(U), the claim follows

trivially. Now assume that 0 ¢ 7, (U). If we write s = s(f1, ..., Buli1, ..., in), by its definition,
then there exists (ay, ..., a,_1) € C™! close to 0, such that

1 1
o W}ill or lwi%ﬂ 018" 1y,
9z8t T 9z8" 928"
S S
(@1, ey 1y 2m) = €2y, + 0(|2m]*), ¢ # 0. (30)
3|Bn\¢l,1 918 lwi%71 8‘Bn‘¢1
Cozt 928" 0z°™

Then there exists 7 > 0 small enough such that for any 0 < |z,,| <7, (a1, ..., @m—1, 2m) € U.
That is, at any of such points, equation (30) is not zero.
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We now substitute (ai, ..., m_1, 2m),0 < |z, < r, into the equation (25), and compare the
vanishing order as z,, — 0:

cr2y, + ol|zm|™) = gl (zm) (c23, + 0|2m])), ¢ # 0. (31)

for some s > 0. Note that 0 < s < s’ by the definition of s and the choice of (81, ..., Bp|i1, ..., in).
The holomorphic extendability across 0 of ¢} (z,,) then follows easily. B

We next make the following observation:

Claim 3.7. For each fivzed j € {ini1,...,in} and any @) < ... < i,y with {i},....i,_,} C
{i1,...,1n}, we have:

1 1 1 )
o8 \%,1 o18 \wi%_l als I(d,j_z;;:lglﬂ_kwik)
azpt 9z8" 9z8"
(2)=0,VzeU. (32)
Oy Oy Ay o )
9zpm 9zP" 9zP"

Proof of Claim 3.7 Note that for each 7,1 <1 <n — 1, the following trivially holds:

.
o1y, I Ny gy
I PECR 978

(2) =0, (33)
a\ﬁ”ld;i,l 8‘ﬁn‘¢i/ . awn‘(gf;wii)
Tzt 978" 9zP"

for the last column in the matrix is a multiple of one of the first (n — 1) columns. Then (32) is
an immediate consequence of (26) and (33).

Lemma 3.8. For each fized j € {int1,...,in}, we have 1;(z) = 1_, gfk(zm)wzk(z) =0 for any
z € U, and thus it holds also for all z € U.

Proof of Lemma 3.8: This can be concluded easily from the following Lemma 3.9 and Claim
3.7. Here one needs to use the fact that ' = (0,...,0). B

Lemma 3.9. (/BX], Lemma 4.7) Let by,--- , b, and a be n-dimensional column vectors with
elements in C, and let B = (by,--- ,b,,) denote the n x n matriz. Assume that detB # 0 and
det(b;,, biy, - b, ,a) =0 forany 1 <iy <iyg <--- <ip_1 <n. Thena=0.

Theorem 3.4 now follows easily from Lemma 3.8. B

If we further assume that 1;(z),m + 1 < i < N, vanishes at least to the second order, then
we have the following, which plays a crucial role in our proof of Theorem 1.1.
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Theorem 3.10. Let v = (Y1, ..., Yy Uiy, -, W) be a holomorphic map from a neighborhood
of 0 € C™ into CN with ¥(0) = 0. Assume that ({1, ...,10n) is a biholomorphic map from
a neighborhood of 0 € C™ into a neighborhood of 0 € CN. Assume that ¢;(z) = O(|z|*) for
m+1 < j < N. Suppose that ranky_,,,+1(¥)) < N. Then there exist a1, ...,an € C that are
not all zero such that

N
Z ajwj(zl, ey Zm—1, O) = 0, (34)

i=m+1

for all (z1, ..., z2m—1) near 0.

Proof of Theorem 3.10: We first have the following:
Claim 3.11. For each 1 <i <m, g;(0) = 0.

Proof of Claim 3.11: Suppose not. Write ¢ := (¢1(0), ..., gm(0)) # 0. Then (g1(zm), -, G (2m))
= ¢+ O(|z,n]). The fact that 1;(2) = O(|z]?),7 > m + 1, implies

Zgi(zm)@bi(z) = O(|=). (35)

Notice that (the Jacobian of) (¢4, ..., ¢,) is of full rank at 0. Hence

Sa(0) ... Ge=(0)
. c' #0. (36)
U0y ... Zém(0)

Ozm, Ozm

This is a contradiction to (35). B

Finally, letting z,, = 0 in equation (20), we obtain (34). By claim 3.11, (¢,,+1(0), ..., gn(0)) #
0. This establishes Theorem 3.10. R

4 Proof of the main theorem assuming three extra propo-
sitions

In this section, we give a proof of our main theorem under several extra assumptions (i.e.,
Propositions (I)-(IIT)), which will be verified one by one in the later sections.

Let M C CPY be an irreducible Hermitian symmetric space of compact type, which has
been canonically (and isometrically) embedded in the complex projective space through the
way described in §2. In this section, we write n as the complex dimension of M. We also have
on M an affine open piece A that is biholomorphically equivalent to the complex Euclidean
space of the same dimension, such that M \ A is a codimension one complex subvariety of M.
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We identify the coordinates of A by the parametrization map with z = (z1, ..., z,,) € C" through
what is described in §2, which we wrote as [1, 1)1, ..., ¥n]|, where 1)1, ..., ¥y are polynomial maps
in (21, ..., 2,) with ¢; = k;z;, where x; = 1 or v/2, for j = 1,--- ,n. We also write F(¢) for F(€)
for £ = (&,...,&,) € C™. We still use p(z,€) for the defining function of the Segre family of M
restricted to A x A*, which will be canonically identified with C™ x C". Since the coefficients

of ¥y, ...,y are all real, 1 = b and A* = A. Hence, we have

p(z,€) =1+ Z bi(2)i(€). (37)

Recall the standard metric w of M on A is given by
w = i00log(p(z, 2)). (38)

The volume form dyu = ¢, w™ associated to w, by §2 , is now given in 4 by the multiplication of
V' with the standard Euclidean volume form, where

c
V=r— (39)
(p(z,2))*
with ¢ > 0 and A\ a certain positive integer depending on M. For instance, A = p + ¢ when
X = G(p,q) [G]. Here ¢, is a certain positive constant depending only on n.

Theorem 4.1. Let A C M be as above equipped with the standard metric w. Let Fj, 7 =1,...,m,
be a holomorphic map from U C A into M, where U is a connected open neighborhood of A.
Assume that F7(dp) # 0 for each j and assume that

dp =" NF;(dp), (40)
j=1
for certain positive constants \; > 0 with j = 1,--- ,m. Then for any j € {1,2,...,m}, F;

extends to a holomorphic isometry of (M,w).

For convenience of our discussions, we first fix some notations: In what follows, we identify
A with C" having z = (z1,- -, 2,) as its coordinates. On U C A C M and after shrinking U
if needed, we write the holomorphic map F}, for j =1,...,m, from U — A = C", as follows:

FJ = (F}717F1j‘72, -'-7Fj,n)7 j = 1, o, m. (41)

Still write the holomorphic embedding from A into CPY as [1,4),--- ,1y]. We define F;(z) =
(Fins oy Fin) = (W1(F)), ¥o(F}), ..., n(F))) for j = 1,...,m. Finally, all Segre varieties and
Segre families are restricted to A = C™.

The main purpose of this section is to give a proof of Theorem 4.1, assuming the following
three propositions hold. These propositions will be separately established in terms of the type
of M in §5,86 and §7. This then completes the proof of our main theorem.
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%(zvf) o

22 (2,£) O7n
fields (whenever defined) tangent to the Segre family M of M < CP¥ restricted to A x A* =
C" x C™ defined by p(z, &) = 0. Under the notations we set up above, for any local biholomorphic
map F = (f1, -+, fn) : U — C" with F(0) = 0, there are 2° € U,£° € Q.0, 3%, ..., 8%, such that

Proposition (I): Write £; = % — ,1 <1 < n—1, which are holomorphic vector

0 551]:1 ﬁﬁlfN
G0y £0, A ..., BY)(20,€0) =

B:. (%6 #0.  (42)

LoF . L Fy
Here 8! = (K, ..., kL ), k!, ..., k.| are non-negative integers, for | = 1,2, ..., N; gt = (0,0, ..., 0);

kL
. Ul gl b
8 = chgkhs o By = (F L Fy) = W1(F), a(F), ..., n(F)). Moreover, s; =

n—1"
Z::ll kL (I = 1,...,N) is a non-negative integer bounded from above by a universal constant
depending only on (M,w). Also, in what follows, when we like to emphasize the dependence of

A(BY, ..., 8Y) on F, we also write it as Ap(3', ..., 8%).

Proposition (I1): Suppose that £ € C* with £° # (0,0, ...,0). Then for a generic smooth
point z° on the Segre variety Qg and a small neighborhood U 3 2°, there is a 2! € U N Qo
such that Q.0 and Q.1 both are smooth at £° and intersect transversally at £°, too. Moreover,
we can find a biholomorphic parametrization near % (&;,&,...,&,) = g(él,ég, ,fn) with
(51,52, ,én) e Uy x Uy x ... x U, C C" where U; and U, are small neighborhoods of 1 € C,
and U; for j > 3 are small neighborhoods of 0 € C such that (i). G(1,1,0,---,0) = &,
(ii). GH{& =1} x U x ... x Up) C Q0,G(Ur x {& = 1} x Uz x ... x Uy,) C Q.1, and (iii).
GH& =t xUsx...xUy)or G(U; x{& = s}t xUsx..xU,),s € U,t € U,is an open piece of
a certain Segre variety for each fixed ¢ and s. Moreover G consists of algebraic functions with
total degree bounded by a constant depending only on the manifold M.

Proposition (III): For any £ # 0(z # 0, respectively) € C", p(z,€) is an irreducible
polynomial in z (and in &, respectively). (In particular, Q7 and Q. are irreducible.) Moreover, if
U is a connected open set in C", then the Segre family M restricted to U x C" is an irreducible
complex subvariety and thus its regular points form a connected complex submanifold. In
particular, M is an irreducible complex subvariety of C" x C".

The rest of this section is splitted into several subsections. In the first subsection, we
discuss a partial algebraicity for a certain component Fj, in Theorem 4.1. In §4.2, we show F},
is algebraic. In §4.3, we further prove the rationality of Fj,. §4.4 is devoted to proving that F}
extends to a birational map from M to itself and extends to a holomorphic isometry, which can
be used, through an induction argument, to prove Theorem 4.1 assuming Propositions (I)-(III).

4.1 An algebraicity lemma

We use the notations we have set up so far. We now proceed to the proof Theorem 4.1 under
the hypothesis that Propositions (I)-(III) hold.
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Denote by Jy(z) the determinant of the complex Jacobian matrix of a holomorphic map
f: B — C", where B C C" is an open subset and z = (21, , 2,) € B. For any holomorphic

map ¢(£) from an open subset of C" to C™, where £ € C", we define g(&) := g(&).
Now from (37)(38)(39)(40), we obtain

S | T, (2)]? 1
)\j N J T (5 - N ——, 2= (%1,-.-,%n U. (43
; (T+ 2 v ())a(F3(2)) (14 D250, vi(2)vi(2) ( )€ (43)

Recall that Fj = (Fj1, Fjo, ..., Fjn),j =1, ...,n. Complexifying (43), we have

Jr;(2)JE; (€) _ 1 , (2,8) € U x conj(U). (44)

Zm:Aj N L - N
j=1 (L4225 i(F5 ()5 (1 + 2o, vil(2) ()

Here conj(U) =: {z : Z € U}. Using the transitive action of the holomorphic isometric group
of (M,w) on M, we assume that 0 € U, F;(0) = 0 € A and Jp,(0) # 0 for each j. Also, letting
U = B,(0) for a sufficiently small » > 0, we have conj(U) = U. Hence, we will assume that

(44) holds for (z,£) e U x U.
We will need the following algebraicity lemma.

Lemma 4.2. Let Fjs be as in Theorem 4.1. Then there exist Nash algebraic maps
Fi(z, X1, s Xon)s ooey Fon (2, X1, oy X))
holomorphic in (z, X1, ..., X,n) near (0, Jg, (0), ..., Jg, (0)) € C* x C™ such that
Fi(2) = Fj(2,J5,(2), s J1 (2)),5 = 1, im (45)
for z = (z1, ..., z,) near 0.

Proof of Lemma 4.2 Recall that ¢; = k;z;, where k; = 1 or v/2, for i = 1,--- ,n and
¥; = O(|2]?) is a polynomial of z for each n + 1 < i < N. We obtain from (44) the following:

n

Z s (T, (2) T8, (€) = A (U, (2)kiFi(2)) Tk ()i 0(€))) + Py(z, F5(€), T, (€)))

=1

_ - . (46)
(1 + Zizl %(z)%(f)y

Here each Pj(z, F;(§), J,(€)) is a rational function in z, F;(€) and Jg, ().
We now set X; = Jpj, 1 <7 <m.SetY; 1< j<m,tobe the vectors:

Y;‘ == (Y}l, 7Y;n) = (/flJFjP},ly ...,/{nJF].ij).
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Then equation (46) can be rewritten as

m

— — — — 1
A (X (2) X (8 —AY(2)- Y, (2, X;(8),Y; = ~ 47
; i (X5(2)X5(8) = AYj(2) - Y5(6) + Q4(%,X;(8),Y;5(6))) SN OIGE (47)

over U x U. Here each @); with 1 < 7 < m is rational in 7],? Moreover, each ();,1 < j <m,
has no terms of the form X Y ,withl < 1 for any s > 1 in its Taylor expansion at (X;(0), Y;(0)).
We write D* = L for an n—multiindex o = (o, ..., a,). Taking differentiation in

02118257
(47), we obtain, for each multiindex «, the following:

Z DX;(2))X;(§) = MDY;(2)) - V() + D*Q;(2, X;(8), Y(8)))

:Da( N . )
(14> i i) (6))

Again each D*Q;,1 < j < m, is rational in (Y 7-) and has no terms of the form 75?2‘5 with
[ <1and s > 1 in its Taylor expansion at (X;(0),Y;(0 0)). Applying a similar argument as in

[Proposition 3.1, [HY1]], we can algebraically solve for F; to complete the proof of the lemma.
|

Let R be the field of rational functions in z = (2, ..., z,). Consider the field extension

€ =R(Jn(2), .. Jr,,(2)).

Let K be the transcendental degree of the field extension £/R. If K = 0, then each of
{Jr, ..., Jr, } is Nash algebraic. As a consequence of Lemma 4.2, each F; with 1 <37 <m
is Nash algebraic. Otherwise, by re-ordering the indices if necessary, we let G = {Jg,, ..., Jp, }
be the maximal algebraic independent subset of {Jg,, ..., Jg,, }. It follows that the transcendental
degree of £/R(G) is zero. For any | > K, there exists a minimal polynomial P(z, X1, ..., Xk, X)
such that P(z, Jp, (2), ..., Jr (2), Jr (2)) = 0. Moreover,

O X0 X020 2 ), T (2). Ta(2) 20

in a small neighborhood V' of 0, for otherwise, P, cannot be a minimal polynomial of Jg,(z).
Now the union of the vanishing set of the partial derivative with respect to X in the above
equation for each [ forms a proper local complex analytic variety near 0. Applying the algebraic
version of the implicit function theorem, there exists a small connected open subset Uy C U,
with 0 € U, and a holomorphic algebraic function hl,l > K, in a certain neighborhood UO of

{(2,Jp,(2), ooy Jpc (2)) : 2 € Up} in C* x CX| such that

Ti(2) = Tu(z, Try (2), o T (2)),
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for any z € Uy. (We can assume here Uy is the projection of (70). Substitute this into
Fi(z T (2), 0 Tr,(2),
and still denote it, for simplicity of notation, by E(Z,J_Fl(z), wory I (7)) with
Fi(2, T (2)s s Ti (2)) = Fi(2, T (2), oo T (2)) for 2 € U,
In the following, for simplicity of notation, we also write for j < K,
B (2, Ty (2), ooy T (2)) = Ty (2) 01 hy(z, Xo, ooy Xi0) = X

Now we replace F5(€) by Fy(&, T (€), -+, i (€)), and replace Jr, (€) by hi(€, T, (£), - T (€)),
for 1 < j < m, in (44). Furthermore, we write X = (X1, ..., Xx), and replace Jg,(§) by X for
1<j<Kin

FH (& T (€), ooy T (), g (6, Tr (€), o T (€)),1 < j < .

We define a new function ® as follows:

= Tr, (2)hy (€, X) 1
(2,6, X) = > A a— 7 : 48
56 Z (1 + XN, b F ()i F(6 X)) (1+ 2N, dil2)ei() “3)

Lemma 4.3. Shrinking U if necessary, we have ®(z,£,X) =0, i.e.,

i N T, (2)hy (€, x) _ 1 | (19)
NN (B EW(EE X)) 1+ DN, di(2)w(€)
(1 +Z¢¢(Z)¢z /\Z <>\ Jr, (2 hi(€, X) H (1+ sz (Fi(2))wi(Fi(&, X)) )
=1 j=1 1<k<m,k#j
(50)

1§j<m
for z € U and (S,X)Eﬁo.

Proof of Lemma 4.3: Suppose not. Notice ® is Nash algebraic in (£, X) for each fixed z € U,
by Lemma 4.2. For a generic fixed z = zy near 0, since ®(z,&, X) # 0, there exist polynomials
A&, X) for 0 <1 < N with Ap(§, X) # 0 such that

DA X)D (2,6, X) =0.

0<I<N

As ®(20,&, g, (€), ..., Jp (€)) = 0 for € € Uy, then it follows that Ag(&, Jg, (€), ..., Jr (€)) = 0
for £ € Up. This is a contradiction to the assumption that {Jp, (£), ..., Jr, (€)} is an algebraic
independent set. i

Now that E(ﬁ, X),1 < j <m,is algebraic in its variables, if ﬁ}, 1 < 7 < m, is independent
of X, then F} is algebraic by Lemma 4.2. This fact motivates the remaining work in this section.
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4.2 Algebraicity and rationality with uniformly bounded degree

In this subsection, we prove the algebraicity and rationality for at least one of the Fjs. We
start with the following:

Lemma 4.4. Let Fj(z),7 € {1,...,m}, be a local holomorphic map defined on a neighborhood of
0 € U as in (44). Suppose that there exist 2° € U and £° € Qo such that A(B, ..., BV)(2°,£°)
is well defined and non-zero with 3 = (0,0,...,0). Then there is an analytic variety W C
U such that when z € U\W, A(BY,...,Y)(2,€) is a rational function in & over Q. and

MG, s BY)(2,6) £ 0 on Q-
Proof of Lemma 4.4: By the assumption, %(zo, &) # 0 and
LOVF .. LVFn
AL =] L e (51)
LOF . LV Fin

is non-zero with 3! = (0,0, ...,0).
By the definition, £; = 5>~ — % (o) Oon and L7 = LPL32L7. L0 for B = (K, .. k),
i Bzp (% Zn

kL. kL. Hence A(BY, ..., 3Y)(z,€) can be written in the form A(SY, ..., B%)(z,€) = ggg

Here Gi(2,¢) = Zf\l/[llzo Pr(2)E!,Gy(2,€) = Zf\ﬁ:o W ;(2)€7, with ®; and ¥; being holomorphic
functions defined over U C C™. In fact, Go(z,&) is simply taken as a certain sufficiently large
power of p, = %.

By our assumption, we have G;, G, not equal to zero at (2%, £Y). Hence, Gy, Gy are not zero
elements in O(U)[&y, ..., &,], the polynomial ring of £ with coefficients from the holomorphic
function space over U.

By Proposition (III), the defining function of the Segre family p can be written in the form
p(z,&) = Z\]\o{f’zo Ok (2)&™, which is an irreducible polynomial in (z, ). And for each fixed z, by
Proposition (III), we also have p(z, &) irreducible as a polynomial of £ only.

Then the set of 2 € U where A(SY, ..., 3Y)(z, €) is undefined over Q. is a subset of z € U
where Gs(z, ), as a polynomial of £, contains the factor p(z, £) as a polynomial in £&. We denote
the latter set by Ws. Similarly, the set of z € U with A(3', ..., 8V)(2,£) = 0 over Q. is a subset
of z € U where G;(z,§), as a polynomial of £, contains a factor p(z, &), which we denote by W;.

Notice that p(z,&) € O(U)[&1, ..., &) depends on each &; for 1 < j < n. Also notice that
Ga(z,€), as a certain power of p, (z,€), depends on &,.

We next characterize Wy by the resultant Ry of Go(z,€) and p(z,€) as polynomials in &,.
We rewrite Gy and p as polynomials of &, as follows:

=0

k l
gQ = Zai(zagla "'757171)5;17 pP = ij(27€17 7£n71>££1
7=0
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Here the leading terms ax, b; Z 0 with k,1 > 1. We write the resultant as Ra(2,&1,...6n—1) =
S, er(2)€", where ¢s are holomorphic functions of z € U.

For those points z € Wy, Ry(z,-) = 0 as a polynomial of &, ..., &, 1. Then Wj is contained in
the complex analytic set Wy = {c; =0,VI}. If W, = U, then we can find non-zero polynomials
f,9€ OWU)[&, -, En1][€n] such that fp+ gGs = 0, where the degree of g in &, is less than the
degree of p in &,. Hence {Go =0} U{g =0} D {p =0} N (U x C"). Again by the irreducibility
of {p =0} N (U x C"), since {g = 0} is a thin set in {p = 0} N (U x C"), G, vanishes on
{p = 0} N (U x C"). This contradicts Ga(2°, %) # 0. Hence Wy C W, and W, is a proper
complex analytic subset of U.

By a similar argument, we can prove that W) is contained in W1 that is also a proper
analytic set of U. Let W = W; U Ws. Then when = € U\W, A(BY, ..., BN)(z, €) is well-defined
over (), as a rational function in & and A(B', ..., 3Y)(2,€) Z0on Q.. B

Lemma 4.5. Let (&, X) be a non-zero Nash-algebraic function in (£, X) = (&1, ..., &, X1, ooy Xin)
€ C"x C™. Write E for a proper complex analytic variety of C* x C™ that contains the branch
locus of 1 and the zeros of the leading coefficient in the minimal polynomial of 1. Then there
exists a proper analytic set Wy in C™ such that

{£] 3X°, (¢, X°) ¢ E} D C\W;.

Proof of Lemma 4.5: Since 1) is algebraic, there is an irreducible polynomial ®(§, X;Y) =
Z?:o ¢i(&, X)Y" such that ®(&, X, (£, X)) = 0. If k = 1 then ¢ is a rational function and
thus F is just the poles and points of indeterminancy. The proof is then obvious and we hence
assume k > 2.

Define ¥(£, X, Y) = g—;{i. Since k > 2, the degree of ¥ in Y is at least one. Consider ®, ¥
as polynomials in Y, and write R(&, X) for their resultant. Then the branch locus is contained
in {(& X)|R(&, X) = 0}. Notice that R # 0, for @ is irreducible. Write R =Y, 7(§) X' with
some r; # 0. Write ¢p(£, X) = > ()X and Wy = {r;(§) = 0 ,VI} U {¢:(&) =0,V i},
which is a proper complex analytic set in C*. Then {£| 3X°, (£, X%) ¢ E} D C"\IW;.

_ Let E' be a proper complex analytic variety containing the union of the branch loci of
hj, Fj for j = 1,--- ,m and the zeros of the leading coefficients in their minimal polynomials.
For any point (2°,£% X°) € U x ((C* x CK)\E), we can find a smooth Jordan curve 7 in

x ((C" x CK)\E) connecting (z°,£° X9) with a certain point in U x (U \ E). We can
holomorphically continue the following equation along ~:

Z(A Ir (€. x) ] +Zwl (Fr(2))i(Fr(€, X)) )
=1 1<k<m,k+#j

(52)
= ]I o+ Zm@(z))wi(m,m»% 2€U, (£X) ey,

1<j<m
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to a neighborhood of (2%, €% XY). For our later discussions, we further define

dp .
Msing,z = {(Z,f) : % = Oavj}>Mreg,z = M\Msingz;
J

Msing ={(2,8) : 5 =0,V U{(2,8) : 5 =0,Vj}, Mpgpe = M\Msne;
(%J 3,2]
Pr,:C - C" (z,§)— (2) and Prg : C*" — C" (z,€) — (§).
Notice that Mggg is a Zariski open subset of M and the restrictions of Pr,,Pr¢ to Mggg
are open mappings. Also, for (2°,£%) € Mggg, Q.0 is smooth at £, and Qo is smooth at 2°.

By Proposition (III), Mee, N (Qeo,£°) is Zariski open in (Qgo, £).

Lemma 4.6. With the notations we have set up so far, there exists a point (2°,£° X°) €
(U x C™ x CK) with (2°,£%) € Mggg N (U x C") and (£°, X°) & E. Moreover, for each
j=1,....,m, we can find ﬁjl», ,ﬁjN with ﬁjl =(0,...,0) such that AF].( oL ,ﬁN)(zo,fo) #0.

Proof of Lemma 4.6: This is an easy consequence of Propositions (I) (III), Lemma 4.4 and
the Zariski openness of Mgrrg in M. 1

Let (29,£% X°) be chosen as in Lemma 4.6. We then analytically continue the equation
(52) to a neighborhood of the point (29, £% X?) through a Jordan curve vy described above. We
denote one of such neighborhoods by V; x V5 x V3, where Vi, V5 and V3 are chosen to be a small
neighborhood of 2%, €%, and X, respectively. It is clear, after shrinking Vi, Va, Vs if needed,
that there exists a jo € {1, ..., m} such that

N

L > i Fjo(2))s( iy (€, X)) = 0, for (2,€) € M N (Vi x V3), X € Vs,

i=1
We next proceed to prove the algbraicity for Fj,(z).

Theorem 4.7. F (&, X)), for€ € Vo, X € Vs, is independent of X and is thus a Nash algebraic
functwn of €. Hence F}, is an algebraic function of z. Moreover, the algebraic total degree of

i (6, X) = F;,(€), and thus of F,(2), is uniformly bounded by a constant depending only on
the manifold (X,w) and the described canonical embedding.

Before proceeding to the proof, we state a slightly modified version of a classical result of
Hurwitz. We first give the following definition:

Definition 4.8. Suppose F' is an algebraic function defined on & € C". The total degree of
F is defined to be the total degree of its minimum polynomial. Namely, let P(&;X) be an
irreducible minimum polynomial of F, the total degree of F' is defined as the degree of P(&;X)
as a polynomial in (£, X).
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We next state some simple facts about algebraic functions, whose proof is more or less
standard. (See, for instance, [Fa]):

Lemma 4.9. 1. Suppose ¢1, ¢ are algebraic functions defined in & € U C C™ with total degree
bounded by N. Then ¢y £ ¢o, 102, 1/ (if 1 # 0) are algebraic functions and their degrees
are bounded above by a constant depending only on N, n.

2. Suppose ¢1(z1, ..., 2n) 18 an algebraic function of total degree bounded by N, and suppose
that 11(&1, s &m)s ooy Wn(&1y-ory &) are algebraic functions with total degree bounded by N as
well. Let

AO - (5%637 7521) S Cm>

where 1, ..., V¥, are holomorphic functions in a neighborhood of Ay and let ¢1 be a holomor-
phic function in a neighborhood U C C" of (1(Ao), ¥2(Ao), ..., ¥m(Ao)). Then the compo-
sition q)(gla X3 gm) = ¢1(77Z}1(€17 ) 5m)7 ¢2(€1a ooy fm)? ¢3(517 ey gm)a e ¢n(§1a X3 gm)) is an alge-
braic function with total degree bounded by a constant C(N,n,m) depending only on (N, n, m).
3. Suppose Py(z1, 29, oy Zmy €1, &2y s En) s ooy Pu(21, 22, ooty Zm, &1, &2, -0, §n) are algebraic functions
with total degrees bounded from above by N which are holomorphic in a neighborhood U x V C
C™ x C" of Ag = (29,...,20 &9, ...,€°%). Suppose that

P1<Zl, 29, ...7Zm,£1, ,fn)
P2<Zla 22, '--7Zm7§17 7571) =

0
0

Pn(zla 22, "'>Zm7€17 "'7671) =0

, a(PL,Ps,..., 3
has a solution at Ag = (2°,£°%) = (29,...,20 &9, ....€9) and %(Z?,Z& vy 2y 1y s ) #
0. Then we can solve & = ¢1(21, 22, -+, Zm),§2 = G2(21, 225 s Zm) 5+ 560 = Pul21, 22, -, Zm) With
$;(2%) = £ in a neighborhood of z° € U C U C C™, where ¢1, ..., ¢, are algebraic functions

with total degree bounded by C(N,n,m).

We now state the following modified version of the classical Hurwitz theorem with a con-
trolled total degree [BM].

Theorem 4.10. Let F(s,t,&,&, ..., m) be holomorphic over U x V. x W C C™"2. Suppose
that for any fixed s € U C C, F is an algebraic function in (t,&y, ..., &) with its total degree
uniformly bounded by N; and for any fizedt € V C C, F is an algebraic function of (s,&1, ..., &m)
with its total degree uniformly bounded by N. Then F is an algebraic function with total degree
bounded by a constant depending only on (m, N).

The proof of Theorem 4.10 is more or less the same as in the classical setting [BM]. (See,
for example, the Ph. D. thesis of the first author [Fal)

Proof of Theorem 4.7 By the choice of (2°,£% X?), there exist 3} , ..., 5% such that

Jjo’

N ,Cﬁ}o jo, 1 e [,631\(; jo,N
Ap, ( s B (22,60 = (2°,€% #£0. (53)
By BY
L Jof'jo,l ... LFo jo,N
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We can also assume that (zg,&p) satisfies the assumption in Proposition (II) after a slight
perturbation of zy inside Qg, if needed. By Proposition (II), we can find z' € V4 N Qg0 such
that Qo intersects .1 transversally at £°. Moreover there exists a neighborhood B of £° and
a biholomorphic parametrization of B : (&,&,....&) = G(&1, &, ..., &) with (&1,&,...,&,) €
Uy x Uy x ... x U, C C". Here Uy,Us are as in Proposition (II). Moreover, g({él =1} x
Uy X ... x Up) C Q.0,G(Uy X {€& = 1} x Us x ... x U,) C Q.1. Also, for s € Uy, t € Us,
G =t} x Uy x ... x Uy),G(Uy x {& = s} x Us x ... x Uy,) are open pieces of certain Segre
varieties. Here G consists of algebraic functions with total algebraic degree uniformly bounded
by M and the canonical embedding. Consider the equation:

1+F]o(2)ﬁ;(€aX) :()7 (Z,f,X) € ‘/1 X ‘/2 X ‘/3;(275) e M. (54)

Since the holomorphic vector fields {£;}7~ are tangent to the Segre family, we have

[,ﬂJlO j071(2’,§) Eﬁ}o ij(Z,f) f};l(gax) —1
=], (55)
L% Fjp1(2:8) o L% Fjn(2,8) ) \Fio(€.X) 0

where (z,&)(~ (29,£°) e M, X ~ X°.
By the Cramer’s rule, we conclude that {F; (&, X)}Y, are rational functions of £ with

a uniformly bounded degree on an open piece of each Segre variety Q. for z ~ 2°. By the

—

previous modified Hurwitz Theorem (Theorem 4.10), we conclude the algebraicity of Fj, ;(§, X)
for i =1,...,N.. Since in (55) the matrix <£’650.7-"j0,y(z, f)) and the right hand side are

1<pv<N
independent of X, these functions must also be independent of the X-variables. Moreover, by

Lemma 4.9 and Theorem 4.10, the total algebraic degree of Fj, (&) = ]?]:l({, X), forl=1,...,n,
is uniformly bounded. Since F is obtained by holomorphically continuing the conjugation
function F of F, we conclude the algebraicity of Fj,; for each 1 < I < n. Also the total
algebraic degree of each Fj,; is bounded by a constant depending only on (M,w). N

—

Theorem 4.11. Under the notations we have just set up, Fj, is a rational map, whose degree
depends only on the canonical embedding M — CPV.

For the proof Theorem 4.11, we first recall the following Lemma of [HZ]:

Lemma 4.12. (Lemma 5.7 in [HZ]) Let U C C" be a simply connected open subset and S C U
be a closed complex analytic subset of codimension one. Then for p € U\ S, the fundamental
group T (U \ S,p) is generated by loops obtained by concatenating (Jordan) paths 71,72, 73,
where vy, connects p with a point arbitrarily close to a smooth point qo € S, V2 is a loop around
S near qy and 73 is v, reversed.

Proof of Theorem 4.11: We give a proof for the rationality of Fj,. Once this is done, we then
conclude that the degree of F}, is uniformly bounded, for we know the total algebraic degree
of F'is uniformly bounded by Theorem 4.7.
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Suppose that F}, and thus F}, is not rational. Write £ C C" for a proper complex analytic
variety containing the branch locus of Fj,, F}, and the zeros of the leading coefficients of the
minimal polynomials of their components. We first notice that for A # B € C", Q% # QF,
by Lemma 2.1. Hence, for any proper complex analytic variety V!, V? C C" and any point
(a,b) € M, we can find (a',b') ~ (a,b) such that a' € Qu \ V! and b' ¢ V2.

We choose (2°,£%) as above and assume further that z° €% ¢ E (after a small perturbation
if needed). We choose a sufficiently small neighborhood W of (2°,£°) in Mggq such that for
each (z',€') € W, we can find, by Lemma 4.12, a loop of the form v = ;' o~ 07; in C"\ E
with v(0) = (1) = £}, (1) = ¢q. Here ~, is a simple curve connecting ¢! to ¢ with ¢ in a small
ball B, centered at a certain smooth point p of £ such that the fundamental group of B, \ £
is generated by 7,; and ;' is the reverse curve of 4;. Moreover, when F_jO is holomorphically
continued along v, we end up with a different branch F_jo* of F_]O near £'. We pick p such
that there is an X, ¢ E with (X,,p) € Mieg,. (This follows from Proposition (III) and
Lemma 2.1 as mentioned above.) Take a certain small neighborhood W of (X,,,p) in Mg .
We assume, without loss of generality, that the piece W of M, , is defined by a holomorphic
function of the form z; = ¢(zq,- -+, 2,,§). In particular, writing X, = (27,--+, zP), we have
2 = ¢(25,---, 2k, p). Make B, sufficiently small such that it is compactly contained in the
image of the projection of W into the &-space. Write X, = (¢(25,--- ,22,q), 25, -+ ,2P) and
define the loop v5(t) = (¢(25, -+ , 22, 7(t)), 25, -+, zP). Then 73 is a loop whose base point is
at X,. Also, we have (75(t),72(t)) € M.

Notice that X, ¢ E. After shrinking B, if needed, we assume that 73 stays sufficiently close
to X, and is homopotically trivial in C" \ E.

Now we slightly thicken +; to get a simply connected domain U; of C*\ E. Since M is
irreducible over C" x U;, we can find a smooth simple curve 7, = (91%,71) in M \ ((E x
C")U(C™ x F)) connecting (z*, &) to (X, ¢q). Then 4; is homotopic to v relatively to {&', ¢}
and 7,*(1) = X,. Now replace v by its homopotically equivalent loop J; ' 0 v, 07, and define
7" = y*toysov*,. DefineI' = (v*,v). Then the image of I lies inside M\ ((ExC")U(C"x E)).
Continuing Equation (54) along " and noticing that it is independent of X now, we get both

L+ Fjy(2) - Fjo(§) = 0 and 1+ F () - Fy (€) = 0 ¥(2,€) € MN (Vi \ E) x (Vo \ E)).

Now as before, applying the uniqueness for the solution of the linear system (55) (with an
invertible coefficient matrix), we then conclude that Fj, = Fj,. This is a contradiction. N

4.3 Isometric extension of F

For simplicity of notation, in the rest of this section, we denote the map Fj, just by F'. Now
that all components of F' are rational functions, it is easy to verify that I’ gives rise to a rational
map M --» M. By the Hironaka theorem (see [H] and [K]), we have a (connected) complex
manifold Y of the same dimension, holomorphic maps 7 : Y — M, o : Y — M, and a proper
complex analytic variety E; of M such that o : Y \ 07'(E;) — M \ E; is biholomorphic;
F: M\ E; — M is well-defined; and for any p € Y \ 0= }(E}), F(co(p)) = 7(p).
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Let Es be a proper complex analytic subvariety of M containing Fy, M\ A and let E5 C Y be
the proper subvariety where 7 fails to be biholomorphic. Write E* = 7(07 ! (FEy) U E3)U(M \ A)
and E = o(7"'(E*)). Then F': A\ E — A\ E* is a holomorphic covering map. We first prove

Lemma 4.13. : Under the above notation, F': A\ E — A\ E* is a biholomorphic map.

Proof of Lemma 4.13: We first notice that since F' is biholomorphic near 0 with F'(0) = 0.
We can assume that 0 ¢ E. Consider F? = F o F. Then F? = F’. Since (F, F) maps M into
M whenever it is defined, it is easy to see that (F, F)o (F,F) = (F 2,F2) also maps M into
M at the points where it is well-defined. Hence, we can repeat a similar argument for F' to
conclude that 2, as a rational map, also has its degree bounded by a constant independent
of F2. Similarly, we can conclude that for any positive integer m, F™ is a rational map with
degree bounded by a constant independent of m and F'. Now, as for F', we can find complex
anaytic subvarieties E(™  E*™) of C" such that F™ is a holomorphic covering map from
A\ EM™ — A\ EX™)_ Suppose F: A\ E — A\ E* is a k to 1 covering map. It is easy to see
that £ : A\ E™ — A\ E*™ is a k™ to 1 covering map. However, since the degree F™ is
independent of m, we conclude that kK = 1 by the following Bezout theorem:

Theorem 4.14. ([S]) The number of isolated solutions to a system of polynomial equations

fi(zr, oy xn) = fo(xy, oy xn) = oo = fu(ag, oy 2,) =0
1s bounded by dyds - - - d,,, where d; = deg f;.
This proves the lemma. B

Now we prove that F' extends to a global holomorphic isometry of (M, w).
Theorem 4.15. F : (U,w|y) — (M,w) extends to a global holomorphic isometry of (M,w).

Proof of Theorem 4.15: By what we just achieved, we then have two proper complex analytic
varieties Wy, Wy of C" such that F' : C"\W; — C"\W, is biholomorphic. Similarly we have
two proper complex analytic subvarieties Wy, W3 of C* such that F : C* \ Wy — C"\ Wy is
a biholomorphic map. Hence

§=(FF):CP\ W, x C"\ Wy — C"\ W, x C"\ W

is biholomorphic. Let p be the defining function of the Segre family as described before. Since p
is irreducible as a polynomial in (2, &), M is an irreducible complex analytic variety of A. Since
$ maps a certain open piece of M into an open piece of M, by the uniqueness of holomorphic
functions, we see that § = (F, F') also gives a biholomorphic map from (C™\ W; x C*\ W;)N.M
to (C™\ Wy x C"\ W) N M. Hence pr = p(F(z), F(£)) defines the same subvariety as p does
over C"\ Wy x C™\ W{. Since pp is a rational function in (z,§) with denominator coming from
the factors of the denominators of F(z) and F(€), we can write

Q' (2) - Qi (2) Ry (§) - - - RE+(€)
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Here the zeros of Q;(z) and R;(§) stay in W; and W7, respectively. All polynomials are
irreducible and prime to each other. By what we just mentioned P;(z,&) can not have any
zeros in C™\ W x C™ \ W7, for otherwise it must have p as its factor by the irreducibility of p.
Hence the zeros of Pj(z,£) must stay in (W3 x C*)U(C™ x W7). From this, it follows easily that
Pi(z,€) = Pj1(z) or Pj(z,§) = P;2(£). Namely, Pj(z,€) depends either on z or on &. Since §
is biholomorphic, we see that [ = 1. Thus replacing ¢ by z and taking i09log to (56), we have
i00log pr(z, 2) = i00log p(z,z). This shows that F*(w) = w, or F is a local isometry. Now,
by the Calabi Theorem (see [Cal), F' extends to a global holomorphic isometry of (M, w). This
proves Theorem 4.15. B

We now are ready to give a proof of Theorem 4.1. By what we have obtained, there is a
component F; for F' in Theorem 4.1 that extends to a holomorphic isometry to (M,w). Hence
Fj(d,u) = du. Notice \; < 1 due to the positivity of all terms in the right hand side of the
equation (40). After a cancellation, we reduce the theorem to the case with only (m —1)- maps.
Then by an induction argument, we complete the proof of Theorem 4.1. N

5 Partial non-degeneracy: Proof of Proposition (I)

In this section, we prove Proposition (I) for irreducible compact Hermitian spaces of compact
type. Since the argument differs as its type varies, we do it on a case by case base. For conve-
nience of the reader, we give a detailed proof here for the Grassmannians and Hyperquadrics.
We will include the rest arguments in Appendix II.

5.1 Spaces of type I

With the same notations that we have set up in §2, 7 is a p X ¢ matrix (p < ¢); Z(;.1 ;k)
1 e Jk
is the determinant of the submatrix of Z formed by its it", ..., it" rows and ;i ..., j8 columns;
2= (2115 cey Z1gs 2215 ooy 225 oy Zply -y Zpq) 18 the coordinates of CP*=A C G(p,q). Let 0 € U be a
small neighborhood of 0 in CP? and F be a biholomorphic map defined over U with F(0) = 0.
For convenience of our discussions, we represent the map F': U — A as a holomorphic matrix-

valued map:

S o Jig
fpl qu
Similar to Z (;1 ;k), F (;l ;k) denotes the determinant of the submatrix formed by the
1 e Jk 1 e Jk
ith .1t rows and 5P, ... j¥ columns of the matrix F. Recall in (2),r, is defined as
(1,92, e ton) = (-, Z( £ 1< < < <p1<ji << <1<k <p

Ju o Jk
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Similarly, we define:

rp = (- ’F@i - ;’;),-~->,1su<...<ik3p,1§j1<...<jk§q,1§kSp.

Notice that rp = (Y1 (F(2)),...,¥n(F(2))). We define

Z = (211, ceey B1gy B215 oy R2qy o0y Zpls ---;Zp(q—l))7

i.e., 7 is obtained from z by dropping the last component z,,. Write % = % for
Z11Pp(g-1)
any (pg — 1)—multiindex o, where oo = (@11, ..., Qp, Q21,5 o Qagy ooy A1y ovs Ap(g—1))-
We apply the notion of the partial degeneracy defined in Definition 3.1 of §3 by letting

1 = rp and letting z be as just defined with m = pg. We prove the following proposition:
Proposition 5.1. rp are Zz—nondegenerate near 0. More precisely, rank; y_pq(rp, 2) = N.

Proof of Proposition 5.1: If p=1,q =n > 1 i.e., the Hermitian symmetric space M = P",
then it follows from Lemma 3.3 that rank;(rg,z) = N = n. In the following we assume p > 2.
Suppose the conclusion is not true. Namely, assume that rank;y_p,(rr, 2) < N. Since the
hypothesis of Theorem 3.10 is satisfied, we see that there exist c,q41,...,cny € C which are not

all zero such that N

> cthi(F) (211, s 2pg-1,0) = 0. (57)

i=pq+1

The next step is to show that (57) cannot hold in the setting of Proposition 5.1. This is
obvious if we can prove the following:

Lemma 5.2. Let

H=| . .. .. ],
h h

pl Pq

be a vector-valued holomorphic function in a neighborhood U of 0 in zZ = (211, ..., Zp(g—1)) € CP47!
with H(0) = 0. Assume that H is of full rank at 0. Set

i) = (1 (3 ) ) SNES
T IR S i< cinspiSii<e<in<a) gepe,

()3 (1) (5)
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Let ay, ..., a,, be complex numbers such that

m

Zaigbi(%) =0 forall ZeU. (59)

i=1
Then a; =0 for each 1 <1 < m.

Proof of Lemma 5.2: We start with the simple case p = ¢ = 2, in which m = 1. Then by
the assumption (59), a1¢; = 0. Here

hll h12

U= gy B

Note that H = (hq1, hi2, ho1, hao) is of full rank at 0. We assume, without loss of generality,
that H := (i1, k2, ho1) is a local biholomorphic map from C? to C3. After an appropriate
biholomorphic change of coordinates preserving 0, we can assume hy, = 211, hio = 212, ho1 = 291,
and still write the last component as hos. Then we have

a1 = al(z11h22 - 212221) =0,

which easily yields that a; = 0.

We then prove the lemma for the case of p = 2,¢ = 3, in which m = 3. As before, without
loss of generality, we assume that H = (h11, hia, his, ho1, hao) is a local biholomorphic map
near 0 from C° to C°. After an appropriate biholomorphic change of coordinates, we assume
that H = (211, ..., 222). By (59), we have

212 213
299 has

211 <13
Z91  has

211 212

a1Q1 + ... + azpz = a; o1 ) + as + as . (60)

The conclusion can be easily proved by checking the coefficients in the Taylor expansion
at 0. Indeed, the quadratic terms 213221, 213222 only appear once in the last two determinants.
This implies a; = a3 = 0. Then trivially a; = 0.

We also prove the case p = ¢ = 3. In this case m = 10. As before, without loss of gen-
erality, we assume that H = (hqy, ..., hss) is a biholomorphic map from C® to C3. After an
appropariate biholomorphic change of coordinates, we can assume that H= (211, .-, 232). Then
by assumption, we have

a1¢1 + ... + ajpi0 =

211?12 211 %13 212 %13 211 %12 211 %13 212 %13
ay + as + az + aq h +a i
2921 222 221 3 222 3 231 231 33 232 33 (61)
211 12 213
221 222 221 223 222 223 _
+ ar + ag h + ag h + a1 |z21 222 z23| = 0.
231 <32 231 33 232 33

231 Zz32 hs3
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We then check the coefficients for each term in its Taylor expansion at 0. First it is easy to
note that a5 = ag = ag = ag = 0 by checking the coefficients of quadratic terms

213%31, 213232, 223231, 223232,

respectively. Then by checking the coefficients of other quadratic terms, we see that a; = ay =
az = ay = a7 = 0. Finally we check the coefficient of the cubic term 213299231 to obtain that
190 = 0.

We now prove the general case: ¢ > p > 2. As before, we assume without loss of generality
that H = (hi, ..., hyg_1)) is a biholomorphic map from C?~! to CP~!. Furthermore, we have
H = (211, ---, 2p(g—1)) after an appropriate biholomorphic change of coordinates. We again first
consider the coefficients of the quadratic terms in (59). For that, we consider the 2 x 2 submatrix
[ p
k
determinant, which yields that the coefficient a; associated to this 2 x 2 determinant is 0, for

any 1 <14 < p,1 < j < q. Then by checking the coefficients of other quadratic terms, we see

that all coefficients as that are associated to 2 x 2 determinants H (]il ]iz) A<l <p, 1<
1 Re

ki, ks < g, are 0.
We then consider the coefficients of cubic terms in (59). We first look at those 3x 3 submatrix

involving hy,, i.e., H ,1 <1 <p, 1<k <q. Note that 24z, only appears in this 2 x 2

ki ke q
appears in this 3 x 3 matrix, which yields that the a; associated to this 3 x 3 determinant is 0.
Furthermore, we see that all coefficients a;’s that are associated to 3 x 3 determinants are 0.
Now the conclusion can be proved inductively. Indeed, assume that we have proved that all
coefficients a;’s that are associated with the determinants of order up to pu x p,3 < pu <p
are zero. Then we will prove that the coefficients associated with (u 4+ 1) x (u + 1) de-
terminants are also 0. For this we consider all such determinants which involve h,,, i.e.,

involving h,,. i.e., H (ll by p) 1<l <y <p, 1 <k <ky <q. Note that 2,421k, 2pr, only

H([i;l ]i“ Z)Where 1<h <..<l, <pl< k<. <k, <q We conclude the
1 .. 1

a; associated to it is 0 by noting that zj, 2k, .- 21,k 2pk, O0ly appears in this (4 + 1) x (p + 1)
determinant. Then we can show all coefficients that are associated with other (u+1) x (1 +1)
determinants, i.e.,

L., 1
H (kll k:l; k‘;i) A<h <<l <p, 1<k <o <k < ¢, (L, k) # (0,9).

are 0 by checking a term of the form z4,...21, ,k,,, that only appears once in the Taylor
expansion of the left hand side of (57). This proves the lemma. R
We thus get a contradiction to the equation (57). This establishes Proposition 5.1. ®
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Remark 5.3. Let F' be as in Proposition 5.1. There exist multiindices 3, ..., BN with |37 <
1+ N —pq and

22 .. z?q
L= . . ]#0
zgl zgq
such that 2° is near 0 and
918" (1 (F)) 218" (g ()
I L B
AB .., BY) = (z") # 0. (62)
9187 1 (4 (F)) 918" | (g (F))
9z6N 058N

Perturbing 2° if necessary, we can thus assume that zgq # 0. Moreover, we can replace one of

the B, ..., B3 by 8 = (0, ...,0), because (Y1 (F), ..., n(F)) are not identically zero (See also the
proof of Theorem 3.4). Without lost of generality, we can assume that 3 = (0, ...,0).

The defining function of the Segre family now is
p(z,8) =1+ ( Z(H o PEC T F)) (63)
k=1 \i<ii<ia<..<ipSpl<ji<jp<.<jp<q 1 TR Lok

It is a complex manifold for any fixed £ close enough to the point

0 0 0 .

@=1o 0 0 |eC™ & =——.
z,

0 0 &, Pe

Write for each 1 <i <p,1 <5 <4¢,(i,7) # (p,q),
9p

9 5,58 0
a 0z O (2,€) azpq7

Ozpq

which is a well-defined holomorphic tangent vector field along M near (z°,£°). Here we note
that 82—;(2,5) is nonzero near (2°,£"). For any (pg — 1)-multiindex 8 = (811, ..., Bp(g—1)), We
write

B _ pbu Bp(g—1)
L0 =iy,

Now we define for any N collection of (pg — 1)—multiindices {3, ..., 3},

LW (F)) o L7 (U (F))
AB', .. BY)(2,€) = (2,). (65)

L (Wa(F)) .. L7 (b (F))
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Theorem 5.4. There exists multiindices {3, ..., 3N}, such that
A(B .. BN)(2,€) # 0, (66)
for (z,€) in a small neighborhood of (2°,£°). Moreover, we can require 5' = (0, ..., 0).

Proof of Theorem 5.4: First we observe that £;; evaluating at (z°,¢%) is just 57—. More

generally, for any (pg — 1)—multiindex 3, by an easy computation, £° evaluating at ( ,&9)
coincides with a . Therefore, we can just choose the same 3%, ..., 3 as in Remark 5.3. B

5.2 Spaces of type IV

In this subsection, we consider the hyperquadric case M = Q™. This case is more subtle because
the tangent vector fields of its Segre family are more complicated. Recall that Q" is defined by

{[20, vy Zn+1] € C]Pn+1 . Z 21'2 — 2202n+1 = 0} y
i=1
where [20, ..., Zn11] is the homogeneous coordinates of CP"*'. The previously described minimal
embedding C"(A) — Q" is given by
zi= (21,000 Zn) = [L,01(2), ooy Yy (2)] = [1, 21, ooy 20y = Zz

The defining function of the Segre family over A x A is p(z,§) =1+, - 1¢, where

Tz Zl?'- Zny S ZZ 617' 7€n7 252 (67>

Let F' be a local biholomorphic map at 0 with £'(0) = 0. We write

F= (flv'-'>fn)7 Trp = (flaafm%Zsz) (68)
=1

Notice that
r, = (77[)1(2’), '-'7wn+1(2))7TF = (¢1(F)7 "'7¢n+1(F))'

We will need the following lemma:

Lemma 5.5. For each fived piy, ..., ftn—1 with (31— 42) +1 =0 and each fived (21, ..., 2,) with
(0 pizi) + 20 # 0, we can find (€4, ..., &) such that

n

L4218+t 2 =0 D (67 =0, §=pl,1<j<n—1, & #0. (69)

=1
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Proof of Lemma 5.5: We just need to set

i=1 M1~ n

Then it is easy to verify that (69) is satisfied.

Recall that in the type I case, the vector fields 83% in CP? are tangent vector fields of the
particular hyperplane {z,, = 0}. We can formulate the result in §3 in a more abstract way
and extend it to a more general setting. For instance, it can be generalized to the complex
hyperplane case. We briefly discuss this in more details as follows:

First fix pq,..., fty—1 with (Z;:ll p?) +1 = 0. Take the complex hyperplane H : 2, +
o 11 wizi = 0in (z1, ..., 2,) € C". Write

0 0 0 0

wLlp_1 = — Uy —=—
0z 'ulc‘?zn ! 0zZp_1 s 182n

Ly =

Then {L;}!- forms a basis of the tangent vector fields of H. For any multiindex o =
(a1, .y 1), We erte L* = L{*...Ly"7". We define L—rank and L—nondegeneracy as in Def-
inition 3.1 by using rp in (68) and by using L® instead of z% with m = n. We write the kth
L-rank defined in this setting as ranky(rg, L) We now need to prove the following

Proposition 5.6. ranks(rg, L) =n + 1.

Proof of Proposition 5.6: Suppose not. By applying the same argument as in Section 3 and
a linear change of coordinates, we can first obtain a modified version of Theorem 3.10:

Lemma 5.7. There exist n+ 1 holomorphic functions gi(w), ..., gny1(w) which are defined near
0 on the w—plane with {g1(0), ..., gn+1(0)} not all zero such that the following holds for all

zeU.
n+1

Zgi(zn + 2+ 12010 (F(2))

=1

0. (70)

Then one shows with a similar argument as in Section 3, by the fact that F' has full rank
at 0, that ¢1(0) =0, ..., g,(0) = 0. Hence we obtain,

Lemma 5.8. There exists a non-zero constant ¢ € C such that
Pnr (F Z fi(z (71)

for all z € U when restricted on z, + ZZ 1 Mizi = 0.

We then just need to show that (71) cannot hold by applying the following lemma and a
linear change of coordinates.
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Lemma 5.9. Let H = (hy, ..., h,) be a vector-valued holomorphic function in a neighborhood
Uof0inz= (z1,..,2,.1) € C"' with H0) = 0. Assume that H has full rank at 0. Assume
that a 1s a complex number such that,

aZh§<z) =0, (72)

Then a = 0.

Proof of Lemma 5.9: Seeking a contradiction, suppose not. Notice that H has full rank
at 0. We assume, without loss of generality, that (hy,...,h,_1) gives a local biholomorphic
map near 0 from C"! to C" L. By a local biholomorphic change of coordinates, we assume
(hi,.ccyhpn_1) = (21,..., 2n_1), and still write the last component as h,. Then equation (72) is
reduced to

a(zi 4+ ..+ 22 +h2)=0.

To cancel the 27, 23 terms, it yields that h,, has linear 21, zo terms. But then h? would produce
a 212 term, which cannot be canceled out. This is a contradiction. W
This also establishes Proposition 5.6. N

Remark 5.10. By Proposition 5.6, there exist multiindices 3, ..., 57 with |37] < 2 and

n—1

22 = (20 ..., 2°%) with Zmz? + 22 #£0

=1

such that - -
LP(u(F)) o L7 (hnia(F))

o e (2°) # 0. (73)

L7 (Wu(F) oo L7 (g (F))

We then choose £° = (£9,...,&0) as in Lemma 5.5. That is

n

L2080+ 2060 =0, ) (€ =0, §=p&1<j<n—1, & #0.

i=1

It is easy to see that (2°,£°%) € M. We now define

Do,
£i=2 —Mi,lgign—l (74)
0z; %(27 ) Oz

for (z,€) € M near (2°,£°). They are well-defined holomorphic tangent vector fields along M.

Moreover, 687’;(2, ¢) is nonzero near (2°,£9).
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We define for any multiindex o = (aq,..,a,-1), £L* = L3...L3"7". Then for any (n + 1)
collection of (n — 1)—multiindices, set {3, ..., 3V},

LI (F) o L0 (hpya(F))

A(BY . B7)(2,€) = (2,€). (75)

L Wi (F)) o L7 (W (F))

By the fact that )" (£)? = 0, one can check that, for any multiindex a = (v, .., ),
L* = L* when evaluated at (2%, £°). Then we get the following:

Theorem 5.11. There exist multiindices {3, ..., BV} such that

ABY, -, BY)(2,€) # 0,
for (2,€) in a small neighborhood of (2°,£°), where 3' = (0,0, ...,0).
Proofs for the other types are similar and will be left to Appendix II.

6 Transversality and flattening of Segre families: Proof
of Proposition (II)

In this section, we prove Proposition (II). We still use the notations we have set up so far. We
equip the space M with the canonical Kahler-Einstein metric w as described before. We start
with the following lemma:

Lemma 6.1. Let 7 : (M,w) — (M,w) be a holomorphic isometry. In the affine space A, its
components consist of rational functions with its degree bounded only by a constant depending
on (M,w).

Proof of Lemma 6.1: Notice that M has been isometrically embedded into CPY through the
canonical map defined before. Hence 7 is the restriction of a unitary transformation. Hence o
can be identified with a map of the form:

N N

N
(o, W1, U, .y ) = (Z a0 Vjs -y Zaij¢j, oy ZaNj%‘),
=0

=0 =0
where ¢y = 1 and (a;;) is a unitary matrix. Write
U(2): 2(€ A) = [1, k121, -+ s KiZiy -+ inZn, 0(2%)] € CPY

for the embedding, where x; = 1 or v/2. & induces a birational self-action o of A such that

U(o(z)) = a(¥(z)). Then, from the special form of ¥, o(z) = <nilﬁo’ Hfi;o, o H%O) . Apparently
U |
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Theorem 6.2. Suppose £ € C"\{0}. Then for a generic smooth point 2° on the Segre variety
Qeo and a small neighborhood U C C™ of 2%, there is a point z' € U N Qgo, such that Q.0 and
Q.1 are both smooth at~§0 and intersect transversally there. Moreover, there is a biholomorphic
parametrization G(&1, s, ..., &) = (&1,&2,..,&n), with (§1,&2,...,&,) € Uy x Uy x ... x U, C C™.
Here when 1 < j < 2, U; s a small neighborhood of 1 € C. When 3 < j <mn, U; is a small
neighborhood of 0 € C with G(1,1,0,---,0) = &°, such that G{& =1} x Uy x .. x U, n) C
Q.0,G(Uy x {& =1} x Us x ... x U,) C Qu1, and G({&; =t} x Uy x ... x Uy,),G(Uy x {& =
s}xUsx..xU,),s € Up,t € Uy are open pieces of Segre varieties. Also, G consists of algebraic
functions with total degree bounded by a constant depending only on (M, w).

We first claim that, due to the invariance of the Segre family, we need only to prove the
theorem for a special point 0 # £° € C* € M. Indeed, by the invariance property mentioned
in §2, for an isometry o, (0,7) preserves the Segre family M C M x M. Here for p € CPYV,
a(p) := o(p) as before. Here, we mention that in the statement of the theorem, we assume
that 2Y is a generic smooth point because under this transformation, some smooth points on
Qo may be mapped into the hyperplance of M at infinity, which can not be chosen as our 2°.

We now proceed to the proof of Theorem 6.2 by choosing a good point £°. We only carry
out the proof for the case of hyperquadrics and Grassmannian spaces here. The proof for the

remaining cases is similar and will be included in Appendix III.

Proof of Theorem 6.2: Case 1. Hyperquadrics: Suppose M is the hyperquadric. Then
the defining equation for the Segre family is

P =1+ 3w+ (A0 E) =

We choose &% = (1,0,0,...,0). Hence Qe = {2 : p(z,&%) =1 —|— 2+ (Zl L 22) = 0}. We
compute the gradient of p(z ¢%) as follows: Vp(z,£%) = (1+ 321, 522, ..., 32). Notice that Qg
is smooth except at (—2,0,...,0), namely, we have Vp(z, £°) 7é 0 away from (—2,0,---,0). For
a smooth point z°(# (—2,0,---,0)) of Qo , we choose a neighborhood U of 2" in C" such that
U N Qg is a smooth piece of Qeo. Pick also z*(#£ 2°) € U N Qg, and compute the gradient of
the defining function of Q.0 and Q.1 at £° = (1,0, ...,0), respectively. Recall

Qzs = {&lp(=* —1+Zz§z Z 20" =0}, for s=0,1.
i=1 =1

(V,o(zo,f)\go:(m ,,,,, 0)) B (z(f +3n (D)2 20 2 zg) B (—2 — 20 29 20 22)
Vp(z', &) |eo=10,..0) Ao (2)? 2 o2 2 —2—zf 2 2 2
The second equality is simplified by making use of the fact that 20, 2! € Qeo—(1,0,..0), Which
implies that 0 =14 20 + 130" (20)2 =1+ 21 + 1 >, (2})%. Hence,

V(2% 8)leo=q10...00\ _ —2-20 28 20\ -2-2 29 .02
rank (Vp(zl,f)ko:(w 7777 0) = rank —2—z 2 2] = rank Az Az .. A2l
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_ 2420 25 .. 2\ _ Vp(z,£°%)]0
= rank ( AZ% AZ% Azl = rank Azll AZ% AZ}L ’

n

where Az} := 2z} — 2. Notice that 20 is a smooth point on Q¢,. Hence Vp(z, 50) is transversal

K3
to the tangent space of Qe at 2°. If we choose 2! € ng close enough to 2°, which ensures

(Azi,...,Az}) close enough to tangent space of Qe at z°, we then get
V(2" €)leo=10...00 | _ Vp(z,€°)].0 _
rank (vp( Neomroo) =~ Azl A Azl ) T2

We assume, without loss of generality, that W £ 0 at €2, Now we introduce new

variables fl, o én and consider the following system of equations:

P14 T (@06 + ML @RS ) =0
Py 1+ Z?:1(52Zzl)§z + %(Z?:1(£2>2(zi1)2)(2~?:1 &) =0
Ps §&—& =0

Pn: gn_gn =0

\

Then we have 8((?’—’13"|A # 0 and M| # 0 where

= (&1, b &ry o n) = (1,1,0,...,0;1,0, ..., 0).

By Lemma 4.9, we get the needed algebraic flattening with total degree bounded only by (M, w).
This completes the proof of Theorem 6.2 in the hyperquadric case.

Case 2. Grassmannians: Pick & = (£0,&0,,...,€),) = (1,0,...,0). The defining function
for the Segre family associated with this point is as follows.

p(2,€) = 1+ 211601 + 212612+ ... + 216619 F 221601 + ..+ 216 + 2@#1 235 + Zng(znzzj -
zinz15) (Ens — €n&y) + 2o mn2a.n (Fiize — Zzazin) (&€ — &a&je) + higher order terms.

Then Qe = {z|p(2,£°) =1+ 211 = 0}, Vp(2,£") = (1,0,0,...,0). Hence Q¢, 1s smooth. For
z € Qeo, we have 2 = (=1, 212, .y Z1gs 221, ey Zply -0y Zijy -y Zpg)- Pick 2%, 21 € Qgo. Then

Qs = {£10=p(2*,§) =1+ 211511 + 212512 +ot Z1qflq + 251801 + -+ 2518 + > J#1 i€+

Zmzz(zflzfj—Zfﬂfj)(fllfw §Z1§13)+Z(m ), (k,1) 7&(1,1)(%21@1 2 k)(gwgkl lefyk)+h1gh order terms},
for s = 0,1. We then compute their gradients as follows:

0 Ip(z°8)  9p(z°,8) Ip(z°8)  9p(22,) dp(z°.,) Op(z 75)
Vp(2", Ol _ [ Toe  oen TR
Vp(zh, €) |¢o Ip(z18)  9p(zH8) 9p(x126)  Bp(zL,6) dp(z1,8) Ip(z €0

0€11 0&12 0€14 0€21 0&p1 ngq
0 0 0 0 0.0
— (_1 2%2 e Z{q Z211 cee Z]il —271112%] ...)



Thus, we have

VP(ZOag)‘ 0 120 2 —20 29
13 — 12 pl il 13
vank (Vp(zl,ﬁ)‘go = rank ( 0 Az ... Az (=2)Az; — 2002 — Az} Az)) ) ’

where Azilj = ZZIJ — ZZOJ Hence, if we choose 2! such that 2], # z{,, Then the rank equals to 2.

Hence .0 and .1 are smooth and intersect transversally at £°.

Without loss of generality, assume % # 0 at £°. Now we introduce new variables

511, e épq and set up the system:

Py p(207€11£) =0
Py 8(2175125) =0
P3: &3—&63=0

\qu: épq_qu:o

A(P11,...,Ppg) A(Pu1,--, P, ; ¢ =
Then 5117 ,£;)qq | s a(gi? E:qq) |A7é0 WhereA (511)---7§pq7€117'--7§pq) = (1,1,0,...,0,1,0,...,0).
By Lemma 4.9, we get the needed algebraic flattening.

The proof is similar in the other cases. We include a detailed argument for the remaining

cases in Appendix I1I. B

7 Irreducibility of Segre varieties: Proof of Proposition
(I11)

In this section we will establish Proposition (III). We prove results on the irreducibility of the
potential function p, Segre varieties and the Segre family. We still adapt the previously used
notation and assume that M is an irreducible Hermitian symmetric space of compact type of
dimension n, which has been minimally embedded into a projective space as described before.

Lemma 7.1. Each Segre variety is an irreducible algebraic subvariety.

Proof of lemma 7.1: For a minimally embedded Hermitian symmetric space, since all Segre
varieties are unitarily equivalent, it suffices to prove the lemma for a single Segre variety.
Without lost of generality, we take z = (0, ...,0) € A C M. Therefore, the corresponding Segre
variety @ is the hyperplane section M \ A, which is of pure dimension. From the classical
algebraic geometry [GH|, when M is an irreducible Hermitian symmetric space of compact
type, the hyperplane section at infinity in the minimal canonical embedding case is a union of
Schubert cells. Moreover as shown in [CMP], the top dimensional piece is equivalent to C"!
and the others are of codimension at least two. Hence, the smooth points of (), are connected
and thus @), is irreducible. R
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As a corollary of this lemma, we conclude that for each z € C", the defining function p(z, )
of @), has to be a power of one irreducible factor. However, as in the proof of Theorem 6.2, for
some a(# 0) € C", dep(a,€) is not identically zero along @),. Next, we use this property and
the symmetric property of M to prove the following:

Proposition 7.2. For any b € A with b # (0,...,0), p(b,&) (p(z,b), respectively) is irreducible
as a polynomial of £ (as a polynomial in z, respectively).

Proof of proposition 7.2: Since p(z,&) = p(&, z), we need just to verify the first statement.
Let a be as above. For b € A, there is ¢ € Isom(M,w) N SU(N + 1,C) such that o(a) = b.
(Notice that & is represented by a unitary action.) By Lemma 6.1, let o = (ﬁo, e #’;O) be the
representation of @ in A with I%s polynomials in 2. Write ¥ = [1,r.] for the embedding of A

in PV. Then from the definition of p(z,%), we have

t

p(2.7) = [U(:)|P = ¥ - T = (30) - GU) .

Lemma 7.3. (G0) - (G0) = [lo()]? - [[¥(0(2))|I* = [lo(¥)[* - p(r(2), 7(2)).

Proof. Writing ¥(z) = [1,7,] = [1,¢1(2), - ,¥n(2)]. Then the identity V(o(z)) = (¥ (2))
obtained in the proof of Lemma 6.1 yields that,

I €10 10) I NLICA
(), ¥n(o(2) (wo(w(z)), ’¢0<@<z>>>

Here 1/~Jj =l for 0 <j<nando(z) = [ng, e ,qz;N] as in the proof of Lemma 6.1. Then

(60) - GY) = Z [05((2))” = <1 + Z I%(U(Z))IQ) [Do(R () = [lo(P) - [[¥(a(2))]]”

This establishes the lemma. O

The Lemma 7.3 yields p(z,Z) = |lo(V)|? - p(c(2),0(2)). Complexifying the identity and
substituting z by a, we have:

lo(W)(a) - lo(¥)(E) - p(b,7(£)) = pla, ), (76)

where [o(V)(a) # 0, lo(V)(€), p(a,§) are polynomials in £ and o () is a rational map in £. Now
supposing p(b,€) = F1(€),1 > 2, we have p(b,3(€)) = (F(7(€))) = (L12)', where f; and f; are
coprime polynomials. Since a,b # (0, ...,0), fi is a non-constant polynomial. Therefore in (76),
even after cancellation, we still have a factor f!(¢). However as shown in §6, the right hand
side of the identity (76) must be an irreducible polynomial, which is a contradiction. B

Proposition 7.4. p(z,£) is an irreducible polynomial over C* x C". Thus, the Segre family
M restricted to C" x C" = A x A C M x M is an irreducible subvariety of dimension 2n — 1.
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We also have the following slightly strong version of the above proposition, which was used
for applying a monodromy argument:

Proposition 7.5. Suppose U is an connected open set in C"\ {0}. Then the Segre family M
restricted to U x C" or restricted to C" x U 1is an irreducible analytic variety.

Proof of Proposition 7.5: We need only to prove the first statement. Recall the notations we
defined before: Mgng = {(2,¢) : 0%% = 0,Vj U{(2,€) : 22 =0,Vj}, and Mgeg = M\ Msa.

0z
Since p(z,&) is an irreducible polynomial and g—g, g—z’;, j = 1,...,n are polynomials with lower
degrees, aa—;, %,j = 1,...,n are not identically zero on M = {p(z,£) = 0}. Each of %, %
J J J J

defines a proper subvariety inside M. By Proposition 7.2, for each Z(# 0) € C", there is a
certain point £ on Q; such that a partial derivative of p(Z,€) in € at (%,€) does not vanish.
Hence Mging does not contain any Segre variety. Also the standard projection from Mggg
into the z-space is a submersion. Since @, is irreducible for z € C"\(0,...,0), @, N Mggqg is
connected. To prove the theorem, we just need to show that Mggg|uxcn is connected. Write
the above projection map to the z-space as ® : Mggg|uxcn — U. Since it is a submersion, it
is an open mapping. Suppose 2° is a point in U. As mentioned above, we know that each fiber
of @ is connected. For any (zY,£%) € MRggg in the fiber above 2", we can choose a connected
neighborhood V of (2%, £%) on Mgga|uxcn such that ®(V) is neighborhood of z5. Hence, for any
z € ¢(V), any point in @, N Mggg can be connected by a smooth curve inside Mggg|yxcn to
(29,£9). Since U is connected, by a standard open-closeness argument, we see that Mgrgg|yxcn
is connected. W

A Appendix I: Affine cell coordinate functions for two
exceptional classes of the Hermitian symmetric spaces
of compact type

Define the multiplication law of octonions with the standard basis {eg = 1,e1, - ,e7} by the
following table:

€1 ()] €4 (&4 €3 €g €5
€1 -1 €4 —€gy | —€3 (&g —€s5 €
€y | —€4 —1 €1 —€g €5 €7 —e€3
€4 €9 —e€1 —1 —€5 | —€g €3 €7
€7 €3 €g €5 -1 —€1 | —€2 | —€4
es | —er | —es | €5 el —1 | —eq | €9
eg | es | —er | —es | eg eq -1 | —e
€5 | —€g €3 —e7 €4 —€9 €1 -1
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&1. Case M;g4: Define

xr = (.To,33'1,.1'2,.1'3,1‘4,1’5,%@1'7),
Yy = (y07y17y27y37y47y57y67y7)‘

Define A;(z,y),7 =0,...,7, such that

7
Z (x,y)ej, where x = Zx]ej and y = Zy]ej

=i 7=0 7=0
Define B;(z,y),j = 0, 1 such that
xT = Bo(z,y)eo and yy = Bi(x,y)eo

Then by computation, we have the following formulas:

A(] = Ao(l‘, y) = YoTo + Y11 + Y22 + Y33 + YaT4 + Ys5T5 + YeLg + Y77,
A= Ai(z,y) = — o1+ Y% — Yoy + YaTo — Y3T7 + Y73 — YsTs + Y65,
Ay = As(x,y) = — YoT2 + Yoo — Ya®1 + Y1T4 — Y3T5 + YsT3 — Y67 + Y7 e,
As = As(x,y) = — Yoxs+ Ysxo + Y107 — Yr&1 + YaTs — YsTa — YaZe + Y6,
Ay = Ay(r,y) = — YoTa + YaZo — Y1T2 + YoT1 + Y3T6 — YeT3 — YsT7 + YrTs,
As = As(r,y) = — yoTs + YsTo + Y176 — YeT1 — Y2T3 + Y3Ta + Yalr — Y74,
Ag = As(m,y) = — YoTe + Y6To — Y105 + YsT1 + Yo7 — Y7T2 — YTy + Y3,
A7 = Az(z,y) — Yo7 + YrTo — Y123 + Y3T1 — Y26 + Y62 — Yals + Y5T4,
By = Bo(z,y) xd+ 2t + a3 + a3 + 2] + 2 + xf + 23,

By = Bi(z,y) = Yo+t T Y5 syl uE g e

Then the embedding functions of a Zariski open subset A, which is identified with C! with

coordinates z := (zg, - ,Z7,Y0,** ,Y7), of Mg := m into CP?° are given by:

Z = [17 Lo, T1,T2,T3, T4, Ts5, L6, L7, Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, A07 A17 A27 A37 A47 A57 A67 A77 B07 Bl}

&2. Case My7: Similarly we define

xr = (1’1,272,373),

y = (Y0, Y1, Y2, Y3, Ya, Y5, Yo, Yr),
t == (to,tl,tQ,tg,t4,t5,t6,t7)7

w = (w,wr,ws,ws,ws, Ws, We, Wr).

Define functions A, B,C, Dy, ..., D7, Eq ..., FE7, Fy ..., F; and G such that,

A D FE
Com(X)=XxX=|D B F|, G=det(X),
E F C
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where D = 2]7.:0 Dje;, E = 2]7.:0 Eie;, F' = Z;:o Fje; and the matrix X corresponding to
the point (x,y,t,w) € C*" is given by

8
~I

Yy
X = To2 W - j3<©)
w

xs3

~+ <

Recall the formulas in [O], we have
Toly — WW Wt — X3y YW — Tol
XxX=| wt—x3y x301—tt ty—mw | € J(0),
Yyw —xot Yy — ;W T122 — YY
det(X) = x122x3 — T1wWW — xott — 23y + 2R (wty),
where R¢(x) = 2 for any z = >1_ 2,e; € O.
By further computation, we have the explicit expressions as follows:
A=A,y t,w) = 22wy — (Wh + wi + w3 + wi +wi +wi + Wi + wi),
B = B(z,y,t,w) Ty — (2 + 83+ 13+ 15+ 13+ 12 + 12 +t2),

C=Clx,ytw) = w1y — (Yo + Ui + 95 + Y3 + i+ v+ g+ yi),
Dy = Dy(z,y,t,w) = towo + tiwy + tows + taws + tywy + tsws + tewe + trwr — x3Y0,
D1 = D1 (x, Yy, t, w) = — t0w1 + tlu)g — tQW4 + t4w2 — t3W7 -+ t7(x)3 — t5w6 -+ t6w5 — X3Y1,
Dy = Dy(x,y,t,w) = —  tows + tawy — tawr + tiwy — taws + tsws — tewr + trws — 3Y2,
Dy = Ds(x,y,t,w) = — tows+ tswo + tiwr — trwy + taws — tswy — tawg + tews — T3ys3,
D4 = D4(.CE, Yy, t, w) = — toLU4 + t4&)0 — tlwg + t2w1 + t3w6 — t6W3 — t5W7 -+ t7w5 — X3Y4,
D5 = Ds(x,y,t,w) = —  tows+ tswo + tiws — tewr — tows + taws + tywr — trwy — T3ys,
D6 = D6 (LL’, Yy, t, w) = — t0w6 + t6w0 — t1W5 + t5w1 -+ t2¢d7 — t7w2 — t3w4 -+ t4bd3 — X3Ye,
D7 = D7(ZL‘, Yy, t, w) = — t0w7 —+ t7w0 — t1W3 + t3w1 — t2w6 + t6w2 — t4w5 + t5W4 — X3Yr,

Ey = Eo(x,y,t,w)
El = El(ﬂf,y,t,W)
EZ = EQ('xayata w)
Es; = Es(x,y,t,w)

(

(

(

(

Yowo — Y1W1 — YoWs — Y3w3 — YaWys — Ys5wWs — YeWs — Yrw7 — Talo,
Yow1 + Y1wo + Yowy — Yaws + Y3wr — Yrws3 + Yswe — YeWws — Tatq,
Yowa + Yowo + Yaw1 — Y1wWa + Y3Ws — Ysw3 + Yewr — YrWws — Tata,
Yows + Yswo — Y1wr + Yrwi — Yows + Yswa + Yawe — Yews — Tats,
Yows + Yawo + Y1w2 — Yow1 — Y3Wwe + Yews + Yswr — YrWws — Taty,
Yows + Yswo — Y1We + Yew1 + Yaws — Yswa — Yawr + Y7y — Tats,
Yows + Yewo + Y1Ws — Ysw1 — Yowr + Yrwa + Ysws — Yaws — Tate,
Yowr + Yrwo + Y1w3 — Y3w1 + Yos — Yewa2 + Yaws — Yswys — Tatr,
) Yoto + y1t1 + yata + ysts + yYals + ysts + yete + yrtr — r1wo,
) = Yot1 — Y1to — Yola + Yalo — ystr + yrts — yYsle + Ysts — T1w1,
Fy = Fy(z,y,t,w) = Yoto — Yato — Yat1 + y1la — Ysls + ysts — yst7 + Yrte — T1wo,
Fy = F3(2,y,t,w) = Yotz — ysto + Y1tz — Y7t + yols — Ysto — yale + Yets — T1Ws,
Fy=Fy(z,y,t,w) = Yots — Yato — Y1ta + Yol1 + yste — Ysts — Yst7 + Yrts — T1wy,

)

)

)

Ey = Ey(x,y,t,w)
Es = E5(x,y,t,w)
E¢ = Fg(x,y,t,w)
E; = Eq(z,y,t,w)
Fy = Fy(z,y, t,w
Fy = Fi(z,y,t,w

F5 = Fy(x,y,t,w) = Yots — Ysto + Yite — Yel1 — Yalz + ysta + yaty — yrts — x1Ws,
FG(*T y,t,w) = Yote — Yelo — yrts + ysli + Yat7 — yrta — Y3ty + yats — T1ws,
Fr(z,y,t,w) = Yolz — yrlo — Y1tz + ysti — yale + Yela — Yals + ysts — T1Wr7.
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G = G(r,y,t,w) = 117973 — T, (Wi + Wi + w3 + w3 + Wi + w? + wi + w?)

—2o(t2 ]+ t5 + 5+t + 1+ e+ 13)

—w3(yy + Y+ Y5+ Y3yl YE Y+ 7

+ 2{(yowo — Y11 — Yawa — Y3w3 — Yaws — Ysws — Yews — Yrwr)to

+ (Yow1 + Y1wo + Yowy — Yaws + Yawr — Yrws + Ysws — Yews )t

+ (Yowa + Yawo + Yawr — Y1ws + Yaws — Ysws + Yewr — Yrwe)to
(Yows + yswo — Y1wr + Yrwi — Yows + Yswo + Yawes — Yewa)t3
(Yowa + Yawo + 1wz — Yo — Y3we + Yews + Yswr — Yrws )ts
(Yows + Yswo — Y1ws + Yew1 + Yoz — YswWo — Yawr + Yrwa)ts
(Yows + Yewo + Y1ws — Yswi — Yowr + Y7o + Yswy — Yaws)te
( )

Yowr + Yrwo + Y1ws — Yswi + Yaws — Yewa + Yaws — Yswa)l7 }.

Hence the embedding functions of a Zariski open subset A, which is identified with C?7 with co-
ordinates z := (z,y,t,w) = (1,22, Z3,Y0 "+ , Y7, Lo, ,tr,wo, - ,wr), of Mar := &%70(2) into
CP" are given by: z +— [1,2,y,t,w, A, B,C, Dy, D1, Dy, D3, Dy, D5, Dg, D7, Ey, Ey, Es, Es, Ey, E5,
Es, Eq, Fy, [y, By, F3, Fy, F5, Fg, F7, G]. The detailed discussions related to this Appendix can be
found in [CMP], [Fr] and [O].

B Appendix II: Proof of Proposition (I) for other types

In this Appendix, we complete the proof of Proposition (I) for spaces of the other type.

B.1 Spaces of type I1

In this subsection, we establish Proposition (I) for the orthogonal Grassmannians Gp(n,n).
As shown in §2, we have a Zariski open affine chart A C Gy;(n,n) of elements of the form:

1 00 0 0 212ttt Zn

([an Z) _ 010 N 0 —2z9 0 cee Zop
000 -+ 1 =2z, —22 --- 0

n(n=1)

Here z = (212, 213, .-, Z(n—1)n) is the local coordinates for A = C™ 2z . Its conjugate A* C

(Grr(n,n))* is also a copy of C* . We write the local coordinates for A* as £ = (&2, &n-1)n)-
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The canonical embedding is given by

(1, .., pf(Z,), ..).

The defining function for the Segre family (in the product of such affine pieces) is given by

p(,8) =1+ Y Pi(Z,)Pf(E,)
o€Sk,
2<k<n,2lk

Write
rz = (Pf(ZO')O'ESk> (77)
The local biholomorphic map F' defined near 0 € U with F'(0) = 0 can be represented as a
matrix:

2<k<n2lk

0  fiz o fin
F — _f12 0 fgn
—fin e . 0
Let rr be
'E= (pf((F)J)UES’“>2<k<n 20k (78)

Under the notation of §2, it is easy to see rz = (1, ..., ¥n), Tr = (V1(F), ..., N (F)).
We write 2 for the z with the last component z,_1), dropped. More precisely,

zZ= (2127 ooy B1my 2235 <oy 2205 +o0y Z(n—2)(n—1)5 Z(n—2)n)> (79)

Recall z has n’ = n(n—1)/2 independent variables. Thus Z has (n’— 1) components. We define
the z—rank and zZ— nondegeneracy as in Definition 3.1 using ¢ = rp in (78) and z as in (79)
with m = n/, respectively. We now prove the following:

Proposition B.1. rp is Z—nondegenerate near 0. More precisely, ranky y n_/(rp, 2) = N.

Proof of Proposition B.1: Suppose not. Without loss of generality, we assume that
rankyy y_p (1F, 2) < N.

As a consequence of Theorem 3.10, there exist ¢, € C,4 < k < n,2|k,0 € S, which are not
all zero, such that

> > cow PE(F)o) (212, s Z(2)n, 0) = 0. (80)

4<k<n,2|n o€S

However, (80) cannot hold by the following lemma, which gives a contradiction:

o1



Lemma B.2. Let

be an anti-symmetric matriz-valued holomorphic function in a neighborhood U of 0 in Z =
(212, s Zm—2)n)) € C™” 1 with H(0) = 0. Assume that H is of full rank at 0. Set ry similar to
the definition of rp,

ru = (pH(Hooes,),_ - (81)
Assume that a, i, 0 € Sk, 4 < k <n, are complex numbers such that
DD ok PE(H,) (212, o0y Zn2yn)) = 0 for all Z € U. (82)

4<k<n,2|k 0€Sk

Then
amk = 0

for all o € Sk, 4 < k <mn,2|k.

Proof of Lemma B.2: Suppose not. We will prove the lemma by seeking a contradiction.
Note that H has full rank at 0. Hence there exist (n’ —1) components H of H that forms a local
biholomorphism from C*~' to C*~'. We assume that these (n’ — 1) components H are H with
hiyj, being dropped, where 7y < jo. Without loss of generality, we assume i = n — 1, jo = n.
By a local biholomorphic change of coordinates, we assume H=7%= (%12, -+, Z(m—2)n). We
still write the missing component as h,_1),. Now we assume 2(m + 1),m > 1, is the least
number & such that {a,}ses, are not all zero. We then consider {ag,g(mﬂ)}gesﬂmm. We
first claim that aso(m41) = 0 for those o € Sy(m41y such that pf(H,) involves hg,_1y,. More
precisely, if pf(H,),0 € Sym+1) involves hg,_1y,, then o = {i,...,i9m, (n — 1),n} for some
1 <y < ... < gy < m— 2. Suppose its coefficient is not zero. Then pf(H,) will produce
the monomial 2;, i, 2isiy - Zinm_siom_2 Ziom_1(n—1)Zismn- L his term can only be canceled by the terms
of form: 2, . (n—1)Am—1)n@ O Ziy, nh(n—1)nQ. But neither of them can appear in any other
Pfaffians. This is a contradiction. Once we know there are no h(,—1), involved, then the
remaining Pfaffians have only terms consisting of the product of some of 21, ..., 2(,—2)n. Their
sum cannot be zero unless their coefficients are all zero. This is a contradiction. We thus
establishes Lemma B.2. i

We thus also get a contradiction to equation (80). This establishes Proposition B.1. B

Remark B.3. By Proposition B.1, there exist multiindices (Y, ..., B~ with all |Bj| <1+N-7n,
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and there is a point

0 212 Z?(nfl) 2
0 _2(1)2 0 Zg(n—l) z(Q)n 0
z0 = e e + Zn—tyn 7 0
1(n—-1) ~*2(n-1) 0 “(n—1)n
“1n _Zgn _Z?nfl)n 0
near 0 such that
17 (4, () 97| (py (F))
9361 938!
(2°) #£ 0. (83)
1™ (41 () 91N (i ()
9z6N 926N
We set
0 0 .. 0 0
0 0 .. 0 0 )
O=1 . o €C”, & =
0 O 0 £?n—l)n Z(n—l)n

Then it is easy to see that (2°,£%) € M = {p(z,&) = 0}.
Write for each 1 <1i < j <n,(i,7) # (n—1,n),
Op

9 a8 9
Y 0z (2,€) O2(n-1)n

L

aZ(n—l)n

which are holomorphic tangent vector fields along M near (2°, £%). Here we note that 82(8f . (z,€)

is nonzero near (2°,£°). For any (n' — 1)-multiindex 8 = (512, ..., Bn—2)n), We write

B8 _ pbi2 Bn-2)n
0= iy

Now we define for any N collection of (n’ — 1)—multiindices {3, ..., 3V},

LO(py(F)) .. LP (dn(F))

ABY, . BY)(2,€) = (z,€). (85)

L (a(F)) .. L7 (i (F))

Note that for any multiindex 8, £7 evaluating at (2°,£°) coincides with 52;. We thus again
have

Theorem B.4. There exists multiindices {3, ..., BV}, such that

A(BY ., BY)(2,6) # 0,
for (z,€) in a small neighborhood of (2°,£%) and 3* = (0, ...,0).
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B.2 Spaces of type I1I

Let F' be a local biholomorphic map at 0. In this case, both Z and F' are n X n symmetric
matrices. We write

211 R12 ... Rln
212 k22 ... Z9opn

Z = , &= (lea212azl3a--'7znn)-
Z1n  R2n .- Rnn

Similar notations are used for F.
Recall from (13) of &3 in §2:

r= (V1) U () UR(), s U3 (), U1 2), o U (), 0 (2)),(86)

where wf is a homogeneous polynomial of degree k,1 < 7 < N,. 9™ is a homogeneous polynomial
of degree n. Moreover, the components of r, are linearly independent.

We write the number of components in r, to be N = N; + ... + N,,, where we set N,, = 1.
We will also sometimes write ¢y = ™.

We emphasize that for each fixed k, ¥, ,@Dka are linearly independent. Moreover, each
Qﬂ;‘? is a certain linear combination of the determinants of £ x k submatrices of Z. This will be
crucial for our argument later.

We define rg as the composition of r, with the map F"

1= (D), Ok (B G2 F) 3 (P, s 017 (F), e B (F) 0 (F)) . (8T)

In what follows, we write also z;; = zj;. We write det(A) as the determinant of A when A is a
square matrix.
Let P, P be monomials in z{;s, and h a polynomial in 2;s. Let a,b be two complex numbers.

In the following lemmas, when we say h always has the terms aP, bf’, we mean h has the term
aP if and only if it has the term bP.

Lemma B.5. Fizing 1 < i,5 <n, let P = 2;,2,;Q) and P = 2ijZ2m @ with Q a monomial in
zi;s. The following statements are true.

o Let A be a square submatriz of Z. If z; 1 Q, then det(A) always has monomials of the
form cP,—cP for some ¢ € C depending on the submatriz A. (If det(A) does not have
any multiple of P, it does not have any multiple of 15, either; vice versa). If z;;|Q), then
det(A) always has monomials cP,—(c/2)P for some ¢ € C depending on A.

o Let k > 1. Let ¥f(2) be as defined in (86), 1 < | < Ny. If z;; 1 Q, then ¥F(z) always
has monomials AP, —AP for some A\ € C, If 2;|Q, then ¢ (z) always has monomials
AP, —(\/2)P for some \ € C.
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Proof of Lemma B.5: The first part is a consequence of the Laplace expansion of a de-
terminant by complementary minors. The second part is due to the fact that w;-“ is a linear
combination of the determinants of submatrices of Z of order k. R

Similarly, one can prove in a similar way Lemmas B.6-B.8.

Lemma B.6. Fizing 1 < j <n—1, let P = zj,2(n—1)(n—1)Q and P= Zjin—1)Z(n—1)n@ with Q a

monomial in z;s.

o Let A be a square submatriz of Z. If zj, 1 Q, then det(A) always has monomials cP, —cP
for some c € C. If z;,|Q, then det(A) always has monomials cP, —2cP for some ¢ € C.

o Let k > 1. Let ¥F(2) be as defined in (86), 1 <1 < Ny. If zju 1 Q, then ¥F(2) always
has monomials AP, —A\P for some X € C. If 2;,|Q, then ¥ (z) always has monomials
AP, —2\P for some \ € C.

Lemma B.7. Fizing 1 <i <n—1, let P = zj,—1)2nQ and P = 2iiZ(n—1)n@ with Q) a monomial
in z:s.
ij

o Let A be a square submatriz of Z. If zpm-1y, { Q, then det(A) always has monomials

cP,—cP for some c € C. If Z(n-1)n|@Q, then det(A) always has monomials cP, —(0/2)1B for
some ¢ € C.

o Let k> 1. Let ¢f(2) be as defined in (86), 1 <1 < Ny. If z(n—1yn 1 Q. then ¢ (2) always
has monomials AP, —=AP for some X € C. If z(,_1),|Q, then ¥} (z) always has monomials
AP, —(\/2)P for some X € C.

Lemma B.8. Fizing1 <i<n—1,1<j<n—1,i#j, let P, = 2j(,_1)2njQ, P2 = 2inZj(n—1)@,

and P = ZijZ(n-1)n@ with Q@ a monomial in zj;s.

o Let A be a square submatriz of Z. If zij { Q, 2m-1)n { @, then det(A) always has terms
1Py + coPa, —(c1 4 ¢2) P for some ci,c; € C. If 25 1 Q, 2(n—1)n|@, 07 245|Q, 2n—1yn 1 @,

then det(A) always has terms ¢y Py + ¢y Ps, —51"2“2§ for some c1, o € C. If 2;5|Q, 2(n—1)n|Q,

then det(A) always has terms c1 Py + co P, —611:62?

o Let k > 1. Let ¥F(2) be as defined in (86), 1 < 1 < Ny If 2 1 Q and zpm_1yn 1 Q,
then ¥F(z) always has terms A\ Py + Ao Pa, —(A1 + X2) P for some A\j, Ay € C. If 2z 1
Q, Z(n-1)n|Q, 01 2|Q, Zn—1)n 1 Q, then VF(2) always has terms \ Py + Ao Ps, —’\1;”213 fol"
some A1, Ay € C. If 2;5|Q, 2(n-1)n|Q, then ¢ (2) always has terms APy + Ao P, —%P
for some A, Ay € C.
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We write z for z with the last components z,, being dropped. More precisely,

zZ= (2117 ceey Blmy 2225 <oy 2205 o0y Z(n—1)(n—1)» Z(n—l)n)- (88)

Recall z has n’ = n(n+1)/2 independent variables. Thus Zz has (n’— 1) components. We define
z—rank and zZ—nondegeneracy in the same way as before, using 7 in (87) and z in (88) with
m =n'. We now need to prove the following:

Proposition B.9. rp is Z—nondegenerate at 0. More precisely, ranky y_n/(rp,z) = N.

Proof of Proposition B.9: Suppose not. Then one easily verifies that the hypothesis of
Theorem 3.10 is satisfied. As a consequence of Theorem 3.10, there exist c;? e C2<k<
n,1 < j < N, which are not all zero such that

ZZC w 211, n 1)n,0)) =0. (89)

k=2 j=1

Here as before, we write N,, = 1, ¢} = ¢".
Then we just need to show it can not happen by the following lemma:

Lemma B.10. Let
hir hiz ... hi,

H — h12 h/22 ces h/2n
hin . oo hpn

be a symmetric matriz-valued holomorphic function near 0 inzZ = (211, ..., Z1n, 222, -y 220, -+ Z(n_l)n) S

C™ = with H(0) = 0. Assume that H is of full rank at 0. Set ry in a similar way as in (36) :

i = (VHCH), o 0k (), G CH), o 03, (H, oy 0 (), o 0 (), 0 ()

Again we write N, = 1,9" = ¢y, . Assume that af, 2<k<n,1< 75 <n are complexr numbers
such that

Y dwk(HE) =0 for Z€U. (90)

k=2 j=1
Then
foreach 2 <k <n,1 <j <N

Proof of Lemma B.10: Suppose not. We will prove the lemma by seeking a contradiction.
Notice that H has full rank at 0. Hence there exist (n’ — 1) components Hof H that gives

a local biholomorphism from C"~! to C*'~'. We assume these (n’ — 1) components H are H
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with h;yj, being dropped, where iy < jo. Then we split our argument into two parts in terms of
10 :jg or 19 < j().

Case I: Assume that iy = jo. Without loss of generality, we assume iy = jo = n. By a local
biholomorphic change of coordinates, we assume H=7%= (211, -+ Zn(n—1)). We still write the
last component as f,,. Now we assume m > 2 is the least number k such that {af, ..., af, } are
not all zero. For any holomorphic g, we define 7;(g) to be the homogeneous part of degree [ in
the Taylor expansion of g at 0. Now the assumption in (90) yields:

T, <f am;”(H(z))) = 0. (91)

j=1
We first compute

Nm

Z m¢m Zam¢ Zlh n 1)n7hnn>

J=1

formally. Namely, we regard h,, as a formal variable and only conduct formal cancellations.
We write formally

Z a;’ndj;n(zlla ooy Z(n—1)m» hnn) = Pl + h'nnPZ (92)

Here P, = Py(211, ..., Z(n—1)n) is @ homogeneous polynomial of degree m, and Py = P(211, ..., Z(n—1)n)
is a homogeneous polynomial of degree m — 1. We claim P, # 0. Otherwise,

Np,
Za’;ﬂw;ﬁ(zll’ ) Z(nfl)na hnn) = P]_.
=1

This implies that Z o ay s (2115 s Zn—1)n> fonn) does not depend on hy, formally. Then we
can replace h,, by z,n. That is,

Nm
Z a;’ndj}n(zlla cey z(nfl)na Znn Z am,@Dm 2115 --- n n;s hnn(a) = Pl- (93)
=1

By (91), we see that (93) is identically zero. This is a contradiction to the fact that
{¥7, ..., ¥% } is linearly independent.

Now since P, # 0, thus by (92), Zjvzml al’ JT-”(ZH, <oy Z(n—1)n, Pnn) has a monomial of the

form uﬁ = 2ijhp,Q of degree m for some 1 < 4,5 < n,u # 0 and some monomial ). By
Lemma B.5, we get that Z] Va7 Y211, o Z(n-1)ns Pnn) has also the term —pP or —2uP,
where P = 2;,,2,;Q. This is a contradiction to (91). Indeed, P can be only canceled by the
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terms of the forms: zmhm@ or znjhnn@, where @ is of degree m — 2. But they cannot appear
in determinant of any submatrix of H as z;,(or z,;) can not appear with h,,.

Case II: Assume that iy # jo. Without loss of generality, we assume iqc = (n — 1), jy =
n. Then H = (h11, -, Ptn=1)(n—1); hnn) is a local biholomorphism. By a local biholomorphic
change of coordinates, we assume H=%= (211, -+, Zm—1)n). We will still write the remaining
component as Ag,—1y, = hAnm-1). Note that the fact we are using only is that {z11,..., Zm-1)n}
are independent variables. Hence, to make our notation easier, we will write

H = (2117 e Z(n—1)n) = (’LU117 coey Win, W22y ooy Wap,y «-vy w(n—l)(n—l)awnn)

such that they have the same indices as h'’s in H. Now we assume m is the least number k such
that {af,...,a}, } are not all zero. Then again assumption (90) yields that

T, (Zm: a}”w;”(H(Z))) =0. (94)

Again we formally compute that

N‘IYL

Z a;nlp;n(wll, ey h’(n—l)n; wnn) - Ql + h(n—l)nQ? (95>

=1

Here Q1 = Q1 (w1, ..., W(n—1)(n—1) Why) is @ homogeneous polynomial of degree m. Similarly, we
can show that Q2 # 0. We claim that (95) does not have a monomial of the form h(,—1)nhn-1)n@-
Otherwise, by Lemma B.5, we get that (95) has also a monomial of degree m of the form:
Win-1)(n—1)Wnp@. But note that in (95) it can be canceled only by h(—1)nhm-1),Q. Then
h(n—1)n Will have a linear term w(,—1)(n—1). But then hg,_1),hpn—1),Q will produce the term
W(n—1)(n—1)Wn-1)(n—1)&@. This cannot be canceled out by any other terms.

Now since @, # 0, (95) has a monomial of the form w;;h—1),@, where @ is another
monomial in w’s. Here 1 < i, < n. Moreover, (i,j) # (n — 1,n—1),(n — 1,n),(n,n — 1)
or (n,n). We first assume 1 < 4,7 < n — 1,7 # j. Then by Lemma B.8 , (95) has either P;
or P, where P, = wip—1wn;Q, P> = winw;n-1)Q. Note P, P, can only be canceled by the
terms Witn—1)An—1)nQ, Wnjhn-1)nQ, Winhn-1n@Q; Wjmn—1)hn-1)n@. So one of them will appear
in (95). Whichever case it is, by Lemma B.5, B.6, (95) will have either P = w;,w(n—1)(n-1)@, or
P= Wi(n—1)Wnn@ for some 1 <1 < n. We assume, for instance, (95) has the monomial P. Then

it also has the monomial P = Win—1)hn-1)n@ by Lemma B.6. Note that the only term that can
cancel P and appear in some determinant is wy,hpn—1)Q. Hence hy,—1) has a linear w,—1yn-1)

term. Then P will have the monomial wy(,—1)W(n—1)n-1)&, which can not be canceled by any
other terms. This is a contradiction. The other cases can be proved similarly. W

This establishes Proposition B.9. 1
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Remark B.11. By Proposition B.9, there exist multiindices 3', ..., 3N with |37| < 14+ N — pq,

and there exist .

211
2
near 0 such that
17" (1 (F))
8261

218N (41 (F))

0
Zln

028N

Here we simply write rp = (Y1(F), ..., ¥n(F)).

We then set

0 0 )
0 0 ]eC”, &, =——.
0 0

1

0
nn

It is easy to verify that (2°,£%) € M = {p(z,£) =0}.

Write for each 1 <i < j <mn,(i,j) # (n,

0

&
n),

e CXINN

['ij =

0z 52 (2,€) Ozun’

O0znn

(97)

which are holomorphic tangent vector fields along M near (2%, £%). Here we note that %(z, €)
is nonzero near (z°,£°). For any (n' — 1)-multiindex 3 = (Bi1, ..., Bn—1)n), We write

_ B Bn—1)n
L8 = L..L )

“~(n-1)n

Now we define for any N collection of (n’ — 1)—multiindices {3, ..., 3"},

L7 (41 (F))

A(B, .. B)(2,€) =

£5 (n(F))

L7 (n (F))
o (2,8).
L7 (¢ (F))

Note £° evaluating at (2°,£°) coincides with 2. We have

YL

(98)

Theorem B.12. There exists multiindices {3, ..., BV} such that A(B',...,8Y)(2,&) # 0 for
(2,€) in a small neighborhood of (2°,£°) and ' = (0,0, ...,0).
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B.3 The exceptional class My

In this setting, we use the coordinates
z = (1’1, T2, T3, Y0, -+ Y7, tO? SES) t77 Wo, -, U)7) € C27-

The defining function of the Segre family described in (17) is :

N
p(z,8)=1+r,-re=1+ Zwi(z)wi(ﬁ), where N = 55 and
i=1

T, = (xla T2,23, Yo, .-+ Y1, Loy ey b7, Wo, -y W, A7 Ba C: D07 "'D77 EOa ) E7a F07 SRED) F7a G) (99)

Here A, B,C, D;, F;, F; are homogeneous quadratic polynomials in z and G is a homogeneous
cubic polynomial in z:

7 7 7
A:xgxg—Zw?,B:xlxg—Zt?,C’:xle—ny. (100)
=0 =0 i=0

For the expressions for D;, E;, F;, G, see Appendix I. Let F' be a local biholomorphic map near
0. We write

F= (¢17 ¢2> ¢37 f10, ooy f17, f20, ooy f27, f30, E) h37)-

Also define 7r to be the composition of r, with F:

rp =1.0F = (01, 92, 93, f10; -+, f17, f20, -, for, f30, - f37,A(F), B(F),C’(F), e G(F)) (101)
Notice that rr has 55 components. We will also write
re = (V1(F), ..., ¥s55(F)).
We write z for z with x3 being dropped. Namely,
Z = (21,22, Y0, -y Y7, L0y ooy b7, Wo, ooy Wi ). (102)

We define the Z—rank and )—nondegeneracy as in Definition 3.1 using 7 in (101) and 2 in
(102) with m = 27.

Proposition B.13. F' is z—nondegenerate near 0. More precisely, rankqg(F,Z) = 55.

Proof of Proposition B.13: Suppose not. As a consequence of Theorem 3.10, there exist
1, ..., o8 € C that are not all zero, such that

1 A(F (21, 29,0,90, ..., w7)) + ... + cosG(F(x1, 22,0, %0, ..., wr)) = 0. (103)

We will show that (103) cannot hold by the following lemma:
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Lemma B.14. Let H = (¢, 9,3, ho, ..., h17, hoo, ..., haz, hso, ..., hs7) be a vector-valued holo-
morphic function in a neighborhood U of 0 in z = (21, T2, Yo, -, Y7, Lo, -+, L7, Wo, ...y wy) € C
with H(0) = 0. Assume that H has full rank at 0. Assume that ay, ..., ass are complex numbers
such that

a1 A(H(2)) + ... + asG(H(2)) =0 for all Z € U. (104)

Then a; =0 for all 1 < i < 28.

Proof of Lemma B.14: Suppose not. Notice that H has full rank at 0. Hence there exist 26
components [ of H that give a local biholomorphism from C*® to C*°. We assume these 26 com-
ponents H are the H with n dropped, where n € {11, 12, V3, hig, ..., hi7, hao, ..., har, hao, ..., har
By a local biholomorphic change of coordinates, we assume

~

H = (.Tl,xg,yo, ...,y7,t0, ...,t7,w0, ...,w7).

We still write the remaining components as 7.

Case I: If n € {11, 19,13}, without loss of generality, we can assume n = 3. We first claim
that the coefficients of A, B, i.e., aj,as are zero. This is due to the fact that t?,w?, 0 <i <7
can only be canceled by t;13, w;1b3, which do not appear in the expressions of A(H), ..., G(H).
We then claim the coefficients of C' are zero, for x125 can not be canceled. Then the coefficients
of all D’s have to be zero, for each t;,w; is unique and can not be canceled. Then it follows
trivially that all other coefficients are zero.

Case II: If n € {hy, ..., h17, hoo, ..., hoz, h3o, .., h3r }, without loss of generality, we assume
1 = hg7. Notice that the only fact we are using about H is that its components are independent
variables. For simplicity of notation, we will write

~

H = ($1,3327373a3/0, "'7y77t07 ...,t7,'ll)0, "'7w6>'

We first claim that the coefficient of A is zero. This is due to the fact that xzox3 cannot be
canceled. We also claim that the coefficient of B is zero. Suppose not. Notice that ¢? can only
be canceled by t;hs7. Then the coefficient of each D; is non zero for 0 < ¢ < 7. Moreover, x1x3
can only be canceled by x1hsz7;. This implies h37; has a linear x3-term. Then, in particular, the
tzhsy term in Dy will produce a t;x3 term. It cannot be canceled by any other terms. This
is a contradiction. Similarly, one can show that the coefficient of C' is zero. Then we claim
the coefficient of Dq is zero. Otherwise, to cancel the z3yy term, hs; needs have a linear x3
term. Then the term t;hg; in Dy will produce a t;x3 term, which cannot be canceled by any
other term. By the same argument, one can show that the coefficients of all D;,0 < ¢ < 7, are
zero. Similarly, we can obtain the coefficients of all F;,0 < i < 7, are zero. Then we claim
the coefficients of all F’s have to be zero. This is because each y;t; is unique. It can not be
canceled out. Finally we get the coefficient of G' to be zero. B
This also establishes Proposition B.13. R
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Remark B.15. By Proposition B.13, there exist multiindices (', ..., 3% with |3] < 29, and

there exist

20 = (20,23, 25,90, .y S, 0w, wh), wy # 0,
such that
918" (1 () 918 (g55(F))
930" 930!
(2°) # 0.
915% (41 (F)) 815% | (g5 (F))
557 5
Then we set £ = (0,0,£3,0,...0,0,...,0,0,...,0),&) = —x—lo. It is easy to see that (22,£%) e
3
M = {p(z,&) = 0}. Write
o (2.8 0
L; = ?;z( )—,1952;
8.’13'1' a_mps(z7§> 81'3
Op
0 5.(z8) 0 .
£3+z a,, F) a.. 0<i< 7)
Oy~ 2(,€) Oy
Op
0 -(2,§) 0
Lirgi= - ?p( )—,0§i§7,
Ot 52(2,€) Or3
Op
0 (28 9
Ligs; = — — 2w 0<i<T

For any 26-multiindex 3 = (3, ..., B2), we write L’ = £f1...£§g6. Now we define for any 55

collection of 26—multiindices {3, ..., 3°°},

A(BY, ..., B7)(2,€) =

L (41 (F))
£5° (4 (F))

Note that for any multiindex, £° evaluating at (2°,£°) coincides with -2

L5 (s5(F))
e (2,8). (105)
L5 (55(F))

555 We have,

Theorem B.16. There exists multiindices {3', ..., 3°°}, such that

A(BY . B7)(2,6) #0
for (z,€) in a small neighborhood of (2°,£°) and 3' = (0, ...,0).
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B.4 The exceptional class Mg

This case is very similar to the hyperquadric setting. In this case, we write the coordinates of
C' as
2= (X0, ey T7, Y0y oy Y1)

The defining function of the Segre family as described in (16) is

N
p(z, &) =1+r, -re =1+ Z@Di(z)wi(&), where N = 26 and
i=1

r, = (.%'0, s L7y Yoy -5 Y,y Ao, ...A7, Bo, Bl) (106)

Here A;,0 < i <7, By, By are homogeneous quadratic polynomials in z. For instance,

7 7
By = Zﬂf?,Bl = ny
i=0 i=0

For the expressions for A;, see Appendix I.
Let F' be as before. We write

F = (f(), ceey f7, _]?:07 f;)

And define rr as the composition of r, with F':

rp=1,0F = (fo, s f1. for o fr, Ao(F), ... A7(F), Bo(F), By (F)). (107)

Notice that rr has 26 components.
We will need the following lemma:

Lemma B.17. For each fixed pq, ..., s with (Z?:o ) + 1 = 0 and fived (yo,...,y7) with
(Z?:o wiy;) +yr # 0, we can always find (&, ..., &7) such that

7
L4 gobo+ o +yr&r =0, Y (§)°=0, & =p;6,0<5<6, &#0.

=0

Proof of Lemma B.17: The proof is similar to that as in the hyperquadric case. B
Take the complex hyperplane H : y; 4+ Z?’:O wy; = 0 in (zg, ..., T7, Yo, ..., y7) € CO. Write

_ 0 _ 9.7 _ 8 ) _ 0 )
Ly = da0° oy Ly = a—m,Ls = oy~ Mipy oy Lna = ays ~ M63y;-

Then {L;}}%, forms a basis of the tangent vector fields of H. For any multiindex o =
(v, .., 14), we write L* = Lg°...L{}*. We define the notion of L—rank and L—nondegeneracy
as in Definition 3.1 using rp in (107) and L* instead of z*. We write the kth L-rank defined in

this setting as rank(rp, L). We now need to prove the following:
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Proposition B.18. F' is L—nondegenerate near 0. More precisely, ranky;(rg, L) = 26.

Proof of Proposition B.18: Suppose not. As in the hyperquadric case, by a modified version
of Theorem 3.10, we have that there exist 26 holomorphic functions go(w), ..., gas(w) defined
near 0 on the w—plane with {gy(0), ..., g25(0)} not all zero such that the following holds for

zeU:
25

Zgi(lh + poyo + ... + peys)i(F(2))
i=0

0. (108)

Then since F' has full rank at 0, one can similarly prove that go(0) = 0, ..., g15(0) = 0. Hence
we obtain:

Lemma B.19. There exist cg, ...,c9 € C that are not all zero such that
coAo(F(Z)) + ... + ¢z A7(F(Z)) 4+ cs Bo(F(Z)) + coB1(F(Z)) = 0, (109)
for all Z € U when restricted on y; + Z?:o wiy; = 0.

We then just need to show that (109) can not hold by the following lemma after applying
a linear change of coordinates.

Lemma B.20. Let H = (ho, ..., h7, go, ..., g7) be a vector-valued holomorphic function in a
neighborhood U of 0 in z = (g, ..., T7, Yo, ---, Ys) € C with H(0) = 0. Assume that H has full
rank at 0. Assume that ag, ..., a9 are complex numbers such that

aoA1(H(Z)) + ... + a7 A7(H(Z)) + agBo(H(Z)) + agB1(H(2)) =0 for all Z € U. (110)
Then a; =0 for 1 <14 < 10.

Proof of Lemma B.20: Suppose not. Notice that H has full rank at 0. Hence there exist
15 components H of H that gives a local biholomorphism from C'* to C'*. We assume these
15 components H are H with n being dropped, where n € {hq, ..., h7, go, ..., g7 }. By a local
biholomorphic change of coordinates, we assume H= (Toy .oy T7, Y0, -, Ys)- We still write the
remaining component as 1. Without loss of generality, we assume 7 = g5.

First we claim the coefficient ag of B; is zero. Suppose not. Note that y?, 3 can be only
canceled by ¢g2. Then g; will have linear y;,y, terms. Hence g2 will produce a 3,y term. It
cannot be canceled by any other terms. This is a contradiction. Now we consider the coefficients
of Ay, ..., A7. We claim a; = 0,0 <7 < 7. Suppose not. We write

y7<Z) = )\oyo + ...+ >\6y6 -+ MoZo + ...+ 77 + 0(2),

for some A;, u; € C,0 <7 <6,0 < j < 7. By collecting the terms of the form z(y; in the Taylor
expansion of (110) we get
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By collecting the terms of the form zy;,0 < i < 6, we get,
a1 + asAg =0, —ag + azA; =0, —ay + az\y = 0, —a7 + azA3 = 0,

as + CL3)\4 = O, —ag + CL3>\5 = 0, as + CL3)\6 =0.
By collecting the terms of the form z,y;,0 < i < 6, we get,

as + aghg = 0, a4 + agh1 = 0, —ag + agAa = 0, —as + agA3 = 0.

—ai + CLG/\4 = O, as + aﬁ)\5 = O, —a7 + CL6>\6 = 0.
One can further write down all the coefficients for z;y;,0 <¢ < 7,0 < j < 6. Once this is

done, one easily sees that a; # 0 for any 0 < i < 7. Otherwise, all a; =0, 0 <1i < 7.
Then by the above equations, we see that the matrix

ap a2 a3 Qg Qs Qg
a; —ag —Qy —ay Gy —ag G (112)
az G4 —Qp —a5 —a1 a3z —ar

is of rank one. Then one can get a contradiction by, for instance, carefully checking the
determinants of its 2 x 2 submatrices. Hence a; = 0,0 < ¢ < 7. Finally we easily get the
coefficient ag of By is zero. W

This then establishes Proposition B.18. B

Remark B.21. First fix po, ..., i with (Z?:o u?) + 1 = 0. By Proposition B.18, there exists
multiindices 3, ..., 3*¢ with | 3’| < 11, and

6

Z° = (23, o0, 03,90, -, 42) with Y iy +yr # 0,
i=0

such that - -
L7 (1 (F)) o L7 (¥as(F))
o e (Z°) # 0.
L7 (a(F)) . L (ns(F))
We then let £° = (0, ..., 0, &5, ..., €2), where (&), ..., £?) is choosen as in Lemma B.17 associated
with (3, ...,49). That is

7
L+Hy0e0 4+ + 990 =0 > (6> =0, & =p;&),0<5<6, & #0.

=0

It is easy to see that (2°,£%) € M.
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We now define

Op
L; = 0 _Miyogigz (113)
90 (
£8+i:i—Mi,0§i§6; (114)
Oy a—y’;(Z,f) dyz

for (z,£) € M near (2°,£%). They are tangent vector fields along M. Moreover, 887’;(2,5) is

nonzero near (z°,£9).
We define for any multiindex o = («v, .., a14), LY = L5°...L7}*. Define for any 26 collection
of 15-multiindices {3, ..., 3%},

LXWF) e L7 ((F))
ABY,..., 57)(2,6) = (2,). (115)

L (W(F)) .. L7 (n(F))

By the fact that 3.7 (£7)? = 0, one can check that, for any multiindex a = (ag, .., a14),
L = L* when evaluated at (2%, £°). Then as before, we get the following:

Theorem B.22. There exists multiindices {3, ..., 3%} such that

A(B, ..., B%)(2,€) # 0,
for (z,€) in a small neighborhood of (2°,£°) and 3* = (0,0, ...,0).

C Appendix III: Transversality and flattening of Segre
families for the remaining cases

In this appendix, we will complete the proof of Theorem 6.2 for the remaining cases.

Continuation of the proof of Theorem 6.2: By the same method used before, we first establish
the second part of Theorem 6.2 by assuming the first part of Theorem 6.2 is true. Namely,
suppose 2 € C™\ {0} and 2° and 2! are smooth points on the Segre variety Qg such that
Q. and Q, are both smooth at £° and intersect transversally there. We shall prove that
there is a biholomorphic parametrization G(£1, &, ..., &) = (€1, &2, ..., &), With (&1,&,....&,) €
Uy x Uy x ... x U, C C" Here when 1 < j < 2, U; is a small neighborhood of 1 € C.
When 3 < j < n, U; is a small neighborhood of 0 € C with G(1,1,0,---,0) = €% such that
GH& = 1} x Uy x ... x Uyp) C Q0,G(Uy X {& = 1} x U3 X ... x Uy,) C Q.1, and G({& =
t} x Uy x ... x U,),G(Uy X {& = s} x U x ... x Up),s € Uy,t € Uy are open pieces of Segre
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varieties. Also, G consists of algebraic functions with total degree bounded by a constant
depending only on (M,w). By the first part of Theorem 6.2, we have

Vp(zo,f)k‘)) _
rank <Vp<z1,s>rgo -

9(p(2°,8) p(2! £))

0 :
0(€1,62) # 0 at £°. Now we introduce new

Without loss of generality, we assume

variables él, e En and set up the system:
P p(z°686) =0

P2: 8(217526) =0
Py & —&=0

CEE €n — 60 =0

Then SRty OBl 22 0, wwhere A = (€1, . €, €10 €0) = (1,1,0,..,0,1,0, ., 0). By
Lemma 4.9, we get the needed algebraic flattening with the bound total degree.

Next, we proceed to prove the first part of Theorem 6.2. It suffices to find a sufficiently

close point z! to 2% such that .
Vp(z 7§)|§0 _
rank (Vp(zl,§)|§o> = 2.
We shall establish the above equation case by case as follows:

Case 3. Symplectic Grassmannians: Pick £ = (1,0,0,...,0). The defining equation of
the Segre family is p = 1+ 370 ) 20ii +2 37, 2161 +2 D gcic; (211215 — 21520) (€155 — &) +
Z?:Q(lezii_Z%i)(gllgii_gfi)+Zi<k7j<l,(i7j)7§(171)(Zijzkrl_Zilzkj)<§ij€kl_Silgkj)_{'high order terms,
where zj; 1= z; for j > i.

Qe = {z|p(2,£") = 1+ z11 = 0}, Vp(2,£%) = (1,0,...,0). Hence Qo is smooth, and for
2 € Qeo we have z = (=1, 219, 222, 213, -+ Z(n—1)n ). Pick 2,2 € Qeo. Then

Qs = {f|0 = p( ) =1+ Zz 1 ugw + QZK] zgg’L] + 222<z<]<Z11ZZj ijzfl)(fll&j -

ézlfl]) + Z? 2(2191251 o ( 1)2)<€11£M £1z) + Zi<k,j<l,(1,]) (1,1)<Zl]Zkl zlzk])(&jékl - gilgkj) +
high order terms}, for s =0, 1.

0 p(z°8)  9p(2%€) Ip(2°,8) Ip(2°,6) Ip(z°,6)
Vp(Z 7€>|£0 _ 0611 0€12 O1n 352'17' afnn ’
Vp(z', €)leo op(z1,8)  Ip(z1.8) Ip(21.8) ap(=L¢) ap(z! ¢
011 012 91n 0&ij 3§nn
B (—1 229 2205 ... 228, —(219)? 220205 ... —(2 — &y)20; 20 )
—1 2z{y 22y ... 22], —(219)* —22{y2i3 ... —(2-— 5@-)2%]-7;%1. ’
Hence, we have
rank <Vp(zo, f)|§0> — rank (—1 220, 229, . 220 —(29,)7 —2202% .. —(2- 5ij)z?jz?i
Vp(zl, 5)|£0 —1 22%2 22%3 22%71 _(2%2)2 _22’%22’%3 =2 52']’)2%]‘2’111‘
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-1 220 220 0 220 —(2 = di5)21;2%;

:rank(o ZAZ%Q 2A2113 ZAZ%n (2 — Z]){lejAzh—|—Az1]zlZ AZ%jAzlz} )

where Az}, = z}; — 20;. If we pick z{, # 20,, then the above rank is 2.

Case 4. Orthogonal Grassmannians: Here we use the Pfaffian embedding stated in
§2. Fixing &% = (&Y,,&%,&5;, ...,f 1) = (1,0,...,0), the defining function of the Segre family
is given by p = 1 + ZK] Zz;fm + Z2<i<j(2’122’ij — 213225 + lezzz')(fmfij — &uboj + §1j52¢) +
Zi<]’<k<l’{1’2}¢{i,j,k’l}(Zijzkl — Zikz + Zizzjk)(fijfkl — &+ filfjk) + high order terms. Note here
we use the notation zj 1= —z; for j > i.

Note Qe = {z[0 = p(z,&°) = 1+ z12}. Hence it is smooth. Since z € Qgo, we have
z=(—1,213, ..., Zn-1)n). Pick 2%, 2! € Qe. Then

st = {glo = p(zs7 5) = 1+Zz<] U&J +Z2<Z<] (212ZZJ 21122]+21]221)(€12€z] 51162] +£1J€21)
+ D icickar iz tigren Fich — Zicq + 2z (Giéa — kit + a&jk) + hoo.t.s.}, for s =0, 1.

0 9p(z%,8)  9p(2°.8) 9p(2°,8) 9p(2%,€) 9p(2°.8)
VIO(Z 7§)|§0 _ 912 013 O1n 0Eij T O (n— 1)n ’
Vo' 6)|e ) = | 2658 00(zL) Op(z€) op(=1.€) op(') | leo

012 013 T Oin 6§z‘j af(n n
0 0 0 0,0 0,0

V(22 €)|¢o -1 2% 20 20
rank (Vp(zl,§)|£o = rank 0 Azly .. Az, .. Az, ..)°

Here Az, = 2} — ;. If we choose z{3 # 2{3, then the rank is 2

Case 5. Mig: Pick €% = (k), kY, ..., k%m0, nY, ...;n?) = (1,0, ...,0), 2° € Qo. The defining
equation of the Segre family is

L+ 2ok + T1k1 + -+ T7k7 + Yorlo + Y11 + -+ Yz + (Toyo + 21y + ) (Kot + Kamn +..) +
(=yo1 + w0 + ) (=m0 F ko + o) + o+ (@G + 27+ ap) (ko + m%e 4 ) + (45 +y7 +
MR Eni4 0 =0.

Qeo = {2]p(2,£°) = 1+zo+(zd+ai+...+22) = 0}, and Vp(z,£°)| .0 = (1420, 221, ..., 229, 0, ...

Hence Qo is smooth. Pick 2%, 2! € Q. Then

Q. = {0 = p(2°,§) = 1 + x5ko + xiK1 + ..o + X367 + Yono + Yim + .. + yinr + (Toyp +
B35+ (Rt + R ) (~y + i+ (o o + ) o+ ((5)2 @)+
e (@)2) (Ko? F E2 )+ (W) + W)+ o+ W)+ 17 + .+ nF)}, for s =0, 1.
9p(2°.8) dp(z £) 9p(2°.8)
V(2 §)|£o> ( ( -
rank ( . > rank | o %o g0 115) Op(+1. | 0
V(e e wito oo
_ —2—ap @y wp a4y
= rank (_2_:1% - ()

68



Since (—2 — x), 29,23, -+, 2%) # (0,...,0), we can pick z' sufficiently close to 2°, such that

the above rank is 2. That is because Qo is irreducible and the subvarieties, defined by 2 x 2
minors of the last matrix in (C'), are thin subsets of Q0.

Case 6. My;: Take &0 = (£9,€9,&9,n8,nY, ...on9, k3, kY, oy k2, 70,70, o) = (1,0,...,0).
The defining function of the Segre family is 1 + r, - r¢ where

T, = (1U17332>-T37?/0a -~ Y1, 205 -5 27, Wo, ...,UJ7,A,B, Ca D07 "'D77E07 "'7E77F07 3 F77 G)

’f’f = (51,52,53, ...,7’]7, ey Ry ...,T7,A(§),B(€),C(§), ceny D7(f), ceny E7(5), PN G(f))

Here A, B,C, D;, E;, F; are homogeneous quadratic polynomials; G is a homogeneous cubic
polynomial defined in Appendix I.

For our purpose here, we present terms only involving &;,&>, and omit those involving
€3, 105 M1y ey M7y KOy K1y ooy K75 Ty T1, ---, T7 a8 follows: p(2,&) = 1 4 x1& + 28 + ... + (122 —
(Co U2 (€18 — (Cp(r)?) + - .

Qeo = {z|p(2,&%) = 1+ 21 = 0}, Vp(2,£°) = (1,0,0,...,0). Hence Qo is smooth and for
z € Qeo, we have z = (=1, 29, 73, ..., ). Pick 2°, 2! € Q0. Then
f Qz = {€l0 = p(2*, &) = 1+ 23& + 3%+ .+ (123 — (o () (&6 — (Ci_o(m)?) + ..},
or s =0,1.

V! 0 )| Ip(z%8)  9p(z%8)  9p(z°8) Ip(2°,6) Ip(z°,) p(z°,6)
rank p(2°,§)]|e0 _ank [ 95 56, o6; o o o |
V(2! )]0 o) LY dpLE) 9p(z".€) 2p(z".€) op(z10) | leo
01 92 ) v onr T Ok7 T oty

9p(z°8)  9p(z°.8) 1T (002
Zmnk( e L ),@:mn% 1 <zéo<yi>>) 32

op(z18)  ap(zh8) _1 _ 1)2
pasl pa§2 1 (27;:0(3/1') )

for those z'’s such that 27 (y1)? # So1_o(y2)?. This can be done in any small neighborhood
of 2°; for {2|321_,(1:)? = B} is a thin set in {2|0 = 1 + 2} for each fixed B € C.
This completes the proof of the flattening theorem. W
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