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1 Introduction

Let M be an irreducible n−dimensional Hermitian symmetric space of compact type, equipped
with a canonical Kähler-Einstein metric ω. Write ωn for the associated volume form (up to a
positive constant depending only on n). The purpose of this paper is to prove the following
rigidity theorem:

Theorem 1.1. Let (M,ω) be an irreducible n−dimensional Hermitian symmetric space of
compact type as above. Let F = (F1, ..., Fm) be a holomorphic mapping from a connected open
subset U ⊂ M into the m-Cartesian product M × ... × M of M . Assume that each Fj is
generically non-degenerate in the sense that F ∗

j (ωn) 6≡ 0 over U . Assume that F satisfies the
following volume-preserving (or measure-preserving) equation:

ωn =
m∑

i=1

λiF
∗
i (ωn), (1)

for certain constants λj > 0. Then for each j with 1 ≤ j ≤ m, Fj extends to a holomorphic
isometry of (M,ω). In particular, the conformal factors satisfy the identity:

∑m
j=1 λj = 1.

Rigidity properties are among the fundamental phenomena in Complex Analysis and Geom-
etry of several variables, that study the global extension and uniqueness for various holomorphic
objects up to certain group actions. The rigidity problem that we consider in this paper was
initiated by a celebrated paper of Calabi [Ca]. In [Ca], Calabi studied the global holomorphic
extension and uniqueness (up to the action of the holomorphic isometric group of the target
space) for a local holomorphic isometric embedding from a Kähler manifold into a complex
space form. He established the global extension and the Bonnet type rigidity theorem for a
local holomorphic isometric embedding from a complex manifold with a real analytic Kähler
metric into a standard complex space form. The phenomenon discovered by Calabi [Ca] has
been further explored in the past several decades due to its extensive connection with problems
in Analysis and Geometry. (See [U] [DL] [DL1], for instance).
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In 2004, motivated by the modularity problem of the algebraic correspondences in alge-
braic number theory, Clozel and Ullmo [CU] were led to study the rigidity problems for local
holomorphic isometric maps and even much more general volume-preserving maps between
bounded symmetric domains equipped with their Bergman metrics. By reducing the modu-
larity problem to the rigidity problem for local holomorphic isometries, Clozel-Ullmo proved
that an algebraic correspondence in the quotient of a bounded symmetric domain preserving
the Bergman metric has to be a modular correspondence in the case of the unit disc in the
complex plane and in the case of bounded symmetric domains of rank ≥ 2. Notice that in the
one dimensional setting, volume preserving maps are identical to the metric preserving maps.
Thus the Clozel-Ullmo result also applies to the volume preserving algebraic correspondences
in the lowest dimensional case. Motivated by the work in [CU], Mok carried out a systematic
study of the rigidity problem for local isometric embeddings in a very general setting. Mok in
[Mo2-4] proved the total geodesy for a local holomorphic isometric embedding between bounded
symmetric domains D and Ω when either (i) the rank of each irreducible component of D is
at least two or (ii) D = Bn and Ω = (Bn)p for n ≥ 2. In a paper of Yuan-Zhang [YZ], the
total geodesy is obtained in the case of D = Bn and Ω = BN1 × · · · × BNp with n ≥ 2 and
Nl arbitrary for 1 ≤ l ≤ p. Earlier, Ng in [Ng2] had established a similar result when p = 2
and 2 ≤ n ≤ N1, N2 ≤ 2n− 1. In a paper of Yuan and the second author of this paper [HY1],
we established the rigidity result for local holomorphic isometric embeddings from a Hermitian
symmetric space of compact type into the product of Hermitian symmetric spaces of compact
type with even negative conformal factors where certain non-cancellation property for the con-
formal factors holds. (This cancellation condition turns out be the necessary and sufficient
condition for the rigidity to hold due to the presence of negative conformal factors.) In a recent
paper of Ebenfelt [E], a certain classification, as well as its connection with problems in CR
geometry, has been studied for local isometric maps when the cancellation property fails to
hold. The recent paper of Yuan [Y] studied the rigidity problem for local holomorphic maps
preserving the (p, p)-forms between Hermitian symmetric spaces of non-compact type. At this
point, we should also mention other related studies for the rigidity of holomorphic mappings.
Here, we quote the papers by Chan-Xiao-Yuan [CXY], Dinh-Sibony [DS], Huang [Hu1-2], Ji
[Ji], Kim-Zaitsev [KZ], Mok [Mo1][Mo5], Mok-Ng[MN1], Ng [Ng1-2], Xiao-Yuan [XY1-2] and
many references therein, to name a few.

The work of Clozel and Ullmo has left open an important question of understanding the
modularity problem for volume-preserving correspondences in the quotient of Hermitian sym-
metric spaces of higher dimension equipped with their Bergman metrics. In 2012, Mok and
Ng answered, in the affirmative, the question of Clozel and Ullmo in [MN] by establishing the
rigidity property for local holomorphic volume preserving maps from an irreducible Hermitian
manifold of non-compact type into its Cartesian products.

The present paper continues the above mentioned investigations, especially those in [CU],
[MN] and [HY1]. Our main purpose is to establish the Clozel-Ullmo and Mok-Ng results for
local measure preserving maps between Hermitian symmetric spaces of compact type. Notice
that in the Riemann sphere setting, Theorem 1.1 also follows from the isometric rigidity result
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obtained in an earlier paper of the second author with Yuan [HY1]. However, the basic approach
in this paper fundamentally differs from that in [HY1]. The method used in [HY1] is to first
obtain the result in the simplest projective space setting and then use the minimal rational
curves to reduce the general case to the much simpler projective space case. On the other
hand, restrictions of volume preserving maps are no longer volume preserving and thus the
reduction method in [HY1] can not be applied here. The approach we use in this paper is first
to establish general results under certain geometric and analytic assumptions (i.e., Proposition
(I)-(III)) and then verify that these assumptions are automatically satisfied based on a case by
case argument in terms of the type of the Hermitian space.

We now briefly describe the organization of the paper and the basic ideas for the proof of
Theorem 1.1. The major part of the paper is devoted to showing the algebraicity for a certain
component Fj in Theorem 1.1 with total degree depending only on the geometry of (M,ω). For
this, we introduce the concept of Segre family for an embedded projective subvariety. Notice
that in the previous work, Segre varieties were only defined for a real submanifold in a complex
space through complexification. Our Segre family is defined by slicing the minimal embedding
with a hyperplane in the ambient projective space, associated with points in its conjugate
space. The Segre family thus defined is invariant under holomorphic isometric transformations,
whose defining function is closely related to the complexification of the potential function of the
canonical metric. The first step in our proof is to show that a certain component Fj preserves
at least locally the Segre family. The next difficult step is then to show that preservation of the
Segre foliation gives the algebraicity of Fj. To obtain the algebraicity of Fj, we need to study
the size that the space of the jets of the map Fj along the Segre variety directions. Indeed, an
important part of the paper is to show that the space of the jets of an associated embedding
map rF along the Segre direction up to a certain order depending only on M and its minimal
embedding spans the whole target tangent space. This is a main reason we need to describe
precisely what the minimal embedding is for each M . Once this is done, we can then show that
the map, when restricted to each Segre variety, stays in the field generated by rational functions
and the differentiations of their defining functions as well as their inverse, and thus must be
algebraic by a modified version of the Hurwitz theorem. The uniform bound of the total degree
of Fj is obtained by the fact that we need only a fixed number of steps to perform algebraic
and differential operations to reproduce the map from the minimal embedding functions. After
obtaining the algebraicity, we further show that Fj extends to a birational self-map of the
space by a monodromy argument, the geometry of the Segre foliation, an iteration argument
and the classical Bezout theorem. Finally, a simple argument shows that a birational map which
preserves the Segre foliation is the restriction of a holomorphic self-isometry of the space. Once
Fj is proved to be an isometry, we can delete Fj from the original equation and then apply an
induction argument to conclude the rigidity for other components.

The organization of the paper is as follows: In §2, we first introduce the Segre family for
a polarized projective variety. We then describe the canonical and minimal embedding of the
space into a complex projective space in terms of the type of the space. In §3, we derive a
general theorem for partially degenerate holomorphic embeddings which will play a fundamental
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role in the later development. In §4, we provide the algebraicity for one of the components
of the holomorphic mapping F under additional assumptions which include the partial non-
degeneracy condition introduced in §3, the generic transversality of the Segre varieties and the
irreducibility of the Segre family. In §5, we show that the partial non-degeneracy holds for local
biholomorphisms between any irreducible Hermitian space of compact type. §6 is devoted to
proving the generic transversality for the intersection of the Segre varieties. We prove in §7 the
irreducibility of the potential functions pulled back to a complex Euclidean space, which has
consequences on the irreducibility of the Segre varieties and the Segre families. The argument
in §5-§7 varies as the type of the space varies and thus has to be done case by case.

We include several Appendices for convenience of the reader. In Appendix I, we give the
concrete functions for a minimal holomorphic embedding of a Hermitian symmetric space of
exceptional type into a projective space. In Appendix II, we continue to establish Proposition
(I) for the rest cases. In Appendix III, we provide the verification on the transversality for the
Segre varieties for the remaining cases not covered in §6.

Acknowledgement: The authors would like to thank A. Buch, J. Lu, L. Manivel, X. Yang
and Z. Zhang for many discussions during the preparation of this work. In particular, the first
author would like to express his gratitude to R. Bryant for answering many of his questions on
Hermitian symmetric spaces through the mathoverflow website.

2 Irreducible Hermitian symmetric spaces and their Segre

varieties

2.1 Segre varieties of projective subvarieties

Write z = (z1, · · · , zn, zn+1) for the coordinates of Cn+1 and [z] = [z1, · · · , zn, zn+1] for the ho-
mogeneous coordinates of CPn. For a polynomial p(z), we define p(z) := p(z). For a connected
projective variety V ⊂ CPn, write IV for the ideal consisting of homogeneous polynomials in z
that vanish on V . We define the conjugate variety V ∗ of V to be the projective variety defined
by I∗V := {f̄ : f ∈ IV }. Apparently the map z 7→ z defines a diffeomorphism from V to V ∗.
When IV has a basis consisting of polynomials with real coefficients, V ∗ = V . Also if V is
irreducible and has a smooth piece parametrized by a neighborhood of the origin of a complex
Euclidean space through polynomials with real coefficients, then V ∗ = V .

Next for [ξ] ∈ V ∗, we define the Segre variety Qξ of V associated with ξ by Qξ = {[z] ∈
V :

∑n+1
j=1 zjξj = 0} which is a subvariety of codimension one in V . Similarly, for [z] ∈ V , we

define the Segre variety Q∗
z of V ∗ associated with z by Q∗

z = {[ξ] ∈ V ∗ :
∑n+1

j=1 zjξj = 0}. It is
clear that [z] ∈ Qξ if and only if [ξ] ∈ Q∗

z. The Segre family of V is defined to be the projective
variety M := {([z], [ξ]) ∈ V × V ∗, [z] ∈ Qξ}.

Now, we let (M,ω) be an irreducible Hermitian symmetric space of compact type canonically
embedded in a certain minimal projective space CPN , that we will describe in detail later in
this section. Then under this embedding, its conjugate space M∗ is just M itself. Taking ω to
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be the natural restriction of the Fubini-Study metric to M , the holomorphic isometric group
of M is then the restriction of a certain subgroup of the unitary actions of the ambient space.
Now, for two points p1, p2 ∈ M , let U be an (N + 1) × (N + 1) unitary matrix such that
σ([z]) = [z] · U is an isometry sending p1 to p2. Then σ∗([ξ]) = [ξ]U is an isometry of M∗. By
a straightforward verification, we see that σ∗ biholomorphically sends Q∗

p1
to Q∗

p2
. Similarly,

for any q1, q2 ∈ M∗, Qq1 is unitary equivalent to Qq2 . In the canonical embeddings which we
will describe later, the hyperplane section at infinity of the manifold is a Segre variety. Since
the one at infinity is built up from Schubert cells and all Segre varieties are holomorphically
equivalent to each other, one deduces that each Segre variety of M is irreducible. This fact will
play a role in the proof of our main theorem.

2.2 Canonical embeddings and explicit coordinate functions

We now describe a special type of canonical embedding of the Hermitian symmetric space
M of compact type into CPN . This embedding will play a crucial role in our computation
leading to the proof of Theorem 1.1. See [He] for the classification of the irreducible Hermitian
symmetric spaces of compact type. See also [Lo1], [Lo2] on the typical canonical embeddings
of the Heritian symmetric spaces of compact type and the related theory of Hermitian positive
Jordan triple system.

♣1. Grassmannians (spaces of type I): Write G(p, q) for the Grassmannian space consisting
of p planes in Cp+q. (Since G(p, q) is biholomorphically equivalent to G(q, p), we will assume
p ≤ q in what follows). There is a matrix representation of G(p, q) as the equivalence classes of
p× (p + q) non-degenerate matrices under the matrix multiplication from the left by elements
of GL(p,C). A Zariski open affine chart A for G(p, q) is identified with Cpq with coordinates
Z for elements of the form:

(
Ip×p Z

)
=




1 0 0 · · · 0 z11 z12 · · · z1q

0 1 0 · · · 0 z21 z22 · · · z2q

· · · · · ·
0 0 0 · · · 1 zp1 zp2 · · · zpq


 , where Z is a p× q matrix.

The Plücker embedding G(p, q) → CP(ΛpCp+q) is given by mapping the p−plane Λ spanned
by vectors v1, ..., vp ∈ Cp+q into the wedge product v1∧v2∧...∧vp ∈ ∧pCp+q. The action induced
by the multiplication through elements of SU(p + q) from the right induces a unitary action in
the embedded ambient projective space. In homogenous coordinates, the embedding is given
by the p× p minors of the p× (p + q) matrices (up to a sign). More specifically, in the above
local affine chart, we have the following (up to a sign in front of the components):

Z → [1, Z(
i1 ... ik
j1 ... jk

), ...] (2)

which is denoted for simplicity of notation, in what follows, by [1, rz] = [1, ψ1, ψ2, ..., ψN ] . Here

and in what follows, Z(
i1 ... ik
j1 ... jk

) is the determinant of the submatrix of Z formed by its
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ith1 , ..., ithk rows and jth
1 , ..., jth

k columns, where the indices run through

k = 1, 2, ..., p, 1 ≤ i1 < i2 < ... < ik ≤ p, 1 ≤ j1 < j2 < ... < jk ≤ q.

In particular when k = 1, Z(
i1
j1

) = zi1j1 . Notice that under such an embedding into the projective

space, (G(p, q))∗ = G(p, q). We thus have the same affine coordinates for (G(p, q))∗:

(
Ip×p Ξ

)
=




1 0 0 · · · 0 ξ11 ξ12 · · · ξ1q

0 1 0 · · · 0 ξ21 ξ22 · · · ξ2q

· · · · · ·
0 0 0 · · · 1 ξp1 ξp2 · · · ξpq


 , Ξ is a p× q matrix.

By the definition in §2.1, it follows that the restriction of the Segre family to the product of
these Zariski open affine subsets has the following canonical defining function:

ρ(z, ξ) = 1 +
∑

1≤i1<i2<...<ik≤p,
1≤j1<j2<...<jk≤q

k=1,...,p

Z(
i1 ... ik
j1 ... jk

)Ξ(
i1 ... ik
j1 ... jk

) (3)

Here z = (z11, z12, ..., zpq), ξ = (ξ11, ξ12, ..., ξpq). For simplicity of notation and terminology, we
call this quasi-projective algebraic variety embedded in Cpq ×Cpq, which is defined by (3), the
Segre family of G(p, q). Our defining function ρ(z, ξ) of the Segre family is closely related to the
generic norm of the corresponding Hermitian positive Jordan triple system(cf. [Lo1], [Lo2]).

♣2. Orthogonal Grassmannians (type II): Write GII(n, n) for the submanifold of the Grass-
mannian G(n, n) consisting of isotropic n-dimensional subspaces of C2n. Then S̃ ∈ GII(n, n) if
and only if

S̃

(
0 In×n

In×n 0

)
S̃T = 0. (4)

In the aforementioned open affine piece of the Grassmannian G(n, n) with S̃ = (I, S), S̃ ∈
GII(n, n) if and only if S is an n× n antisymmetric matrix. We identify this open affine chart

A of GII(n, n) with C
n(n−1)

2 through the holomorphic coordinate map:

(
In×n Z

)
:=




1 0 0 · · · 0 0 z12 · · · z1n

0 1 0 · · · 0 −z12 0 · · · z2n

· · · · · ·
0 0 0 · · · 1 −z1n −z2n · · · 0


 → (z12, · · · z(n−1)n). (5)

Later in the paper we will sometimes use the notation zji := −zij if j > i for this type II case.
The Plücker embedding of G(n, n) gives a 2-canonical embedding of GII(n, n). Unfortunately
this embedding is not good enough for our purposes later. Therefore, we will use a different
embedding in this paper, which is given by the spin representation of O2n. This embedding is
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what is called a one-canonical embedding of GII(n, n). We briefly describe this embedding as
following. More details can be found in [Chapter 12; PS].

Let V be a real vector space of dimension 2n with a given inner product, and let K(V ) be
the space consisting of all orthogonal complex structures on V preserving this inner product.
An element of K(V ) is a linear orthogonal transformation J : V → V such that J2 = −1.
Any two choices of J are conjugate in the orthogonal group O(V ) = O2n, and thus K(V ) can
be identified with the homogeneous space O2n/Un. On the other hand, there is a one-to-one
correspondence assigning the complex J to a complex n-dimensional isotropic subspace W
of VC(= V

⊗
C). K(V ) has two connected components K±(V ) : Noticing that any complex

structure defines an orientation on V , these two components correspond to the two possible
orientations on V . Write one for K+(V ), which is actually our GII(n, n).

Now fix an isotropic n-dimensional subspace W ⊂ VC with the associated complex structure
J of VC and pick a basis for V: {x1, ..., xn, y1, ..., yn} with J(xi) = yi, J(yi) = −xi. Then
W is spanned by {xi −

√−1yi}n
i=1. Define W to be the space spanned by {xi +

√−1yi}n
i=1.

As shown in [PS], there is a holomorphic embedding K(V ) ↪→ CP(Λ(W )), where Λ(W ) is
the exterior algebra of W . This embedding is equivariant under the action of O(V ). Thus
K+(V ) ↪→ CP(Λ(W )) is equivariant under SO(V ). Choose the open affine cell of K+(V ) such
that {Y ∈ K+(V )|Y ∩W = ∅}. Then it can be identified with (5).

We next describe the 1-canonical embedding by Pfaffians as following: Let Π be the set
of all partitions of {1, 2, ..., 2n} into pairs without regard to order. An element α ∈ Π can be
written as α = {(i1, j1), (i2, j2), ..., (in, jn)} with ik < jk and i1 < i2 < ... < in. Let

π =

[
1 2 3 4 ... 2n
i1 j1 i2 j2 ... jn

]

be the corresponding permutation. Given a partition α as above and a (2n) × (2n) matrix
A = (ajk) , define

Aα = sgn(π)ai1j1ai2j2 · · · ainjn .

The Pfaffian of A is then given by

pf(A) =
∑
α∈Π

Aα.

The Pfaffian of an m×m skew-symmetric matrix for m odd is defined to be zero.
Therefore in the coordinate system (5), the embedding of A is given by

[1, , ..., pf(Zσ), ...]. (6)

Write Sk for the collection of all subsets of {1, ..., n} with k elements. The σ in (6) runs
through all elements of Sk with 2 ≤ k ≤ n and k even. For σ = {i1 < · · · < ik}, Zσ is defined

as the submatrix Z(
i1 ... ik
i1 ... ik

). For instance, (pf(Zσ))σ∈S2
= (z12, ..., z(n−1)n). We also write (6)

as [1, rz] = [1, ψ1, ψ2, ..., ψN ] for simplicity of notation. We choose the local coordinates for
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(GII(n, n))∗ in a similar way

(
In×n Ξ

)
=




1 0 0 · · · 0 0 ξ12 · · · ξ1n

0 1 0 · · · 0 −ξ12 0 · · · ξ2n

· · · · · ·
0 0 0 · · · 1 −ξ1n −ξ2n · · · 0


 . (7)

The defining function for the Segre family (in the product of such affine pieces) is given by

ρ(z, ξ) = 1 +
∑

σ∈Sk,
2≤k≤n,2|k

Pf(Zσ)Pf(Ξσ). (8)

♣3. Symplectic Grassmannians (type III): Write GIII(n, n) for the submanifold of the Grass-
mannian space G(n, n) defined as follows: Take the matrix representation of each element of

the Grassmannian G(n, n) as an n × 2n non-degenerate matrix. Then Ã ∈ GIII(n, n), if and
only if,

Ã

(
0 In×n

−In×n 0

)
ÃT = 0. (9)

In the Zariski open affine piece of the Grassmannian G(n, n) defined before, we can take a

representative matrix of the form: Ã = (I, Z). Then we conclude that Ã ∈ GIII(n, n) if and
only if Z is an n×n symmetric matrix. We identify this Zariski open affine chart A of GIII(n, n)

with C
n(n+1)

2 through the holomorphic coordinate map:

Ã =
(
In×n Z

)
:=




1 0 0 · · · 0 z11 z12 · · · z1n

0 1 0 · · · 0 z12 z22 · · · z2n

· · · · · ·
0 0 0 · · · 1 z1n z2n · · · znn


 → (z11, · · · , znn).

Later in the paper we sometimes use the notation zji := zij if j > i for this type III case.
Through the Plücker embedding of the Grassmannian, GIII(n, n) is embedded into CP(ΛnC2n)(∼=
CPN∗

). In the above local coordinates, we write down the embedding as (up to a sign)

Z → [1, · · · , Z(
i1 ... ik
j1 ... jk

), ...] := [1, ψ1, · · · , ψN∗ ]. (10)

Choose the local affine open piece of (GIII(n, n))∗ consisting of elements in the following form:

(
In×n Ξ

)
=




1 0 0 · · · 0 ξ11 ξ12 · · · ξ1n

0 1 0 · · · 0 ξ12 ξ22 · · · ξ2n

· · · · · ·
0 0 0 · · · 1 ξ1n ξ2n · · · ξnn.


 .
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The defining function of Segre family in the product of such affine open pieces is given by

ρ(z, ξ) = 1 +
∑

1≤i1<i2<...<ik≤n,
1≤j1<j2<...<jk≤n

k=1,...,n

Z(
i1 ... ik
j1 ... jk

)Ξ(
i1 ... ik
j1 ... jk

) (11)

However the Plücker embedding is not a useful canonical embedding to us for GIII(n, n), due
to the fact that {ψj} is not a linearly independent system. For instance,

Z

(
1 2
3 4

)
+ Z

(
1 4
2 3

)
= Z

(
1 3
2 4

)
.

This embedding can not serve our purposes here. We therefore derive from this embedding a
minimal embedding into a certain projective subspace in CP(ΛnC2n)(∼= CPN∗

). We denote this
minimal projective subspace by H ∼= CPN , which is discussed in detail below. We notice that
the embedding GIII(n, n) ↪→ CPN is equivariant under the transitive action of Sp(n).

Following the notations we set up in the Grassmannian case, we write [1, ψ1, · · ·ψN∗ ] for the
map of the Plücker embedding into CPN∗

. Write (ψi1 , ..., ψimk
) for those components of degree

k in z among {ψj}N∗
j=1. Here 1 ≤ k ≤ n, and {i1, ..., imk

} depends on k. For instance, if k = 1,
then

(ψi1 , ..., ψim1
) = (z11, ..., znn),

where zij is repeated twice if i 6= j. Let {ψ(k)
1 , · · · , ψ

(k)
m∗

k
} be a maximally linearly independent

subset of {ψi1 , ..., ψimk
} over R (and thus also over C). For instance,

{ψ(1)
1 , · · · , ψ

(1)
m∗

1
} = {zij}i≤j.

Let Ak be the m∗
k ×mk matrix such that (ψi1 , · · ·ψimk

) = (ψ
(k)
1 , · · ·ψ(k)

m∗
k
) · Ak. Apparently Ak

has real entries and is of full rank. Hence Ak · At
k is positive definite.

Then {ψ∗1, · · · , ψ∗N} := {ψ(k)
1 , · · · , ψ

(k)
m∗

k
}1≤k≤n forms a basis of {ψ1, · · ·ψN∗}, where N =

m∗
1 + ... + m∗

n. Moreover, if we write A as the (m∗
1 + ... + m∗

n)× (m1 + ... + mn) matrix:

A =




A1

· · ·
An


 ,

Then A has full rank and we have a real orthogonal matrix U such that

U =




U1

· · ·
Un


 , U t(A · At)U =




µ1

· · ·
µN


 with each µj > 0.
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Here Uk, 1 ≤ k ≤ n, is an m∗
k ×m∗

k orthogonal matrix. Now we define

(ψ1
1, ..., ψ

1
N1

, ψ2
1, ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn) := (ψ∗1, · · ·ψ∗N) · U ·




√
µ1 √

µ2

· · · √
µN


 .

Here N1 + ...+Nn−1 +Nn = N∗, where we set Nn = 1. We will also sometimes write ψn
Nn

= ψn.
As a direct consequence,

(ψ1
1, ..., ψ

1
N1

,ψ2
1, ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn) · (ψ1

1, ..., ψ
1
N1

, ψ2
1, ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn)

= (ψ1, · · · , ψN∗) · (ψ1, · · · , ψN∗) = det(I + ZZ̄t) = ρ(z, z).
(12)

Moreover {ψ1
1, ..., ψ

1
N1

, ψ2
1, ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn} forms a linearly independent sys-

tem; and {ψk
1 , ..., ψ

k
Nk
} are polynomials in z of degree k for k = 1, ..., n. Now our canonical

embedding of the aforementioned affine piece A of GIII(n, n) is taken as

z ∈ Cn(n+1)
2 → [1, ψ1

1, ..., ψ
1
N1

, ψ2
1, ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn].

For simplicity, we will still denote (ψ1
1, ..., ψ

1
N1

, ψ2
1, ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn) by

rz = (ψ1, ψ2, ..., ψN) =
(
ψ1

1, ..., ψ
1
N1

, ψ2
1, ..., ψ

2
N2

, ..., ψn−1
1 , ..., ψn−1

Nn−1
, ψn

)
. (13)

Here, for instance, (ψ1, ..., ψn(n+1)
2

) = (ψ1
1, ..., ψ

1
N1

) = (aijzij)1≤i≤j≤n, where aij equals to 1 if

i = j, equals to
√

2 if i < j. Hence the defining function of the Segre family, which is the same
as (11), is given by ρ(z, ξ) = 1 +

∑N
i=1 ψi(z)ψi(ξ).

♣4. Hyperquadrics (type IV): Let Qn be the hypersurface in CPn+1 defined by

{
[x0, ..., xn+1] ∈ CPn+1 :

n∑
i=1

x2
i − 2x0xn+1 = 0

}
,

where [x1, ..., xn+2] are the homogeneous coordinates for CPn+1. It is invariant under the action
of the group SO(n + 2). We mention that under the present embedding, the action is not the
standard SO(n+2) in GL(n+2). However it is conjugate to the standard SO(n+2) action by
a certain element g ∈ U(n+2). An Zariski open affine piece A ⊂ Qn identified with Cn is given
by (z1, ..., zn) 7→ [1, ψ1, ..., ψn+1] = [1, z1, ..., zn,

1
2

∑n
i=1 z2

i ], which will be denoted by [1, rz] =
[1, ψ1, ψ2, ..., ψn+1]. Choose the same local chart for (Qn)∗ : (ξ1, ..., ξn) → [1, ξ1, ..., ξn,

1
2

∑n
i=1 ξ2

i ].
Then the defining function of the Segre family restricted to Cn×Cn ↪→ Qn× (Qn)∗ is given by

ρ(z, ξ) = 1 +
n∑

i=1

ziξi +
1

4
(

n∑
i=1

z2
i )(

n∑
i=1

ξ2
i ) (14)
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♣5. The exceptional manifold M16 := E6/SO(10) × SO(2) : As shown in [IM1],[IM2], this
exceptional Hermitian symmetric space can be realize as the Cayley plane. Take the exceptional
3× 3 complex Jordan algebra

J3(O) =








c1 x3 x̄2

x̄3 c2 x1

x2 x̄1 c3


 : ci ∈ C, xi ∈ O




∼= C27. (15)

Here O is the complexified algebra of octonions, which is a complex vector space of dimension
8. Denote a standard basis of O by {e0, e1, ..., e7}. The multiplication rule in terms of this basis
is given in Appendix I. The conjugation operator appeared in (15) is for octonions, which is
defined as follows: x̄ = x0e1 − x1e1 − ... − x7e7, if x = x0e0 + x1e1 + x2e2 + ... + x7e7, xi ∈ C.
Moreover under this basis, J3(O) ∼= C27 is realized by identifying each matrix

X =




ξ1 η κ̄
η̄3 ξ2 τ
κ τ̄ ξ3


 ∈ J3(O)

with the point (ξ1, ξ2, ξ3, η0, η1, . . . , η7, κ0, κ2, . . . , κ7, τ0, τ1, . . . , τ7) ∈ C27, where η =
∑7

i=0 ηiei, κ =∑7
i=0 κiei and τ =

∑7
i=0 τiei.

The Jordan multiplication is defined as A ◦ B = 1
2
(AB + BA) for A,B ∈ J3(O) . The

subgroup SL(O) of GL(J3(O)) consisting of automorphisms preserving the determinant is the
adjoint group of type E6. The action of E6 on the projectivization CPJ3(O) has exactly three
orbits: the complement of the determinantal hypersurface, the regular part of this hypersurface,
and its singular part which is the closed E6−orbit. The closed orbit is the Cayley plane or the
hermitian symmetric space of compact type corresponding to E6. It can be defined by the
quadratic equation

X2 = trace(X)X, X ∈ J3(O),

or as the closure of the affine cell A

OP2
1 =








1 x y
x̄ xx̄ yx̄
ȳ xȳ yȳ


 : x, y ∈ O




∼= C16

in the local coordinates (x0, x1, ..., x7, y0, ..., y7). The precise formula for the canonical embed-
ding map is given in Appendix II. We denote this embedding by [1, rz] = [1, ψ1, ψ2, ..., ψN ] .

To find the defining function for its Segre family over the product of such standard affine
sets, we choose local coordinates for the conjugate Cayley plane to be (κ0, κ1, ..., κ7, η0, η1, ..., η7).
Then

ρ(z, ξ) = 1+
7∑

i=0

xiκi+
7∑

i=0

yiηi+
7∑

i=0

Ai(x, y)Ai(κ, η)+B0(x, y)B0(κ, η)+B1(x, y)B1(κ, η), (16)
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where Aj, Bj are defined as in Appendix I, z = (x0, ..., x7, y0, ..., y7) and ξ = (κ0, ..., κ7, η0, ..., η7).

♣6. The other exceptional manifold M27 = E7/E6 × SO(2) : As shown in [CMP], it can be
realized as the Freudenthal variety. Consider the Zorn algebra

Z2(O) = C
⊕

J3(O)
⊕

J3(O)
⊕

C

One can prove that there exists an action of E7 on that 56−dimensional vector space (see
[Fr]). The closed E7−orbit inside CPZ2(O) is the Freudenthal variety E7/E6 × SO(2). An
affine cell A of Freudenthal variety is [1, X, Com(X), det(X)] ∈ CPZ2(O). Here X belongs
to J3(O); Com(X) is the comatrix of X such that XCom(X) = det(X)I under the usual
matrix multiplication rule. Notice that Com(X) = X × X, where X × X is the Freudenthal
multiplication defined as follows (see [O]):

X ×X := X2 − tr(X)X +
1

2
(tr(X)2 − tr(X2)I.

For explicit expressions for X×X and det(X) in terms of the entries of X, see [O] or Appendix
I in this paper.

The embedding of E7/E6 × SO(2) ↪→ CPN in local coordinates z is given in Appendix I.
Choose the local affine open piece for (E7/E6 × SO(2))∗ with coordinates

ξ = (ξ1, ξ2, ξ3, η0, ..., η7, κ0, ..., κ7, τ0, ..., τ7).

We denote this embedding by [1, rz] = [1, ψ1, ψ2, ..., ψN ] . The defining function for the Segre
family is then ρ(z, ξ) = 1 + rz · rξ, where

rz = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7, A(z), B(z), C(z), D0(z), ...D7(z),

E0(z), ..., E7(z), F0(z), ..., F7(z), G(z))

rξ = (ψ1(ξ), ψ2(ξ), ..., ψN(ξ)) = (ξ1, ξ2, ξ3, η0, ..., η7, κ0, ..., κ7, τ0, ..., τ7,

A(ξ), B(ξ), C(ξ), D0(ξ), ..., D7(ξ), E0(ξ), ..., E7(ξ), F0(ξ), ..., F7(ξ), G(ξ))

(17)

Here see Appendix I for the definition of the functions appeared in the formula.

Summarizing the above, for each irreducible Hermitian symmetric space of compact type M
of dimension n, we now have described a canonical embedding from M into a projective space
PN , which restricted to a certain Zariski open affine piece A holomorphically equivalent to Cn

takes the form: z(∈ Cn) 7→ [1, κ1z1, · · · , κizi, · · · , κnzn, O(z2)]. Here κi = 1 for all i except
in the case of type III where κi can be 1 or

√
2. This is the embedding we will use in later

discussions. Notice in our embedding, the conjugate space M∗ is the same as M . For simplicity
of notation, we will also write M for the restriction of the Segre family of M restricted to
A × A∗ = Cn × Cn. From this embedding and the invariant property of Segre varieties, we
immediately conclude the following:
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Lemma 2.1. Assume A and B are two distinct points of M . Then their associated Segre
varieties are different, namely, QA 6= QB.

Proof of Lemma 2.1: Since the holomorphic isometric group acts transitively on M , we can
assume A = (0, 0, ..., 0) ∈ Cn ∼= A ⊂ M. Therefore QA is the hyperplane section of M ↪→ PN

at infinity, namely, QA = M\A. Now if B ∈ A, because B 6= (0, 0, ..., 0), there are non-trivial
linear terms in the defining function of QB. This leads to the fact that the defining function
of QB has to be a non-constant polynomial in C[ξ1, ..., ξn]. Therefore QB ∩ Cn 6= ∅ and thus
does not coincide with QA. If B ∈M\A, by the symmetric property of Segre varieties, we have
(0, ..., 0) ∈ QB. Therefore QB 6= QA. We then arrive at the conclusion.

Finally, since in our setting, M∗ = M and the Segre family on M and M∗ are the same.
For simplicity of notation, we do not distinguish, in what follows, Q∗ and M∗ from Q and M,
respectively.

2.3 Explicit expression of the volume forms

From now on, we assume that M is an irreducible Hermitian symmetric space of compact type
and we choose the canonical embedding M ↪→ CPN as described in §2.2 according to its type.
We denote the metric on M induced from Fubini-Study of CPN by ω, and the volume form by
dµ = ωn (up to a positive constant). Notice that the metric we obtained is always invariant
under the action of a certain transitive subgroup G ⊂ Aut(M) (which comes from the restriction
of a subgroup of the unitary group of the ambient projective space). Hence by a theorem of
Wolf [W], ω is the unique G invariant metric on M up to a scale. We claim ω must be Kähler-
Einstein. Indeed, since the Ricci form Ric(ω) of ω is invariant under G, for a small ε, ω+εRic(ω)
is thus also a G invariant metric on M . By [W], it is a multiple of ω, and thus Ric(ω) = λω.
Write dµ as the product of V and the standard Euclidean volume form over the affine subspace
A, where V is a positive function in z. Since Ric(ω) = −i∂∂̄ log V , −i∂∂̄ log V = λω. Notice
that λ > 0. In the local affine open piece A defined before, ω = i∂∂̄ log ρ(z, z̄), where ρ(z, ξ)
is the defining function for the associated Segre family. As we will see later (§7), ρ(z, ξ) is an
irreducible polynomial in (z, ξ). Then we have

∂∂̄ log(V ρ(z, z̄)λ) = 0.

Hence, log(V ρ(z, z̄)λ) = φ(z)+ψ(z), where both φ and ψ are holomorphic functions. Therefore

V = eφ(z)+ψ(z)

ρ(z,z̄)λ . Because ρ(z, ξ) is an irreducible polynomial, from the way V is defined, V must

be a rational function of the form p(z,z)
ρ(z,z̄)m with p, ρ relatively prime to each other. Since φ, ψ are

globally defined, by a monodromy argument, it is clear that λ has to be an integer. Also both
eφ(z) and eψ(ξ) must be rational functions. Again, since φ, ψ are also globally defined, this forces
φ, ψ to be constant functions. Therefore, we conclude that V = cρ(z, z̄)−λ. Here λ is a certain
positive integer and c is a positive constant. Next by a well-known result (see [BaMa]), two
Kähler-Einstein metrics of M are different by an automorphism of M (up to a positive scalar
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multiple). Therefore, to prove Theorem 1.1, we can assume, without loss of generality, that the
Kähler-Einstein metric in Theorem 1.1 is the metric obtained by restricting the Fubini-Study
metric to M through the embedding described in this section.

3 A basic property for partially degenerate holomorphic

maps

In this section, we introduce a notion of degeneracy for holomorphic maps and derive an im-
portant consequence, which will be fundamentally applied in the proof of our main theorem.

Let ψ(z) := (ψ1(z), ..., ψN(z)) be a vector-valued holomorphic function from a neighborhood
U of 0 in Cm,m ≥ 2, into CN , N > m, with ψ(0) = 0. Here we write z = (z1, ..., zm) for the
coordinates of Cm. In the following, we will write z̃ = (z1, ..., zm−1), i.e., the vector z with the

last component zm being dropped out. Write ∂|α|
∂ezα = ∂|α|

∂z
α1
1 ...∂z

αm−1
m−1

for an (m− 1)−multiindex α,

where α = (α1, ..., αm−1). Write

∂|α|

∂z̃α
ψ(z) =

(
∂|α|

∂z̃α
ψ1(z), ...,

∂|α|

∂z̃α
ψN(z)

)
.

We introduce the following definition.

Definition 3.1. Let k ≥ 0. For a point p ∈ U, write Ek(p) = SpanC{∂|α|
∂ezα ψ(z)|z=p : 0 ≤ |α| ≤ k}.

We write r for the greatest number such that for any neighborhood O of 0, there exists p ∈ O
with dimCEk(p) = r. r is called the k−th z̃−rank of ψ at 0, which is written as rankk(ψ, z̃). F
is called z̃−nondegenerate if rankk0(ψ, z̃) = N for some k0 ≥ 1.

Remark 3.2. It is easy to see that rankk(ψ, z̃) = r if and only if the following matrix



∂|α
0|

∂ezα0 ψ(z)

...

...
∂|α

s|
∂ezαs ψ(z)




has an r × r submatrix with determinant not identically zero for z ∈ U for some multiindices
{α0, ..., αs} with all 0 ≤ |αj| ≤ k. Moreover, any l × l (l > r) submatrix of the matrix has
identically zero determinant for any choice of {α0, ..., αs} with 0 ≤ |αj| ≤ k.

In particular, ψ is z̃−nondegenerate if and only if there exist multiindices β1, ..., βN such
that ∣∣∣∣∣∣∣

∂|β
1|

∂ezβ1 ψ1(z) ... ∂|β
1|

∂ezβ1 ψN(z)

... ... ...
∂|β

N |

∂ezβN ψ1(z) ... ∂|β
N |

∂ezβN ψN(z)

∣∣∣∣∣∣∣
is not identically zero. Moreover, ranki+1(ψ, z̃) ≥ ranki(ψ, z̃) for any i ≥ 0.
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For the rest of this section, we further assume that the first m components of ψ, i.e.,
(ψ1, ..., ψm) : Cm → Cm is a biholomorphic map in a neighborhood of 0 ∈ Cm. Then we have,

Lemma 3.3. It holds that rank0(ψ, z̃) = 1, rank1(ψ, z̃) = m, and for k ≥ 1, rankk(ψ, z̃) ≥ m.

Proof of Lemma 3.3: We first notice that it holds trivially that rank0(ψ, z̃) = 1, for F is not
identically zero. We now prove rank1(ψ, z̃) = m. First notice that rank1(ψ, z̃) ≤ m as there are
only m distinct multiindices β such that |β| ≤ 1. On the other hand, since ψ has full rank at
0, we have, ∣∣∣∣∣∣

∂ψ1

∂z1
... ∂ψm

∂z1

... ... ...
∂ψ1

∂zm
... ∂ψm

∂zm

∣∣∣∣∣∣
(0) 6= 0.

This together with the fact ψ(0) = 0 implies that the zm derivative of

∣∣∣∣∣∣∣∣

ψ1 ... ψm
∂ψ1

∂z1
... ∂ψm

∂z1

... ... ...
∂ψ1

∂zm−1
... ∂ψm

∂zm−1

∣∣∣∣∣∣∣∣
(18)

is nonzero at p = 0. Consequently, the quantity in (18) is not identically zero in U. By the
definition of the z̃-rank, we then arrive at the conclusion.

We now prove the following degeneracy theorem in terms of its z̃-rank, which will be used
to derive Theorem 3.10.

Theorem 3.4. Let ψ = (ψ1, ..., ψm, ψm+1, ..., ψN) be a holomorphic map from a neighborhood
of 0 ∈ Cm into CN with ψ(0) = 0. Recall that z̃ = (z1, ..., zm−1), i.e., the vector z with the
last component zm being dropped out. Assume that (ψ1, ..., ψm) is a biholomorphic map from a
neighborhood of 0 ∈ Cm into a neighborhood of 0 ∈ Cm. Suppose

rankN−m+1(ψ, z̃) < N. (19)

Then there exist N holomorphic functions g1(zm), ..., gN(zm) near 0 in the zm−Gauss plane
with {g1(0), ..., gN(0)} not all zero such that the following holds for any (z1, ..., zm) near 0.

N∑
i=1

gi(zm)ψi(z1, ..., zm) ≡ 0. (20)

In particular, one can make one of the {gi}N
i=1 to be identically one.

The geometric intuition for the theorem is as follows: The space of 1-jets has dimension m
by Lemma 3.3. We expect that at least one more dimension is increased when we go from the
space of k-jets to the space of (k +1)− jets until we reach the maximum possible value N . The
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theorem says that if this process fails, namely, the assumption in (19) holds, we then end up
with a function relationship as in (20).

Proof of Theorem 3.4: We consider the following set,

S = {l ≥ 1 : rankl(ψ, z̃) ≤ l + m− 2}.
Note that 1 /∈ S, for rank1(F ) = m. We claim that S is not empty. Indeed, we have 1+N−m ∈
S by (19). Now write t′ for the minimum number in S. Then 2 ≤ t′ ≤ 1 + N −m. Moreover,
by the choice of t′,

rankt′(ψ, z̃) ≤ t′ + m− 2, rankt′−1(ψ, z̃) ≥ t′ + m− 2. (21)

This yields that
rankt′(ψ, z̃) = rankt′−1(ψ, z̃) = t′ + m− 2. (22)

We write t := t′ − 1, n := t′ + m − 2. Here we note t ≥ 1,m ≤ n ≤ N − 1. Then there exist
multiindices {γ1, ..., γn} with each |γi| ≤ t and j1, ..., jn such that

∆(γ1, ..., γn|j1, ..., jn) :=

∣∣∣∣∣∣∣

∂|γ
1|ψj1

∂z̃γ1 ...
∂|γ

1|ψjn

∂z̃γ1

... ... ...
∂|γ

n|ψj1

∂z̃γn ...
∂|γ

n|ψjn

∂z̃γn

∣∣∣∣∣∣∣
is not identically zero in U. (23)

Since rank1(ψ, z̃) = m, we can choose (γ1, ..., γn|j1, ..., jn) such that

γ1 = (0, .., 0), γ2 = (1, 0, ..., 0), ..., γm = (0, ..., 0, 1).

For any α1, ..., αn+1 with |αi| ≤ t + 1, and l1, ..., ln+1, we have

∆(α1, ..., αn+1|l1, ..., ln+1) =

∣∣∣∣∣∣∣∣∣∣

∂|α
1|ψl1

∂z̃α1 ...
∂|α

1|ψln

∂z̃α1

∂|α
1|ψln+1

∂z̃α1

... ... ... ...

... ... ... ...
∂|α

n+1|ψl1

∂z̃αn+1 ...
∂|α

n+1|ψln

∂z̃αn+1

∂|α
n+1|ψln+1

∂z̃αn+1

∣∣∣∣∣∣∣∣∣∣

≡ 0 in U. (24)

We write Γ for the collection of (γ1, ..., γn|j1, ..., jn), j1 < ... < jn, with γ1 = (0, .., 0) and with
(23) being held. We associate each (γ1, ..., γn|j1, ..., jn) with an integer s(γ1, ..., γn|j1, ..., jn) :=
s0 where s0 is the least number s ≥ 0 such that

∂s1+...+sm−1+s∆(γ1, ..., γn|j1, ..., jn)

∂zs1
1 ∂zs2

2 ...∂z
sm−1

m−1 ∂zs
m

(0) 6= 0.

for some integers s1, ..., sm−1. Then s(γ1, ..., γn|j1, ..., jn) ≥ 0 for any (γ1, ..., γn|j1, ..., jn) ∈ Γ.
Let (β1, ..., βn|i1, ..., in) ∈ Γ, i1 < ... < in be indices with the least s(γ1, ..., γn|j1, ..., jn)

among all (γ1, ..., γn|j1, ..., jn) ∈ Γ.
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We write {in+1, ..., iN} = {1, ..., N} \ {i1, .., in}, where in+1 < ... < iN . Write Ũ = {z ∈ U :
∆(β1, ..., βn|i1, ..., in) 6= 0}. We then have the following:

Lemma 3.5. Fix j ∈ {in+1, ..., iN}. Let i ∈ {i1, .., in}. Write {i′1, ..., i′n−1} = {i1, ..., in} \ {i}.
There exists a holomorphic function gj

i (zm) in Ũ which only depends on zm such that the
following holds for z ∈ Ũ :

∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1

∂z̃β1 ...
∂|β

1|ψi′n−1

∂z̃β1

∂|β
1|ψj

∂z̃β1

... ... ... ...

... ... ... ...
∂|β

n|ψi′1
∂z̃βn ...

∂|β
n|ψi′n−1

∂z̃βn
∂|β

n|ψj

∂z̃βn

∣∣∣∣∣∣∣∣∣∣

(z) = gj
i (zm)

∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1

∂z̃β1 ...
∂|β

1|ψi′n−1

∂z̃β1
∂|β

1|ψi

∂z̃β1

... ... ... ...

... ... ... ...
∂|β

n|ψi′1
∂z̃βn ...

∂|β
n|ψi′n−1

∂z̃βn
∂|β

n|ψi

∂z̃βn

∣∣∣∣∣∣∣∣∣∣

(z), (25)

or equivalently, ∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1

∂z̃β1 ...
∂|β

1|ψi′n−1

∂z̃β1

∂|β
1|(ψj−gj

i (zm)ψi)

∂z̃β1

... ... ... ...

... ... ... ...
∂|β

n|ψi′1
∂z̃βn ...

∂|β
n|ψi′n−1

∂z̃βn
∂|β

n|(ψj−gj
i (zm)ψi)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣

≡ 0. (26)

Proof of Lemma 3.5: For simplicity of notation, we write ∂

∂z̃βi for ∂|β
i|

∂z̃βi , and for µ = i or j,
write the matrix

Vµ :=




∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψµ

∂z̃β1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1

∂z̃βn
∂ψµ

∂z̃βn




=



v1

µ
...

vn
µ


 ,

where v1
µ, · · · ,vn

µ are the row vectors of Vµ. To prove (25), one just needs to show that, for each
1 ≤ ν ≤ m− 1,

∂

∂zν

det(Vj)

det(Vi)
≡ 0 in Ũ . (27)

Indeed, by the quotient rule, the numerator of the left-hand side of (27) equals to

det

(
det(Vi) det(Vj)
∂

∂zν
det(Vi)

∂
∂zν

det(Vj)

)

= det




det(Vi) det(Vj)

det




∂
∂zν

v1
i

v2
i
...

vn
i


 det




∂
∂zν

v1
j

v2
j
...

vn
j







+ · · ·+ det




det(Vi) det(Vj)

det




v1
i
...

vn−1
i

∂
∂zν

vn
i


 det




v1
j
...

vn−1
j

∂
∂zν

vn
j







.
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By (24) and Lemma 4.4 in [BX], each term on the right-hand side of the equation above equals
0. For instance, the last term above equals to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψi

∂z̃β1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1

∂z̃βn
∂ψi

∂z̃βn

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1

∂ψj

∂z̃β1

... ... ... ...

... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1

∂z̃βn
∂ψj

∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψi

∂z̃β1

... ... ... ...
∂ψi′1

∂z̃βn−1 ...
∂ψi′n−1

∂z̃βn−1
∂ψi

∂z̃βn−1

∂
∂zν

(
∂ψi′1
∂z̃βn ) ... ∂

∂zν
(

∂ψi′n−1

∂z̃βn ) ∂
∂zν

( ∂ψi

∂z̃βn )

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1

∂ψj

∂z̃β1

... ... ... ...
∂ψi′1

∂z̃βn−1 ...
∂ψi′n−1

∂z̃βn−1

∂ψj

∂z̃βn−1

∂
∂zν

(
∂ψi′1
∂z̃βn ) ... ∂

∂zν
(

∂ψi′n−1

∂z̃βn ) ∂
∂zν

(
∂ψj

∂z̃βn )

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (28)

It is a multiple of the following determinant (by Lemme 4.4 in [BX]):

∣∣∣∣∣∣∣∣∣∣∣

∂ψi′1
∂z̃β1 ...

∂ψi′n−1

∂z̃β1
∂ψi

∂z̃β1

∂ψj

∂z̃β1

... ... ... ... ...
∂ψi′1
∂z̃βn ...

∂ψi′n−1

∂z̃βn
∂ψi

∂Z̃βn
∂ψj

∂z̃βn

∂ψi′1
∂z̃βn+1 ...

∂ψi′n−1

∂z̃βn+1
∂ψi

∂z̃βn+1

∂ψj

∂z̃βn+1

∣∣∣∣∣∣∣∣∣∣∣

, (29)

where ∂

∂z̃βn+1 = ∂
∂zν

( ∂
∂z̃βn ), which is identically zero by (24). This establishes Lemma 3.5.

The extendability of gj
i (zm) will be needed for our later argument:

Lemma 3.6. For any i, j as above, the holomorphic function gj
i (zm) can be extended holomor-

phically to a neighborhood of 0 in the zm−plane.

Proof of Lemma 3.6: First, gj
i is defined on the projection πm(Ũ) of Ũ , where πm is the

natural projection of (z1, ..., zm) to its last component zm. If 0 ∈ πm(Ũ), the claim follows
trivially. Now assume that 0 /∈ πm(Ũ). If we write s = s(β1, ..., βn|i1, ..., in), by its definition,
then there exists (a1, ..., am−1) ∈ Cm−1 close to 0, such that

∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1

∂z̃β1 ...
∂|β

1|ψi′n−1

∂z̃β1
∂|β

1|ψi

∂z̃β1

... ... ... ...

... ... ... ...
∂|β

n|ψi′1
∂z̃βn ...

∂|β
n|ψi′n−1

∂z̃βn
∂|β

n|ψi

∂z̃βn

∣∣∣∣∣∣∣∣∣∣

(a1, ..., am−1, zm) = czs
m + o(|zm|s), c 6= 0. (30)

Then there exists r > 0 small enough such that for any 0 < |zm| < r, (a1, ..., am−1, zm) ∈ Ũ .
That is, at any of such points, equation (30) is not zero.
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We now substitute (a1, ..., am−1, zm), 0 < |zm| < r, into the equation (25), and compare the
vanishing order as zm → 0:

c1z
s′
m + o(|zm|s′) = gj

i (zm)(czs
m + o(|zm|s)), c 6= 0. (31)

for some s′ ≥ 0. Note that 0 ≤ s ≤ s′ by the definition of s and the choice of (β1, ..., βn|i1, ..., in).
The holomorphic extendability across 0 of gj

i (zm) then follows easily.

We next make the following observation:

Claim 3.7. For each fixed j ∈ {in+1, ..., iN} and any i′1 < ... < i′n−1 with {i′1, ..., i′n−1} ⊂
{i1, ..., in}, we have:

∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1

∂z̃β1 ...
∂|β

1|ψi′n−1

∂z̃β1

∂|β
1|(ψj−

Pn
k=1 gj

ik
ψik

)

∂z̃β1

... ... ... ...

... ... ... ...
∂|β

n|ψi′1
∂z̃βn ...

∂|β
n|ψi′n−1

∂z̃βn

∂|β
n|(ψj−

Pn
k=1 gj

ik
ψik

)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣

(z) ≡ 0,∀z ∈ Ũ . (32)

Proof of Claim 3.7: Note that for each i′l, 1 ≤ l ≤ n− 1, the following trivially holds:

∣∣∣∣∣∣∣∣∣∣∣

∂|β
1|ψi′1

∂z̃β1 ...
∂|β

1|ψi′n−1

∂z̃β1

∂|β
1|(gj

i′
l
ψi′

l
)

∂z̃β1

... ... ... ...

... ... ... ...
∂|β

n|ψi′1
∂z̃βn ...

∂|β
n|ψi′n−1

∂z̃βn

∂|β
n|(gj

i′
l
ψi′

l
)

∂z̃βn

∣∣∣∣∣∣∣∣∣∣∣

(z) ≡ 0, (33)

for the last column in the matrix is a multiple of one of the first (n− 1) columns. Then (32) is
an immediate consequence of (26) and (33).

Lemma 3.8. For each fixed j ∈ {in+1, ..., iN}, we have ψj(z)−∑n
k=1 gj

ik
(zm)ψik(z) ≡ 0 for any

z ∈ Ũ , and thus it holds also for all z ∈ U.

Proof of Lemma 3.8: This can be concluded easily from the following Lemma 3.9 and Claim
3.7. Here one needs to use the fact that β1 = (0, ..., 0).

Lemma 3.9. ([BX], Lemma 4.7) Let b1, · · · ,bn and a be n-dimensional column vectors with
elements in C, and let B = (b1, · · · ,bn) denote the n× n matrix. Assume that detB 6= 0 and
det(bi1 ,bi2 , · · · ,bin−1 , a) = 0 for any 1 ≤ i1 < i2 < · · · < in−1 ≤ n. Then a = 0.

Theorem 3.4 now follows easily from Lemma 3.8.

If we further assume that ψi(z),m + 1 ≤ i ≤ N, vanishes at least to the second order, then
we have the following, which plays a crucial role in our proof of Theorem 1.1.
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Theorem 3.10. Let ψ = (ψ1, ..., ψm, ψm+1, ..., ψN) be a holomorphic map from a neighborhood
of 0 ∈ Cm into CN with ψ(0) = 0. Assume that (ψ1, ..., ψm) is a biholomorphic map from
a neighborhood of 0 ∈ Cm into a neighborhood of 0 ∈ CN . Assume that ψj(z) = O(|z|2) for
m + 1 ≤ j ≤ N. Suppose that rankN−m+1(ψ) < N. Then there exist am+1, ..., aN ∈ C that are
not all zero such that

N∑
i=m+1

ajψj(z1, ..., zm−1, 0) ≡ 0, (34)

for all (z1, ..., zm−1) near 0.

Proof of Theorem 3.10: We first have the following:

Claim 3.11. For each 1 ≤ i ≤ m, gi(0) = 0.

Proof of Claim 3.11: Suppose not. Write c := (g1(0), ..., gm(0)) 6= 0. Then (g1(zm), ..., gm(zm))
= c + O(|zm|). The fact that ψi(z) = O(|z|2), i ≥ m + 1, implies

m∑
i=1

gi(zm)ψi(z) = O(|z|2). (35)

Notice that (the Jacobian of) (ψ1, ..., ψm) is of full rank at 0. Hence




∂ψ1

∂z1
(0) ... ∂ψm

∂z1
(0)

... ... ...
∂ψ1

∂zm
(0) ... ∂ψm

∂zm
(0)


 ct 6= 0. (36)

This is a contradiction to (35).

Finally, letting zm = 0 in equation (20), we obtain (34). By claim 3.11, (gm+1(0), ..., gN(0)) 6=
0. This establishes Theorem 3.10.

4 Proof of the main theorem assuming three extra propo-

sitions

In this section, we give a proof of our main theorem under several extra assumptions (i.e.,
Propositions (I)-(III)), which will be verified one by one in the later sections.

Let M ⊂ CPN be an irreducible Hermitian symmetric space of compact type, which has
been canonically (and isometrically) embedded in the complex projective space through the
way described in §2. In this section, we write n as the complex dimension of M. We also have
on M an affine open piece A that is biholomorphically equivalent to the complex Euclidean
space of the same dimension, such that M \ A is a codimension one complex subvariety of M .
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We identify the coordinates of A by the parametrization map with z = (z1, ..., zn) ∈ Cn through
what is described in §2, which we wrote as [1, ψ1, ..., ψN ], where ψ1, ..., ψN are polynomial maps

in (z1, ..., zn) with ψj = κjzj, where κj = 1 or
√

2, for j = 1, · · · , n. We also write F (ξ) for F (ξ)
for ξ = (ξ1, ..., ξn) ∈ Cn. We still use ρ(z, ξ) for the defining function of the Segre family of M
restricted to A×A∗, which will be canonically identified with Cn × Cn. Since the coefficients
of ψ1, ..., ψN are all real, ψ = ψ and A∗ = A. Hence, we have

ρ(z, ξ) = 1 +
N∑

i=1

ψi(z)ψi(ξ). (37)

Recall the standard metric ω of M on A is given by

ω = i∂∂log(ρ(z, z̄)). (38)

The volume form dµ = cnω
n associated to ω, by §2 , is now given in A by the multiplication of

V with the standard Euclidean volume form, where

V =
c

(ρ(z, z̄))λ
(39)

with c > 0 and λ a certain positive integer depending on M . For instance, λ = p + q when
X = G(p, q) [G]. Here cn is a certain positive constant depending only on n.

Theorem 4.1. Let A ⊂ M be as above equipped with the standard metric ω. Let Fj, j = 1, ..., m,
be a holomorphic map from U ⊂ A into M , where U is a connected open neighborhood of A.
Assume that F ∗

j (dµ) 6≡ 0 for each j and assume that

dµ =
m∑

j=1

λjF
∗
j (dµ), (40)

for certain positive constants λj > 0 with j = 1, · · · ,m. Then for any j ∈ {1, 2, ..., m}, Fj

extends to a holomorphic isometry of (M,ω).

For convenience of our discussions, we first fix some notations: In what follows, we identify
A with Cn having z = (z1, · · · , zn) as its coordinates. On U ⊂ A ⊂ M and after shrinking U
if needed, we write the holomorphic map Fj, for j = 1, ..., m, from U → A = Cn, as follows:

Fj = (Fj,1, Fj,2, ..., Fj,n), j = 1, ..., m. (41)

Still write the holomorphic embedding from A into CPN as [1, ψ1, · · · , ψN ]. We define Fj(z) =
(Fj,1, ...,Fj,N) = (ψ1(Fj), ψ2(Fj), ..., ψN(Fj)) for j = 1, ..., m. Finally, all Segre varieties and
Segre families are restricted to A = Cn.

The main purpose of this section is to give a proof of Theorem 4.1, assuming the following
three propositions hold. These propositions will be separately established in terms of the type
of M in §5, §6 and §7. This then completes the proof of our main theorem.
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Proposition (I): Write Li = ∂
∂zi
−

∂ρ
∂zi

(z,ξ)

∂ρ
∂zn

(z,ξ)

∂
∂zn

, 1 ≤ i ≤ n− 1, which are holomorphic vector

fields (whenever defined) tangent to the Segre family M of M ↪→ CPN restricted to A×A∗ =
Cn×Cn defined by ρ(z, ξ) = 0. Under the notations we set up above, for any local biholomorphic
map F = (f1, · · · , fn) : U → Cn with F (0) = 0, there are z0 ∈ U, ξ0 ∈ Qz0 , β1, ..., βN , such that

∂ρ

∂zn

(z0, ξ0) 6= 0, Λ(β1, ..., βN)(z0, ξ0) :=

∣∣∣∣∣∣

Lβ1F1 ... Lβ1FN

... ... ...

LβNF1 ... LβNFN

∣∣∣∣∣∣
(z0, ξ0) 6= 0. (42)

Here βl = (kl
1, ..., k

l
n−1), k

l
1, ..., k

l
n−1 are non-negative integers, for l = 1, 2, ..., N ; β1 = (0, 0, ..., 0);

Lβl
= Lkl

1
1 Lkl

2
2 Lkl

3
3 ...Lkl

n−1

n−1 ; F(z) = (F1, ...,FN) = (ψ1(F ), ψ2(F ), ..., ψN(F )). Moreover, sl :=∑n−1
i=1 kl

i (l = 1, ..., N) is a non-negative integer bounded from above by a universal constant
depending only on (M,ω). Also, in what follows, when we like to emphasize the dependence of
Λ(β1, ..., βN) on F , we also write it as ΛF (β1, ..., βN).

Proposition (II): Suppose that ξ0 ∈ Cn with ξ0 6= (0, 0, ..., 0). Then for a generic smooth
point z0 on the Segre variety Qξ0 and a small neighborhood U 3 z0, there is a z1 ∈ U ∩ Qξ0

such that Qz0 and Qz1 both are smooth at ξ0 and intersect transversally at ξ0, too. Moreover,
we can find a biholomorphic parametrization near ξ0: (ξ1, ξ2, ..., ξn) = G(ξ̃1, ξ̃2, ..., ξ̃n) with
(ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ... × Un ⊂ Cn, where U1 and U2 are small neighborhoods of 1 ∈ C,
and Uj for j ≥ 3 are small neighborhoods of 0 ∈ C such that (i). G(1, 1, 0, · · · , 0) = ξ0,
(ii). G({ξ̃1 = 1} × U2 × ... × Un) ⊂ Qz0 ,G(U1 × {ξ̃2 = 1} × U3 × ... × Un) ⊂ Qz1 , and (iii).
G({ξ̃1 = t}×U2× ...×Un) or G(U1×{ξ̃2 = s}×U3× ...×Un), s ∈ U1, t ∈ U2 is an open piece of
a certain Segre variety for each fixed t and s. Moreover G consists of algebraic functions with
total degree bounded by a constant depending only on the manifold M .

Proposition (III): For any ξ 6= 0(z 6= 0, respectively) ∈ Cn, ρ(z, ξ) is an irreducible
polynomial in z (and in ξ, respectively). (In particular, Q∗

ξ and Qz are irreducible.) Moreover, if
U is a connected open set in Cn, then the Segre family M restricted to U ×Cn is an irreducible
complex subvariety and thus its regular points form a connected complex submanifold. In
particular, M is an irreducible complex subvariety of Cn × Cn.

The rest of this section is splitted into several subsections. In the first subsection, we
discuss a partial algebraicity for a certain component Fj0 in Theorem 4.1. In §4.2, we show Fj0

is algebraic. In §4.3, we further prove the rationality of Fj0 . §4.4 is devoted to proving that Fj0

extends to a birational map from M to itself and extends to a holomorphic isometry, which can
be used, through an induction argument, to prove Theorem 4.1 assuming Propositions (I)-(III).

4.1 An algebraicity lemma

We use the notations we have set up so far. We now proceed to the proof Theorem 4.1 under
the hypothesis that Propositions (I)-(III) hold.
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Denote by Jf (z) the determinant of the complex Jacobian matrix of a holomorphic map
f : B → Cn, where B ⊂ Cn is an open subset and z = (z1, · · · , zn) ∈ B. For any holomorphic

map g(ξ) from an open subset of Cn to Cm, where ξ ∈ Cn, we define g(ξ) := g(ξ).
Now from (37)(38)(39)(40), we obtain

m∑
j=1

λj

|JFj
(z)|2

(1 +
∑N

i=1 ψi(Fj(z))ψi(F j(z̄)))λ
=

1

(1 +
∑N

i=1 ψi(z)ψi(z̄))λ
, z = (z1, ..., zn) ∈ U. (43)

Recall that Fj = (Fj,1, Fj,2, ..., Fj,n), j = 1, ..., n. Complexifying (43), we have

m∑
j=1

λj

JFj
(z)JFj

(ξ)

(1 +
∑N

i=1 ψi(Fj(z))ψi(F j(ξ)))λ
=

1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ
, (z, ξ) ∈ U × conj(U). (44)

Here conj(U) =: {z : z ∈ U}. Using the transitive action of the holomorphic isometric group
of (M,ω) on M , we assume that 0 ∈ U , Fj(0) = 0 ∈ A and JFj

(0) 6= 0 for each j. Also, letting
U = Br(0) for a sufficiently small r > 0, we have conj(U) = U . Hence, we will assume that
(44) holds for (z, ξ) ∈ U × U .

We will need the following algebraicity lemma.

Lemma 4.2. Let F ′
js be as in Theorem 4.1. Then there exist Nash algebraic maps

F̂1(z, X1, ..., Xm), ..., F̂m(z, X1, ..., Xm)

holomorphic in (z, X1, ..., Xm) near (0, JF1(0), ..., JFm(0)) ∈ Cn × Cm such that

F j(z) = F̂j(z, JF1(z), ..., JFm(z)), j = 1, ..., m (45)

for z = (z1, ..., zn) near 0.

Proof of Lemma 4.2: Recall that ψi = κizi, where κi = 1 or
√

2, for i = 1, · · · , n and
ψi = O(|z|2) is a polynomial of z for each n + 1 ≤ i ≤ N . We obtain from (44) the following:

m∑
j=1

λj

(
JFj

(z)JFj
(ξ)− λ(

n∑
i=1

(JFj
(z)κiFj,i(z))(JFj

(ξ)κiF j,i(ξ))) + Pj(z, Fj(ξ), JFj
(ξ))

)

=
1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ
. (46)

Here each Pj(z, Fj(ξ), JFj
(ξ)) is a rational function in z, Fj(ξ) and JFj

(ξ).
We now set Xj = JFj

, 1 ≤ j ≤ m. Set Yj, 1 ≤ j ≤ m, to be the vectors:

Yj = (Yj1, ..., Yjn) := (κ1JFj
Fj,1, ..., κnJFj

Fj,n).
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Then equation (46) can be rewritten as

m∑
j=1

λj

(
Xj(z)Xj(ξ)− λYj(z) · Y j(ξ) + Qj(z, Xj(ξ), Y j(ξ))

)
=

1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ
(47)

over U ×U. Here each Qj with 1 ≤ j ≤ m is rational in Xj, Y j. Moreover, each Qj, 1 ≤ j ≤ m,

has no terms of the form X
k

j Y
l

js with l ≤ 1 for any s ≥ 1 in its Taylor expansion at (Xj(0), Yj(0)).

We write Dα = ∂|α|
∂z

α1
1 ...∂zαn

n
for an n−multiindex α = (α1, ..., αn). Taking differentiation in

(47), we obtain, for each multiindex α, the following:

m∑
j=1

(
(DαXj(z))Xj(ξ)− λ(DαYj(z)) · Y j(ξ) + DαQj(z, Xj(ξ), Y j(ξ))

)

= Dα
( 1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ

)
.

Again each DαQj, 1 ≤ j ≤ m, is rational in (Xj, Y j) and has no terms of the form X
k

j Y
l

js with

l ≤ 1 and s ≥ 1 in its Taylor expansion at (Xj(0), Yj(0)). Applying a similar argument as in
[Proposition 3.1, [HY1]], we can algebraically solve for Fj to complete the proof of the lemma.

Let R be the field of rational functions in z = (z1, ..., zn). Consider the field extension

E = R(JF1(z), ..., JFm(z)).

Let K be the transcendental degree of the field extension E/R. If K = 0, then each of
{JF1 , ..., JFm} is Nash algebraic. As a consequence of Lemma 4.2, each Fj with 1 ≤ j ≤ m
is Nash algebraic. Otherwise, by re-ordering the indices if necessary, we let G = {JF1 , ..., JFK

}
be the maximal algebraic independent subset of {JF1 , ..., JFm}. It follows that the transcendental
degree of E/R(G) is zero. For any l > K, there exists a minimal polynomial Pl(z, X1, ..., XK , X)
such that Pl(z, JF1(z), ..., JFK

(z), JFl
(z)) ≡ 0. Moreover,

∂Pl(z, X1, ..., XK , X)

∂X
(z, JF1(z), ..., JFK

(z), JFl
(z)) 6≡ 0

in a small neighborhood V of 0, for otherwise, Pl cannot be a minimal polynomial of JFl
(z).

Now the union of the vanishing set of the partial derivative with respect to X in the above
equation for each l forms a proper local complex analytic variety near 0. Applying the algebraic
version of the implicit function theorem, there exists a small connected open subset U0 ⊂ U,
with 0 ∈ U0 and a holomorphic algebraic function ĥl, l > K, in a certain neighborhood Û0 of
{(z, JF1(z), ..., JFK

(z)) : z ∈ U0} in Cn × CK , such that

JFl
(z) = ĥl(z, JF1(z), ..., JFK

(z)),
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for any z ∈ U0. (We can assume here U0 is the projection of Û0). Substitute this into

F̂i(z, JF1(z), ..., JFm(z)),

and still denote it, for simplicity of notation, by F̂j(z, JF1(z), ..., JFK
(z)) with

F̂j(z, JF1(z), ..., JFK
(z)) = F̂j(z, JF1(z), ..., JFm(z)) for z ∈ U0.

In the following, for simplicity of notation, we also write for j ≤ K,

ĥj(z, JF1(z), ..., JFK
(z)) = JFj

(z) or ĥj(z, X1, ..., XK) = Xj.

Now we replace Fj(ξ) by F̂j(ξ, JF1(ξ), ..., JFK
(ξ)), and replace JFj

(ξ) by ĥj(ξ, JF1(ξ), ..., JFK
(ξ)),

for 1 ≤ j ≤ m, in (44). Furthermore, we write X = (X1, ..., XK), and replace JFj
(ξ) by Xj for

1 ≤ j ≤ K in

F̂j(ξ, JF1(ξ), ..., JFK
(ξ)), ĥj(ξ, JF1(ξ), ..., JFK

(ξ)), 1 ≤ j ≤ m.

We define a new function Φ as follows:

Φ(z, ξ, X) :=
m∑

j=1

λj

JFj
(z)ĥj(ξ,X)

(1 +
∑N

i=1 ψi(Fj(z))ψi(F̂j(ξ,X)))λ
− 1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ
. (48)

Lemma 4.3. Shrinking U if necessary, we have Φ(z, ξ, X) ≡ 0, i.e.,
m∑

j=1

λj

JFj
(z)ĥj(ξ, X)

(1 +
∑N

i=1 ψi(Fj(z))ψi(F̂j(ξ,X)))λ
=

1

(1 +
∑N

i=1 ψi(z)ψi(ξ))λ
. (49)

or,

(1 +
N∑

i=1

ψi(z)ψi(ξ))
λ

m∑
j=1

(
λjJFj

(z)ĥj(ξ, X)
∏

1≤k≤m,k 6=j

(1 +
N∑

i=1

ψi(Fk(z))ψi(F̂k(ξ,X)))λ

)

=
∏

1≤j≤m

(1 +
N∑

i=1

ψi(Fj(z))ψi(F̂j(ξ,X)))λ

(50)

for z ∈ U and (ξ, X) ∈ Û0.

Proof of Lemma 4.3: Suppose not. Notice Φ is Nash algebraic in (ξ,X) for each fixed z ∈ U ,
by Lemma 4.2. For a generic fixed z = z0 near 0, since Φ(z, ξ, X) 6≡ 0, there exist polynomials
Al(ξ,X) for 0 ≤ l ≤ N with A0(ξ, X) 6≡ 0 such that

∑

0≤l≤N

Al(ξ,X)Φl(z, ξ, X) ≡ 0.

As Φ(z0, ξ, JF1(ξ), ..., JFK
(ξ)) ≡ 0 for ξ ∈ U0, then it follows that A0(ξ, JF1(ξ), ..., JFK

(ξ)) ≡ 0
for ξ ∈ U0. This is a contradiction to the assumption that {JF1(ξ), ..., JFK

(ξ)} is an algebraic
independent set.

Now that F̂j(ξ,X), 1 ≤ j ≤ m, is algebraic in its variables, if F̂j, 1 ≤ j ≤ m, is independent
of X, then Fj is algebraic by Lemma 4.2. This fact motivates the remaining work in this section.
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4.2 Algebraicity and rationality with uniformly bounded degree

In this subsection, we prove the algebraicity and rationality for at least one of the F ′
js. We

start with the following:

Lemma 4.4. Let Fj(z), j ∈ {1, ..., m}, be a local holomorphic map defined on a neighborhood of
0 ∈ U as in (44). Suppose that there exist z0 ∈ U and ξ0 ∈ Qz0 such that Λ(β1, ..., βN)(z0, ξ0)
is well defined and non-zero with β1 = (0, 0, ..., 0). Then there is an analytic variety W (
U such that when z ∈ U\W , Λ(β1, ..., βN)(z, ξ) is a rational function in ξ over Qz and
Λ(β1, ..., βN)(z, ξ) 6≡ 0 on Qz.

Proof of Lemma 4.4: By the assumption, ∂ρ
∂zn

(z0, ξ0) 6= 0 and

Λ(β1, ..., βN)(z0, ξ0) =

∣∣∣∣∣∣

Lβ1Fj,1 ... Lβ1Fj,N

... ... ...

LβNFj,1 ... LβNFj,N

∣∣∣∣∣∣
(z0, ξ0) (51)

is non-zero with β1 = (0, 0, ..., 0).

By the definition, Li = ∂
∂zi
−

∂ρ
∂zi

(z,ξ)

∂ρ
∂zn

(z,ξ)

∂
∂zn

and Lβl
= Lkl

1
1 Lkl

2
2 Lkl

3
3 ...Lkl

n−1

n−1 for βl = (kl
1, ..., k

l
n−1),

kl
1, ..., k

l
n−1. Hence Λ(β1, ..., βN)(z, ξ) can be written in the form Λ(β1, ..., βN)(z, ξ) = G1(z,ξ)

G2(z,ξ)
.

Here G1(z, ξ) =
∑M1

|I|=0 ΦI(z)ξI ,G2(z, ξ) =
∑M2

|J |=0 ΨJ(z)ξJ , with ΦI and ΨJ being holomorphic

functions defined over U ⊂ Cn. In fact, G2(z, ξ) is simply taken as a certain sufficiently large
power of ρzn := ∂ρ

∂zn
.

By our assumption, we have G1,G2 not equal to zero at (z0, ξ0). Hence, G1,G2 are not zero
elements in O(U)[ξ1, ..., ξn], the polynomial ring of ξ with coefficients from the holomorphic
function space over U .

By Proposition (III), the defining function of the Segre family ρ can be written in the form
ρ(z, ξ) =

∑M3

|α|=0 Θk(z)ξα, which is an irreducible polynomial in (z, ξ). And for each fixed z, by

Proposition (III), we also have ρ(z, ξ) irreducible as a polynomial of ξ only.
Then the set of z ∈ U where Λ(β1, ..., βN)(z, ξ) is undefined over Qz is a subset of z ∈ U

where G2(z, ξ), as a polynomial of ξ, contains the factor ρ(z, ξ) as a polynomial in ξ. We denote
the latter set by W2. Similarly, the set of z ∈ U with Λ(β1, ..., βN)(z, ξ) ≡ 0 over Qz is a subset
of z ∈ U where G1(z, ξ), as a polynomial of ξ, contains a factor ρ(z, ξ), which we denote by W1.

Notice that ρ(z, ξ) ∈ O(U)[ξ1, ..., ξn] depends on each ξj for 1 ≤ j ≤ n. Also notice that
G2(z, ξ), as a certain power of ρzn(z, ξ), depends on ξn.

We next characterize W2 by the resultant R2 of G2(z, ξ) and ρ(z, ξ) as polynomials in ξn.
We rewrite G2 and ρ as polynomials of ξn as follows:

G2 =
k∑

i=0

ai(z, ξ1, ..., ξn−1)ξ
i
n, ρ =

l∑
j=0

bj(z, ξ1, ..., ξn−1)ξ
j
n.
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Here the leading terms ak, bl 6≡ 0 with k, l ≥ 1. We write the resultant as R2(z, ξ1, ...ξn−1) =∑
I cI(z)ξ′I , where c′Is are holomorphic functions of z ∈ U .
For those points z ∈ W2, R2(z, ·) ≡ 0 as a polynomial of ξ1, ..., ξn−1. Then W2 is contained in

the complex analytic set W̃2 := {cI = 0,∀I}. If W̃2 = U , then we can find non-zero polynomials
f, g ∈ O(U)[ξ1, ..., ξn−1][ξn] such that fρ + gG2 ≡ 0, where the degree of g in ξn is less than the
degree of ρ in ξn. Hence {G2 = 0} ∪ {g = 0} ⊃ {ρ = 0} ∩ (U ×Cn). Again by the irreducibility
of {ρ = 0} ∩ (U × Cn), since {g = 0} is a thin set in {ρ = 0} ∩ (U × Cn),G2 vanishes on

{ρ = 0} ∩ (U × Cn). This contradicts G2(z
0, ξ0) 6= 0. Hence W2 ⊂ W̃2 and W̃2 is a proper

complex analytic subset of U.
By a similar argument, we can prove that W1 is contained in W̃1 that is also a proper

analytic set of U . Let W = W̃1 ∪ W̃2. Then when z ∈ U\W , Λ(β1, ..., βN)(z, ξ) is well-defined
over Qz as a rational function in ξ and Λ(β1, ..., βN)(z, ξ) 6≡ 0 on Qz.

Lemma 4.5. Let ψ(ξ, X) be a non-zero Nash-algebraic function in (ξ, X) = (ξ1, ..., ξn, X1, ..., Xm)
∈ Cn×Cm. Write E for a proper complex analytic variety of Cn×Cm that contains the branch
locus of ψ and the zeros of the leading coefficient in the minimal polynomial of ψ. Then there
exists a proper analytic set W1 in Cn such that

{ξ| ∃X0, (ξ, X0) 6∈ E} ⊃ Cn\W1.

Proof of Lemma 4.5: Since ψ is algebraic, there is an irreducible polynomial Φ(ξ,X; Y ) =∑k
i=0 φi(ξ,X)Y i such that Φ(ξ,X, ψ(ξ,X)) ≡ 0. If k = 1 then ψ is a rational function and

thus E is just the poles and points of indeterminancy. The proof is then obvious and we hence
assume k ≥ 2.

Define Ψ(ξ, X, Y ) = ∂Φ
∂Y

. Since k ≥ 2, the degree of Ψ in Y is at least one. Consider Φ, Ψ
as polynomials in Y, and write R(ξ,X) for their resultant. Then the branch locus is contained
in {(ξ,X)|R(ξ,X) = 0}. Notice that R 6≡ 0, for Φ is irreducible. Write R =

∑
I rI(ξ)X

I with
some rI 6= 0. Write φk(ξ, X) =

∑
φk,i(ξ)X

i and W1 = {rI(ξ) = 0 ,∀I} ∪ {φk,i(ξ) = 0 ,∀ i},
which is a proper complex analytic set in Cn. Then {ξ| ∃X0, (ξ,X0) 6∈ E} ⊃ Cn\W1.

Let E be a proper complex analytic variety containing the union of the branch loci of
ĥj, F̂j for j = 1, · · · ,m and the zeros of the leading coefficients in their minimal polynomials.
For any point (z0, ξ0, X0) ∈ U × ((Cn × CK)\E), we can find a smooth Jordan curve γ in

U × ((Cn × CK)\E) connecting (z0, ξ0, X0) with a certain point in U × (Û0 \ E). We can
holomorphically continue the following equation along γ:

(ρ(z, ξ))λ

m∑
j=1

(
λjJFj

(z)ĥj(ξ,X)
∏

1≤k≤m,k 6=j

(1 +
N∑

i=1

ψi(Fk(z))ψi(F̂k(ξ, X)))λ

)

=
∏

1≤j≤m

(1 +
N∑

i=1

ψi(Fj(z))ψi(F̂j(ξ, X)))λ, z ∈ U, (ξ,X) ∈ Û0,

(52)
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to a neighborhood of (z0, ξ0, X0). For our later discussions, we further define

Msing,z = {(z, ξ) :
∂ρ

∂zj

= 0,∀j},Mreg,z = M\Msing,z;

MSING = {(z, ξ) :
∂ρ

∂ξj

= 0,∀j} ∪ {(z, ξ) :
∂ρ

∂zj

= 0,∀j}, MREG = M\MSING;

Prz : C2n → Cn (z, ξ) 7→ (z) and Prξ : C2n → Cn (z, ξ) 7→ (ξ).
Notice that MREG is a Zariski open subset of M and the restrictions of Prz,Prξ to MREG

are open mappings. Also, for (z0, ξ0) ∈ MREG, Qz0 is smooth at ξ0, and Qξ0 is smooth at z0.
By Proposition (III), Mreg,z ∩ (Qξ0 , ξ0) is Zariski open in (Qξ0 , ξ0).

Lemma 4.6. With the notations we have set up so far, there exists a point (z0, ξ0, X0) ∈
(U × Cn × CK) with (z0, ξ0) ∈ MREG ∩ (U × Cn) and (ξ0, X0) 6∈ E. Moreover, for each
j = 1, ..., m, we can find β1

j , ..., β
N
j with β1

j = (0, ..., 0) such that ΛFj
(β1

j , ..., β
N
j )(z0, ξ0) 6= 0.

Proof of Lemma 4.6: This is an easy consequence of Propositions (I) (III), Lemma 4.4 and
the Zariski openness of MREG in M.

Let (z0, ξ0, X0) be chosen as in Lemma 4.6. We then analytically continue the equation
(52) to a neighborhood of the point (z0, ξ0, X0) through a Jordan curve γ described above. We
denote one of such neighborhoods by V1×V2×V3, where V1, V2 and V3 are chosen to be a small
neighborhood of z0, ξ0, and X0, respectively. It is clear, after shrinking V1, V2, V3 if needed,
that there exists a j0 ∈ {1, ..., m} such that

1 +
N∑

i=1

ψi(Fj0(z))ψi(F̂j0(ξ,X)) = 0, for (z, ξ) ∈M∩ (V1 × V2), X ∈ V3,

We next proceed to prove the algbraicity for Fj0(z).

Theorem 4.7. F̂j0(ξ,X), for ξ ∈ V2, X ∈ V3, is independent of X and is thus a Nash algebraic
function of ξ. Hence Fj0 is an algebraic function of z. Moreover, the algebraic total degree of

F̂j0(ξ,X) = Fj0(ξ), and thus of Fj0(z), is uniformly bounded by a constant depending only on
the manifold (X,ω) and the described canonical embedding.

Before proceeding to the proof, we state a slightly modified version of a classical result of
Hurwitz. We first give the following definition:

Definition 4.8. Suppose F is an algebraic function defined on ξ ∈ Cn. The total degree of
F is defined to be the total degree of its minimum polynomial. Namely, let P (ξ; X) be an
irreducible minimum polynomial of F , the total degree of F is defined as the degree of P (ξ; X)
as a polynomial in (ξ,X).
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We next state some simple facts about algebraic functions, whose proof is more or less
standard. (See, for instance, [Fa]):

Lemma 4.9. 1. Suppose φ1, φ2 are algebraic functions defined in ξ ∈ U ⊂ Cn with total degree
bounded by N . Then φ1 ± φ2, φ1φ2, 1/φ1 (if φ1 6≡ 0) are algebraic functions and their degrees
are bounded above by a constant depending only on N, n.

2. Suppose φ1(z1, ..., zn) is an algebraic function of total degree bounded by N , and suppose
that ψ1(ξ1, ..., ξm), ..., ψn(ξ1, ..., ξm) are algebraic functions with total degree bounded by N as
well. Let

A0 = (ξ0
1 , ξ

0
2 , ..., ξ

0
m) ∈ Cm,

where ψ1, ..., ψn are holomorphic functions in a neighborhood of A0 and let φ1 be a holomor-
phic function in a neighborhood U ⊂ Cn of (ψ1(A0), ψ2(A0), ..., ψm(A0)). Then the compo-
sition Φ(ξ1, ..., ξm) = φ1(ψ1(ξ1, ..., ξm), ψ2(ξ1, ..., ξm), ψ3(ξ1, ..., ξm), ..., ψn(ξ1, ..., ξm)) is an alge-
braic function with total degree bounded by a constant C(N,n, m) depending only on (N, n, m).
3. Suppose P1(z1, z2, ..., zm, ξ1, ξ2, ..., ξn), ..., Pn(z1, z2, ..., zm, ξ1, ξ2, ..., ξn) are algebraic functions
with total degrees bounded from above by N which are holomorphic in a neighborhood U × V ⊂
Cm × Cn of A0 = (z0

1 , ..., z
0
m, ξ0

1 , ..., ξ
0
n). Suppose that





P1(z1, z2, ..., zm, ξ1, ..., ξn) = 0

P2(z1, z2, ..., zm, ξ1, ..., ξn) = 0

...

Pn(z1, z2, ..., zm, ξ1, ..., ξn) = 0

has a solution at A0 = (z0, ξ0) = (z0
1 , ..., z

0
m, ξ0

1 , ..., ξ
0
n) and ∂(P1,P2,...,Pn)

∂(ξ1,ξ2,...,ξn)
(z0

1 , z
0
2 , ..., z

0
m, ξ0

1 , ..., ξ
0
n) 6=

0. Then we can solve ξ1 = φ1(z1, z2, ..., zm),ξ2 = φ2(z1, z2, ..., zm),...,ξn = φn(z1, z2, ..., zm) with
φj(z

0) = ξ0 in a neighborhood of z0 ∈ Ũ ⊂ U ⊂ Cm, where φ1, ..., φn are algebraic functions
with total degree bounded by C(N,n, m).

We now state the following modified version of the classical Hurwitz theorem with a con-
trolled total degree [BM].

Theorem 4.10. Let F (s, t, ξ1, ξ2, ..., ξm) be holomorphic over U × V × W ⊂ Cm+2. Suppose
that for any fixed s ∈ U ⊂ C, F is an algebraic function in (t, ξ1, ..., ξm) with its total degree
uniformly bounded by N; and for any fixed t ∈ V ⊂ C, F is an algebraic function of (s, ξ1, ..., ξm)
with its total degree uniformly bounded by N . Then F is an algebraic function with total degree
bounded by a constant depending only on (m,N).

The proof of Theorem 4.10 is more or less the same as in the classical setting [BM]. (See,
for example, the Ph. D. thesis of the first author [Fa])

Proof of Theorem 4.7: By the choice of (z0, ξ0, X0), there exist β1
j0

, ..., βN
j0

such that

ΛFj0
(β1

j0
, ..., βN

j0
)(z0, ξ0) =

∣∣∣∣∣∣∣

Lβ1
j0Fj0,1 ... LβN

j0Fj0,N

... ... ...

LβN
j0Fj0,1 ... LβN

j0Fj0,N

∣∣∣∣∣∣∣
(z0, ξ0) 6= 0. (53)
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We can also assume that (z0, ξ0) satisfies the assumption in Proposition (II) after a slight
perturbation of z0 inside Qξ0 if needed. By Proposition (II), we can find z1 ∈ V1 ∩ Qξ0 such
that Qz0 intersects Qz1 transversally at ξ0. Moreover there exists a neighborhood B of ξ0 and
a biholomorphic parametrization of B : (ξ1, ξ2, ..., ξn) = G(ξ̃1, ξ̃2, ..., ξ̃n) with (ξ̃1, ξ̃2, ..., ξ̃n) ∈
U1 × U2 × ... × Un ⊂ Cn. Here U1, U2 are as in Proposition (II). Moreover, G({ξ̃1 = 1} ×
U2 × ... × Un) ⊂ Qz0 ,G(U1 × {ξ̃2 = 1} × U3 × ... × Un) ⊂ Qz1 . Also, for s ∈ U1, t ∈ U2,
G({ξ̃0 = t} × U2 × ... × Un),G(U1 × {ξ̃1 = s} × U3 × ... × Un) are open pieces of certain Segre
varieties. Here G consists of algebraic functions with total algebraic degree uniformly bounded
by M and the canonical embedding. Consider the equation:

1 + Fj0(z) · F̂j0(ξ,X) = 0, (z, ξ, X) ∈ V1 × V2 × V3, (z, ξ) ∈M. (54)

Since the holomorphic vector fields {Li}n−1
i=1 are tangent to the Segre family, we have



Lβ1

j0Fj0,1(z, ξ) ... Lβ1
j0Fj0,N(z, ξ)

... ... ...

LβN
j0Fj0,1(z, ξ) ... LβN

j0Fj0,N(z, ξ)






F̂j0,1(ξ,X)

...

F̂j0,N(ξ,X)


 =



−1
· · ·
0


 , (55)

where (z, ξ)(≈ (z0, ξ0)) ∈M, X ≈ X0.

By the Cramer’s rule, we conclude that {F̂j0,l(ξ,X)}N
l=1 are rational functions of ξ with

a uniformly bounded degree on an open piece of each Segre variety Qz for z ≈ z0. By the
previous modified Hurwitz Theorem (Theorem 4.10), we conclude the algebraicity of F̂j0,l(ξ,X)

for l = 1, ..., N.. Since in (55) the matrix
(
Lβµ

j0Fj0,ν(z, ξ)
)

1≤µ,ν≤N
and the right hand side are

independent of X, these functions must also be independent of the X-variables. Moreover, by
Lemma 4.9 and Theorem 4.10, the total algebraic degree of F j0,l(ξ) = F̂j0,l(ξ,X), for l = 1, ..., n,
is uniformly bounded. Since F is obtained by holomorphically continuing the conjugation
function F of F , we conclude the algebraicity of Fj0,l for each 1 ≤ l ≤ n. Also the total
algebraic degree of each Fj0,l is bounded by a constant depending only on (M,ω).

Theorem 4.11. Under the notations we have just set up, Fj0 is a rational map, whose degree
depends only on the canonical embedding M ↪→ CPN .

For the proof Theorem 4.11, we first recall the following Lemma of [HZ]:

Lemma 4.12. (Lemma 3.7 in [HZ]) Let U ⊂ Cn be a simply connected open subset and S ⊂ U
be a closed complex analytic subset of codimension one. Then for p ∈ U \ S, the fundamental
group π1(U \ S, p) is generated by loops obtained by concatenating (Jordan) paths γ1, γ2, γ3,
where γ1 connects p with a point arbitrarily close to a smooth point q0 ∈ S, γ2 is a loop around
S near q0 and γ3 is γ1 reversed.

Proof of Theorem 4.11: We give a proof for the rationality of Fj0 . Once this is done, we then
conclude that the degree of Fj0 is uniformly bounded, for we know the total algebraic degree
of F is uniformly bounded by Theorem 4.7.
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Suppose that Fj0 and thus Fj0 is not rational. Write E ⊂ Cn for a proper complex analytic
variety containing the branch locus of Fj0 , Fj0 and the zeros of the leading coefficients of the
minimal polynomials of their components. We first notice that for A 6= B ∈ Cn, Q∗

A 6= Q∗
B,

by Lemma 2.1. Hence, for any proper complex analytic variety V 1, V 2 ⊂ Cn and any point
(a, b) ∈M, we can find (a1, b1) ≈ (a, b) such that a1 ∈ Qb1 \ V 1 and b1 6∈ V 2.

We choose (z0, ξ0) as above and assume further that z0, ξ0 6∈ E (after a small perturbation
if needed). We choose a sufficiently small neighborhood W of (z0, ξ0) in MREG such that for
each (z1, ξ1) ∈ W , we can find, by Lemma 4.12, a loop of the form γ = γ−1

1 ◦ γ2 ◦ γ1 in Cn \ E
with γ(0) = γ(1) = ξ1, γ1(1) = q. Here γ1 is a simple curve connecting ξ1 to q with q in a small
ball Bp centered at a certain smooth point p of E such that the fundamental group of Bp \ E
is generated by γ2; and γ−1

1 is the reverse curve of γ1. Moreover, when Fj0 is holomorphically

continued along γ, we end up with a different branch Fj0

∗
of Fj0 near ξ1. We pick p such

that there is an Xp 6∈ E with (Xp, p) ∈ Mreg,z. (This follows from Proposition (III) and
Lemma 2.1 as mentioned above.) Take a certain small neighborhood W of (Xp, p) in Mreg,z.
We assume, without loss of generality, that the piece W of Mreg,z is defined by a holomorphic
function of the form z1 = φ(z2, · · · , zn, ξ). In particular, writing Xp = (zp

1 , · · · , zp
n), we have

zp
1 = φ(zp

2 , · · · , zp
n, p). Make Bp sufficiently small such that it is compactly contained in the

image of the projection of W into the ξ-space. Write Xq = (φ(zp
2 , · · · , zp

n, q), z
p
2 , · · · , zp

n) and
define the loop γ∗2(t) = (φ(zp

2 , · · · , zp
n, γ2(t)), z

p
2 , · · · , zp

n). Then γ∗2 is a loop whose base point is
at Xq. Also, we have (γ∗2(t), γ2(t)) ∈M.

Notice that Xp 6∈ E. After shrinking Bp if needed, we assume that γ∗2 stays sufficiently close
to Xp and is homopotically trivial in Cn \ E.

Now we slightly thicken γ1 to get a simply connected domain U1 of Cn \ E. Since M is
irreducible over Cn × U1, we can find a smooth simple curve γ̃1 = (γ1

∗, γ̂1) in M \ ((E ×
Cn)∪ (Cn ×E)) connecting (z1, ξ1) to (Xq, q). Then γ̂1 is homotopic to γ1 relatively to {ξ1, q}
and γ1

∗(1) = Xq. Now replace γ by its homopotically equivalent loop γ̂−1
1 ◦ γ2 ◦ γ̂1 and define

γ∗ = γ∗−1
1 ◦γ∗2◦γ∗1. Define Γ = (γ∗, γ). Then the image of Γ lies insideM\((E×Cn)∪(Cn×E)).

Continuing Equation (54) along Γ and noticing that it is independent of X now, we get both

1 + Fj0(z) · F j0(ξ) = 0 and 1 + Fj0(z) · F
∗
j0
(ξ) = 0 ∀(z, ξ) ∈M∩ ((V1 \ E)× (V2 \ E)).

Now as before, applying the uniqueness for the solution of the linear system (55) (with an
invertible coefficient matrix), we then conclude that Fj0

∗ ≡ Fj0 . This is a contradiction.

4.3 Isometric extension of F

For simplicity of notation, in the rest of this section, we denote the map Fj0 just by F . Now
that all components of F are rational functions, it is easy to verify that F gives rise to a rational
map M 99K M . By the Hironaka theorem (see [H] and [K]), we have a (connected) complex
manifold Y of the same dimension, holomorphic maps τ : Y → M , σ : Y → M , and a proper
complex analytic variety E1 of M such that σ : Y \ σ−1(E1) → M \ E1 is biholomorphic;
F : M \ E1 → M is well-defined; and for any p ∈ Y \ σ−1(E1), F (σ(p)) = τ(p).
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Let E2 be a proper complex analytic subvariety of M containing E1, M\A and let E3 ⊂ Y be
the proper subvariety where τ fails to be biholomorphic. Write E∗ = τ(σ−1(E2)∪E3)∪ (M \A)
and E = σ(τ−1(E∗)). Then F : A\E → A\E∗ is a holomorphic covering map. We first prove

Lemma 4.13. : Under the above notation, F : A \ E → A \ E∗ is a biholomorphic map.

Proof of Lemma 4.13: We first notice that since F is biholomorphic near 0 with F (0) = 0.

We can assume that 0 6∈ E. Consider F 2 = F ◦ F . Then F 2 = F
2
. Since (F, F ) maps M into

M whenever it is defined, it is easy to see that (F, F ) ◦ (F, F ) = (F 2, F
2
) also maps M into

M at the points where it is well-defined. Hence, we can repeat a similar argument for F to
conclude that F 2, as a rational map, also has its degree bounded by a constant independent
of F 2. Similarly, we can conclude that for any positive integer m, Fm is a rational map with
degree bounded by a constant independent of m and F . Now, as for F , we can find complex
anaytic subvarieties E(m), E∗(m) of Cn such that Fm is a holomorphic covering map from
A \E(m) → A\E∗(m). Suppose F : A \E → A\E∗ is a k to 1 covering map. It is easy to see
that Fm : A \ E(m) → A \ E∗(m) is a km to 1 covering map. However, since the degree Fm is
independent of m, we conclude that k = 1 by the following Bezout theorem:

Theorem 4.14. ([S]) The number of isolated solutions to a system of polynomial equations

f1(x1, ..., xn) = f2(x1, ..., xn) = ... = fn(x1, ..., xn) = 0

is bounded by d1d2 · · · dn, where di = deg fi.

This proves the lemma.

Now we prove that F extends to a global holomorphic isometry of (M,ω).

Theorem 4.15. F : (U, ω|U) → (M,ω) extends to a global holomorphic isometry of (M,ω).

Proof of Theorem 4.15: By what we just achieved, we then have two proper complex analytic
varieties W1, W2 of Cn such that F : Cn\W1 → Cn\W2 is biholomorphic. Similarly we have
two proper complex analytic subvarieties W ∗

1 , W ∗
2 of Cn such that F : Cn \W ∗

1 → Cn \W ∗
2 is

a biholomorphic map. Hence

F = (F, F ) : Cn \W1 × Cn \W ∗
1 → Cn \W2 × Cn \W ∗

2

is biholomorphic. Let ρ be the defining function of the Segre family as described before. Since ρ
is irreducible as a polynomial in (z, ξ), M is an irreducible complex analytic variety of A. Since
F maps a certain open piece of M into an open piece of M, by the uniqueness of holomorphic
functions, we see that F = (F, F ) also gives a biholomorphic map from (Cn\W1×Cn\W ∗

1 )∩M
to (Cn \W2 ×Cn \W ∗

2 )∩M. Hence ρF = ρ(F (z), F (ξ)) defines the same subvariety as ρ does
over Cn \W1×Cn \W ∗

1 . Since ρF is a rational function in (z, ξ) with denominator coming from
the factors of the denominators of F (z) and F (ξ), we can write

ρF (z, ξ) = (ρ(z, ξ))l P i1
1 (z, ξ)P i2

2 (z, ξ) · · · P iτ
τ (z, ξ)

Qj1
1 (z) · · ·Qjµ

µ (z)Rk1
1 (ξ) · · ·Rkν

ν (ξ)
(56)
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Here the zeros of Qj(z) and Rj(ξ) stay in W1 and W ∗
1 , respectively. All polynomials are

irreducible and prime to each other. By what we just mentioned Pj(z, ξ) can not have any
zeros in Cn \W1×Cn \W ∗

1 , for otherwise it must have ρ as its factor by the irreducibility of ρ.
Hence the zeros of Pj(z, ξ) must stay in (W1×Cn)∪(Cn×W ∗

1 ). From this, it follows easily that
Pj(z, ξ) = Pj,1(z) or Pj(z, ξ) = Pj,2(ξ). Namely, Pj(z, ξ) depends either on z or on ξ. Since F

is biholomorphic, we see that l = 1. Thus replacing ξ by z̄ and taking i∂∂̄ log to (56), we have
i∂∂̄ log ρF (z, z̄) = i∂∂̄ log ρ(z, z̄). This shows that F ∗(ω) = ω, or F is a local isometry. Now,
by the Calabi Theorem (see [Ca]), F extends to a global holomorphic isometry of (M,ω). This
proves Theorem 4.15.

We now are ready to give a proof of Theorem 4.1. By what we have obtained, there is a
component Fj for F in Theorem 4.1 that extends to a holomorphic isometry to (M,ω). Hence
F ∗

j (dµ) = dµ. Notice λj < 1 due to the positivity of all terms in the right hand side of the
equation (40). After a cancellation, we reduce the theorem to the case with only (m−1)- maps.
Then by an induction argument, we complete the proof of Theorem 4.1.

5 Partial non-degeneracy: Proof of Proposition (I)

In this section, we prove Proposition (I) for irreducible compact Hermitian spaces of compact
type. Since the argument differs as its type varies, we do it on a case by case base. For conve-
nience of the reader, we give a detailed proof here for the Grassmannians and Hyperquadrics.
We will include the rest arguments in Appendix II.

5.1 Spaces of type I

With the same notations that we have set up in §2, Z is a p× q matrix (p ≤ q); Z(
i1 ... ik
j1 ... jk

)

is the determinant of the submatrix of Z formed by its ith1 , ..., ithk rows and jth
1 , ..., jth

k columns;
z = (z11, ..., z1q, z21, ..., z2q, ..., zp1, ..., zpq) is the coordinates of Cpq∼=A ⊂ G(p, q). Let 0 ∈ U be a
small neighborhood of 0 in Cpq and F be a biholomorphic map defined over U with F (0) = 0.
For convenience of our discussions, we represent the map F : U → A as a holomorphic matrix-
valued map:

F =




f11 ... f1q

... ... ...
fp1 ... fpq


 .

Similar to Z(
i1 ... ik
j1 ... jk

), F (
i1 ... ik
j1 ... jk

) denotes the determinant of the submatrix formed by the

ith1 , ..., ithk rows and jth
1 , ..., jth

k columns of the matrix F . Recall in (2), rz is defined as

(ψ1, ψ2, ..., ψN) = (· · · , Z(
i1 ... ik
j1 ... jk

), · · · ), 1 ≤ i1 < ... < ik ≤ p, 1 ≤ j1 < ... < jk ≤ q, 1 ≤ k ≤ p.
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Similarly, we define:

rF := (· · · , F (
i1 ... ik
j1 ... jk

), · · · ), 1 ≤ i1 < ... < ik ≤ p, 1 ≤ j1 < ... < jk ≤ q, 1 ≤ k ≤ p.

Notice that rF = (ψ1(F (z)), ..., ψN(F (z))). We define

z̃ := (z11, ..., z1q, z21, ..., z2q, ..., zp1, ..., zp(q−1)),

i.e., z̃ is obtained from z by dropping the last component zpq. Write ∂|α|
∂z̃α = ∂|α|

∂z
α11
11 ...∂z

αp(q−1)
p(q−1)

for

any (pq − 1)−multiindex α, where α = (α11, ..., α1p, α21, ..., α2q, ..., αp1, ..., αp(q−1)).
We apply the notion of the partial degeneracy defined in Definition 3.1 of §3 by letting

ψ = rF and letting z̃ be as just defined with m = pq. We prove the following proposition:

Proposition 5.1. rF are z̃−nondegenerate near 0. More precisely, rank1+N−pq(rF , z̃) = N.

Proof of Proposition 5.1: If p = 1, q = n ≥ 1 i.e., the Hermitian symmetric space M = Pn,
then it follows from Lemma 3.3 that rank1(rF , z̃) = N = n. In the following we assume p ≥ 2.

Suppose the conclusion is not true. Namely, assume that rank1+N−pq(rF , z̃) < N. Since the
hypothesis of Theorem 3.10 is satisfied, we see that there exist cpq+1, ..., cN ∈ C which are not
all zero such that

N∑
i=pq+1

ciψi(F )(z11, ..., zpq−1, 0) ≡ 0. (57)

The next step is to show that (57) cannot hold in the setting of Proposition 5.1. This is
obvious if we can prove the following:

Lemma 5.2. Let

H =




h11 ... h1p

... ... ...
hp1 ... hpq


 ,

be a vector-valued holomorphic function in a neighborhood U of 0 in z̃ = (z11, ..., zp(q−1)) ∈ Cpq−1

with H(0) = 0. Assume that H is of full rank at 0. Set

(φ1, ..., φm) := rH =

((
H

(
i1 ... ik
j1 ... jk

) )

1≤i1<...<ik≤p,1≤j1<...<jk≤q

)

2≤k≤p

. (58)

Here

m =

(
p
2

)(
q
2

)
+ ... +

(
p
p

)(
q
p

)
.
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Let a1, ..., am be complex numbers such that

m∑
i=1

aiφi(z̃) ≡ 0 for all z̃ ∈ U. (59)

Then ai = 0 for each 1 ≤ i ≤ m.

Proof of Lemma 5.2: We start with the simple case p = q = 2, in which m = 1. Then by
the assumption (59), a1φ1 = 0. Here

φ1 =

∣∣∣∣
h11 h12

h21 h22

∣∣∣∣ .

Note that H = (h11, h12, h21, h22) is of full rank at 0. We assume, without loss of generality,
that H̃ := (h11, h12, h21) is a local biholomorphic map from C3 to C3. After an appropriate
biholomorphic change of coordinates preserving 0, we can assume h11 = z11, h12 = z12, h21 = z21,
and still write the last component as h22. Then we have

a1φ1 = a1(z11h22 − z12z21) ≡ 0,

which easily yields that a1 = 0.
We then prove the lemma for the case of p = 2, q = 3, in which m = 3. As before, without

loss of generality, we assume that H̃ := (h11, h12, h13, h21, h22) is a local biholomorphic map
near 0 from C5 to C5. After an appropriate biholomorphic change of coordinates, we assume
that H̃ = (z11, ..., z22). By (59), we have

a1φ1 + ... + a3φ3 = a1

∣∣∣∣
z11 z12

z21 z22

∣∣∣∣ + a2

∣∣∣∣
z11 z13

z21 h23

∣∣∣∣ + a3

∣∣∣∣
z12 z13

z22 h23

∣∣∣∣ . (60)

The conclusion can be easily proved by checking the coefficients in the Taylor expansion
at 0. Indeed, the quadratic terms z13z21, z13z22 only appear once in the last two determinants.
This implies a2 = a3 = 0. Then trivially a1 = 0.

We also prove the case p = q = 3. In this case m = 10. As before, without loss of gen-
erality, we assume that H̃ = (h11, ..., h32) is a biholomorphic map from C8 to C8. After an
appropariate biholomorphic change of coordinates, we can assume that H̃ = (z11, ..., z32). Then
by assumption, we have

a1φ1 + ... + a10φ10 =

a1

∣∣∣∣
z11 z12

z21 z22

∣∣∣∣ + a2

∣∣∣∣
z11 z13

z21 z23

∣∣∣∣ + a3

∣∣∣∣
z12 z13

z22 z23

∣∣∣∣ + a4

∣∣∣∣
z11 z12

z31 z32

∣∣∣∣ + a5

∣∣∣∣
z11 z13

z31 h33

∣∣∣∣ + a6

∣∣∣∣
z12 z13

z32 h33

∣∣∣∣

+ a7

∣∣∣∣
z21 z22

z31 z32

∣∣∣∣ + a8

∣∣∣∣
z21 z23

z31 h33

∣∣∣∣ + a9

∣∣∣∣
z22 z23

z32 h33

∣∣∣∣ + a10

∣∣∣∣∣∣

z11 z12 z13

z21 z22 z23

z31 z32 h33

∣∣∣∣∣∣
= 0.

(61)
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We then check the coefficients for each term in its Taylor expansion at 0. First it is easy to
note that a5 = a6 = a8 = a9 = 0 by checking the coefficients of quadratic terms

z13z31, z13z32, z23z31, z23z32,

respectively. Then by checking the coefficients of other quadratic terms, we see that a1 = a2 =
a3 = a4 = a7 = 0. Finally we check the coefficient of the cubic term z13z22z31 to obtain that
a10 = 0.

We now prove the general case: q ≥ p ≥ 2. As before, we assume without loss of generality
that H̃ = (h11, ..., hp(q−1)) is a biholomorphic map from Cpq−1 to Cpq−1. Furthermore, we have

H̃ = (z11, ..., zp(q−1)) after an appropriate biholomorphic change of coordinates. We again first
consider the coefficients of the quadratic terms in (59). For that, we consider the 2×2 submatrix

involving hpq, i.e., H

(
l p
k q

)
, 1 ≤ l < p, 1 ≤ k < q. Note that zlqzpk only appears in this 2× 2

determinant, which yields that the coefficient ai associated to this 2 × 2 determinant is 0, for
any 1 ≤ i < p, 1 ≤ j < q. Then by checking the coefficients of other quadratic terms, we see

that all coefficients a′is that are associated to 2×2 determinants H

(
l1 l2
k1 k2

)
, 1 ≤ l1, l2 ≤ p, 1 ≤

k1, k2 ≤ q, are 0.
We then consider the coefficients of cubic terms in (59). We first look at those 3×3 submatrix

involving hpq. i.e., H

(
l1 l2 p
k1 k2 q

)
, 1 ≤ l1 < l2 < p, 1 ≤ k1 < k2 < q. Note that zl1qzl2k2zpk1 only

appears in this 3× 3 matrix, which yields that the ai associated to this 3× 3 determinant is 0.
Furthermore, we see that all coefficients ai’s that are associated to 3× 3 determinants are 0.

Now the conclusion can be proved inductively. Indeed, assume that we have proved that all
coefficients ai’s that are associated with the determinants of order up to µ × µ, 3 ≤ µ < p
are zero. Then we will prove that the coefficients associated with (µ + 1) × (µ + 1) de-
terminants are also 0. For this we consider all such determinants which involve hpq, i.e.,

H

(
l1 ... lµ p
k1 ... kµ q

)
where 1 ≤ l1 < ... < lµ < p, 1 ≤ k1 < ... < kµ < q. We conclude the

ai associated to it is 0 by noting that zl1qzl2kµ ...zlµk2zpk1 only appears in this (µ + 1)× (µ + 1)
determinant. Then we can show all coefficients that are associated with other (µ + 1)× (µ + 1)
determinants, i.e.,

H

(
l1 ... lµ lµ+1

k1 ... kµ kµ+1

)
, 1 ≤ l1 < ... < lµ+1 ≤ p, 1 ≤ k1 < ... < kµ+1 ≤ q, (lµ+1, kµ+1) 6= (p, q).

are 0 by checking a term of the form zl1k1 ...zlµ+1kµ+1 that only appears once in the Taylor
expansion of the left hand side of (57). This proves the lemma.

We thus get a contradiction to the equation (57). This establishes Proposition 5.1.
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Remark 5.3. Let F be as in Proposition 5.1. There exist multiindices β1, ..., βN with |βj| ≤
1 + N − pq and

z0 =




z0
11 ... z0

1q

... ... ...
z0

p1 ... z0
pq


 6= 0

such that z0 is near 0 and

∆(β1, ..., βN) :=

∣∣∣∣∣∣∣∣

∂|β
1|(ψ1(F ))

∂z̃β1 ... ∂|β
1|(ψN (F ))

∂z̃β1

... ... ...
∂|β

N |(ψ1(F ))

∂z̃βN ... ∂|β
N |(ψN (F ))

∂z̃βN

∣∣∣∣∣∣∣∣
(z0) 6= 0. (62)

Perturbing z0 if necessary, we can thus assume that z0
pq 6= 0. Moreover, we can replace one of

the β1, ..., βN by β = (0, ..., 0), because (ψ1(F ), ..., ψN(F )) are not identically zero (See also the
proof of Theorem 3.4). Without lost of generality, we can assume that β1 = (0, ..., 0).

The defining function of the Segre family now is

ρ(z, ξ) = 1 +

p∑

k=1

( ∑
1≤i1<i2<...<ik≤p,1≤j1<j2<...<jk≤q

Z(
i1 ... ik
j1 ... jk

)Ξ(
i1 ... ik
j1 ... jk

)

)
(63)

It is a complex manifold for any fixed ξ close enough to the point

ξ0 =




0 ... 0 0
0 ... 0 0
0 ... 0 ξ0

pq


 ∈ Cpq, ξ0

pq = − 1

z0
pq

.

Write for each 1 ≤ i ≤ p, 1 ≤ j ≤ q, (i, j) 6= (p, q),

Lij =
∂

∂zij

−
∂ρ

∂zij
(z, ξ)

∂ρ
∂zpq

(z, ξ)

∂

∂zpq

, (64)

which is a well-defined holomorphic tangent vector field along M near (z0, ξ0). Here we note
that ∂ρ

∂zpq
(z, ξ) is nonzero near (z0, ξ0). For any (pq − 1)-multiindex β = (β11, ..., βp(q−1)), we

write
Lβ = Lβ11

11 ...Lβp(q−1)

p(q−1) .

Now we define for any N collection of (pq − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN)(z, ξ) :=

∣∣∣∣∣∣

Lβ1
(ψ1(F )) ... Lβ1

(ψN(F ))
... ... ...

LβN
(ψ1(F )) ... LβN

(ψN(F ))

∣∣∣∣∣∣
(z, ξ). (65)
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Theorem 5.4. There exists multiindices {β1, ..., βN}, such that

Λ(β1, ..., βN)(z, ξ) 6= 0, (66)

for (z, ξ) in a small neighborhood of (z0, ξ0). Moreover, we can require β1 = (0, ..., 0).

Proof of Theorem 5.4: First we observe that Lij evaluating at (z0, ξ0) is just ∂
∂zij

. More

generally, for any (pq − 1)−multiindex β, by an easy computation, Lβ evaluating at (z0, ξ0)
coincides with ∂

∂z̃β . Therefore, we can just choose the same β1, ..., βN as in Remark 5.3.

5.2 Spaces of type IV

In this subsection, we consider the hyperquadric case M = Qn. This case is more subtle because
the tangent vector fields of its Segre family are more complicated. Recall that Qn is defined by

{
[z0, ..., zn+1] ∈ CPn+1 :

n∑
i=1

z2
i − 2z0zn+1 = 0

}
,

where [z0, ..., zn+1] is the homogeneous coordinates of CPn+1. The previously described minimal
embedding Cn(A) → Qn is given by

z := (z1, ..., zn) 7→ [1, ψ1(z), ..., ψn+1(z)] = [1, z1, ..., zn,
1

2

n∑
i=1

z2
i ].

The defining function of the Segre family over A×A is ρ(z, ξ) = 1 + rz · rξ, where

rz = (z1, ..., zn,
1

2

n∑
i=1

z2
i ), rξ = (ξ1, ..., ξn,

1

2

n∑
i=1

ξ2
i ). (67)

Let F be a local biholomorphic map at 0 with F (0) = 0. We write

F = (f1, ..., fn), rF = (f1, ..., fn,
1

2

n∑
i=1

f 2
i ). (68)

Notice that
rz = (ψ1(z), ..., ψn+1(z)), rF = (ψ1(F ), ..., ψn+1(F )).

We will need the following lemma:

Lemma 5.5. For each fixed µ1, ..., µn−1 with (
∑n−1

i=1 µ2
i ) + 1 = 0 and each fixed (z1, ..., zn) with

(
∑n−1

i=1 µizi) + zn 6= 0, we can find (ξ1, ..., ξn) such that

1 + z1ξ1 + ... + znξn = 0;
n∑

i=1

(ξi)
2 = 0, ξj = µjξn, 1 ≤ j ≤ n− 1, ξn 6= 0. (69)
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Proof of Lemma 5.5: We just need to set

ξn =
−1

(
∑n−1

i=1 µizi) + zn

, ξj = µjξn, 1 ≤ j ≤ n− 1.

Then it is easy to verify that (69) is satisfied.
Recall that in the type I case, the vector fields ∂

∂ezα in Cpq are tangent vector fields of the
particular hyperplane {zpq = 0}. We can formulate the result in §3 in a more abstract way
and extend it to a more general setting. For instance, it can be generalized to the complex
hyperplane case. We briefly discuss this in more details as follows:

First fix µ1, ..., µn−1 with (
∑n−1

i=1 µ2
i ) + 1 = 0. Take the complex hyperplane H : zn +∑n−1

i=1 µizi = 0 in (z1, ..., zn) ∈ Cn. Write

L1 =
∂

∂z1

− µ1
∂

∂zn

, ..., Ln−1 =
∂

∂zn−1

− µn−1
∂

∂zn

.

Then {Li}n−1
i=1 forms a basis of the tangent vector fields of H. For any multiindex α =

(α1, .., αn−1), we write Lα = Lα1
1 ...L

αn−1

n−1 . We define L−rank and L−nondegeneracy as in Def-
inition 3.1 by using rF in (68) and by using Lα instead of z̃α with m = n. We write the kth
L-rank defined in this setting as rankk(rF , L) We now need to prove the following

Proposition 5.6. rank2(rF , L) = n + 1.

Proof of Proposition 5.6: Suppose not. By applying the same argument as in Section 3 and
a linear change of coordinates, we can first obtain a modified version of Theorem 3.10:

Lemma 5.7. There exist n+1 holomorphic functions g1(w), ..., gn+1(w) which are defined near
0 on the w−plane with {g1(0), ..., gn+1(0)} not all zero such that the following holds for all
z ∈ U.

n+1∑
i=1

gi(zn + µ1z1 + ... + µn−1zn−1)ψi(F (z)) ≡ 0. (70)

Then one shows with a similar argument as in Section 3, by the fact that F has full rank
at 0, that g1(0) = 0, ..., gn(0) = 0. Hence we obtain,

Lemma 5.8. There exists a non-zero constant c ∈ C such that

cψn+1(F (z)) =
c

2

n∑
i=1

f 2
i (z) ≡ 0, (71)

for all z ∈ U when restricted on zn +
∑n−1

i=1 µizi = 0.

We then just need to show that (71) cannot hold by applying the following lemma and a
linear change of coordinates.
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Lemma 5.9. Let H = (h1, ..., hn) be a vector-valued holomorphic function in a neighborhood
U of 0 in z̃ = (z1, ..., zn−1) ∈ Cn−1 with H(0) = 0. Assume that H has full rank at 0. Assume
that a is a complex number such that,

a
n∑

i=1

h2
i (z̃) ≡ 0, (72)

Then a = 0.

Proof of Lemma 5.9: Seeking a contradiction, suppose not. Notice that H has full rank
at 0. We assume, without loss of generality, that (h1, ..., hn−1) gives a local biholomorphic
map near 0 from Cn−1 to Cn−1. By a local biholomorphic change of coordinates, we assume
(h1, ..., hn−1) = (z1, ..., zn−1), and still write the last component as hn. Then equation (72) is
reduced to

a(z2
1 + ... + z2

n−1 + h2
n) = 0.

To cancel the z2
1 , z

2
2 terms, it yields that hn has linear z1, z2 terms. But then h2

n would produce
a z1z2 term, which cannot be canceled out. This is a contradiction.

This also establishes Proposition 5.6.

Remark 5.10. By Proposition 5.6, there exist multiindices β̃1, ..., β̃n+1 with |β̃j| ≤ 2 and

z0 = (z0
1 , ..., z

0
n) with

n−1∑
i=1

µiz
0
i + z0

n 6= 0

such that ∣∣∣∣∣∣

Lβ̃1
(ψ1(F )) ... Lβ̃1

(ψn+1(F ))
... ... ...

Lβ̃n+1
(ψ1(F )) ... Lβ̃n+1

(ψn+1(F ))

∣∣∣∣∣∣
(z0) 6= 0. (73)

We then choose ξ0 = (ξ0
1 , ..., ξ

0
n) as in Lemma 5.5. That is

1 + z0
1ξ

0
1 + ... + z0

nξ
0
n = 0;

n∑
i=1

(ξ0
i )

2 = 0, ξ0
j = µjξ

0
n, 1 ≤ j ≤ n− 1, ξ0

n 6= 0.

It is easy to see that (z0, ξ0) ∈M. We now define

Li =
∂

∂zi

−
∂ρ
∂zi

(z, ξ)
∂ρ
∂zn

(z, ξ)

∂

∂zn

, 1 ≤ i ≤ n− 1 (74)

for (z, ξ) ∈M near (z0, ξ0). They are well-defined holomorphic tangent vector fields along M.
Moreover, ∂ρ

∂zn
(z, ξ) is nonzero near (z0, ξ0).
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We define for any multiindex α = (α1, .., αn−1), Lα = Lα1
1 ...Lαn−1

n−1 . Then for any (n + 1)
collection of (n− 1)−multiindices, set {β1, ..., βN},

Λ(β1, ..., βn+1)(z, ξ) :=

∣∣∣∣∣∣

Lβ1
(ψ1(F )) ... Lβ1

(ψn+1(F ))
... ... ...

Lβn+1
(ψ1(F )) ... Lβn+1

(ψn+1(F ))

∣∣∣∣∣∣
(z, ξ). (75)

By the fact that
∑n

i=1(ξ
0
i )

2 = 0, one can check that, for any multiindex α = (α1, .., αn),
Lα = Lα when evaluated at (z0, ξ0). Then we get the following:

Theorem 5.11. There exist multiindices {β1, ..., βN} such that

Λ(β1, ..., βN)(z, ξ) 6= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0), where β1 = (0, 0, ..., 0).

Proofs for the other types are similar and will be left to Appendix II.

6 Transversality and flattening of Segre families: Proof

of Proposition (II)

In this section, we prove Proposition (II). We still use the notations we have set up so far. We
equip the space M with the canonical Kähler-Einstein metric ω as described before. We start
with the following lemma:

Lemma 6.1. Let σ̂ : (M,ω) → (M,ω) be a holomorphic isometry. In the affine space A, its
components consist of rational functions with its degree bounded only by a constant depending
on (M,ω).

Proof of Lemma 6.1: Notice that M has been isometrically embedded into CPN through the
canonical map defined before. Hence σ̂ is the restriction of a unitary transformation. Hence σ̂
can be identified with a map of the form:

(ψ̃0, ψ̃1, ψ̃2, ..., ψ̃N) = (
N∑

j=0

a0jψj, ...,

N∑
j=0

aijψj, ...,

N∑
j=0

aNjψj),

where ψ0 = 1 and (aij) is a unitary matrix. Write

Ψ(z) : z(∈ A) 7→ [1, κ1z1, · · · , κizi, · · · , κnzn, o(z
2)] ∈ CPN

for the embedding, where κi = 1 or
√

2. σ̂ induces a birational self-action σ of A such that

Ψ(σ(z)) = σ̂(Ψ(z)). Then, from the special form of Ψ, σ(z) =
(

ψ̃1

κ1ψ̃0
, ψ̃2

κ2ψ̃0
, ..., ψ̃n

κnψ̃0

)
. Apparently

ψ̃0 6≡ 0.
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Theorem 6.2. Suppose ξ0 ∈ Cn \{0}. Then for a generic smooth point z0 on the Segre variety
Qξ0 and a small neighborhood U ⊂ Cn of z0, there is a point z1 ∈ U ∩Qξ0, such that Qz0 and
Qz1 are both smooth at ξ0 and intersect transversally there. Moreover, there is a biholomorphic
parametrization G(ξ̃1, ξ̃2, ..., ξ̃n) = (ξ1, ξ2, ..., ξn), with (ξ̃1, ξ̃2, ..., ξ̃n) ∈ U1 × U2 × ... × Un ⊂ Cn.
Here when 1 ≤ j ≤ 2, Uj is a small neighborhood of 1 ∈ C. When 3 ≤ j ≤ n, Uj is a small
neighborhood of 0 ∈ C with G(1, 1, 0, · · · , 0) = ξ0, such that G({ξ̃1 = 1} × U2 × ... × Un) ⊂
Qz0 ,G(U1 × {ξ̃2 = 1} × U3 × ... × Un) ⊂ Qz1 , and G({ξ̃1 = t} × U2 × ... × Un),G(U1 × {ξ̃2 =
s}×U3× ...×Un), s ∈ U1, t ∈ U2 are open pieces of Segre varieties. Also, G consists of algebraic
functions with total degree bounded by a constant depending only on (M,ω).

We first claim that, due to the invariance of the Segre family, we need only to prove the
theorem for a special point 0 6= ξ0 ∈ Cn ⊂ M . Indeed, by the invariance property mentioned
in §2, for an isometry σ, (σ, σ) preserves the Segre family M ⊂ M × M. Here for p ∈ CPN ,
σ(p) := σ(p) as before. Here, we mention that in the statement of the theorem, we assume
that z0 is a generic smooth point because under this transformation, some smooth points on
Qξ0 may be mapped into the hyperplance of M at infinity, which can not be chosen as our z0.

We now proceed to the proof of Theorem 6.2 by choosing a good point ξ0. We only carry
out the proof for the case of hyperquadrics and Grassmannian spaces here. The proof for the
remaining cases is similar and will be included in Appendix III.

Proof of Theorem 6.2: Case 1. Hyperquadrics: Suppose M is the hyperquadric. Then
the defining equation for the Segre family is

ρ(z, ξ) = 1 +
n∑

i=1

ziξi +
1

4
(

n∑
i=1

z2
i )(

n∑
i=1

ξ2
i ) = 0.

We choose ξ0 = (1, 0, 0, ..., 0). Hence Qξ0 = {z : ρ(z, ξ0) = 1 + z1 + 1
4
(
∑n

i=1 z2
i ) = 0}. We

compute the gradient of ρ(z, ξ0) as follows: ∇ρ(z, ξ0) = (1 + 1
2
z1,

1
2
z2, ...,

1
2
zn). Notice that Qξ0

is smooth except at (−2, 0, ..., 0), namely, we have ∇ρ(z, ξ0) 6= 0 away from (−2, 0, · · · , 0). For
a smooth point z0(6= (−2, 0, · · · , 0)) of Qξ0 , we choose a neighborhood U of z0 in Cn such that
U ∩ Qξ0 is a smooth piece of Qξ0 . Pick also z1(6= z0) ∈ U ∩ Qξ0 and compute the gradient of
the defining function of Qz0 and Qz1 at ξ0 = (1, 0, ..., 0), respectively. Recall

Qzs = {ξ|ρ(zs, ξ) = 1 +
n∑

i=1

zs
i ξi +

1

4
(

n∑
i=1

(zs
i )

2)(
n∑

i=1

ξ2
i ) = 0}, for s = 0, 1.

(∇ρ(z0, ξ)|ξ0=(1,0,...,0)

∇ρ(z1, ξ)|ξ0=(1,0,...,0)

)
=

(
z0
1 + 1

2

∑n
i=1(z

0
i )

2 z0
2 z0

3 ... z0
n

z1
1 + 1

2

∑n
i=1(z

1
i )

2 z1
2 z1

3 ... z1
n

)
=

(−2− z0
1 z0

2 z0
3 ... z0

n

−2− z1
1 z1

2 z1
3 ... z1

n

)

The second equality is simplified by making use of the fact that z0, z1 ∈ Qξ0=(1,0,...,0), which
implies that 0 = 1 + z0

1 + 1
4

∑n
i=1(z

0
i )

2 = 1 + z1
1 + 1

4

∑n
i=1(z

1
i )

2. Hence,

rank

(∇ρ(z0, ξ)|ξ0=(1,0,...,0)

∇ρ(z1, ξ)|ξ0=(1,0,...,0)

)
= rank

(−2− z0
1 z0

2 ... z0
n

−2− z1
1 z1

2 ... z1
n

)
= rank

(−2− z0
1 z0

2 ... z0
n

−∆z1
1 ∆z1

2 ... ∆z1
n

)
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= rank

(
2 + z0

1 z0
2 ... z0

n

∆z1
1 ∆z1

2 ... ∆z1
n

)
= rank

( ∇ρ(z, ξ0)|z0

∆z1
1 ∆z1

2 ... ∆z1
n

)
,

where ∆z1
i := z1

i − z0
i . Notice that z0 is a smooth point on Qξ0 . Hence ∇ρ(z, ξ0) is transversal

to the tangent space of Qξ0 at z0. If we choose z1 ∈ Qξ0 close enough to z0, which ensures
(∆z1

1 , ..., ∆z1
n) close enough to tangent space of Qξ0 at z0, we then get

rank

(∇ρ(z0, ξ)|ξ0=(1,0,...,0)

∇ρ(z1, ξ)|ξ0=(1,0,...,0)

)
= rank

( ∇ρ(z, ξ0)|z0

∆z1
1 ∆z1

2 ... ∆z1
n.

)
= 2.

We assume, without loss of generality, that ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ1,ξ2)

6= 0 at ξ0. Now we introduce new

variables ξ̃1, ..., ξ̃n and consider the following system of equations:




P1 : 1 +
∑n

i=1(ξ̃1z
0
i )ξi + 1

4
(
∑n

i=1(ξ̃1)
2(z0

i )
2)(

∑n
i=1 ξ2

i ) = 0

P2 : 1 +
∑n

i=1(ξ̃2z
1
i )ξi + 1

4
(
∑n

i=1(ξ̃2)
2(z1

i )
2)(

∑n
i=1 ξ2

i ) = 0

P3 : ξ̃3 − ξ3 = 0

... ...

Pn : ξ̃n − ξn = 0

Then we have ∂(P1,...,Pn)
∂(ξ1,...,ξn)

|A 6= 0 and ∂(P1,...,Pn)

∂(ξ̃1,...,ξ̃n)
|A 6= 0 where

A = (ξ̃1, ..., ξ̃n; ξ1, ..., ξn) = (1, 1, 0, ..., 0; 1, 0, ..., 0).

By Lemma 4.9, we get the needed algebraic flattening with total degree bounded only by (M,ω).
This completes the proof of Theorem 6.2 in the hyperquadric case.

Case 2. Grassmannians: Pick ξ0 = (ξ0
11, ξ

0
12, ..., ξ

0
pq) = (1, 0, ..., 0). The defining function

for the Segre family associated with this point is as follows:
ρ(z, ξ) = 1+ z11ξ11 + z12ξ12 + ...+ z1qξ1q + z21ξ21 + ...+ zp1ξp1 +

∑
i,j 6=1 zijξij +

∑
i,j≥2(z11zij−

zi1z1j)(ξ11ξij − ξi1ξ1j) +
∑

(i,j),(k,l) 6=(1,1)(zijzkl − zilzjk)(ξijξkl − ξilξjk) + higher order terms.

Then Qξ0 = {z|ρ(z, ξ0) = 1 + z11 = 0},∇ρ(z, ξ0) = (1, 0, 0, ..., 0). Hence Qξ0 is smooth. For
z ∈ Qξ0 , we have z = (−1, z12, ..., z1q, z21, ..., zp1, ..., zij, ..., zpq). Pick z0, z1 ∈ Qξ0 . Then

Qzs = {ξ|0 = ρ(zs, ξ) = 1+ zs
11ξ11 + zs

12ξ12 + ...+ zs
1qξ1q + zs

21ξ21 + ...+ zs
p1ξp1 +

∑
i,j 6=1 zs

ijξij +∑
i,j≥2(z

s
11z

s
ij−zs

i1z
s
1j)(ξ11ξij−ξi1ξ1j)+

∑
(i,j),(k,l) 6=(1,1)(z

s
ijz

s
kl−zs

ilz
s
jk)(ξijξkl−ξilξjk)+high order terms},

for s = 0, 1. We then compute their gradients as follows:

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
=

(
∂ρ(z0,ξ)

∂ξ11

∂ρ(z0,ξ)
∂ξ12

... ∂ρ(z0,ξ)
∂ξ1q

∂ρ(z0,ξ)
∂ξ21

... ∂ρ(z0,ξ)
∂ξp1

... ∂ρ(z0,ξ)
∂ξpq

∂ρ(z1,ξ)
∂ξ11

∂ρ(z1,ξ)
∂ξ12

... ∂ρ(z1,ξ)
∂ξ1q

∂ρ(z1,ξ)
∂ξ21

... ∂ρ(z1,ξ)
∂ξp1

... ∂ρ(z1,ξ)
∂ξpq

)
∣∣
ξ0

=

(−1 z0
12 ... z0

1q z0
21 ... z0

p1 −z0
i1z

0
1j ...

−1 z1
12 ... z1

1q z1
21 ... z1

p1 −z1
i1z

1
1j ...

)
.
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Thus, we have

rank

(
∇ρ(z0, ξ)

∣∣
ξ0

∇ρ(z1, ξ)
∣∣
ξ0

)
= rank

(−1 z0
12 ... z0

p1 −z0
i1z

0
1j ...

0 ∆z1
12 ... ∆z1

p1 (−z0
i1∆z1

1j − z0
1j∆z1

i1 −∆z1
i1∆z1

1j) ...

)
,

where ∆z1
ij = z1

ij − z0
ij. Hence, if we choose z1 such that z1

12 6= z0
12, Then the rank equals to 2.

Hence Qz0 and Qz1 are smooth and intersect transversally at ξ0.

Without loss of generality, assume ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ11,ξ12)

6= 0 at ξ0. Now we introduce new variables

ξ̃11, ..., ξ̃pq and set up the system:





P11 : ρ(z0, ξ̃11ξ) = 0

P12 : ρ(z1, ξ̃12ξ) = 0

P13 : ξ̃13 − ξ13 = 0

... ...

Ppq : ξ̃pq − ξpq = 0

Then ∂(P11,...,Ppq)

∂(ξ11,...,ξpq)
|A, ∂(P11,...,Ppq)

∂(ξ̃11,...,ξ̃pq)
|A 6= 0, where A = (ξ̃11, ..., ξ̃pq, ξ11, ..., ξpq) = (1, 1, 0, ..., 0, 1, 0, ..., 0).

By Lemma 4.9, we get the needed algebraic flattening.
The proof is similar in the other cases. We include a detailed argument for the remaining

cases in Appendix III.

7 Irreducibility of Segre varieties: Proof of Proposition

(III)

In this section we will establish Proposition (III). We prove results on the irreducibility of the
potential function ρ, Segre varieties and the Segre family. We still adapt the previously used
notation and assume that M is an irreducible Hermitian symmetric space of compact type of
dimension n, which has been minimally embedded into a projective space as described before.

Lemma 7.1. Each Segre variety is an irreducible algebraic subvariety.

Proof of lemma 7.1: For a minimally embedded Hermitian symmetric space, since all Segre
varieties are unitarily equivalent, it suffices to prove the lemma for a single Segre variety.
Without lost of generality, we take z = (0, ..., 0) ∈ A ⊂ M . Therefore, the corresponding Segre
variety Q∗

z is the hyperplane section M \ A, which is of pure dimension. From the classical
algebraic geometry [GH], when M is an irreducible Hermitian symmetric space of compact
type, the hyperplane section at infinity in the minimal canonical embedding case is a union of
Schubert cells. Moreover as shown in [CMP], the top dimensional piece is equivalent to Cn−1

and the others are of codimension at least two. Hence, the smooth points of Qz are connected
and thus Qz is irreducible.
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As a corollary of this lemma, we conclude that for each z ∈ Cn, the defining function ρ(z, ·)
of Qz has to be a power of one irreducible factor. However, as in the proof of Theorem 6.2, for
some a(6= 0) ∈ Cn, dξρ(a, ξ) is not identically zero along Qa. Next, we use this property and
the symmetric property of M to prove the following:

Proposition 7.2. For any b ∈ A with b 6= (0, ..., 0), ρ(b, ξ) (ρ(z, b), respectively) is irreducible
as a polynomial of ξ (as a polynomial in z, respectively).

Proof of proposition 7.2: Since ρ(z, ξ) = ρ(ξ, z), we need just to verify the first statement.
Let a be as above. For b ∈ A, there is σ̂ ∈ Isom(M,ω) ∩ SU(N + 1,C) such that σ̂(a) = b.
(Notice that σ̂ is represented by a unitary action.) By Lemma 6.1, let σ = ( l1

κ1l0
, ..., ln

κnl0
) be the

representation of σ̂ in A with l′js polynomials in z. Write Ψ = [1, rz] for the embedding of A
in PN . Then from the definition of ρ(z, z), we have

ρ(z, z) = ||Ψ(z)||2 = Ψ ·Ψt
= (σ̂Ψ) · (σ̂Ψ)

t
.

Lemma 7.3. (σ̂Ψ) · (σ̂Ψ)
t
= |l0(Ψ)|2 · ||Ψ(σ(z))||2 = |l0(Ψ)|2 · ρ(σ(z), σ(z)).

Proof. Writing Ψ(z) = [1, rz] = [1, ψ1(z), · · · , ψN(z)]. Then the identity Ψ(σ(z)) = σ̂(Ψ(z))
obtained in the proof of Lemma 6.1 yields that,

(ψ1(σ(z)), · · · , ψN(σ(z))) =

(
ψ̃1(Ψ(z))

ψ̃0(Ψ(z))
, · · · ,

ψ̃N(Ψ(z))

ψ̃0(Ψ(z))

)
.

Here ψ̃j = lj for 0 ≤ j ≤ n and σ̂(z) = [φ̃0, · · · , φ̃N ] as in the proof of Lemma 6.1. Then

(σ̂Ψ) · (σ̂Ψ)
t
=

N∑
j=0

|ψ̃j(Ψ(z))|2 =

(
1 +

N∑
j=1

|ψj(σ(z))|2
)
|ψ̃0(Ψ(z))|2 = |l0(Ψ)|2 · ||Ψ(σ(z))||2.

This establishes the lemma.

The Lemma 7.3 yields ρ(z, z) = |l0(Ψ)|2 · ρ(σ(z), σ(z)). Complexifying the identity and
substituting z by a, we have:

l0(Ψ)(a) · l0(Ψ)(ξ) · ρ(b, σ(ξ)) = ρ(a, ξ), (76)

where l0(Ψ)(a) 6= 0, l0(Ψ)(ξ), ρ(a, ξ) are polynomials in ξ and σ(ξ) is a rational map in ξ. Now

supposing ρ(b, ξ) = f l(ξ), l ≥ 2, we have ρ(b, σ(ξ)) = (f(σ(ξ)))l = (f1(ξ)
f2(ξ)

)l, where f1 and f2 are

coprime polynomials. Since a, b 6= (0, ..., 0), f1 is a non-constant polynomial. Therefore in (76),
even after cancellation, we still have a factor f l

1(ξ). However as shown in §6, the right hand
side of the identity (76) must be an irreducible polynomial, which is a contradiction.

Proposition 7.4. ρ(z, ξ) is an irreducible polynomial over Cn × Cn. Thus, the Segre family
M restricted to Cn ×Cn = A×A ⊂ M ×M is an irreducible subvariety of dimension 2n− 1.

46



We also have the following slightly strong version of the above proposition, which was used
for applying a monodromy argument:

Proposition 7.5. Suppose U is an connected open set in Cn \ {0}. Then the Segre family M
restricted to U × Cn or restricted to Cn × U is an irreducible analytic variety.

Proof of Proposition 7.5: We need only to prove the first statement. Recall the notations we
defined before: MSING = {(z, ξ) : ∂ρ

∂ξj
= 0,∀j}∪{(z, ξ) : ∂ρ

∂zj
= 0,∀j}, and MREG = M\MSING.

Since ρ(z, ξ) is an irreducible polynomial and ∂ρ
∂ξj

, ∂ρ
∂zj

, j = 1, ..., n are polynomials with lower

degrees, ∂ρ
∂ξj

, ∂ρ
∂zj

, j = 1, ..., n are not identically zero on M = {ρ(z, ξ) = 0}. Each of ∂ρ
∂ξj

, ∂ρ
∂zj

defines a proper subvariety inside M. By Proposition 7.2, for each z̃(6= 0) ∈ Cn, there is a
certain point ξ̃ on Qz̃ such that a partial derivative of ρ(z̃, ξ) in ξ at (z̃, ξ̃) does not vanish.
Hence MSING does not contain any Segre variety. Also the standard projection from MREG

into the z-space is a submersion. Since Qz is irreducible for z ∈ Cn\(0, ..., 0), Qz ∩MREG is
connected. To prove the theorem, we just need to show that MREG|U×Cn is connected. Write
the above projection map to the z-space as Φ : MREG|U×Cn → U. Since it is a submersion, it
is an open mapping. Suppose z0 is a point in U. As mentioned above, we know that each fiber
of Φ is connected. For any (z0, ξ0) ∈ MREG in the fiber above z0, we can choose a connected
neighborhood V of (z0, ξ0) onMREG|U×Cn such that Φ(V ) is neighborhood of z0. Hence, for any
z ∈ Φ(V ), any point in Qz ∩MREG can be connected by a smooth curve inside MREG|V×Cn to
(z0, ξ0). Since U is connected, by a standard open-closeness argument, we see that MREG|U×Cn

is connected.

A Appendix I: Affine cell coordinate functions for two

exceptional classes of the Hermitian symmetric spaces

of compact type

Define the multiplication law of octonions with the standard basis {e0 = 1, e1, · · · , e7} by the
following table:

e1 e2 e4 e7 e3 e6 e5

e1 −1 e4 −e2 −e3 e7 −e5 e6

e2 −e4 −1 e1 −e6 e5 e7 −e3

e4 e2 −e1 −1 −e5 −e6 e3 e7

e7 e3 e6 e5 −1 −e1 −e2 −e4

e3 −e7 −e5 e6 e1 −1 −e4 e2

e6 e5 −e7 −e3 e2 e4 −1 −e1

e5 −e6 e3 −e7 e4 −e2 e1 −1
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♣1. Case M16: Define

x = (x0, x1, x2, x3, x4, x5, x6, x7),
y = (y0, y1, y2, y3, y4, y5, y6, y7).

Define Aj(x, y), j = 0, . . . , 7, such that

xȳ =
7∑

j=0

Aj(x, y)ej, where x =
7∑

j=0

xjej and y =
7∑

j=0

yjej.

Define Bj(x, y), j = 0, 1 such that

xx̄ = B0(x, y)e0 and yȳ = B1(x, y)e0.

Then by computation, we have the following formulas:

A0 = A0(x, y) = y0x0 + y1x1 + y2x2 + y3x3 + y4x4 + y5x5 + y6x6 + y7x7,
A1 = A1(x, y) = − y0x1 + y1x0 − y2x4 + y4x2 − y3x7 + y7x3 − y5x6 + y6x5,
A2 = A2(x, y) = − y0x2 + y2x0 − y4x1 + y1x4 − y3x5 + y5x3 − y6x7 + y7x6,
A3 = A3(x, y) = − y0x3 + y3x0 + y1x7 − y7x1 + y2x5 − y5x2 − y4x6 + y6x4,
A4 = A4(x, y) = − y0x4 + y4x0 − y1x2 + y2x1 + y3x6 − y6x3 − y5x7 + y7x5,
A5 = A5(x, y) = − y0x5 + y5x0 + y1x6 − y6x1 − y2x3 + y3x2 + y4x7 − y7x4,
A6 = A6(x, y) = − y0x6 + y6x0 − y1x5 + y5x1 + y2x7 − y7x2 − y3x4 + y4x3,
A7 = A7(x, y) = − y0x7 + y7x0 − y1x3 + y3x1 − y2x6 + y6x2 − y4x5 + y5x4,
B0 = B0(x, y) = x2

0 + x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7,

B1 = B1(x, y) = y2
0 + y2

1 + y2
2 + y2

3 + y2
4 + y2

5 + y2
6 + y2

7.

Then the embedding functions of a Zariski open subset A, which is identified with C16 with
coordinates z := (x0, · · · , x7, y0, · · · , y7), of M16 := E6

SO(10)×SO(2)
into CP26 are given by:

z 7→ [1, x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, y6, y7, A0, A1, A2, A3, A4, A5, A6, A7, B0, B1].

♣2. Case M27: Similarly we define

x = (x1, x2, x3),
y = (y0, y1, y2, y3, y4, y5, y6, y7),
t = (t0, t1, t2, t3, t4, t5, t6, t7),
ω = (ω0, ω1, ω2, ω3, ω4, ω5, ω6, ω7).

Define functions A,B,C,D0, . . . , D7, E0 . . . , E7, F0 . . . , F7 and G such that,

Com(X) = X ×X =




A D E
D B F
E F C


 , G = det(X),
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where D =
∑7

j=0 Djej, E =
∑7

j=0 Ejej, F =
∑7

j=0 Fjej and the matrix X corresponding to

the point (x, y, t, w) ∈ C27 is given by

X =




x1 y t
y x2 w
t w x3


 ∈ J3(O).

Recall the formulas in [O], we have

X ×X =




x2x3 − ww wt− x3y yw − x2t
wt− x3y x3x1 − tt ty − x1w
yw − x2t ty − x1w x1x2 − yy


 ∈ J3(O),

det(X) = x1x2x3 − x1ww − x2tt̄− x3yy + 2<c(wty),

where <c(x) = x0 for any x =
∑7

i=0 xiei ∈ O.
By further computation, we have the explicit expressions as follows:

A = A(x, y, t, ω) = x2x3 − (ω2
0 + ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6 + ω2

7),
B = B(x, y, t, ω) = x1x3 − (t20 + t21 + t22 + t23 + t24 + t25 + t26 + t27),
C = C(x, y, t, ω) = x1x2 − (y2

0 + y2
1 + y2

2 + y2
3 + y2

4 + y2
5 + y2

6 + y2
7),

D0 = D0(x, y, t, ω) = t0ω0 + t1ω1 + t2ω2 + t3ω3 + t4ω4 + t5ω5 + t6ω6 + t7ω7 − x3y0,
D1 = D1(x, y, t, ω) = − t0ω1 + t1ω0 − t2ω4 + t4ω2 − t3ω7 + t7ω3 − t5ω6 + t6ω5 − x3y1,
D2 = D2(x, y, t, ω) = − t0ω2 + t2ω0 − t4ω1 + t1ω4 − t3ω5 + t5ω3 − t6ω7 + t7ω6 − x3y2,
D3 = D3(x, y, t, ω) = − t0ω3 + t3ω0 + t1ω7 − t7ω1 + t2ω5 − t5ω2 − t4ω6 + t6ω4 − x3y3,
D4 = D4(x, y, t, ω) = − t0ω4 + t4ω0 − t1ω2 + t2ω1 + t3ω6 − t6ω3 − t5ω7 + t7ω5 − x3y4,
D5 = D5(x, y, t, ω) = − t0ω5 + t5ω0 + t1ω6 − t6ω1 − t2ω3 + t3ω2 + t4ω7 − t7ω4 − x3y5,
D6 = D6(x, y, t, ω) = − t0ω6 + t6ω0 − t1ω5 + t5ω1 + t2ω7 − t7ω2 − t3ω4 + t4ω3 − x3y6,
D7 = D7(x, y, t, ω) = − t0ω7 + t7ω0 − t1ω3 + t3ω1 − t2ω6 + t6ω2 − t4ω5 + t5ω4 − x3y7,
E0 = E0(x, y, t, ω) = y0ω0 − y1ω1 − y2ω2 − y3ω3 − y4ω4 − y5ω5 − y6ω6 − y7ω7 − x2t0,
E1 = E1(x, y, t, ω) = y0ω1 + y1ω0 + y2ω4 − y4ω2 + y3ω7 − y7ω3 + y5ω6 − y6ω5 − x2t1,
E2 = E2(x, y, t, ω) = y0ω2 + y2ω0 + y4ω1 − y1ω4 + y3ω5 − y5ω3 + y6ω7 − y7ω6 − x2t2,
E3 = E3(x, y, t, ω) = y0ω3 + y3ω0 − y1ω7 + y7ω1 − y2ω5 + y5ω2 + y4ω6 − y6ω4 − x2t3,
E4 = E4(x, y, t, ω) = y0ω4 + y4ω0 + y1ω2 − y2ω1 − y3ω6 + y6ω3 + y5ω7 − y7ω5 − x2t4,
E5 = E5(x, y, t, ω) = y0ω5 + y5ω0 − y1ω6 + y6ω1 + y2ω3 − y3ω2 − y4ω7 + y7ω4 − x2t5,
E6 = E6(x, y, t, ω) = y0ω6 + y6ω0 + y1ω5 − y5ω1 − y2ω7 + y7ω2 + y3ω4 − y4ω3 − x2t6,
E7 = E7(x, y, t, ω) = y0ω7 + y7ω0 + y1ω3 − y3ω1 + y2ω6 − y6ω2 + y4ω5 − y5ω4 − x2t7,
F0 = F0(x, y, t, ω) = y0t0 + y1t1 + y2t2 + y3t3 + y4t4 + y5t5 + y6t6 + y7t7 − x1ω0,
F1 = F1(x, y, t, ω) = y0t1 − y1t0 − y2t4 + y4t2 − y3t7 + y7t3 − y5t6 + y6t5 − x1ω1,
F2 = F2(x, y, t, ω) = y0t2 − y2t0 − y4t1 + y1t4 − y3t5 + y5t3 − y6t7 + y7t6 − x1ω2,
F3 = F3(x, y, t, ω) = y0t3 − y3t0 + y1t7 − y7t1 + y2t5 − y5t2 − y4t6 + y6t4 − x1ω3,
F4 = F4(x, y, t, ω) = y0t4 − y4t0 − y1t2 + y2t1 + y3t6 − y6t3 − y5t7 + y7t5 − x1ω4,
F5 = F5(x, y, t, ω) = y0t5 − y5t0 + y1t6 − y6t1 − y2t3 + y3t2 + y4t7 − y7t4 − x1ω5,
F6 = F6(x, y, t, ω) = y0t6 − y6t0 − y1t5 + y5t1 + y2t7 − y7t2 − y3t4 + y4t3 − x1ω6,
F7 = F7(x, y, t, ω) = y0t7 − y7t0 − y1t3 + y3t1 − y2t6 + y6t2 − y4t5 + y5t4 − x1ω7.
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G = G(x, y, t, ω) = x1x2x3 − x1(ω
2
0 + ω2

1 + ω2
2 + ω2

3 + ω2
4 + ω2

5 + ω2
6 + ω2

7)

− x2(t
2
0 + t21 + t22 + t23 + t24 + t25 + t26 + t27)

− x3(y
2
0 + y2

1 + y2
2 + y2

3 + y2
4 + y2

5 + y2
6 + y2

7)

+ 2{(y0ω0 − y1ω1 − y2ω2 − y3ω3 − y4ω4 − y5ω5 − y6ω6 − y7ω7)t0

+ (y0ω1 + y1ω0 + y2ω4 − y4ω2 + y3ω7 − y7ω3 + y5ω6 − y6ω5)t1

+ (y0ω2 + y2ω0 + y4ω1 − y1ω4 + y3ω5 − y5ω3 + y6ω7 − y7ω6)t2

+ (y0ω3 + y3ω0 − y1ω7 + y7ω1 − y2ω5 + y5ω2 + y4ω6 − y6ω4)t3

+ (y0ω4 + y4ω0 + y1ω2 − y2ω1 − y3ω6 + y6ω3 + y5ω7 − y7ω5)t4

+ (y0ω5 + y5ω0 − y1ω6 + y6ω1 + y2ω3 − y3ω2 − y4ω7 + y7ω4)t5

+ (y0ω6 + y6ω0 + y1ω5 − y5ω1 − y2ω7 + y7ω2 + y3ω4 − y4ω3)t6

+ (y0ω7 + y7ω0 + y1ω3 − y3ω1 + y2ω6 − y6ω2 + y4ω5 − y5ω4)t7}.

Hence the embedding functions of a Zariski open subset A, which is identified with C27 with co-
ordinates z := (x, y, t, ω) = (x1, x2, x3, y0 · · · , y7, t0, · · · , t7, ω0, · · · , ω7), of M27 := E7

E6×SO(2)
into

CP55 are given by: z 7→ [1, x, y, t, ω, A,B,C,D0, D1, D2, D3, D4, D5, D6, D7, E0, E1, E2, E3, E4, E5,
E6, E7, F0, F1, F2, F3, F4, F5, F6, F7, G]. The detailed discussions related to this Appendix can be
found in [CMP], [Fr] and [O].

B Appendix II: Proof of Proposition (I) for other types

In this Appendix, we complete the proof of Proposition (I) for spaces of the other type.

B.1 Spaces of type II

In this subsection, we establish Proposition (I) for the orthogonal Grassmannians GII(n, n).
As shown in §2, we have a Zariski open affine chart A ⊂ GII(n, n) of elements of the form:

(
In×n Z

)
=




1 0 0 · · · 0 0 z12 · · · z1n

0 1 0 · · · 0 −z12 0 · · · z2n

· · · · · ·
0 0 0 · · · 1 −z1n −z2n · · · 0




Here z = (z12, z13, ..., z(n−1)n) is the local coordinates for A ∼= C
n(n−1)

2 . Its conjugate A∗ ⊂
(GII(n, n))∗ is also a copy ofC

n(n−1)
2 . We write the local coordinates for A∗ as ξ = (ξ12, ..., ξ(n−1)n).
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The canonical embedding is given by

(1, , ..., pf(Zσ), ...).

The defining function for the Segre family (in the product of such affine pieces) is given by

ρ(z, ξ) = 1 +
∑

σ∈Sk,
2≤k≤n,2|k

Pf(Zσ)Pf(Ξσ)

Write
rZ =

(
Pf(Zσ)σ∈Sk

)
2≤k≤n,2|k

. (77)

The local biholomorphic map F defined near 0 ∈ U with F (0) = 0 can be represented as a
matrix:

F =




0 f12 ... f1n

−f12 0 ... f2n

... ... ... ...
−f1n ... ... 0


 .

Let rF be

rF =
(
pf((F )σ)σ∈Sk

)
2≤k≤n,2|k

. (78)

Under the notation of §2, it is easy to see rZ = (ψ1, ..., ψN), rF = (ψ1(F ), ..., ψN(F )).
We write z̃ for the z with the last component z(n−1)n dropped. More precisely,

z̃ = (z12, ..., z1n, z23, ..., z2n, ..., z(n−2)(n−1), z(n−2)n), (79)

Recall z has n′ = n(n−1)/2 independent variables. Thus z̃ has (n′−1) components. We define
the z̃−rank and z̃− nondegeneracy as in Definition 3.1 using ψ = rF in (78) and z̃ as in (79)
with m = n′, respectively. We now prove the following:

Proposition B.1. rF is z̃−nondegenerate near 0. More precisely, rank1+N−n′(rF , z̃) = N.

Proof of Proposition B.1: Suppose not. Without loss of generality, we assume that

rank1+N−n′(rF , z̃) < N.

As a consequence of Theorem 3.10, there exist cσ,k ∈ C, 4 ≤ k ≤ n, 2|k, σ ∈ Sk, which are not
all zero, such that ∑

4≤k≤n,2|n

∑
σ∈Sk

cσ,k pf((F )σ)(z12, ..., z(n−2)n, 0)) ≡ 0. (80)

However, (80) cannot hold by the following lemma, which gives a contradiction:
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Lemma B.2. Let

H =




0 h12 ... h1n

−h12 0 ... ...
... ... ... ...
−h1n ... ... 0




be an anti-symmetric matrix-valued holomorphic function in a neighborhood U of 0 in z̃ =
(z12, ..., z(n−2)n)) ∈ Cn′−1 with H(0) = 0. Assume that H is of full rank at 0. Set rH similar to
the definition of rF ,

rH =
(
pf(Hσ)σ∈Sk

)
2≤k≤n,2|k

. (81)

Assume that aσ,k, σ ∈ Sk, 4 ≤ k ≤ n, are complex numbers such that

∑

4≤k≤n,2|k

∑
σ∈Sk

aσ,k pf(Hσ)(z12, ..., z(n−2)n)) ≡ 0 for all z̃ ∈ U. (82)

Then
aσ,k = 0

for all σ ∈ Sk, 4 ≤ k ≤ n, 2|k.

Proof of Lemma B.2: Suppose not. We will prove the lemma by seeking a contradiction.
Note that H has full rank at 0. Hence there exist (n′−1) components Ĥ of H that forms a local

biholomorphism from Cn′−1 to Cn′−1. We assume that these (n′− 1) components Ĥ are H with
hi0j0 being dropped, where i0 < j0. Without loss of generality, we assume i0 = n − 1, j0 = n.

By a local biholomorphic change of coordinates, we assume Ĥ = z̃ = (z12, ..., z(n−2)n). We
still write the missing component as h(n−1)n. Now we assume 2(m + 1),m ≥ 1, is the least
number k such that {aσ,k}σ∈Sk

are not all zero. We then consider {aσ,2(m+1)}σ∈S2(m+1)
. We

first claim that aσ,2(m+1) = 0 for those σ ∈ S2(m+1) such that pf(Hσ) involves h(n−1)n. More
precisely, if pf(Hσ), σ ∈ S2(m+1) involves h(n−1)n, then σ = {i1, ..., i2m, (n − 1), n} for some
1 ≤ i1 < ... < i2m ≤ n − 2. Suppose its coefficient is not zero. Then pf(Hσ) will produce
the monomial zi1i2zi3i4 ...zi2m−3i2m−2zi2m−1(n−1)zi2mn. This term can only be canceled by the terms
of form: zi2m−1(n−1)h(n−1)nQ or zi2mnh(n−1)nQ. But neither of them can appear in any other
Pfaffians. This is a contradiction. Once we know there are no h(n−1)n involved, then the
remaining Pfaffians have only terms consisting of the product of some of z12, ..., z(n−2)n. Their
sum cannot be zero unless their coefficients are all zero. This is a contradiction. We thus
establishes Lemma B.2.

We thus also get a contradiction to equation (80). This establishes Proposition B.1.

Remark B.3. By Proposition B.1, there exist multiindices β̃1, ..., β̃N with all |β̃j| ≤ 1+N−n′,
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and there is a point

z0 =




0 z0
12 ... z0

1(n−1) z0
1n

−z0
12 0 ... z0

2(n−1) z0
2n

... ... ... ... ...
−z0

1(n−1) −z0
2(n−1) ... 0 z0

(n−1)n

−z0
1n −z0

2n ... −z0
(n−1)n 0




, z0
(n−1)n 6= 0;

near 0 such that ∣∣∣∣∣∣∣∣

∂|β
1|(ψ1(F ))

∂z̃β̃1 ... ∂|β
1|(ψN (F ))

∂z̃β̃1

... ... ...
∂|β

N |(ψ1(F ))

∂z̃β̃N ... ∂|β
N |(ψN (F ))

∂z̃β̃N

∣∣∣∣∣∣∣∣
(z0) 6= 0. (83)

We set

ξ0 =




0 0 ... 0 0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 ξ0

(n−1)n

0 0 ... −ξ0
(n−1)n 0



∈ Cn2

, ξ0
(n−1)n = − 1

z0
(n−1)n

.

Then it is easy to see that (z0, ξ0) ∈M = {ρ(z, ξ) = 0}.
Write for each 1 ≤ i < j ≤ n, (i, j) 6= (n− 1, n),

Lij =
∂

∂zij

−
∂ρ

∂zij
(z, ξ)

∂ρ
∂z(n−1)n

(z, ξ)

∂

∂z(n−1)n

(84)

which are holomorphic tangent vector fields alongM near (z0, ξ0). Here we note that ∂ρ
∂z(n−1)n

(z, ξ)

is nonzero near (z0, ξ0). For any (n′ − 1)-multiindex β = (β12, ..., β(n−2)n), we write

Lβ = Lβ12

12 ...Lβ(n−2)n

(n−2)n .

Now we define for any N collection of (n′ − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN)(z, ξ) :=

∣∣∣∣∣∣

Lβ1
(ψ1(F )) ... Lβ1

(ψN(F ))
... ... ...

LβN
(ψ1(F )) ... LβN

(ψN(F ))

∣∣∣∣∣∣
(z, ξ). (85)

Note that for any multiindex β,Lβ evaluating at (z0, ξ0) coincides with ∂
∂z̃β . We thus again

have

Theorem B.4. There exists multiindices {β1, ..., βN}, such that

Λ(β1, ..., βN)(z, ξ) 6= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, ..., 0).
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B.2 Spaces of type III

Let F be a local biholomorphic map at 0. In this case, both Z and F are n × n symmetric
matrices. We write

Z =




z11 z12 ... z1n

z12 z22 ... z2n

... ... ... ...
z1n z2n ... znn


 , z = (z11, z12, z13, ..., znn).

Similar notations are used for F.
Recall from (13) of ♣3 in §2:

rz =
(
ψ1

1(z), ..., ψ1
N1

(z), ψ2
1(z), ..., ψ2

N2
(z), ..., ψn−1

1 (z), ..., ψn−1
Nn−1

(z), ψn(z)
)

, (86)

where ψk
j is a homogeneous polynomial of degree k, 1 ≤ j ≤ Nk. ψ

n is a homogeneous polynomial
of degree n. Moreover, the components of rz are linearly independent.

We write the number of components in rz to be N = N1 + ... + Nn, where we set Nn = 1.
We will also sometimes write ψn

Nn
= ψn.

We emphasize that for each fixed k, ψk
1 , ..., ψ

k
Nk

are linearly independent. Moreover, each
ψk

j is a certain linear combination of the determinants of k × k submatrices of Z. This will be
crucial for our argument later.

We define rF as the composition of rz with the map F :

rF =
(
ψ1

1(F ), ..., ψ1
N1

(F ), ψ2
1(F ), ..., ψ2

N2
(F ), ..., ψn−1

1 (F ), ..., ψn−1
Nn−1

(F ), ψn(F )
)

. (87)

In what follows, we write also zij = zji. We write det(A) as the determinant of A when A is a
square matrix.

Let P, P̃ be monomials in z′ijs, and h a polynomial in z′ijs. Let a, b be two complex numbers.

In the following lemmas, when we say h always has the terms aP, bP̃ , we mean h has the term
aP if and only if it has the term bP̃ .

Lemma B.5. Fixing 1 ≤ i, j < n, let P = zinznjQ and P̃ = zijznnQ with Q a monomial in
z′ijs. The following statements are true.

• Let A be a square submatrix of Z. If zij - Q, then det(A) always has monomials of the

form cP,−cP̃ for some c ∈ C depending on the submatrix A. (If det(A) does not have

any multiple of P , it does not have any multiple of P̃ , either; vice versa). If zij|Q, then

det(A) always has monomials cP,−(c/2)P̃ for some c ∈ C depending on A.

• Let k ≥ 1. Let ψk
l (z) be as defined in (86), 1 ≤ l ≤ Nk. If zij - Q, then ψk

l (z) always

has monomials λP,−λP̃ for some λ ∈ C, If zij|Q, then ψk
l (z) always has monomials

λP,−(λ/2)P̃ for some λ ∈ C.
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Proof of Lemma B.5: The first part is a consequence of the Laplace expansion of a de-
terminant by complementary minors. The second part is due to the fact that ψk

j is a linear
combination of the determinants of submatrices of Z of order k.

Similarly, one can prove in a similar way Lemmas B.6-B.8.

Lemma B.6. Fixing 1 ≤ j < n− 1, let P = zjnz(n−1)(n−1)Q and P̃ = zj(n−1)z(n−1)nQ with Q a
monomial in z′ijs.

• Let A be a square submatrix of Z. If zjn - Q, then det(A) always has monomials cP,−cP̃

for some c ∈ C. If zjn|Q, then det(A) always has monomials cP,−2cP̃ for some c ∈ C.

• Let k ≥ 1. Let ψk
l (z) be as defined in (86), 1 ≤ l ≤ Nk. If zjn - Q, then ψk

l (z) always

has monomials λP,−λP̃ for some λ ∈ C. If zjn|Q, then ψk
l (z) always has monomials

λP,−2λP̃ for some λ ∈ C.

Lemma B.7. Fixing 1 ≤ i < n−1, let P = zi(n−1)zniQ and P̃ = ziiz(n−1)nQ with Q a monomial
in z′ijs.

• Let A be a square submatrix of Z. If z(n−1)n - Q, then det(A) always has monomials

cP,−cP̃ for some c ∈ C. If z(n−1)n|Q, then det(A) always has monomials cP,−(c/2)P̃ for
some c ∈ C.

• Let k ≥ 1. Let ψk
l (z) be as defined in (86), 1 ≤ l ≤ Nk. If z(n−1)n - Q, then ψk

l (z) always

has monomials λP,−λP̃ for some λ ∈ C. If z(n−1)n|Q, then ψk
l (z) always has monomials

λP,−(λ/2)P̃ for some λ ∈ C.

Lemma B.8. Fixing 1 ≤ i < n− 1, 1 ≤ j < n− 1, i 6= j, let P1 = zi(n−1)znjQ,P2 = zinzj(n−1)Q,

and P̃ = zijz(n−1)nQ with Q a monomial in z′ijs.

• Let A be a square submatrix of Z. If zij - Q, z(n−1)n - Q, then det(A) always has terms

c1P1 + c2P2,−(c1 + c2)P̃ for some c1, c2 ∈ C. If zij - Q, z(n−1)n|Q, or zij|Q, z(n−1)n - Q,

then det(A) always has terms c1P1+c2P2,− c1+c2
2

P̃ for some c1, c2 ∈ C. If zij|Q, z(n−1)n|Q,

then det(A) always has terms c1P1 + c2P2,− c1+c2
4

P̃ .

• Let k ≥ 1. Let ψk
l (z) be as defined in (86), 1 ≤ l ≤ Nk. If zij - Q and z(n−1)n - Q,

then ψk
l (z) always has terms λ1P1 + λ2P2,−(λ1 + λ2)P̃ for some λ1, λ2 ∈ C. If zij -

Q, z(n−1)n|Q, or zij|Q, z(n−1)n - Q, then ψk
l (z) always has terms λ1P1 + λ2P2,−λ1+λ2

2
P̃ for

some λ1, λ2 ∈ C. If zij|Q, z(n−1)n|Q, then ψk
l (z) always has terms λ1P1 + λ2P2,−λ1+λ2

4
P̃

for some λ1, λ2 ∈ C.
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We write z̃ for z with the last components znn being dropped. More precisely,

z̃ = (z11, ..., z1n, z22, ..., z2n, ..., z(n−1)(n−1), z(n−1)n). (88)

Recall z has n′ = n(n+1)/2 independent variables. Thus z̃ has (n′−1) components. We define
z̃−rank and z̃−nondegeneracy in the same way as before, using rF in (87) and z̃ in (88) with
m = n′. We now need to prove the following:

Proposition B.9. rF is z̃−nondegenerate at 0. More precisely, rank1+N−n′(rF , z̃) = N.

Proof of Proposition B.9: Suppose not. Then one easily verifies that the hypothesis of
Theorem 3.10 is satisfied. As a consequence of Theorem 3.10, there exist ck

j ∈ C, 2 ≤ k ≤
n, 1 ≤ j ≤ Nk, which are not all zero such that

n∑

k=2

Nk∑
j=1

ck
j ψ

k
j (F (z11, ..., z(n−1)n, 0)) ≡ 0. (89)

Here as before, we write Nn = 1, ψn
Nn

= ψn.
Then we just need to show it can not happen by the following lemma:

Lemma B.10. Let

H =




h11 h12 ... h1n

h12 h22 ... h2n

... ... ... ...
h1n ... ... hnn




be a symmetric matrix-valued holomorphic function near 0 in z̃ = (z11, ..., z1n, z22, ..., z2n, ..., z(n−1)n) ∈
Cn′−1 with H(0) = 0. Assume that H is of full rank at 0. Set rH in a similar way as in (36) :

rH =
(
ψ1

1(H), ..., ψ1
N1

(H), ψ2
1(H), ..., ψ2

N2
(H), ..., ψn−1

1 (H), ..., ψn−1
Nn−1

(H), ψn(H)
)

Again we write Nn = 1, ψn = ψn
Nn

. Assume that ak
j , 2 ≤ k ≤ n, 1 ≤ j ≤ n are complex numbers

such that
n∑

k=2

Nk∑
j=1

ak
j ψ

k
j (H(z̃)) ≡ 0 for z̃ ∈ U. (90)

Then
ak

j = 0

for each 2 ≤ k ≤ n, 1 ≤ j ≤ Nk.

Proof of Lemma B.10: Suppose not. We will prove the lemma by seeking a contradiction.
Notice that H has full rank at 0. Hence there exist (n′ − 1) components Ĥ of H that gives

a local biholomorphism from Cn′−1 to Cn′−1. We assume these (n′ − 1) components Ĥ are H
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with hi0j0 being dropped, where i0 ≤ j0. Then we split our argument into two parts in terms of
i0 = j0 or i0 < j0.

Case I: Assume that i0 = j0. Without loss of generality, we assume i0 = j0 = n. By a local
biholomorphic change of coordinates, we assume Ĥ = z̃ = (z11, ..., zn(n−1)). We still write the
last component as hnn. Now we assume m ≥ 2 is the least number k such that {ak

1, ..., a
k
Nk
} are

not all zero. For any holomorphic g, we define Tl(g) to be the homogeneous part of degree l in
the Taylor expansion of g at 0. Now the assumption in (90) yields:

Tm

(
Nm∑
j=1

am
j ψm

j (H(z̃))

)
≡ 0. (91)

We first compute

Nm∑
j=1

am
j ψm

j (H) =
Nm∑
j=1

am
j ψm

j (z11, ..., z(n−1)n, hnn)

formally. Namely, we regard hnn as a formal variable and only conduct formal cancellations.
We write formally

Nm∑
j=1

am
j ψm

j (z11, ..., z(n−1)n, hnn) = P1 + hnnP2. (92)

Here P1 = P1(z11, ..., z(n−1)n) is a homogeneous polynomial of degree m, and P2 = P2(z11, ..., z(n−1)n)
is a homogeneous polynomial of degree m− 1. We claim P2 6= 0. Otherwise,

Nm∑
j=1

am
j ψm

j (z11, ..., z(n−1)n, hnn) = P1.

This implies that
∑Nm

j=1 am
j ψm

j (z11, ..., z(n−1)n, hnn) does not depend on hnn formally. Then we
can replace hnn by znn. That is,

Nm∑
j=1

am
j ψm

j (z11, ..., z(n−1)n, znn) =
Nm∑
j=1

am
j ψm

j (z11, ..., z(n−1)n, hnn(z̃)) = P1. (93)

By (91), we see that (93) is identically zero. This is a contradiction to the fact that
{ψm

1 , ..., ψm
Nm
} is linearly independent.

Now since P2 6= 0, thus by (92),
∑Nm

j=1 am
j ψm

j (z11, ..., z(n−1)n, hnn) has a monomial of the

form µP̃ = µzijhnnQ of degree m for some 1 ≤ i, j < n, µ 6= 0 and some monomial Q. By

Lemma B.5, we get that
∑Nm

j=1 am
j ψm

j (z11, ..., z(n−1)n, hnn) has also the term −µP or −2µP,
where P = zinznjQ. This is a contradiction to (91). Indeed, P can be only canceled by the
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terms of the forms: zinhnnQ̃ or znjhnnQ̃, where Q̃ is of degree m− 2. But they cannot appear
in determinant of any submatrix of H as zin(or znj) can not appear with hnn.

Case II: Assume that i0 6= j0. Without loss of generality, we assume i0 = (n − 1), j0 =

n. Then Ĥ = (h11, ..., h(n−1)(n−1), hnn) is a local biholomorphism. By a local biholomorphic

change of coordinates, we assume Ĥ = z̃ = (z11, ..., z(n−1)n). We will still write the remaining
component as h(n−1)n = hn(n−1). Note that the fact we are using only is that {z11, ..., z(n−1)n}
are independent variables. Hence, to make our notation easier, we will write

Ĥ = (z11, ..., z(n−1)n) = (w11, ..., w1n, w22, ..., w2n, ..., w(n−1)(n−1), wnn)

such that they have the same indices as h’s in Ĥ. Now we assume m is the least number k such
that {ak

1, ..., a
k
Nk
} are not all zero. Then again assumption (90) yields that

Tm

(
Nm∑
j=1

am
j ψm

j (H(Z̃))

)
≡ 0. (94)

Again we formally compute that

Nm∑
j=1

am
j ψm

j (w11, ..., h(n−1)n, wnn) = Q1 + h(n−1)nQ2. (95)

Here Q1 = Q1(w11, ..., w(n−1)(n−1), wnn) is a homogeneous polynomial of degree m. Similarly, we
can show that Q2 6= 0. We claim that (95) does not have a monomial of the form h(n−1)nh(n−1)nQ.
Otherwise, by Lemma B.5, we get that (95) has also a monomial of degree m of the form:
w(n−1)(n−1)wnnQ. But note that in (95) it can be canceled only by h(n−1)nh(n−1)nQ. Then
h(n−1)n will have a linear term w(n−1)(n−1). But then h(n−1)nh(n−1)nQ will produce the term
w(n−1)(n−1)w(n−1)(n−1)Q. This cannot be canceled out by any other terms.

Now since Q2 6= 0, (95) has a monomial of the form wijh(n−1)nQ, where Q is another
monomial in w’s. Here 1 ≤ i, j ≤ n. Moreover, (i, j) 6= (n − 1, n − 1), (n − 1, n), (n, n − 1)
or (n, n). We first assume 1 ≤ i, j < n − 1, i 6= j. Then by Lemma B.8 , (95) has either P1

or P2, where P1 = wi(n−1)wnjQ,P2 = winwj(n−1)Q. Note P1, P2 can only be canceled by the
terms wi(n−1)h(n−1)nQ,wnjh(n−1)nQ,winh(n−1)nQ,wj(n−1)h(n−1)nQ. So one of them will appear
in (95). Whichever case it is, by Lemma B.5, B.6, (95) will have either P = wlnw(n−1)(n−1)Q, or

P̂ = wl(n−1)wnnQ for some 1 ≤ l < n. We assume, for instance, (95) has the monomial P. Then

it also has the monomial P̃ = wl(n−1)h(n−1)nQ by Lemma B.6. Note that the only term that can
cancel P and appear in some determinant is wlnhn(n−1)Q. Hence hn(n−1) has a linear w(n−1)(n−1)

term. Then P̃ will have the monomial wl(n−1)w(n−1)(n−1)Q, which can not be canceled by any
other terms. This is a contradiction. The other cases can be proved similarly.

This establishes Proposition B.9.
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Remark B.11. By Proposition B.9, there exist multiindices β̃1, ..., β̃N with |β̃j| ≤ 1 + N − pq,
and there exist

z0 =




z0
11 ... z0

1n

... ... ...
z0
1n ... z0

nn


 , z0

nn 6= 0,

near 0 such that ∣∣∣∣∣∣∣∣

∂|β
1|(ψ1(F ))

∂Z̃β̃1 ... ∂|β
1|(ψN (F ))

∂Z̃β̃1

... ... ...
∂|β

N |(ψ1(F ))

∂Z̃β̃N ... ∂|β
N |(ψN (F ))

∂Z̃β̃N

∣∣∣∣∣∣∣∣
(z0) 6= 0. (96)

Here we simply write rF = (ψ1(F ), ..., ψN(F )).

We then set

ξ0 =




0 ... 0 0
0 ... 0 0
0 ... 0 ξ0

nn


 ∈ Cn2

, ξ0
nn = − 1

z0
nn

.

It is easy to verify that (z0, ξ0) ∈M = {ρ(z, ξ) = 0}.
Write for each 1 ≤ i ≤ j ≤ n, (i, j) 6= (n, n),

Lij =
∂

∂zij

−
∂ρ

∂zij
(z, ξ)

∂ρ
∂znn

(z, ξ)

∂

∂znn

, (97)

which are holomorphic tangent vector fields along M near (z0, ξ0). Here we note that ∂ρ
∂znn

(z, ξ)

is nonzero near (z0, ξ0). For any (n′ − 1)-multiindex β = (β11, ..., β(n−1)n), we write

Lβ = Lβ11

11 ...Lβ(n−1)n

(n−1)n .

Now we define for any N collection of (n′ − 1)−multiindices {β1, ..., βN},

Λ(β1, ..., βN)(z, ξ) :=

∣∣∣∣∣∣

Lβ1
(ψ1(F )) ... Lβ1

(ψN(F ))
... ... ...

LβN
(ψ1(F )) ... LβN

(ψN(F ))

∣∣∣∣∣∣
(z, ξ). (98)

Note Lβ evaluating at (z0, ξ0) coincides with ∂
∂Z̃β . We have

Theorem B.12. There exists multiindices {β1, ..., βN} such that Λ(β1, ..., βN)(z, ξ) 6= 0 for
(z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, 0, ..., 0).
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B.3 The exceptional class M27

In this setting, we use the coordinates

z = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7) ∈ C27.

The defining function of the Segre family described in (17) is :

ρ(z, ξ) = 1 + rz · rξ = 1 +
N∑

i=1

ψi(z)ψi(ξ), where N = 55 and

rz = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w7, A, B, C, D0, ...D7, E0, ..., E7, F0, ..., F7, G). (99)

Here A,B,C,Di, Ei, Fi are homogeneous quadratic polynomials in z and G is a homogeneous
cubic polynomial in z:

A = x2x3 −
7∑

i=0

w2
i , B = x1x3 −

7∑
i=0

t2i , C = x1x2 −
7∑

i=0

y2
i . (100)

For the expressions for Di, Ei, Fi, G, see Appendix I. Let F be a local biholomorphic map near
0. We write

F = (φ1, φ2, φ3, f10, ..., f17, f20, ..., f27, f30, ..., h37).

Also define rF to be the composition of rz with F :

rF = rz ◦F = (φ1, φ2, φ3, f10, ..., f17, f20, ..., f27, f30, ..., f37, A(F ), B(F ), C(F ), ...., G(F )). (101)

Notice that rF has 55 components. We will also write

rF = (ψ1(F ), ..., ψ55(F )).

We write z̃ for z with x3 being dropped. Namely,

z̃ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7). (102)

We define the z̃−rank and ψ−nondegeneracy as in Definition 3.1 using rF in (101) and z̃ in
(102) with m = 27.

Proposition B.13. F is z̃−nondegenerate near 0. More precisely, rank29(F, z̃) = 55.

Proof of Proposition B.13: Suppose not. As a consequence of Theorem 3.10, there exist
c1, ..., c28 ∈ C that are not all zero, such that

c1A(F (x1, x2, 0, y0, ..., w7)) + ... + c28G(F (x1, x2, 0, y0, ..., w7)) ≡ 0. (103)

We will show that (103) cannot hold by the following lemma:
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Lemma B.14. Let H = (ψ1, ψ2, ψ3, h10, ..., h17, h20, ..., h27, h30, ..., h37) be a vector-valued holo-
morphic function in a neighborhood U of 0 in z̃ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7) ∈ C26

with H(0) = 0. Assume that H has full rank at 0. Assume that a1, ..., a28 are complex numbers
such that

a1A(H(z̃)) + ... + a28G(H(z̃)) = 0 for all z̃ ∈ U. (104)

Then ai = 0 for all 1 ≤ i ≤ 28.

Proof of Lemma B.14: Suppose not. Notice that H has full rank at 0. Hence there exist 26
components Ĥ of H that give a local biholomorphism from C26 to C26. We assume these 26 com-
ponents Ĥ are the H with η dropped, where η ∈ {ψ1, ψ2, ψ3, h10, ..., h17, h20, ..., h27, h30, ..., h37}.
By a local biholomorphic change of coordinates, we assume

Ĥ = (x1, x2, y0, ..., y7, t0, ..., t7, w0, ..., w7).

We still write the remaining components as η.
Case I: If η ∈ {ψ1, ψ2, ψ3}, without loss of generality, we can assume η = ψ3. We first claim

that the coefficients of A,B, i.e., a1, a2 are zero. This is due to the fact that t2i , w
2
i , 0 ≤ i ≤ 7

can only be canceled by tiψ3, wiψ3, which do not appear in the expressions of A(H), ..., G(H).
We then claim the coefficients of C are zero, for x1x2 can not be canceled. Then the coefficients
of all D’s have to be zero, for each tiwj is unique and can not be canceled. Then it follows
trivially that all other coefficients are zero.

Case II: If η ∈ {h10, ..., h17, h20, ..., h27, h30, ..., h37}, without loss of generality, we assume

η = h37. Notice that the only fact we are using about Ĥ is that its components are independent
variables. For simplicity of notation, we will write

Ĥ = (x1, x2, x3, y0, ..., y7, t0, ..., t7, w0, ..., w6).

We first claim that the coefficient of A is zero. This is due to the fact that x2x3 cannot be
canceled. We also claim that the coefficient of B is zero. Suppose not. Notice that t2i can only
be canceled by tih37. Then the coefficient of each Di is non zero for 0 ≤ i ≤ 7. Moreover, x1x3

can only be canceled by x1h37. This implies h37 has a linear x3-term. Then, in particular, the
t7h37 term in D0 will produce a t7x3 term. It cannot be canceled by any other terms. This
is a contradiction. Similarly, one can show that the coefficient of C is zero. Then we claim
the coefficient of D0 is zero. Otherwise, to cancel the x3y0 term, h37 needs have a linear x3

term. Then the term t7h37 in D0 will produce a t7x3 term, which cannot be canceled by any
other term. By the same argument, one can show that the coefficients of all Di, 0 ≤ i ≤ 7, are
zero. Similarly, we can obtain the coefficients of all Ei, 0 ≤ i ≤ 7, are zero. Then we claim
the coefficients of all F ’s have to be zero. This is because each yitj is unique. It can not be
canceled out. Finally we get the coefficient of G to be zero.

This also establishes Proposition B.13.

61



Remark B.15. By Proposition B.13, there exist multiindices β̃1, ..., β̃55 with |β̃j| ≤ 29, and
there exist

z0 = (x0
1, x

0
2, x

0
3, y

0
0, ..., y

0
7, t

0
0, .., t

0
7, w

0
0, ..., w

0
7), x0

3 6= 0,

such that ∣∣∣∣∣∣∣∣

∂|β
1|(ψ1(F ))

∂z̃β̃1 ... ∂|β
1|(ψ55(F ))

∂z̃β̃1

... ... ...
∂|β

55|(ψ1(F ))

∂z̃β̃55 ... ∂|β
55|(ψ55(F ))

∂z̃β̃55

∣∣∣∣∣∣∣∣
(z0) 6= 0.

Then we set ξ0 = (0, 0, ξ0
3 , 0, ...0, 0, ..., 0, 0, ..., 0), ξ0

3 = − 1
x0
3
. It is easy to see that (z0, ξ0) ∈

M = {ρ(z, ξ) = 0}. Write

Li =
∂

∂xi

−
∂ρ
∂xi

(z, ξ)
∂ρ
∂x3

(z, ξ)

∂

∂x3

, 1 ≤ i ≤ 2;

L3+i =
∂

∂yi

−
∂ρ
∂yi

(z, ξ)
∂ρ
∂x3

(z, ξ)

∂

∂x3

, 0 ≤ i ≤ 7;

L11+i =
∂

∂ti
−

∂ρ
∂ti

(z, ξ)
∂ρ
∂x3

(z, ξ)

∂

∂x3

, 0 ≤ i ≤ 7;

L19+i =
∂

∂wi

−
∂ρ
∂wi

(z, ξ)
∂ρ
∂x3

(z, ξ)

∂

∂x3

, 0 ≤ i ≤ 7.

For any 26-multiindex β = (β1, ..., β26), we write Lβ = Lβ1

1 ...Lβ26

26 . Now we define for any 55
collection of 26−multiindices {β1, ..., β55},

Λ(β1, ..., β55)(z, ξ) :=

∣∣∣∣∣∣

Lβ1
(ψ1(F )) ... Lβ1

(ψ55(F ))
... ... ...

Lβ55
(ψ1(F )) ... Lβ55

(ψ55(F ))

∣∣∣∣∣∣
(z, ξ). (105)

Note that for any multiindex, Lβ evaluating at (z0, ξ0) coincides with ∂
∂Z̃β . We have,

Theorem B.16. There exists multiindices {β1, ..., β55}, such that

Λ(β1, ..., β55)(z, ξ) 6= 0

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, ..., 0).
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B.4 The exceptional class M16

This case is very similar to the hyperquadric setting. In this case, we write the coordinates of
C16 as

z := (x0, ..., x7, y0, ..., y7).

The defining function of the Segre family as described in (16) is

ρ(z, ξ) = 1 + rz · rξ = 1 +
N∑

i=1

ψi(z)ψi(ξ), where N = 26 and

rz = (x0, ..., x7, y0, ..., y7, A0, ...A7, B0, B1). (106)

Here Ai, 0 ≤ i ≤ 7, B0, B1 are homogeneous quadratic polynomials in z. For instance,

B0 =
7∑

i=0

x2
i , B1 =

7∑
i=0

y2
i .

For the expressions for Ai, see Appendix I.
Let F be as before. We write

F = (f0, ..., f7, f̃0, ...f̃7).

And define rF as the composition of rz with F :

rF = rz ◦ F = (f0, ..., f7, f̃0, ...f̃7, A0(F ), ...A7(F ), B0(F ), B1(F )). (107)

Notice that rF has 26 components.
We will need the following lemma:

Lemma B.17. For each fixed µ0, ..., µ6 with (
∑6

i=0 µ2
i ) + 1 = 0 and fixed (y0, ..., y7) with

(
∑6

i=0 µiyi) + y7 6= 0, we can always find (ξ0, ..., ξ7) such that

1 + y0ξ0 + ... + y7ξ7 = 0;
7∑

i=0

(ξi)
2 = 0, ξj = µjξ7, 0 ≤ j ≤ 6, ξ7 6= 0.

Proof of Lemma B.17: The proof is similar to that as in the hyperquadric case.
Take the complex hyperplane H : y7 +

∑6
j=0 µjyj = 0 in (x0, ..., x7, y0, ..., y7) ∈ C16. Write

L0 = ∂
∂x0

, ..., L7 = ∂
∂x7

; L8 = ∂
∂y0

− µ1
∂

∂y7
, ..., L14 = ∂

∂y6
− µ6

∂
∂y7

.

Then {Li}14
i=0 forms a basis of the tangent vector fields of H. For any multiindex α =

(α0, .., α14), we write Lα = Lα0
0 ...Lα14

14 . We define the notion of L−rank and L−nondegeneracy
as in Definition 3.1 using rF in (107) and Lα instead of z̃α. We write the kth L-rank defined in
this setting as rankk(rF , L). We now need to prove the following:
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Proposition B.18. F is L−nondegenerate near 0. More precisely, rank11(rF , L) = 26.

Proof of Proposition B.18: Suppose not. As in the hyperquadric case, by a modified version
of Theorem 3.10, we have that there exist 26 holomorphic functions g0(w), ..., g25(w) defined
near 0 on the w−plane with {g0(0), ..., g25(0)} not all zero such that the following holds for
z ∈ U :

25∑
i=0

gi(y7 + µ0y0 + ... + µ6y6)ψi(F (z)) ≡ 0. (108)

Then since F has full rank at 0, one can similarly prove that g0(0) = 0, ..., g15(0) = 0. Hence
we obtain:

Lemma B.19. There exist c0, ..., c9 ∈ C that are not all zero such that

c0A0(F (Z)) + ... + c7A7(F (Z)) + c8B0(F (Z)) + c9B1(F (Z)) ≡ 0, (109)

for all Z ∈ U when restricted on y7 +
∑6

i=0 µiyi = 0.

We then just need to show that (109) can not hold by the following lemma after applying
a linear change of coordinates.

Lemma B.20. Let H = (h0, ..., h7, g0, ..., g7) be a vector-valued holomorphic function in a
neighborhood U of 0 in z̃ = (x0, ..., x7, y0, ..., y6) ∈ C15 with H(0) = 0. Assume that H has full
rank at 0. Assume that a0, ..., a9 are complex numbers such that

a0A1(H(z̃)) + ... + a7A7(H(z̃)) + a8B0(H(z̃)) + a9B1(H(z̃)) = 0 for all z̃ ∈ U. (110)

Then ai = 0 for 1 ≤ i ≤ 10.

Proof of Lemma B.20: Suppose not. Notice that H has full rank at 0. Hence there exist
15 components Ĥ of H that gives a local biholomorphism from C15 to C15. We assume these
15 components Ĥ are H with η being dropped, where η ∈ {h0, ..., h7, g0, ..., g7}. By a local

biholomorphic change of coordinates, we assume Ĥ = (x0, ..., x7, y0, ..., y6). We still write the
remaining component as η. Without loss of generality, we assume η = g7.

First we claim the coefficient a9 of B1 is zero. Suppose not. Note that y2
1, y

2
2 can be only

canceled by g2
7. Then g7 will have linear y1, y2 terms. Hence g2

7 will produce a y1y2 term. It
cannot be canceled by any other terms. This is a contradiction. Now we consider the coefficients
of A0, ..., A7. We claim ai = 0, 0 ≤ i ≤ 7. Suppose not. We write

y7(Z̃) = λ0y0 + ... + λ6y6 + µ0x0 + ... + µ7x7 + O(2),

for some λi, µj ∈ C, 0 ≤ i ≤ 6, 0 ≤ j ≤ 7. By collecting the terms of the form x0yi in the Taylor
expansion of (110) we get

ai + a7λi = 0, 0 ≤ i ≤ 6. (111)
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By collecting the terms of the form x1yi, 0 ≤ i ≤ 6, we get,

a1 + a3λ0 = 0,−a0 + a3λ1 = 0,−a4 + a3λ2 = 0,−a7 + a3λ3 = 0,

a2 + a3λ4 = 0,−a6 + a3λ5 = 0, a5 + a3λ6 = 0.

By collecting the terms of the form x2yi, 0 ≤ i ≤ 6, we get,

a2 + a6λ0 = 0, a4 + a6λ1 = 0,−a0 + a6λ2 = 0,−a5 + a6λ3 = 0.

−a1 + a6λ4 = 0, a3 + a6λ5 = 0,−a7 + a6λ6 = 0.

One can further write down all the coefficients for xiyj, 0 ≤ i ≤ 7, 0 ≤ j ≤ 6. Once this is
done, one easily sees that ai 6= 0 for any 0 ≤ i ≤ 7. Otherwise, all ai = 0, 0 ≤ i ≤ 7.

Then by the above equations, we see that the matrix




a0 a1 a2 a3 a4 a5 a6

a1 −a0 −a4 −a7 a2 −a6 a5

a2 a4 −a0 −a5 −a1 a3 −a7


 (112)

is of rank one. Then one can get a contradiction by, for instance, carefully checking the
determinants of its 2 × 2 submatrices. Hence ai = 0, 0 ≤ i ≤ 7. Finally we easily get the
coefficient a8 of B0 is zero.

This then establishes Proposition B.18.

Remark B.21. First fix µ0, ..., µ6 with (
∑6

i=0 µ2
i ) + 1 = 0. By Proposition B.18, there exists

multiindices β̃1, ..., β̃26 with |β̃j| ≤ 11, and

Z0 = (x0
0, ..., x

0
7, y

0
0, ..., y

0
7) with

6∑
i=0

µiyi + y7 6= 0,

such that ∣∣∣∣∣∣

Lβ̃1
(ψ1(F )) ... Lβ̃1

(ψ26(F ))
... ... ...

Lβ̃26
(ψ1(F )) ... Lβ̃26

(ψ26(F ))

∣∣∣∣∣∣
(Z0) 6= 0.

We then let ξ0 = (0, ..., 0, ξ0
0 , ..., ξ

0
7), where (ξ0

0 , ..., ξ
0
7) is choosen as in Lemma B.17 associated

with (y0
0, ..., y

0
7). That is

1 + y0
0ξ

0
0 + ... + y0

7ξ
0
7 = 0;

7∑
i=0

(ξ0
i )

2 = 0, ξ0
j = µjξ

0
7 , 0 ≤ j ≤ 6, ξ0

7 6= 0.

It is easy to see that (z0, ξ0) ∈M.
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We now define

Li =
∂

∂xi

−
∂ρ
∂xi

(z, ξ)
∂ρ
∂y7

(Z, ξ)

∂

∂y7

, 0 ≤ i ≤ 7; (113)

L8+i =
∂

∂yi

−
∂ρ
∂yi

(z, ξ)
∂ρ
∂y7

(Z, ξ)

∂

∂y7

, 0 ≤ i ≤ 6; (114)

for (z, ξ) ∈ M near (z0, ξ0). They are tangent vector fields along M. Moreover, ∂ρ
∂yn

(z, ξ) is

nonzero near (z0, ξ0).
We define for any multiindex α = (α0, .., α14), Lα = Lα0

0 ...Lα14
14 . Define for any 26 collection

of 15-multiindices {β1, ..., β26},

Λ(β1, ..., β26)(z, ξ) =

∣∣∣∣∣∣

Lβ1
(ψ1(F )) ... Lβ1

(ψ26(F ))
... ... ...

Lβ26
(ψ1(F )) ... Lβ26

(ψ26(F ))

∣∣∣∣∣∣
(z, ξ). (115)

By the fact that
∑7

i=0(ξ
0
i )

2 = 0, one can check that, for any multiindex α = (α0, .., α14),
Lα = Lα when evaluated at (z0, ξ0). Then as before, we get the following:

Theorem B.22. There exists multiindices {β1, ..., β26} such that

Λ(β1, ..., β26)(z, ξ) 6= 0,

for (z, ξ) in a small neighborhood of (z0, ξ0) and β1 = (0, 0, ..., 0).

C Appendix III: Transversality and flattening of Segre

families for the remaining cases

In this appendix, we will complete the proof of Theorem 6.2 for the remaining cases.

Continuation of the proof of Theorem 6.2: By the same method used before, we first establish
the second part of Theorem 6.2 by assuming the first part of Theorem 6.2 is true. Namely,
suppose ξ0 ∈ Cn \ {0} and z0 and z1 are smooth points on the Segre variety Qξ0 such that
Qz0 and Qz1 are both smooth at ξ0 and intersect transversally there. We shall prove that
there is a biholomorphic parametrization G(ξ̃1, ξ̃2, ..., ξ̃n) = (ξ1, ξ2, ..., ξn), with (ξ̃1, ξ̃2, ..., ξ̃n) ∈
U1 × U2 × ... × Un ⊂ Cn. Here when 1 ≤ j ≤ 2, Uj is a small neighborhood of 1 ∈ C.
When 3 ≤ j ≤ n, Uj is a small neighborhood of 0 ∈ C with G(1, 1, 0, · · · , 0) = ξ0, such that
G({ξ̃1 = 1} × U2 × ... × Un) ⊂ Qz0 ,G(U1 × {ξ̃2 = 1} × U3 × ... × Un) ⊂ Qz1 , and G({ξ̃1 =
t} × U2 × ... × Un),G(U1 × {ξ̃2 = s} × U3 × ... × Un), s ∈ U1, t ∈ U2 are open pieces of Segre
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varieties. Also, G consists of algebraic functions with total degree bounded by a constant
depending only on (M,ω). By the first part of Theorem 6.2, we have

rank

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= 2.

Without loss of generality, we assume ∂(ρ(z0,ξ),ρ(z1,ξ))
∂(ξ1,ξ2)

6= 0 at ξ0. Now we introduce new

variables ξ̃1, ..., ξ̃n and set up the system:




P1 : ρ(z0, ξ̃1ξ) = 0

P2 : ρ(z1, ξ̃2ξ) = 0

P3 : ξ̃3 − ξ3 = 0

... ...

Pn : ξ̃n − ξn = 0

Then ∂(P1,...,Pn)
∂(ξ1,...,ξn)

|A, ∂(P1,...,Pn)

∂(ξ̃1,...,ξ̃n)
|A 6= 0, where A = (ξ̃1, ..., ξ̃n, ξ1, ..., ξn) = (1, 1, 0, ..., 0, 1, 0, ..., 0). By

Lemma 4.9, we get the needed algebraic flattening with the bound total degree.
Next, we proceed to prove the first part of Theorem 6.2. It suffices to find a sufficiently

close point z1 to z0 such that

rank

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= 2.

We shall establish the above equation case by case as follows:
Case 3. Symplectic Grassmannians: Pick ξ0 = (1, 0, 0, ..., 0). The defining equation of

the Segre family is ρ = 1+
∑n

i=1 ziiξii +2
∑

i<j zijξij +2
∑

2≤i<j(z11zij− z1jzi1)(ξ11ξij− ξi1ξ1j)+∑n
i=2(z11zii−z2

1i)(ξ11ξii−ξ2
1i)+

∑
i<k,j<l,(i,j) 6=(1,1)(zijzkl−zilzkj)(ξijξkl−ξilξkj)+high order terms,

where zji := zij for j > i.
Qξ0 = {z|ρ(z, ξ0) = 1 + z11 = 0},∇ρ(z, ξ0) = (1, 0, ..., 0). Hence Qξ0 is smooth, and for

z ∈ Qξ0 we have z = (−1, z12, z22, z13, ..., z(n−1)n). Pick z0, z1 ∈ Qξ0 . Then
Qzs = {ξ|0 = ρ(zs, ξ) = 1 +

∑n
i=1 zs

iiξii + 2
∑

i<j zs
ijξij + 2

∑
2≤i<j(z

s
11z

s
ij − zs

1jz
s
i1)(ξ11ξij −

ξi1ξ1j) +
∑n

i=2(z
s
11z

s
ii − (zs

1i)
2)(ξ11ξii − ξ2

1i) +
∑

i<k,j<l,(i,j) 6=(1,1)(z
s
ijz

s
kl − zs

ilz
s
kj)(ξijξkl − ξilξkj) +

high order terms}, for s = 0, 1.

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
=

(
∂ρ(z0,ξ)

∂ξ11

∂ρ(z0,ξ)
∂ξ12

... ∂ρ(z0,ξ)
∂ξ1n

... ∂ρ(z0,ξ)
∂ξij

... ∂ρ(z0,ξ)
∂ξnn

∂ρ(z1,ξ)
∂ξ11

∂ρ(z1,ξ)
∂ξ12

... ∂ρ(z1,ξ)
∂ξ1n

... ∂ρ(z1,ξ)
∂ξij

... ∂ρ(z1,ξ)
∂ξnn

)
∣∣
ξ0

=

(−1 2z0
12 2z0

13 ... 2z0
1n −(z0

12)
2 −2z0

12z
0
13 ... −(2− δij)z

0
1jz

0
1i ...

−1 2z1
12 2z1

13 ... 2z1
1n −(z1

12)
2 −2z1

12z
1
13 ... −(2− δij)z

1
1jz

1
1i ...

)
.

Hence, we have

rank

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= rank

(−1 2z0
12 2z0

13 ... 2z0
1n −(z0

12)
2 −2z0

12z
0
13 ... −(2− δij)z

0
1jz

0
1i ...

−1 2z1
12 2z1

13 ... 2z1
1n −(z1

12)
2 −2z1

12z
1
13 ... −(2− δij)z

1
1jz

1
1i ...

)
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= rank

(−1 2z0
12 2z0

13 ... 2z0
1n −(2− δij)z

0
1jz

0
1i ...

0 2∆z1
12 2∆z1

13 ... 2∆z1
1n (2− δij){z1

1j∆z1
1i + ∆z1

1jz
1
1i −∆z1

1j∆z1
1i} ...

)
.

where ∆z1
ij = z1

ij − z0
ij. If we pick z1

12 6= z0
12, then the above rank is 2.

Case 4. Orthogonal Grassmannians: Here we use the Pfaffian embedding stated in
§2. Fixing ξ0 = (ξ0

12, ξ
0
13, ξ

0
23, ..., ξ

0
(n−1)n) = (1, 0, ..., 0), the defining function of the Segre family

is given by ρ = 1 +
∑

i<j zijξij +
∑

2<i<j(z12zij − z1iz2j + z1jz2i)(ξ12ξij − ξ1iξ2j + ξ1jξ2i) +∑
i<j<k<l,{1,2}6⊂{i,j,k,l}(zijzkl− zikzjl + zilzjk)(ξijξkl− ξikξjl + ξilξjk) + high order terms. Note here

we use the notation zji := −zij for j > i.
Note Qξ0 = {z|0 = ρ(z, ξ0) = 1 + z12}. Hence it is smooth. Since z ∈ Qξ0 , we have

z = (−1, z13, ..., z(n−1)n). Pick z0, z1 ∈ Qξ0 . Then
Qzs = {ξ|0 = ρ(zs, ξ) = 1+

∑
i<j zs

ijξij +
∑

2<i<j(z
s
12z

s
ij−zs

1iz
s
2j +zs

1jz
s
2i)(ξ12ξij−ξ1iξ2j +ξ1jξ2i)

+
∑

i<j<k<l,{1,2}6⊂{i,j,k,l}(z
s
ijz

s
kl − zs

ikz
s
jl + zs

ilz
s
jk)(ξijξkl − ξikξjl + ξilξjk) + h. o. t.s.}, for s = 0, 1.

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
=

(
∂ρ(z0,ξ)

∂ξ12

∂ρ(z0,ξ)
∂ξ13

... ∂ρ(z0,ξ)
∂ξ1n

... ∂ρ(z0,ξ)
∂ξij

... ∂ρ(z0,ξ)
∂ξ(n−1)n

∂ρ(z1,ξ)
∂ξ12

∂ρ(z1,ξ)
∂ξ13

... ∂ρ(z1,ξ)
∂ξ1n

... ∂ρ(z1,ξ)
∂ξij

... ∂ρ(z1,ξ)
∂ξ(n−1)n

)
∣∣
ξ0

=

(−1 z0
13 ... z0

1n ... z0
2n (−z0

13z
0
24 + z0

14z
0
23)a ... (−z0

1iz
0
2j + z0

1jz
0
2i)a ...

−1 z1
13 ... z1

1n ... z1
2n (−z1

13z
1
24 + z1

14z
1
23)a ... (−z1

1iz
1
2j + z1

1jz
1
2i)a ...

)
.

Hence,

rank

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= rank

(−1 z0
13 ... z0

1n ... z0
2n ...

0 ∆z1
13 ... ∆z1

1n ... ∆z1
2n ...

)
.

Here ∆z1
ij = z1

ij − z0
ij. If we choose z1

13 6= z0
13, then the rank is 2.

Case 5. M16: Pick ξ0 = (κ0
0, κ

0
1, ..., κ

0
7, η

0
0, η

0
1, ..., η

0
7) = (1, 0, ..., 0), z0 ∈ Qξ0 . The defining

equation of the Segre family is
1 + x0κ0 + x1κ1 + ... + x7κ7 + y0η0 + y1η1 + ... + y7η7 + (x0y0 + x1y1 + ...)(κ0η0 + κ1η1 + ...) +

(−y0x1 + y1x0 + ...)(−η0κ1 + η1κ0 + ...) + ... + (x2
0 + x2

1 + ... + x2
7)(κ0

2 + κ1
2... + κ7

2) + (y2
0 + y2

1 +
... + y2

7)(η
2
0 + η2

1 + ... + η2
7) = 0.

Qξ0 = {z|ρ(z, ξ0) = 1+x0+(x2
0+x2

1+...+x2
7) = 0}, and∇ρ(z, ξ0)|z0 = (1+2x0, 2x1, ..., 2x

0
7, 0, ..., 0).

Hence Qξ0 is smooth. Pick z0, z1 ∈ Qξ0 . Then
Qzs = {ξ|0 = ρ(zs, ξ) = 1 + xs

0κ0 + xs
1κ1 + ... + xs

7κ7 + ys
0η0 + ys

1η1 + ... + ys
7η7 + (xs

0y
s
0 +

xs
1y

s
1 + ...)(κ0η0 + κ1η1 + ...) + (−ys

0x
s
1 + ys

1x
s
0 + ...)(−η0κ1 + η1κ0 + ...) + ... + ((xs

0)
2 + (xs

1)
2 +

... + (xs
7)

2)(κ0
2 + κ1

2 + ... + κ7
2) + ((ys

0)
2 + (ys

1)
2 + ... + (ys

7)
2)(η2

0 + η2
1 + ... + η2

7)}, for s = 0, 1.

rank

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
≥ rank

(
∂ρ(z0,ξ)

∂κ0

∂ρ(z0,ξ)
∂κ1

... ∂ρ(z0,ξ)
∂κ7

∂ρ(z1,ξ)
∂κ0

∂ρ(z1,ξ)
∂κ1

... ∂ρ(z1,ξ)
∂y7

)
∣∣
ξ0

= rank

(−2− x0
0 x0

1 x0
2 · · · x0

7

−2− x1
0 x1

1 x1
2 · · · x1

7

)
. (C)
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Since (−2− x0
0, x

0
1, x

0
2, · · · , x0

7) 6= (0, ..., 0), we can pick z1 sufficiently close to z0, such that
the above rank is 2. That is because Qξ0 is irreducible and the subvarieties, defined by 2 × 2
minors of the last matrix in (C), are thin subsets of Qξ0 .

Case 6. M27: Take ξ0 = (ξ0
1 , ξ

0
2 , ξ

0
3 , η

0
0, η

0
1, ..., η

0
7, κ

0
0, κ

0
1, ..., κ

0
7, τ

0
0 , τ 0

1 , ..., τ 0
7 ) = (1, 0, ..., 0).

The defining function of the Segre family is 1 + rz · rξ where

rz = (x1, x2, x3, y0, ..., y7, z0, ..., z7, w0, ..., w7, A, B, C, D0, ...D7, E0, ..., E7, F0, ..., F7, G)

rξ = (ξ1, ξ2, ξ3, ..., η7, ..., κ7, ..., τ7, A(ξ), B(ξ), C(ξ), ..., D7(ξ), ..., E7(ξ), ..., G(ξ)).

Here A,B,C,Di, Ei, Fi are homogeneous quadratic polynomials; G is a homogeneous cubic
polynomial defined in Appendix I.

For our purpose here, we present terms only involving ξ1, ξ2, and omit those involving
ξ3, η0, η1, ..., η7, κ0, κ1, ..., κ7, τ0, τ1, ..., τ7 as follows: ρ(z, ξ) = 1 + x1ξ1 + x2ξ2 + ... + (x1x2 −
(
∑7

i=0 y2
i ))(ξ1ξ2 − (

∑7
i=0(τi)

2)) + · · · .
Qξ0 = {z|ρ(z, ξ0) = 1 + x1 = 0},∇ρ(z, ξ0) = (1, 0, 0, ..., 0). Hence Qξ0 is smooth and for

z ∈ Qξ0 , we have z = (−1, x2, x3, ..., ). Pick z0, z1 ∈ Qξ0 . Then

Qzs = {ξ|0 = ρ(zs, ξ) = 1+xs
1ξ1 +xs

2ξ2 + ...+(xs
1x

s
2− (

∑7
i=0(y

s
i )

2))(ξ1ξ2− (
∑7

i=0(τi)
2))+ ...},

for s = 0, 1.

rank

(∇ρ(z0, ξ)|ξ0

∇ρ(z1, ξ)|ξ0

)
= rank

(
∂ρ(z0,ξ)

∂ξ1

∂ρ(z0,ξ)
∂ξ2

∂ρ(z0,ξ)
∂ξ3

... ∂ρ(z0,ξ)
∂η7

... ∂ρ(z0,ξ)
∂κ7

... ∂ρ(z0,ξ)
∂τ7

∂ρ(z1,ξ)
∂ξ1

∂ρ(z1,ξ)
∂ξ2

∂ρ(z1,ξ)
∂ξ3

... ∂ρ(z1,ξ)
∂η7

... ∂ρ(z1,ξ)
∂κ7

... ∂ρ(z1,ξ)
∂τ7

)
∣∣
ξ0

≥ rank

(
∂ρ(z0,ξ)

∂ξ1

∂ρ(z0,ξ)
∂ξ2

∂ρ(z1,ξ)
∂ξ1

∂ρ(z1,ξ)
∂ξ2

)
∣∣
ξ0 = rank

(−1 −(
∑7

i=0(y
0
i )

2)

−1 −(
∑7

i=0(y
1
i )

2)

) ∣∣
ξ0 ≥ 2,

for those z1’s such that
∑7

i=0(y
1
i )

2 6= ∑7
i=0(y

0
i )

2. This can be done in any small neighborhood
of z0; for {z|∑7

i=0(yi)
2 = B} is a thin set in {z|0 = 1 + x1} for each fixed B ∈ C.

This completes the proof of the flattening theorem.
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