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Achieving Rental Harmony
with a Secretive Roommate

Florian Frick, Kelsey Houston-Edwards, and Frédéric Meunier

Abstract. Given the subjective preferences of n roommates in an n-bedroom apartment, one
can use Sperner’s lemma to find a division of the rent such that each roommate prefers a dis-
tinct room. At the resulting rent division, no roommate has a strictly stronger preference for a
different room. We give a new elementary proof that the subjective preferences of only n — 1
of the roommates actually suffice to achieve this envy-free rent division. Our proof, in particu-
lar, yields an algorithm to find such a division of rent. The techniques also give generalizations
of Sperner’s lemma including a new proof of a conjecture of Meunier.

1. INTRODUCTION. The rent in Larry’s new two-bedroom apartment is $1000,
and he would like to split the cost with Moe, his new roommate. Because the two
rooms are not the same size and each has its own advantages, Larry is concerned with
dividing the rent between the rooms so that neither roommate will be envious of the
other. He feels that splitting the rent $600-$400 between the two rooms is fair—the
disadvantages of the second room are offset by its reduced cost. Now, when Larry
offers the two rooms to Moe at these prices, it will not matter to him which room Moe
chooses; Larry is content with the other room. The two new roommates will not be
envious of one another and live in a state of rental harmony. Larry accomplished this
envy-free rent division without taking Moe’s preferences into account.

This is not a lucky accident of the two person—two bedroom situation: for a three-
bedroom apartment, Larry and Moe can fairly divide the rent among the rooms without
taking the preferences of a third roommate, Curly, into account. Curly can then choose
an arbitrary room, and still leave Larry and Moe with sufficient options to accomplish
rental harmony: each roommate is assigned a room that he or she prefers.

For a fixed rent division, we say that a roommate prefers a room if there is no
other room that he or she thinks is strictly better at its designated rent. Notice that
a roommate can prefer several rooms. An envy-free division is a division of the rent
such that it is possible to assign each roommate a distinct room that he or she prefers
at a rent division within one cent of the actual division. In other words, we accept
approximate envy-free divisions: roommates do not care about one-cent margins. This
is without loss of generality; by a compactness argument, we can recover the existence
of exact envy-free rent divisions.

In general, it suffices if n — 1 roommates know each other’s preferences to fairly
divide the rent of an n-bedroom apartment. In other words, an envy-free division exists
even if there is a secretive roommate: one whose preferences are not considered while
the rent is being divided among the n rooms, but whose preferences are considered
in the assignment of rooms. We give an algorithm for producing such an envy-free
division of rent; see Asada et al. [1] for the recent nonconstructive topological proof
of this result.

The fact that rental harmony can always be achieved in an n-bedroom apartment
(under mild conditions) if the subjective preferences of all n roommates are known
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was shown by Su [12], partially reporting on work of Simmons. The proof uses a
combinatorial-geometric lemma about labelings of simplices due to Sperner [11]. This
makes the proof, especially for low n, accessible to a nonexpert audience. Here our
goal is to adapt Su’s arguments for n = 3 and then give a separate elementary proof of
the existence of an envy-free division of rent for n roommates, where the preferences
of one roommate are unknown.

We first recall the mild conditions stipulated by Su to guarantee the existence of an
envy-free rent division:

1. In any division of the rent, each roommate prefers at least one room.

2. Each roommate prefers a room that costs no rent (i.e., a free room) to a nonfree
room.

3. If a roommate prefers a room for a convergent sequence of prices, then that
roommate also prefers the room for the limiting price.

We remark that Su’s second condition together with the third condition imply that the
roommates are indifferent among free rooms, that is, if multiple rooms are free then
each roommate prefers all of them. This is because for any division of the rent where
multiple rooms are free, there is always a sequence of prices converging to this rent
division where only one specific room is free.

Under these conditions, we give a new, elementary, and constructive proof of our main
theorem. This theorem was previously proved by Asada et al. [1] using nonconstructive
techniques.

Theorem 1. With the above conditions, for an n-bedroom apartment it is sufficient to
know the subjective preferences of n — 1 roommates to find an envy-free division of
rent.

In Section 2 we recall and prove Sperner’s lemma. The proof introduces a piece-
wise linear map that is used in the following sections. Section 3 gives two proofs of
Theorem 1 in the case where n = 3, the first of which was originally presented in the
PBS Infinite Series episode “Splitting Rent with Triangles” [7]. Section 4 generalizes
the second proof given in Section 3 to show the main theorem. Section 5 explains how
this proof yields an algorithm to find the envy-free division of rent. Section 6 utilizes
the piecewise linear map introduced in previous sections to prove two generalizations
of Sperner’s lemma in an elementary way—one of these generalizations had been con-
jectured by Meunier in his dissertation and was recently proved by Babson [3] with
different methods.

2. SPERNER’S LEMMA. Begin with a triangle that is subdivided into several
smaller triangles. Label the three vertices of the original triangle 1, 2, and 3, so that
each vertex receives a distinct label. Then, label each vertex on an edge of the original
triangle by either of the labels at the endpoints of that edge. Finally, label the interior
vertices 1, 2, or 3 arbitrarily. This is a Sperner labeling of a triangle, as in Figure 1.

The result known as Sperner’s lemma for a triangle states that there exists some
small triangle with each of the three labels on its vertices. Even stronger, there will
be an odd number of such fully-labeled triangles, i.e., triangles whose vertices exhibit
all labels. A classic proof, which uses a “trap-door” argument, goes back to Cohen [4]
and Kuhn [8], and yields an algorithm to find a fully-labeled triangle. Here, we present
a different proof, based on a piecewise linear map between the vertex labels. This
technique was originally presented by Le Van [9]. We use the piecewise linear map in
Section 3 to prove there exists an envy-free division of rent for three roommates, one
of whose preferences are secret.
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Figure 1. Options for a Sperner labeling.

Figure 2. Piecewise linear map. The range of this map is a simplex of colors interpolating among green, red,
and blue.

The proof of Sperner’s lemma will use the fact that a piecewise linear self map A of
the triangle that fixes the vertices and the edges is surjective. While this is intuitive in
two dimensions, we will use the same result in higher dimensions in Section 4.

Fact 1. A piecewise linear self map A of the (n — 1)-simplex A,_, that preserves
faces setwise (i.e., A(o) C o for any face o of A,_y) is surjective. Let 7w be the linear
extension of a permutation of the vertices of A,_1. If A(0) C m (o) for all faces o, then
A is also surjective.

While this is easily seen using the notion of degree, we give a self-contained ele-
mentary path-following proof of Fact 1 in Section 5. (For a definition of the degree of
a map and its relationship to surjectivity, we refer to Hatcher [6], and in particular to
the paragraph “Degree” on page 134.)

Proof of Sperner’s lemma. A Sperner labeling of a subdivided triangle can naturally
be thought of as a piecewise linear map A: A — A from the triangle to itself, defined
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as follows. For each vertex v of the subdivision, A(v) is the vertex of the original
triangle with the same label. Then extend this map linearly within the small triangle.
See Figure 2 for an example where the labels are colors: green, red, and blue.
Typically, the labels will be numbers, not colors. For example, the main vertices are
labeled 1, 2, 3. The barycenter of a small triangle labeled 1, 2, 3 maps to the barycenter
of the original triangle, while the barycenter of a triangle labeled 1, 1, 2 maps to the
point on the edge with endpoints labeled 1 and 2 that separates the edge in a two-to-
one ratio. Note that, for any edge e of the original triangle A(e) C e (thus A also fixes
the vertices), and that X is piecewise linear.
This implies that A is surjective by Fact 1 and, in particular, that there exists a
point x € A such that A(x) is the barycenter of the original triangle, i.e., A(x) =
%, % %). Then 7, the smaller triangle containing x, must be fully-labeled. If T had
only two of the labels, then A(7) would be contained in the edge of the original tri-
angle spanned by the vertices with the two labels of . This contradicts that A(x) is the

barycenter. ]

Sperner’s lemma easily generalizes to higher dimensions. A triangulation of A, _;
is a subdivision of A, _; into smaller (n — 1)-simplices, or, more precisely, a covering
of A,_; by a collection of (n — 1)-simplices whose interiors are disjoint and such that
any two of them intersect in a (possibly empty) common face. Given a triangulation of
an (n — 1)-dimensional simplex A, 1, a Sperner labeling is a labeling of the vertices
with {1, 2, ..., n} such that (1) the n vertices of the original (n — 1)-simplex receive
distinct labels, and (2) a vertex on a k-face of A,_; is labeled by one of the k + 1
labels of that k-face. Sperner’s lemma for higher-dimensional simplices states that
any triangulated (n — 1)-simplex with a Sperner labeling contains an odd number of
smaller (n — 1)-simplices that are fully-labeled, i.e., that exhibit all n labels on their
vertices.

The proof of Sperner’s lemma using a piecewise linear map generalizes to higher-
dimensional simplices fairly directly. The map A: A,_; —> A,,_; from the (n — 1)-
simplex to itself is defined nearly identically: map each vertex of a smaller (n — 1)-
simplex to the vertex of the original simplex with the same label and then extend the
map linearly inside each smaller simplex.

For any face o of the simplex A,_;, subdivision vertices contained in ¢ are only
labeled by labels found at the vertices of o by the definition of Sperner labeling, and
therefore, the image A (o) is contained in o. Thus A is surjective by Fact 1, and there
must exist a point x € A,_; such that A(x) = (%, %, e, rll), that is, it is the barycenter
of the simplex. (As mentioned earlier, we will give an elementary proof of this fact in
Section 5.) The smaller (n — 1)-simplex containing x must be fully-labeled.

3. RENTAL HARMONY IN THE ABSENCE OF FULL INFORMATION FOR
THREE ROOMMATES. Here we give two combinatorial proofs of the n = 3 case
of Theorem 1. The first proof is constructive and yields an algorithm to find the envy-
free division of rent, since it reduces Theorem 1 to Sperner’s lemma for n = 3. The
second proof mirrors the proof we provide in Section 2. As presented in this section,
the second proof only gives the existence of an envy-free division with a secret prefer-
ence, but Section 5 explains how this method also yields an algorithm.

Proof 1. Form a triangle in R? with vertices given by (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Because this lies in the plane x 4+ y 4+ z = 1, we can interpret each point in the triangle
as a division of rent. For example, (}—‘, i, %) indicates that rooms 1 and 2 cost one-
quarter of the total rent and room 3 costs one-half of the total rent.
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Figure 3. Example of Theorem 1. The rooms 1, 2, and 3 correspond to colors green, red, and blue, respec-
tively. Each vertex records the preferences of Larry (top) and Moe (bottom). Beige triangles correspond to
approximately envy-free divisions of rent, where Curly can decide on an arbitrary room.

Subdivide this triangle into many smaller triangles, i.e., triangulate the original tri-
angle. If this triangulation is fine enough, then the vertices of a single small triangle
represent divisions of the rent that only differ from one another by a penny or so. At
each vertex we survey both Larry and Moe, asking which room they would prefer if the
rent were split in this specific way. We record their preferences as an ordered pair of
two integers (L, M) with 1 < L, M < 3, where L is the number of Larry’s preferred
room and M is the number of Moe’s preferred room. If Larry or Moe prefers multiple
rooms at a given rent division, we make an arbitrary choice, except on the three main
vertices of the original triangle, where there are two free rooms. On the three original
vertices, we ask Larry to choose distinct rooms, i.e., to select each room once, and
Moe to copy Larry’s preferences.

See Figure 3 for an example, where the top half of each vertex indicates Larry’s
preference and the bottom half indicates Moe’s preference. Note that the colors and
numbers are redundant labelings.

At every vertex of the triangulation transform the label (L, M) into a single-
digit label according to the following rules: label the vertex 3 if the previous label
was (1,1), (1,2), or (2,1); label the vertex 1 for (2,2), (2,3), or (3,2); and
label it 2 for (3,3), (3, 1), or (1, 3). The three original vertices of the triangle are
labeled (1, 1), (2, 2), and (3, 3), so their new labels are 3, 1, and 2. On every edge
of the triangle the vertices of the triangulation have the same label—only one room
is free. And this label is one of the two labels we find at the endpoints of that edge.
Therefore we have a Sperner labeling.

Thus we can find a small triangle that has vertices with all three labels. The cor-
responding rent divisions are all within a small margin of error. We arbitrarily select
one rent division from this triangle as the envy-free rent division. It is simple to check
that seeing all three labels for this rent division (with small error margin) implies that
Larry and Moe each prefer at least two distinct rooms, and each room is preferred by
at least one of them. For example, it is impossible that Larry only likes room 1 since
one vertex is labeled 1; and it is impossible that both Larry and Moe dislike room 3
since one vertex is labeled 2. See, for example, Figure 4. This means that regardless of
which room Curly chooses, both Larry and Moe will be left with one of their favorite
rooms. [ |
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Room 1

Larry

Room 2

Moe

Room 3

Figure 4. Bipartite graph showing an example of preferences of Larry and Moe at an envy-free rent division.
Notice that, regardless of which room Curly selects, both Larry and Moe can still be assigned a preferred room.

2 3 2 2 3

Figure 5. The reduction of Theorem | shows a generalization of Sperner’s lemma to multiple labelings. Col-
ored triangles exhibit all three labels across the two Sperner labelings and each labeling exhibits at least two
distinct labels.

The reduction in the proof above actually proves a generalization of Sperner’s
lemma: given two Sperner labelings of a subdivided triangle that match up on the
original vertices of the triangle, use the rules above to transform them into one Sperner
labeling. A fully-labeled triangle, which exists by Sperner’s lemma, now exhibits all
three labels across the two Sperner labelings and both Sperner labelings exhibit at least
two labels. See Figure 5 for an example, where we do not impose special labels for
vertices on the boundary of the triangle as in Figure 3 (other than that labels match
up at the three original vertices of the triangle). Higher-dimensional generalizations
of Sperner’s lemma to multiple labelings were conjectured by Meunier and proved by
Babson [3]. We will treat these and other extensions with new and simple proofs in
Section 6.

Proof 2. This second proof of Theorem 1 for n = 3 will generalize to the case of n
roommates and yield an algorithm to find the envy-free division of rent. It is analogous
to the proof of Sperner’s lemma—where we used Fact | to guarantee the surjectivity
of a piecewise linear map—except that the argument is applied to an average of n — 1
piecewise linear maps. The general technique of applying a topological argument to
the average of functions coming from simplex labelings goes back to Gale [5].
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Figure 6. Piecewise linear maps Ay, and A ;.

Figure 7. Average of A7 and 1.

As in the first proof, consider the standard simplex in R* with vertices on the stan-
dard basis ey, e, and e;. Triangulate the simplex finely enough, and at each vertex
of the triangulation, survey Larry and Moe about their room preferences. Instead of
recording this as an ordered pair, construct two piecewise linear maps Ay, Ay : A —>
A that reflect the preferences of Larry and Moe, respectively. That is, for each vertex
v of the triangulation, A; maps v to the vertex of the original triangle with the same
label as one of Larry’s preferred rooms at the rent division given at vertex v. The map
Ay 1s defined in the same way using Moe’s preferences. Then A, and A, are defined
within each smaller triangle as the linear extension of the values at its vertices.

Let A = %()L 1 + Ay) denote their average, which again is a piecewise linear
map A: A —> A. The map A maps vertices of the triangulation of A either to one of
the three original vertices of A (if the vertex receives the same label by both Larry and
Moe) or to one of the three midpoints of edges (if the labelings do not agree on the
vertex).

Continuing the example from Figure 3 and using the color labels, Figure 6 illustrates
the two piecewise linear maps A, and X, associated with Larry and Moe’s preferences,
respectively. Figure 7 shows their average A.

Observe that for every subdivision vertex v the vector 24 (v) counts how often each
label is exhibited in v, e.g., if 2A(v) = (1,0, 1) then A, (v) = e; and Ay (v) = e; oOr
vice versa. Because the roommates are indifferent among free rooms, we can suppose

24 (© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 126



that on each of the original vertices of the triangle Larry and Moe choose the same
room, and that they choose each room precisely once on one of the three original
vertices. Then as before we check that A maps each face o of A to itself up to a
permutation of the vertices, and thus by Fact 1 there is a point x € A with A(x) =
(%, % %). The point x lies in some small triangle 7.

We claim that (1) t exhibits all three labels, and (2) both A; and A, exhibit at least
two labels on 7. To see claim (1), note that if T exhibited only two of the labels, then
one of the coordinates of A(x) would be zero. To see claim (2), assume for contradic-
tion that either A, or A, only exhibits one of the labels. Assume that label is 1. Then
the first coordinate of A(v) will be at least % for each vertex v of 7. And so the first

coordinate of A(y) for any y € t must be at least % which contradicts A(x) = (%, % %).

The point x corresponds to an envy-free rent division. After the secretive roommate
selects their room, two remain. Since t exhibits all three labels, each of the remaining
labels will be exhibited by A, or A,,. Moreover, since A, and X); each exhibit at least
two distinct labels, it is impossible that one roommate prefers neither room. Therefore,

the remaining two rooms can be assigned in an envy-free way. ]

4. THE GENERAL CASE. Generalizing the last section, here we give a proof of
the main result, Theorem 1: it is always possible to find an envy-free division of the
rent for an n-bedroom apartment with a secretive roommate, one whose preferences are
considered while assigning rooms, but not while dividing rent between the rooms. That
is, the rent division is based on the subjective preferences of only n — 1 roommates.
The proof is a generalization of the second proof given in Section 3.

Proof. For n roommates, we consider the standard (n — 1)-simplex in R”. Its vertices
lie on ey, ..., e,, the standard basis of R", and x; + x, 4+ - - - + x, = 1 for any point
(x1, ..., x,) in the simplex. Similar to the n = 3 case, each point in the simplex is a
distribution of the rent and the fraction of the rent corresponding to the ith room is
given by x;. Triangulate the simplex finely enough so that the rent division in the same
subdivision simplex is within a one-cent margin of error.

For each of the n — 1 given subjective preferences, we define a piecewise linear map
Aji Ay —> A, from the triangulated (n — 1)-simplex to itself, defined as before:
for each vertex v of the triangulated simplex, A;(v) maps to a vertex of the origi-
nal simplex, recording the jth roommate’s preference. If a roommate prefers several
rooms we make an arbitrary choice at vertices in the interior of the simplex, whereas
for vertices on the boundary we make a specific choice explained below. For example,
if A;(v) = e3, then roommate j prefers room 3 at the rent division given at v. As in
the n = 3 case, on vertices in the boundary, we impose certain preferences, described
below.

The vertices ey, e, . . ., e, of A,_; correspond to the rooms 1, 2, ..., n, where room
i is the only nonfree room at ¢;. We ask each roommate to decide for room 7 (i) =
i+ 1ate; fori <n and room 7 (n) = 1 at e¢,. For the other vertices on the boundary
of A,_;, we proceed as follows: at such a vertex v, we require that each roommate
chooses a room k such that e, is a vertex of the supporting face o of v, but not ¢;.
Here, we use the convention ey = ¢,,. The rooms that are free for rent divisions in o
are precisely those rooms that correspond to vertices of A,_; not contained in o; thus
v is labeled by a free room. Labeling the other vertices in the interior of A,_; by the
preferences of the roommates leads to a Sperner labeling since each vertex v on the
boundary of A,_; gets a label that appears on one of the vertices of its supporting face.
After A ; is specified on each vertex of the triangulation, define A; within each smaller
simplex as the linear extension of its values on the vertices of the smaller simplex.
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Let A: A,_; —> A,_; denote the average, > = ﬁ()w + X+ -+ Xx,_1). Since
each A ; fixes the faces of A,_; setwise up to the permutation 7, so does their aver-
age A and we can apply Fact 1. Thus, as before, A is surjective. Let x € A,,_; be such
that A(x) = (4,..., 1), that is, x is mapped to the barycenter. Let 7 be the simplex
containing x.

Fix k € {1,...,n — 1}. We claim that any k-subset of the labelings A; will exhibit
at least k + 1 labels within 7. Assume for contradiction that A is some k-subset of
the A; whose labels are in {¢; , ..., e; }. Then A(t) will be shifted toward the vertices
e, and thus will not contain the barycenter. More precisely, for any vertex v of v and
any A; € A,

(Ai(v),ej, +---+ej)=1

and hence

k

()»(U),ejl +"'+€jk) > l’lT]

Since this holds for all vertices v of 7, it also holds for any point inside t. But,

1 1 k
()\.(X),ejl+"'+€jk>= —,...,; ,€j1+"'+€jk =;,

n

which is a contradiction.

This means any subset of k roommates prefers at least k 4+ 1 rooms. This implies
that, for the rent division x, there is an envy-free assignment regardless of which room
is picked by the secretive roommate given by the labels of t. This is because no matter
which room the secretive roommate picks, any subset of k (nonsecretive) roommates
has k rooms to pick from; construct a bipartite graph with vertices corresponding to
the n — 1 roommates on the one hand and vertices corresponding to the n — 1 untaken
rooms on the other. We add an edge for a pair of roommate and room if the roommate
prefers this particular room. An envy-free rent division now corresponds to a perfect
matching, which exists by Hall’s marriage theorem: in any bipartite graph with bipar-
tite sets A and B there exists a matching that entirely covers A if and only if for every
subset W C A its neighborhood N (W) satisfies [N (W)| > |W/|. For a proof of Hall’s
marriage theorem and description of the algorithm used to find a perfect matching, see
Theorem 22.1 in Schrijver [10]. [ |

Hall’s marriage theorem was also used by Azrieli and Shmaya [2] to prove a gener-
alization of Su’s rental harmony result to a setting where roommates can share rooms.
It would be interesting to know whether Theorem 1 can be extended to this setting.

We remark that this shows the following generalization of Sperner’s lemma: Given
n — 1 Sperner labelings A, ..., A, of a triangulation of the (n — 1)-simplex A,,_;
that match up on the original n vertices of A,_;, there is a smaller simplex 7 that for
all k =1,...,n — 1 exhibits at least kK + 1 labels for any subset of k of the Sperner
labelings.

5. ALGORITHMIC ASPECTS. Our proof in the previous section relies on Fact 1

to find a simplex T whose image under A contains the barycenter of A, ;. Here we
describe a simple algorithm for how to find t. For this we can assume, without loss
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of generality, that (o) C o by first applying 7. Our algorithm does not use the sur-
jectivity of A. In fact, our algorithm also gives an elementary proof of the surjectivity
of A.

It is instructive to first consider low-dimensional cases. The algorithm for n = 2
roommates just traverses the interval A; until for some edge e of (a triangulation of)
A, the image A(e) contains the barycenter, which must exist by the intermediate value
theorem.

We now describe the algorithm for a triangle A, = conv{ey, e;, ¢35}, the convex hull
of ey, €3, and e3. We are given a triangulation 7" of A, and a map A: A, —> A, that
interpolates linearly on every face of 7. The map A fixes the vertices and edges of
A, setwise. We will construct a path that starts in the vertex e; of A, and ends in a
triangle o of T such that A(o) contains the barycenter %(el + ey + e3) of A,. We will
now describe the vertices and edges of a graph G such that following paths in this
graph will lead to a triangle mapped to the barycenter by A. To build this graph we
assume that A is generic in the sense that no vertex of 7' gets mapped to the segment
connecting the barycenter of [e}, ;] to the barycenter of A,. We define the vertices
of G to be:

1. the vertex e; of As;

2. any edge e of T that subdivides the edge [e;, e»] of A, and such that A(e) N
[e1, %(el + e3)] # ¥, i.e., the image of e under A intersects the segment from
vertex e; to the barycenter of [e, e;];

3. any triangle o of T such that A(o) intersects [%(el + ey), %(el + e, + e3)], the
segment connecting the barycenter of the edge [e;, ;] to the barycenter of A,.

We define the edges of G to be:

1. between e; and the vertex corresponding to the edge of 7' that contains e; and
subdivides [ey, e>];

2. between any two vertices corresponding to boundary edges of 7' that share a
common vertex v such that A(v) € [e, %(el +e)l;

3. between any two vertices corresponding to triangles of 7' that share a common
edge e such that A(e) N [%(el +e), L(e) + ey +e3)] # 0

4. between a boundary edge e of T with %(el + e5) € A(e) and the incident triangle
o of T, i.e., the unique triangle ¢ that contains e as an edge.

We claim that G has a connected component that is a path from e; to some triangle o
with %(e 1 + e+ e3) € A(o). Notice that ¢; is incident to one other vertex in G (corre-
sponding to the unique edge of 7 that has e, as a vertex and subdivides [e;, ¢;]). If e is
any boundary edge of T (that does not have e, as a vertex) with A(e) C [ey, %(el +e)],
then in G it is connected to two other boundary faces of T (the ones that lie to the left
and right of e on the edge [e;, e;]). If e is a boundary edge of T with %(el +e)) € Ale),
then precisely one of its vertices gets mapped to [e;, %(el + €3)], so e is connected
to one other edge of T in G. The other neighbor of e in G is the unique triangle
o of T that contains e as an edge. Now since, generically, line segments intersect
(boundaries of) triangles in either one or two edges, the vertices of G corresponding
to triangles have precisely two neighbors unless the segment of points in the triangle
o that A maps to [%(el + e,), %(61 + e, + e3)] intersects o in only one edge. In that
case %(el + e; 4+ e3) € A(0). Thus G is a graph where all vertices have degree one or
two, and have degree one if and only if they correspond to a triangle that gets mapped
to the barycenter of A, or correspond to our starting point e;. Starting in the vertex e;
and following the edges of G we must end up in such a triangle, as desired.
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To summarize the algorithm, we start walking at the vertex e¢; and traverse along
the edge [e, e,] until we hit an edge of T that is mapped to the barycenter of [e, e;].
From there we walk inwards into the triangle A, following a path of triangles whose
image under A intersects [%(61 + e2), %(el + ey 4 e3)]. This either ends in a triangle
of T that gets mapped to the barycenter %(e] + e, + e3), or we return to edges subdi-
viding [e;, e,]. However, in the latter case we must leave the edge [e;, e,] and follow a
path of triangles again. After finitely many trips back to the edge [e;, e,], we must end
up in a triangle mapped to the barycenter.

This construction and algorithm easily generalize to higher dimensions. We work
with the faces

ey, convie, e}, conviey, es, €3}, ..., conv{ey, ..., e,} = A,y

and their barycenters b, = %Zf:l e;. All faces o of the triangulation 7" of A, ;
that subdivide one of these faces, say conv{ey, ..., ¢}, and such that A(c) inter-
sects the segment [b;_1, b;] that joins the barycenter of conv{ey, ..., ¢;_} to that of
conv{ey, ..., ¢} make up the vertices of G. The vertex e; of A, is a vertex of G as
well. Two such faces oy and o, of dimension k are connected by an edge in G if they
share a common (k — 1)-face 7 such that A(7) intersects [by, by,1]. We assume that
if A(7) intersects [by, byy1], then there is a point x in the relative interior of 7 such
that A(x) € [b, br+1]. This can be achieved by slightly perturbing the barycenters by.
Moreover, there is an edge between k-face o and (k — 1)-face 7 if 7 is a face of o in
T and b, € A(T).

A line segment generically cannot intersect a k-face in more than two of its (k — 1)-
faces and it intersects in precisely one (k — 1)-face if it ends inside the k-face. Thus
our reasoning for A, also applies to this higher-dimensional construction and starting
in the vertex e¢; of G, we can follow edges of G to end up in an (n — 1)-face o of T
with 2 37 ¢; € A(0).

6. GENERALIZATIONS OF SPERNER’S LEMMA. As mentioned before, the
methods of Section 4 actually yield generalizations of Sperner’s lemma to multiple
labelings. Fix a triangulation of the (n — 1)-simplex and several Sperner labelings
Aty ..., Ay of it. We will always assume that these labelings match up on the original
n vertices of A,_;. We will again think of a Sperner labeling A as a piecewise linear
map A: A, —> A,_1, that is, the labels of vertices are the standard basis vectors
ei, ..., e,. If no confusion can arise we will also denote the label ¢; by i. By Sperner’s
lemma, each of the labelings A; has a fully-labeled simplex. It is simple to come up
with examples where no pair of these respective fully-labeled simplices coincide. In
attempting to understand how many labels a single simplex must exhibit across the m
Sperner labelings, there are two natural questions:

1. For each vertex v in the triangulation of A,_;, define A(v) = (ji, ..., j,) Where
Ji indicates the number of times the ith label appears at v across all m Sperner
labelings Ay, ..., Ay, 1.6, A = Ay + - - - + A,,. How can we constrain {Z"}f’:1 with
0" € 7", to guarantee that there exists a simplex with vertices vy, ..., v, such
that A(v;) = ¢ foreachi =1, ...,n?

2. Dually, how can we constrain m-tuples (ky, . . ., k,,) of nonnegative integers such
that there is a simplex 7 on which A; exhibits k; distinct labels?

We will relate the first question to convex hulls of lattice points, i.e., points with
integer coordinates, inm - A,_; = {x € R" | Y x; = m, x; > 0}, the (n — 1)-simplex
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Figure 8. Example of Theorem 2. We can guarantee the existence of a triangle with one vertex labeled
by (1, 1), a second vertex labeled (2, 2), (1, 2), or (2, 1), and the last vertex exhibits label 3 at least once.

scaled by m. Specifically, we establish a correspondence between the collection of m
Sperner labelings on A,_; and the lattice points in m - A,,_.

We study the maximal collections of n lattice points in m - A, _; whose convex hulls
all intersect in a common point y. There are only a finite number of simplex labelings
that could be the preimage of these collections under A; now A,_; must actually have
a simplex with at least one of those labelings.

For example, fix two Sperner labelings A; and A, of a triangulation of the tri-
angle A,. We can learn about what types of labelings must occur by studying the
lattice points in 2 - A, whose intersections all contain one point.

Consider the point y = (2 — 3¢, 2¢, ¢) for some small & > 0. The point y is close to
the vertex (2, 0, 0) and even closer to the edge between (2, 0, 0) and (0, 2, 0) without
being on it. Besides the three vertices, the other relevant integer lattices points are
midpoints of edges (0, 1, 1), (1,0, 1), (1, 1, 0).

Any three lattice points £', ¢2, 3 € 2 - A, whose convex hull contains y must be
(up to reordering):

1. ¢ =(2,0,0);

2. £2=1(0,2,0)0r > = (1,1,0);

3. £2=1(0,0,2), 6> = (1,0, 1),0r £ = (0,1, 1).

In Theorem 2, we claim that, up to renaming, there exists a smaller triangle of A,
with A(v;) = €' fori = 1, 2, 3. For example, see Figure 8. Expanding on the possible

preimages of £', £2, and ¢°, we have that there must exist a smaller triangle with ver-
tices vy, V3, v3 such that

L. (A (vp), Aa(vy)) = (er, e1);
2' ()“l(v2)7 )"2(1)2)) S {(621 62)1 (617 62)7 (62’ el)};
3. (A1(v3), Xa(v3)) € {(e3, €3), (e1, e3), (e2, €3), (e3, €1), (e3, €2)}.

Theorem 2. Let Ay, ..., A, be Sperner labelings of a triangulation T of A,_,. Let
y € m - A,_; be some point that is not in the convex hull of any n — 1 lattice points
inm - A,_y. Then there is a simplex T of T and an ordering of its vertices vy, ..., v,
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Figure 9. Example of Theorem 3. Both Sperner labelings exhibit at least two labels on the shaded triangles.

such that the point y is contained in conv{f', ..., 0"}, where £ € m - A,_, denotes the
lattice point whose jth coordinate is the number of times the jth label appears at v;.

Proof. Let A(v) = (A + -+ + A,)(v) be a map from A,_; tom - A,_;. The map A
satisfies A(o) € m - o for any face o of A,_; since the A; are Sperner labelings. Thus
the average %)\ fixes faces setwise, and by Fact 1, thereisan x € A,_; with A(x) = y.
Let 7 be a face of the triangulation of A,_; that contains x. The map A maps vertices of
the triangulation of A,,_; to lattice points of m - A,_;. Since y is not in the convex hull
of fewer than n lattice points inm - A,_1, the vertices of T must be mapped precisely to
the elements of a set of n lattice points in m - A,_; whose convex hull captures y. H

Question 2 can be approached in much the same way. Instead of defining the map
A as the sum or average of the piecewise linear extensions of the Sperner labelings
as before, we now take a biased average with weights according to how many labels
each Sperner labeling is supposed to exhibit. Meunier conjectured in his dissertation
that " k; = n +m — 1 is a valid constraint for Question 2. This was recently proved
by Babson [3]. We give a different proof below in the spirit of the other proofs of this
manuscript. See Figure 9 for an example.

Theorem 3. Let Ay, ..., A, be m Sperner labelings of a triangulation of A,_, and
let ky, ..., k, be m positive integers summing up to n + m — 1. Then there exists a
simplex t such that, for all j, the labeling X; exhibits at least k; pairwise distinct
labels on .

Proof. Leta; = 1(k; + L+ — 1) for 1 < j < m. Then since Y jki=n+m—1,we
have that 3 oy = 1. Thus A =}, o;2; is amap A,y —> A,_;, and X satisfies

M(o) C o for each face o of A,_; as usual. Let x € A,_; with A(x) = (%, e, %)
and let T be a smaller simplex of the triangulation of A,_; containing x. Denote the
vertices of 7 by vy, ..., v, and let x = ), u;v; for nonnegative p; with ), u; = 1.
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Define fori =1,...,nand j =1,...,m

,Bi_f=0fj' Z M-

{klnj (vp)=e;}

Since ) ; u; = 1, we have that ) . B;; = «; for every j. The choice of x, definition
of A, and piecewise linearity of the A; imply that

1

1 n
(;, . ;) =A(0) =Y hi(x) =Y o > k),
J J k=1

and thus ) ; Bij = % Since in particular 0 < 8;; < % and we already know that
> Bij = a;, for each j the number of indices i such that §;; > 0 is at least «; - n >
k; — 1. Now B;; > 0 implies that there is a vertex v of = with A;(v) = ¢;, and thus t
receives at least k; distinct labels by A ;. |

Using the same technique as in Section 5, the proofs of both Theorem 2 and
Theorem 3 can be made constructive. This provides a path-following algorithm to find
the simplices whose existence is shown by the theorems.
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

The Geometrical Lectures of Isaac Barrow. Translated by J. M. CHILD, Chicago and
London, The Open Court Publishing Co., 1916. xiv+218 pages.

An English translation of so important a work as Isaac Barrow’s Lectiones geo-
metricee will be greatly welcomed. Few American mathematicians have had access
to a translation into English by E. Stone, published in 1735; according to a statement
made by W. Whewell in the preface to his Latin edition of The Mathematical Works
of Isaac Barrow, Cambridge, 1860, Stone’s translation “was so badly executed that
it cannot be of use to any one.” [...] Child has aimed to do much more than simply
to supply a translation. He has made a searching study of Barrow and has arrived at
startling conclusions on the historical question relating to the first invention of the
calculus. He places his conclusions in italics in the first sentence of his preface, as
follows:

“Isaac BARROW was the first inventor of the Infinitesimal Calculus;, Newton got
the main idea of it from Barrow by personal communication; and Leibniz was also
in some measure indebted to Barrow’s work, obtaining confirmation of his own orig-
inal ideas, and suggestions for their further development, from the copy of Barrow’s
book that he purchased in 1673.”

—Excerpted from Cajori, F. (1919).“Recent Publications.” 26(1): 15-20.
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