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A Dynamic Theory-Based Method for Computing
Unstable Equilibrium Points of Power Systems
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Abstract—In this paper, a new theory-based dynamic method for
computing unstable equilibrium points is proposed. This dynamic
method is a combination of a dynamic transformation method and
a trajectory-unified method for the computation of unstable equi-
librium points (UEPs) of power system models. The transformation
method converts a UEP into a stable equilibrium point (SEP) to ex-
pand its convergence region by creating a quotient gradient system
(QGS). The resulting SEP is then calculated using a quasi–Newton
form of the pseudo-transient continuation method (ψtc) that ex-
ploits the structure of the quotient gradient system for fast and
reliable computation. It is shown that the proposed QGS-basedψtc
can have local q-superlinear or even local quadratic convergence
under certain conditions. These conditions for convergence are
presented and analyzed. The proposed method is tested on the
WSCC 9-bus system and the IEEE 145-bus 50-machine system.
The results show that the proposed method gives accurate results,
is sufficiently fast, numerically stable, and enlarges the convergence
region of computed UEPs.

Index Terms—Direct method, pseudo-transient continuation,
quotient gradient system, transient stability, unstable equilibrium
point.

I. INTRODUCTION

THE fast and accurate computation of unstable equilibrium
points (UEPs) is important in several applications in power

systems [1], [2], [5]–[8], [34]. Direct methods, like the closest
and controlling UEP (CUEP) methods, for transient stability
assessment requires the computation of type-1 UEPs to de-
termine the relevant critical energy level needed for stability
assessment [1], [2], [8], [34]. The computation of a UEP is also
required in assessing the proximity of an operating point to a
system’s voltage collapse limit [5]–[7] for direct voltage stability
assessment [3]. These direct methods for transient stability and
voltage stability analysis are important because they are faster
and provide additional information about degree of stability,
which power system operators can use for control decisions.
The development of direct methods for power system stability
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assessment are also important to the modern power system
engineer because as the level of uncertainty in the power system
increases with the proliferation of intermittent and stochastic
renewable energy sources there will be a need for faster sta-
bility assessment methods to perform scenario based transient
stability or voltage stability analysis. UEPs are also computed
in power flow analysis [4] when all the possible solutions of a
power system are required [9]–[13]. However, the computation
of UEPs, with algebraic solvers like the Newton-Raphson’s
method, are inherently difficult due to the generally small size of
their convergence regions [1], [30] and the difficulty in finding
an initial point that is sufficiently close to the UEP.

Various methods have been proposed for computing UEPs.
Some methods like the corrected corner, the ray point approxi-
mation method, the MOD, and the BCU [1], [14]–[17], [26] are
based on finding efficient and robust ways to determine correct
initial points for computing UEP, and then solving for the exact
UEP using algebraic solvers like the Newton-Raphson method.
The dependence of these methods on the Newton-Raphson
method makes the computation of the UEP fast when the initial
guess they find are sufficiently close to the UEP. However, the
initial guess they find might be relatively far from UEP being
computed and out of the Newton-Raphson convergence region of
the UEP. Other methods are based on continuation and homotopy
methods [9]–[13], [18], [20], [22], [23] or optimization tech-
niques [27]. These methods have been found to be intractable
for larger systems.

There are significant efforts directed toward developing meth-
ods for computing UEPs or solutions of nonlinear systems
by transforming the problem into the computation of stable
equilibrium points (SEPs) (for example, see [19], [21], [24]).
The methods proposed in [21], [24] used a spectral decom-
position of the Jacobian of the original system to construct a
new gradient system where the UEPs in the original system
are SEPs, while [19] proposes the construction of a generic
quasi-gradient system, combined with a reflected gradient sys-
tem, for the computation of multiple solutions of a nonlinear
system. The proposed methods in [21], [24] are only applicable
to the power system network-reduction models, and the method
in [19] focuses more on using the transformation and a reflected
gradient system to determine the initial guesses sufficiently close
to multiple solutions of a nonlinear system.

In this paper, we propose a new theory-based solver for
robust computation of UEPs of a system of ordinary differential
equations (ODEs) or differential algebraic equations (DAE) rep-
resenting say a power system. The solver consists of two steps.
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The first step transforms the original problem of computing
UEPs into the problem of computing stable equilibrium points
(SEP) of a surrogate system called the quotient gradient system
(QGS) [28]. The second step computes the desired SEP of
the QGS via the Pseudo-transient continuation method [33], a
trajectory-unified method (TJU). This enlarges the convergence
region and avoids geometric fractals that can manifest in conver-
gence regions of methods like Newton-Raphson [29], [35]. Nu-
merical results suggest that the proposed method generally has
better convergence regions as compared to the Newton-Raphson
(NR) method when applied to UEP computation but sacrifices
some speed for robustness. The proposed method is to be used
in tandem with existing methods, like the BCU method, or any
of the other methods that require an algebraic solver for UEP
computations. This work focuses on enlarging the connected
convergence region to reduce the likelihood that the initial point
determined by methods like the boundary following procedure
proposed in [1] will be outside the convergence region of the
UEP being computed.

The major difference between our proposed method and the
method in [19], [21], [24] is that the proposed method does not
require eigenvalue computations. The transformation used in
our work is a subset of the class of transformations proposed in
[19], but this work focuses on finding a specific UEP, given an
initial condition. The usage of an inexact TJU method on a QGS
surrogate is also new in this kind of power system application. In
effect, this proposed method will provide a theory-based method
to improve the robustness of UEP computations. The method is
also independent of the network model and can be applied to
problems that are unrelated to power systems. Our proposed
method could be used in tandem with [19] for solving for
multiple UEPs in a power system. Under certain conditions, the
proposed method can have local q-superlinear or local quadratic
convergence. Compared to other newton-based methods as in
[30], [36]–[38] the proposed method uses an implicit integration
technique after the transformation/construction of the surrogate
system. This gives it an advantage of better stability compared to
the other methods that use explicit integration techniques. Thus,
using the proposed approach will ensure that the equilibrium
point found is in fact the controlling UEP associated with the
forward time fault trajectory of any initial state.

The contribution of this paper is 1) The ensemble of the trans-
formation of the UEP to a SEP using the QGS transformation to
enlarge the convergence region of the UEP with the application
of a customized pseudo-transient continuation method. 2) The
approximation of the pseudo-transient continuation method in a
way that exploits the structure of the transformation technique
and speeds up the computation of the UEP. 3) The priming of the
NR method with the proposed method which exploit the larger
convergence region of the latter with the speed of the former.

This paper is organized as follows. Section II presents the
transformation of the original system. Section III reviews the
pseudo-transient continuation (ψ tc) method for ODE systems.
Section IV proposes the QGS-based pseudo-transient continua-
tion (ψ tc) method and Section V presents the conditions for its
convergence. Section VI presents two numerical examples, dis-
cusses the findings from the simulations, and proposes a method

that combines the proposed method with the NR method for
computing UEPs. The conclusions are then stated in Section VII.

II. SYSTEM TRANSFORMATION

A. Original Problem Formulation

Without loss of generality, the equilibrium equation of an
ODE or DAE describing the dynamics of a power system can
be represented by (1), [1].

F (x) = 0 (1)

where F : Rn → Rn, F is assumed to be C2, x ∈ Rn is a
vector of equilibrium states, and n ≥ 1. The function F (x) is
either the vector field of the power system ODEs or the vector
field and the algebraic manifold of the power system DAEs.
Regardless of what (1) represents, UEPs are inherently difficult
to compute because appropriate initial guesses are difficult to
determine, and numerical methods like NR [1], [29] have small
convergence regions. However, like any equilibrium point or
zero of a function, UEPs can be computed using algebraic solvers
when an initial point sufficiently close to the UEP is provided.
The size, continuity, and compactness of the convergence region
of the underlying algebraic solver determines how close an initial
guess must be for the solver to successfully converge to the UEP.
The purpose of this work is to provide a fast solver that has a
large connected convergence region, implying that the initial
guesses can be further away from a UEP. One common solver
used for UEP computations is the NR method.

ẋ = f(x) = −DF (x)−1F (x) (2)

Each step in the NR algorithm can also be viewed as a forward
Euler step of the dynamic system (2) with a time step of 1, where
DF (x) is the Jacobian matrix of F (x) and −DF (x)−1F (x) is
the vector field f(x) of the ODE (2) [30]. Thus, the NR method
and some of its variants—for example, Iwamoto’s method—are
basically the forward Euler integration of the new dynamic
system (2) [30]. This new system (2) is stable at all equilibrium
points where DF (x) is nonsingular. Consequently, in terms
of the computation of UEPs, the NR method and some of its
variants can be considered as a numerical technique that involves
the transformation of a UEP of the original system (1) into an
SEP of (2), and an application of an explicit integration method
like the Euler method, to solve for the new system’s SEP, which
is the UEP of the system of differential equations corresponding
to (1) for a given initial point.

Unlike the transformation used in this work, the transfor-
mation used in the NR method employs the inverse of a
Jacobian DF (x) which can be singular in the neighborhood
of the resulting SEP. Implying that (2) does not always satisfy
the requirements for existence and uniqueness of solutions.
Some variants of the NR method, like the Continuous Newton-
Raphson method (Continuous NR) presented in [30], propose
the use of a much more stable explicit integration technique,
such as the fourth order Runge-Kutta (RK4) method over the
forward Euler method, for the integration of the dynamic system
in (2).
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Fig. 1. An illustration of the quotient gradient system transformation.

B. Quotient Gradient System Transformation

The Quotient Gradient System (QGS) [28] transformation
used in the proposed method is illustrated in Fig. 1 and has
the following form:

ẋ = Q(x) = −DF (x)TF (x). (3)

Observe that the QGS system has the Lyapunov function:

V (x) = 1
2F (x)TF (x) (4)

Thus, the QGS surrogate is a generalized gradient system [19]
with only stable equilibria.

Proposition 1: Let all the equilibrium points of (3) be hyper-
bolic and finite in number. If x̂ is the solution of (1), then x̂ is a
SEP of (3).

Proof: Note that if x̂ is a solution of (1), then it is an
equilibrium point of (3). Since (3) is completely stable and thus
only has stable equilibria, x̂ must also be a SEP of (3).

Hyperbolicity of equilibrium points of a power system implies
that all trajectories that converge to equilibrium points of the
power system, like the steady state operating conditions, must
be unique. This characteristic is dependent on how the power
system is modeled. The hyperbolicity requirements for the QGS
transformation limits the applicability of the proposed method to
power system problems that involve non-hyperbolic equilibrium
points like in [39], [40]. For applications of these sort a fast
continuation method approach will be more appropriate.

The advantage of the transformation used in the proposed
method over the NR method is that the stability region of the
SEP resulting from the transformation exists and is smooth
(connected), while there is no stability region for the SEP from
the NR transformation (since the resulting system does not have
unique solutions). The UEP and consequently, its corresponding
stability region in the new system (3) can also be efficiently
computed by solving for the SEP using implicit integration
techniques, which are more stable compared to explicit ones
like the Euler method.

III. THE PSEUDO-TRANSIENT CONTINUATION METHOD

A. Introduction

After transforming the algebraic problem/power system equi-
librium problem into computation of a SEP of an associated
dynamic system (3), the most efficient way to solve for the
equilibrium point is to use the TJU method. Since we are only
interested in the steady state solution, we need a TJU method
that can converge quickly to the corresponding stable steady
state solution. The TJU method can be numerically implemented
using explicit (Euler or Runge-Kutta) or implicit (the trapezoidal

method) method. One such implicit method is the pseudo-
transient continuation (ψ tc) method. The ψ tc is an implicit
TJU that employs adaptive time-stepping for the computation of
steady state solutions for partial differential equations, ODEs,
and semi-explicit index-one DAEs [32], [33]. It is analogous
to an implicit integration of a dynamic system with increasing
time steps as the system trajectory approaches the steady state
solution.

The trajectory-based nature of ψ tc makes its convergence
region a better approximation of a SEP’s stability region com-
pared to the convergence region of other algebraic solvers. This
characteristic ofψ tc implies that the initial points don’t have to
be as close as the NR method requires. It also means trajectories
are more likely to converge to a power-system relevant SEP
and not to other non-physical local minima of |Q(x)| [33]. The
adaptive time steps used in the ψ tc method make it faster than
conventional fixed-step integration methods, since larger time
steps are taken as the trajectory gets closer to the EP. The ψ tc
method is an implicit method, making it numerically more stable
than explicit methods like the Euler and Runge-Kutta methods.

Given an initial value problem of the form (5):

ẋ = −G(x), x (0) = x0 (5)

The steady state solution can be found by integrating (5) with
ψ tc. Each step in the ψ tc method is given by (6):

xi+1 = xi −
(
h−1
i I +DG (xi)

)−1
G (xi) (6)

where I is an identity matrix of appropriate size, and hi is a
variable time step systematically adjusted to improve the rate
of convergence to a steady state. The time step can be adjusted
using the “switch evolution relaxation” (SER) (7) or the norm
of the steps [33]:

hi = min
(
hi−1

‖G(xi−1)‖
‖G(xi)‖ , hmax

)
(7)

where hmax is a large upper bound of hi. For the results in this
work, (7) was used for the time step adjustments and hmax was
set to ∞. h can be a vector of different time steps if the system
of equations in (5) is stiff or has an ill-conditioned Jacobian.
ψ tc Algorithm [33]:
1) Set x = x0 and h = h0. Evaluate G(x).
2) While ‖G(x)‖ is larger than a threshold:

a) Solve (h−1I +DG(x))s = −G(x).
b) Set x = x+ s.
c) Evaluate G(x).
d) Update h.

It has been shown that if a steady state solution exists, then
ψtc for ODEs of the form (5) has a local q-superlinear or
quadratic convergence under certain assumptions [33]. To im-
prove the computational performance of the application of theψ
tc to (3) and guarantee convergence to solutions of the power sys-
tem equilibrium equations (1), we propose an inexact approach,
termed the Quotient Gradient System-based Pseudo-Transient
Continuation method (QGS-based ψ tc) for solving UEPs that
is presented in the next section.
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IV. THE QUOTIENT GRADIENT SYSTEM-BASED

PSEUDO-TRANSIENT CONTINUATION METHOD

If we apply the ψ tc method to (3), each step of ψ tc method
(6) can be rewritten, as shown in (8). where fk is the kth function
in F (x) and HT (fk) is the Hessian of fk. We can then simply
solve (8) at step (2a) for each iteration of the ψ tc algorithm
without any further modifications, since the UEP is now a
SEP due to the QGS transformation. However, this approach
requires the construction of two Jacobians at each iteration,
one for the QGS transformation and another for step (2a) of
the ψ tc algorithm. This can be computationally expensive if
the Jacobians are constructed numerically. Also, the analytical
Jacobian for step (2a) can be complex and error-prone. The use of
automatic differentiation for a Jacobian construction in step (2a)
can also be quite challenging for complex functions or systems
of equations like (3).

xi+1 = xi −

⎛

⎜
⎜
⎝

h−1
i I +

n∑

k=1

fkH
T (fk)

+

DF (xi)
TDF (xi)

⎞

⎟
⎟
⎠

−1

DF (xi)
TF (xi)

(8)
If we assume that ‖−∑n

k=1 fkH
T (fk)‖ is sufficiently small,

which is true as we approach the equilibrium point of (3), then
we can use a quasi-Newton method approach and approximate
the Jacobian of (3) with (9):

DQ̃(x) ≈ −DF (x)TDF (x) (9)
(
h−1I +DF (x)TDF (x)

)
s ≈ −DF (x)TF (x) (10)

min
s

∥
∥
∥
∥

[
DF (x)

h− 1
2 I

]
s+

[
F (x)
0

]∥∥
∥
∥ (11)

∥
∥
∥
(
h−1I +DF (x)TDF (x)

)
s+DF (x)TF (x)

∥
∥
∥

∥
∥
∥≤ ξDF (x)TF (x)

∥
∥
∥ (12)

xi+1 = xi + s. (13)

Step (2a) in theψ tc algorithm can then be replaced by either
(10) or (11). We recommend for small dense systems to solve
(10) using QR factorization, while for larger sparse systems,
solve (11) using Cholesky decomposition or iterative methods
like the conjugate gradient methods (precondition conjugate gra-
dient methods). Generically, (10) and (11) can be represented by
(12) where ξ could be related to the difference between the exact
Jacobian of (3) and the approximate Jacobian (9) if (10) or (11)
are solved using QR factorization or Cholesky decomposition,
or ξ could be related to the Jacobian approximation and the
inexact steps involved when iterative methods are used to solve
the Newton step.

The proposed QGS-based ψ tc method can be summarized
by the following steps.

1) Transform the original algebraic problem (1) into a dy-
namic system (3) using the QGS transformation.

2) Starting at the given initial guess, apply the ψ tc method
to the original system (1)’s surrogate QGS system (3),
solving either (10) or (11) at step (2a) of theψ tc algorithm.

In comparison to the NR method, the QGS-basedψ tcmethod
will, in most cases, require more iterations since it does not
always converge quadratically to the equilibrium point. Since it
will also require more computations per iteration compared to
the NR method, we suggest that the QGS-based ψ tc be used
to re-start the UEP computation and then switch back to the NR
method when the convergence criterion for the QGS-based ψ
tc method is below a defined threshold. It should be noted that
the QGS-based ψ tc method shares some similarities with the
Levenberg-Marquardt method used for nonlinear least square
problems, but the QGS-based ψ tc method was derived inde-
pendently and is a time-dependent integration instead of spatial.

V. CONVERGENCE ANALYSIS

A. Convergence

In this section, we present the type of convergence and the
conditions necessary for the convergence of the proposed QGS-
basedψ tc method. We show that the QGS-basedψ tc can have
local q-superlinear or even local quadratic convergence under
certain conditions. We also show that the Jacobian approxima-
tion used in the QGS-based ψ tc method guarantees that if the
QGS-based ψ tc method convergences it will only converge to
solutions of the original power system equilibrium equations
(1). Let x∗ be a UEP of the dynamic system with equilibrium
equations represented by (1).

Assumptions:
1) DF (x)TF (x) is everywhere defined and Lipschitz con-

tinuously Fréchet differentiable, ‖DF (x)TF (x)‖ ≤ M ,
M > 0 for all x. For physical power system models this
means that the state variables like bus voltages, machine
angle change continuously and the velocity and accelera-
tion of the changes in the variables can be tracked.

2) There are ε2, β > 0 such that if ‖x− x∗‖ < ε2, then

‖(h−1I +D(DF (x)TF (x)))
−1‖ ≤ (1 + βh)−1 for all

h ≥ 0.
3) The equilibrium points of (3) are hyperbolic. (Proposition

1).
4) Inf ihi > 0. This assumption must be satisfied to prevent

the QGS-based ψtc method from stalling.
Proposition 2. (convergence analysis): Consider solving for

the power system equilibrium (1). Let F (x∗) = 0. Let Assump-
tions 1, 2, 3, and 4 hold. The proposed QGS-basedψ tc method
will have a local q-superlinear convergence to x∗ from an initial
pointx0 lying inside the stability region ofx∗ for the QGS system
(3), {hi} is of the form (8), hmax = ∞, ξi ≤ ξ̂ , hi → hmax,
and ξi → 0. The convergence to x∗ is q-linear if hmax < ∞.

Proof Sketch: From Proposition 1, if F (x∗) = 0 and As-
sumption 3 holds, thenx∗ is a hyperbolic stable equilibrium point
of (3). Consequently, x∗ has a stability region in (3). We also
know that the portion of ξi that is due to the approximation of the
Jacobian in the QGS-basedψ tc method is directly proportional
to‖−∑n

k=1 fkH
T (fk)i‖, and that‖−∑n

k=1 fkH
T (fk)i‖ → 0
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since fki → 0 as you get closer to x∗. This implies that ξi → 0
as x → x∗. Now, since x∗ has a stability region in the quotient
gradient system, (3), the convergence of the QGS-based ψ tc
method to x∗ can be analyzed using the analysis in [33].

In summary, the QGS-based ψ tc with hmax = ∞ will con-
verge at least q-superlinearly if all the assumptions are satisfied,
ξi is sufficiently small, and ξi → 0 as xi → x∗. The convergence
of the QGS-based ψ tc method to x∗ is locally q-quadratic if
ξi = O‖Q(xi)‖.

A solution/equilibrium point of the QGS system (3) can be
belong to one of three groups:

1) A solution x∗ such that F (x∗) = 0, and −DF (x∗)T

F (x∗) = 0.
2) A solution x∗ such that F (x∗) 
= 0, and −DF (x∗)T

F (x∗) = 0.
3) An x∗ such that F (x∗) = 0, −DF (x∗)TF (x∗) = 0, and

DF (x∗)T is singular.
Unlike the standardψ tc or the Euler method, the QGS-based

ψ tc method when applied to (3) converges only to solutions of
group 1 because of the QGS structure-dependent Jacobian ap-
proximation. This implies that approximating the QGS Jacobian
guarantees that if the method converges, it will only converge to
solutions of the power system equilibrium equations (1).

Theorem 3: If the QGS-based ψ tc method converges to x∗,
then x∗ is a solution belonging to group 1 and hence, a solution
of the original power system equilibrium (1).

Proof: If the QGS-based ψ tc method converges, then it
implies that there exists a sequence of iterates xi → x∗ where
DF (x∗)TF (x∗) = 0. If x∗ belongs to group 3, then DF (x∗)T

DF (x∗) is singular. Since the function λmin(DF (x)TDF (x)),
the minimum eigenvalue of DF (x)TDF (x) is continuous in x,
the sequence {λi,min = λmin(DF (xi)

TDF (xi))} converges to
zero as xi → x∗. Thus, there exists a value of i < ∞ where
DF (xi)

TDF (xi) is singular and hi is very large such that
(h−1

i I +DF (xi)
TDF (xi)) ≈ DF (xi)

TDF (xi), which is a
contradiction since (DF (xi)

TDF (xi))
−1 must exist for con-

vergence. Hence, the QGS-based ψtc method cannot converge
to solutions that belong to group 3. If x∗ belongs to group 2,
then the Null(DF (x∗)T ) 
= ∅, and F (x∗) ∈ Null(DF (x∗)T ).
This implies that DF (x∗)TDF (x∗) is singular, which implies
that the QGS-based ψtc method cannot converge to solutions
that belong to group 2, since it will be a contradiction. Thus, if
the QGS-based ψ tc method converges, the solution can only
belong to group 1 and hence, the solution will be a solution
of (1).

VI. NUMERICAL EXAMPLES

The numerical simulations were performed on a computer
with an Intel Core i7-3630Q M CPU @2.40G Hz processor
and 16 GB memory. All the simulations were performed with
Matlab 7.11. Matlab’s Fsolve is used as a check for accuracy.
The systems simulated were the structure-preserving models
of the WSCC 9-bus 3-machine system and the IEEE 145-
bus 50-machine system with classical generators and constant
impedance load models.

Structure Preserving Model: For n generators and m buses,

˙̃
δi = ω̃i (14)

Mi
˙̃ωi = −Diω̃i + Pmi

−
E ′

qiVi sin
(
δ̃i − θ̃i

)

X ′
di

− Mi

MT
PCOI

(15)

For generator buses i = 1, . . . .n:

(Idi + jIqi) e
−j(δi−π/2) =

m∑

k=1

Yike
jαikVke

jθ̃k

Idi =
E ′

qi − Vi cos
(
δ̃i − θ̃i

)

X ′
di

, Iqi =
Vi sin

(
δ̃i − θ̃i

)

X ′
qi

(16)

For load buses i = n+ 1, . . . .m:

0 =

m∑

k=1

Yike
jαikVke

jθ̃k (17)

δ0 =
1

MT

n∑

i=1

Miδi, ω0 =
1

MT

n∑

i=1

Miωi

MT =
n∑

i=1

Mi, δ̃i = δi − δ0, ω̃i = ωi − ω0 ,

θ̃i = θi − θ0 for i = 1, . . . .n,

PCOI =

n∑

i=1

Pmi
−

n∑

i=1

E ′
qiVi sin

(
δ̃i − θ̃i

)

X ′
di

where δi, ωi, Mi, Di, Pmi
, E ′

qi, X
′
di, Vi, θi and Yike

jαik are:
rotor angle of machine i, speed of machine i, moment of inertia of
machine i, damping of machine i, mechanical power of machine
i, equivalent transient quadrature internal voltage of machine
i, equivalent direct transient reactance of machine i, voltage
magnitude at bus i, voltage angle at bus i, and the network
admittance between buses i and k, respectively.

The size and connectedness of the convergence region of the
QGS-based ψ tc method when used for UEP computation will
be one of the metrics used in the evaluation of the proposed
method’s performance in comparison to other solvers. The con-
vergence region of a UEP of a dynamic system for a numerical
solver N is defined as the set of initial points that converge to
the UEP for the numerical solver [1]. Obviously, a large and
connected convergence region implies that the initial point for
the UEP computation does not have to be very close to the UEP
for the algebraic solver to converge.

The convergence region of a UEP for a classical generator
model can be constructed using a dimension-reduced model in
which ω is a zero vector. This construction is made by creating
a grid of initial points around the UEP in the machine angle
space less the reference machine angle variable. The reference
machine angle and the algebraic variables corresponding to the
initial points on the grid are then updated by using the COI
equation for machine angles and the solutions of the network
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Fig. 2. The WSCC 9-bus 3-machine system. The value of Y is half the line
charging.

TABLE I
CONTINGENCY LIST OF THE WSCC 9-BUS 3-MACHINE SYSTEM

equations at the grid points, respectively. The solutions of the
equilibrium equations for the dynamic system, starting at these
initial points, are then computed using the algebraic solver for
which a convergence region of a UEP is being constructed. If
the L2 norm of the difference between the computed equilibrium
point and the UEP is below a defined threshold, then the initial
point is in the convergence region of the UEP under the algebraic
solver.

A. The WSCC 9-Bus 3-Machine System With a Classical
Generator Model

The proposed method is tested on the WSCC 9-bus 3-machine
system [1] (see Fig. 2), to compute a UEP on the stability
boundary of a post-fault system. A uniform damping of λ = 0.1
is assumed, and the simulation is done in the Center of the Inertia
(COI) reference framework. Initial time step h0 of the ψ tc and
QGS-based ψ tc methods are set to 0.1. Table I shows the list
of contingencies used in our simulations of this system.

We first look at a simulation example where the initial point
for a UEP computation is outside the convergence region of the
NR method but within the convergence region of the proposed
method. Fig. 3 shows a comparison of projected convergence
regions of the NR method and the proposed method for the
controlling UEP of contingency 1. We observe that an initial
point, depicted by the black asterisk, falls within the convergence
region of the proposed method but outside the convergence
region of the NR method. Hence, the proposed method can
converge to the CUEP of contingency 1 while the NR method
diverges. Fig. 3 also shows that the convergence region of the
proposed method is the largest one among the two methods and

Fig. 3. Convergence regions of a UEP for the structure-preserving model
(contingency 1) of a post-fault WSCC 9-bus 3-machine system. The convergence
region of the NR method is superimposed on the convergence region of the
QGS-based ψ tc method, with an example of an initial point that is in the
convergence region of the QGS-basedψtc for a UEP but not in the convergence
region of the NR method. Note that there are several points in the convergence
region that appear disconnected. However, these points are either connected via
a path transverse to the delta_1 and delta_2 projection depicted or are numerical
artifacts.

connected while that of the NR method is disconnected. The
connected section of the convergence region of the QGS-based
ψ tc method is also larger. Consequently, the initial point for a
UEP computation could be close and the NR method will still
diverge or converge to the wrong UEP or SEP, a less likely case
with the proposed method. Since a point in the convergence
region of the proposed method is path connected to the QGS
SEP, the convergence region itself is a connected set. According
to the property of uniqueness of each trajectory, it follows that
the QGS-based ψ tc method allows us to compute convergence
regions which are numerical approximations of the stability
region/basins of attraction of the surrogate SEPs (the SEPs
for the QGS constructed) with an implicit ODE solver. The
multiple UEPs and SEPs in the state space of the power system
model each have their own connected QGS-based ψ tc method
convergence region which are disjointed from the convergence
region of other equilibrium points. Since each stability region
is disjointed from any other stability region. Furthermore, these
stability regions must have boundaries that are formed by the
union of the stable manifolds of the UEPs of the surrogate
system by virtue of its gradient vector field [1]. Note that the
UEPs of the QGS system are not equilibria of the original
system by Proposition 1. Therefore, in the context of the original
system, we find that the convergence region of the original UEPs
are bounded by singular surfaces consisting of trajectories that
converge to some singularity of the original system.

Table II shows a comparison of the convergence regions of the
controlling UEPs for the structure-preserving model of the post-
fault WSCC 9-bus 3-machine system for the five contingencies
in Table I using the NR method, the QGS-based tc, and the
continuous Newton-Raphson method (CNR). The table groups
the number of initial points that converges to the controlling
UEPs into two groups for each of the three methods, the group
of initial points that belong to the connected convergence region
of the UEP and the group of initial points that fall outside the
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TABLE II
COMPARISON OF CONVERGENCE REGIONS OF METHODS FOR SOLVING THE

CUEPS OF THE STRUCTURE-PRESERVING MODEL OF THE WSCC 9-BUS

3-MACHINE SYSTEM ε = 10−6

connected convergence region of the UEP. We have the following
observations:
� Almost all of the initial points that converged to a control-

ling UEP using the QGS-based ψ tc method belong to the
connected convergence region. Meanwhile 10% to 37% of
the initial points that converge to a controlling UEP when
computed with the NR method belong to the group of initial
points that fall outside the connected convergence region.
Similarly, 7% to 39% of the initial points that converge
to a controlling UEP computed with the CNR method also
belong to the group of initial points that fall outside the con-
nected convergence region. It should be noted that most of
the initial points that fall outside the connected convergence
region are closer to other equilibrium points, and as a result,
should be converging to those equilibrium points. This is
particularly important in controlling UEP computations
where you want your numerical solver to converge to the
actual UEP whose stable manifold is intersecting with
the sustained fault trajectory for the contingency. These
observations show that a large-section of the convergence
region of each of the controlling UEP of the QGS-based
ψ tc method is connected; as compared with the NR and
CNR methods, implying that initial points that are close to
the controlling UEP of interest is more likely to converge
to the UEP of interest when computed with the QGS-based
ψ tc method.

� Table II shows that the QGS-based ψ tc method has a
larger UEP convergence region, as compared to the NR
method, for the 5 contingencies. We also observe the UEP
convergence region for the QGS-based ψ tc method is
larger than that of the CNR method for 3 contingencies.
However, for the other two contingencies, we find that a
third of the convergence region of the CNR method is not
part of the connection portion. Consequently, the connected
portion of the convergence region of the QGS-based ψ tc
method is larger than the convergence region of the CNR
method. Most of these disconnection section of the CNR
convergence region closer to other equilibrium points in
the state space of the power system. Thus, they converged
to the wrong equilibrium point.

� Based on these observations we can conclude that the
proposed method is more robust than the NR method and
other related methods.

Table III shows a comparison of the average number of itera-
tions and computation time in seconds for CUEP evaluations for

TABLE III
COMPARISON OF METHODS FOR SOLVING THE CUEPS

OF THE STRUCTURE-PRESERVING MODEL OF THE WSCC 9-BUS

3-MACHINE SYSTEM ε = 10−6

the 5 contingencies given an initial point, using Matlab’s Fsolve,
the NR method, the CNR [30] method, the originalψ tc method
(thus, the ψ tc method applied to (3) or (9)), the QGS-based
ψ tc, and the QGS-based ψ tc combined with the NR method.
The table shows that, by using the QGS-basedψ tc method, we
maintain the average number of iterations while improving the
UEP computational speed by 7.4 times on average compared to
the originalψ tcmethod. We also get a lesser number of average
iterations when the QGS-based ψ tc method is combined with
the NR method. The table also shows that the computational
speed of the QGS-based ψ tc method is comparable to the
computational speed of the NR method and Matlab’s Fsolve
and about 2 times faster compared to the CNR method for this
numerical example. As expected, the QGS-based ψ tc requires
more iterations than both Matlab’s Fsolve and the NR method.
The CNR method requires the largest number of iterations for
all the contingencies in this study.

To assess the advantage presented by the proposed QGS-based
ψ tc over the NR method the two methods were each applied in
the BCU method to compute the CUEPs in the evaluation of the
critical clearing time (CCT) for the 5 contingencies.

The algorithm for the BCU Method for transient stability
analysis can be summarized as follows:

1) Compute the post-fault SEP of the dynamic system (power
system).

2) Find the exit-point of the projected fault-on trajectory in
a reduced model [1].

3) Starting from the exit-point find the minimum gradient
point (MGP) using the stability boundary following pro-
cedure [1]. The MGP is the point with a lowest norm as
your move along the stability boundary of post-fault SEP.

4) Compute the CUEP with the MGP as the initial guess and
consequently the critical energy at the CUEP [1].

5) Compute the energy at the initial post-fault state (The state
of the system right after the fault is cleared). If this energy
is less than the critical energy, then the system is stable
else it is unstable.

It is in step 4 that the proposed method is needed to solve
for a UEP. However, the type of solver used in step 4 can also
determine how the MGP is calculated. For instance, in the case
of the QGS-based ψ tc where the convergence region of the
UEP/CUEP has been expanded and is more continuous, we can
set the tolerance value, norm of the gradient of our MGP, to
be higher since that will reduce the amount of computation
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TABLE IV
COMPARISON OF THE CRITICAL CLEARING TIME (SECONDS) FOR BCU AND

TIME DOMAIN SIMULATION WSCC 9-BUS 3-MACHINE

SYSTEM—STRUCTURE-PRESERVING MODEL

TABLE V
CONTINGENCY LIST OF IEEE 145-BUS 50-MACHINE SYSTEM

required in the stability boundary following procedure [1]. In
this numerical example we increased the MGP tolerance value
from 1 to 1.2. Table IV shows the CCTs of the 5 contingencies
when the QGS-based ψ tc and NR method were each applied
in the BCU method for CCT computation for the WSCC 9-bus
system. The table shows that all the two methods resulted in the
same CCT’s for 4 of the contingencies except for contingency 1
where the NR method failed to successful find the CUEP. The
computed BCU CCT’s were also conservative compared to the
CCT from time domain. A test of the equilibrium type of the
CUEP also showed that they were all type-1 equilibrium points
and are on the stability boundary of the post-fault SEP [1]. The
failure of the NR method for contingency 2 can be explained by
the graph in Fig. 3. It can be seen from the graph that the MGP
for contingency 1 represented by the black star lies inside the
convergence region of the QGS-based ψ tc method but outside
the convergence region of the NR method. Hence, the proposed
QGS-based ψ tc method can converge to the CUEP of contin-
gency 1 while the NR method diverges. The divergence of the
NR method despite the proximity of the MGP to the CUEP goes
to emphasis the advantage of using the QGS-basedψ tc method
over the NR method when computing UEPs. A failure in the
CUEP computation such as convergence to the wrong UEP can
lead to inaccurate power system transient stability assessments
of contingencies leading to potential stability issues.

B. The IEEE 145-Bus 50-Generator System With the Classical
Generator Model

The proposed method is also tested on the IEEE 145-bus 50-
machine system for CUEP computations. A uniform damping
of λ = 0.5 is assumed and the simulation is done in the Center
of Inertia (COI) reference framework. An initial time step, the
same as in the previous study, is used. Table V shows the list of
9 contingencies used in the test.

TABLE VI
COMPARISON OF METHODS FOR SOLVING THE CUEPS OF THE

STRUCTURE-PRESERVING MODEL OF THE IEEE 145-BUS 50-MACHINE

SYSTEM ε = 10−6

TABLE VII
COMPARISON OF THE CRITICAL CLEARING TIME (SECONDS) FOR BCU AND

TIME DOMAIN SIMULATION IEEE 145-BUS 50-MACHINE

SYSTEM—STRUCTURE-PRESERVING MODEL

Table VI shows a comparison of the average number of iter-
ations and computation time in seconds for CUEP evaluations
for the 9 contingencies given an initial point, using Matlab’s
Fsolve, the NR method, the CNR [30] method, the proposed
ψ tc method, the QGS-based ψ tc, and the QGS-based ψ tc
combined with the NR method. The following observations are
obtained from this table:
� The proposed QGS-based ψ tc method improves the UEP

computation speed by 133 times on average, as compared
with the original ψ tc method,

� The proposed QGS-basedψ tcmethod, combined with the
NR method, achieves a better number of average iterations
and a faster UEP computation speed of 157 times the speed
of the original ψ tc method,

� The proposed QGS-based ψ tc method is about 4 times
faster compared to the CNR method, but 2 times slower
than the NR method.

� The proposed QGS-based ψ tc method is comparable in
computational speed with Matlab’s Fsolve for this numeri-
cal example. As expected, the QGS-based ψ tc requires
more iterations than both Matlab’s Fsolve and the NR
method. The CNR method requires the greatest number
of iterations for all the contingencies in this study.

Table VII shows the CCTs of the 9 contingencies when the
QGS-based ψ tc and the NR method were each applied in
the BCU method for CCT computation for the IEEE 145-bus
50-Machine system with MGP tolerances larger than what we
usually use in our BCU implementations (15 and over). The table
shows that all the three methods resulted in the same CCT’s for
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7 of the contingencies except for contingency 1 and 9 where
the NR method failed to successful find the CUEP. The results
once again show that the QGS-basedψ tc offer an opportunity to
reduce the computational requirements of the stability boundary
following procedure [1] used in computing the MPG, the most
time-consuming step in the BCU method. By expanding the
convergence region of the CUEP/UEP the QGS-based ψ tc
provides the opportunity for users to use initial guesses (MGPs)
that are further way from the UEP. All the UEPs were confirmed
to be type-1 UEPs on the stability boundary of the post-fault
SEP using the boundary property verification scheme proposed
in [1]. The fact that BCU based CCT is always smaller than
the time domain CCT is attributed to the conservative nature of
the CUEP method, and an approximation in the energy function
value evaluation (due to the existence of path dependent terms).
We tried to reduce the CCT error by increasing the number of
points used in the multistep trapezoidal scheme [1] used for the
energy function computations but the CCT errors are still larger
for contingencies 1 and 9.

Our numerical studies show that the proposed method
achieves robustness in the computation of UEPs by having a
larger connected convergence region at the expense of a decrease
in speed. Proposition 1 supports this observation. It is shown
that by exploiting the structure of the QGS (3), and by using
an appropriate approximation of the Jacobian (11), we can
significantly improve the speed of the proposed method and
ensures convergence only to solutions of the original problem
(1). It is due to the larger convergence region of the proposed
method that all of the initial guesses lying further away from a
UEP, as compared with the NR method and the CNR method,
can converge to the UEP.

VII. CONCLUSION

In this paper, we have proposed a theory-based method that
combines a QGS transformation with a TJU method for the
computation of UEPs. The method converts the UEP to a SEP
by changing the problem into a quotient gradient system. It then
applies a quasi-Newton form of the pseudo-transient continua-
tion method by exploiting the structure of the proposed QGS’s
Jacobian. The main advantages of the proposed method are: 1)
the method has a larger connected convergence region than the
NR method and thus, the initial guess does not have to be as close
to the equilibrium point as the NR method requires; 2) it is faster
than simply applying the exact pseudo-transient continuation
method to the QGS; and 3) the proposed inexact pseudo-transient
continuation method can always converge to solutions of the
original system, unlike the exact pseudo-transient continuation
method. The applicability of the proposed method to improving
the robustness of CUEP computations in the direct method for
transient stability analysis of power systems will be further
investigated.
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