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ABSTRACT
In several models of galaxy formation feedback occurs in cycles or mainly at high redshift.
At times and in regions where feedback heating is ineffective, hot gas in the galaxy halo is
expected to form a cooling flow, where the gas advects inward on a cooling timescale. Cooling
flow solutions can thus be used as a benchmark for observations and simulations to constrain
the timing and extent of feedback heating. Using analytic calculations and idealized 3D
hydrodynamic simulations, we show that for a given halo mass and cooling function, steady-
state cooling flows form a single-parameter family of solutions, while initially hydrostatic
gaseous haloes converge on one of these solutions within a cooling time. The solution is thus
fully determined once either the mass inflow rate Ṁ or the total halo gas mass are known. In
the Milky Way halo, a cooling flow with Ṁ equal to the star formation rate predicts a ratio
of the cooling time to the free-fall time of ∼10, similar to some feedback-regulated models.
This solution also correctly predicts observed O VII and O VIII absorption columns, and the gas
density profile implied by O VII and O VIII emission. These results suggest ongoing heating by
feedback may be negligible in the inner Milky-Way halo. Extending similar solutions out to
the cooling radius however underpredicts observed O VI columns around the Milky-Way and
around other low-redshift star-forming galaxies. This can be reconciled with the successes of
the cooling flow model with either a mechanism which preferentially heats the O VI-bearing
outer halo, or alternatively if O VI traces cool photoionized gas beyond the accretion shock. We
also demonstrate that the entropy profiles of some of the most relaxed clusters are reasonably
well described by a cooling flow solution.
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1 INTRODUCTION

Classic cooling flow solutions were derived in the 1980’s following
X-ray observations of cluster centres, which revealed gas cooling
times shorter than the Hubble time. In these spherical solutions
the loss of entropy via radiation drives an inflow towards the
centre of the potential well, at a rate where heating by compression
roughly balances radiative energy losses so that the gas temperature
remains near the virial temperature (see reviews in Fabian, Nulsen
& Canizares 1984; Sarazin 1986). The inflowing gas is expected
to be predominantly single phase, since the flow is advected on
the same timescale as the timescale on which thermal instabilities
grow (Mathews & Bregman 1978; Malagoli, Rosner & Bodo 1987;
Balbus & Soker 1989; Li & Bryan 2012). Cooling flow solutions
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have however fallen out of favour in the context of clusters, since
the predicted mass flow rate based on the observed X-ray emission
exceeds the observed star formation rate (SFR) in the central galaxy
by a factor of 10–100, and the models predict a central spike in
emission which is not observed (see reviews by McNamara &
Nulsen 2007; Fabian 2012; McDonald et al. 2018).

Testing similar solutions in haloes less massive than clusters
has been hampered by the lower emission measure of the virial
temperature gas, which drops sharply with decreasing halo mass.
Studies have hence been mostly limited to comparing observed
SFRs with estimates of cooling mass flow rates Ṁ based on some
assumption on the mass of the cooling circumgalactic gas, say that
it is equal to the halo baryon budget (e.g. White & Frenk 1991). In
these studies Ṁ typically overpredicts the observed SFRs. However,
since in a cooling flow Ṁ ∝ M2

gas, where Mgas is the cooling gas
mass, if Mgas is overestimated then Ṁ will be overpredicted. The
value of Mgas could potentially be lower than the halo baryon budget
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especially at low redshift, due to the effects of strong winds at earlier
epochs (e.g. Muratov et al. 2015; Hafen et al. 2018). Moreover, most
of the cooling gas may be ejected from the galaxy as outflows rather
than form stars, in which case the SFRs underestimate Ṁ .

In recent years deep X-ray observations with XMM–Newton and
Chandra have detected absorption and emission from O VII and
O VIII lines, which most likely originate in the hot gaseous halo
of the Milky Way (Henley & Shelton 2010, 2012; Gupta et al.
2012; Miller & Bregman 2013; Fang et al. 2015; Bregman et al.
2018). The installation of the Cosmic Origins Spectrograph (COS)
onboard HST also facilitated surveys of high-ionization ions such
as O VI and Ne VIII in sightlines through haloes of external galaxies
(Chen & Mulchaey 2009; Prochaska et al. 2011; Tumlinson & et al.
2011; Johnson, Chen & Mulchaey 2015; Johnson et al. 2017; Chen
et al. 2018; Keeney et al. 2018; Burchett et al. 2019). Unless the
absorbing gas pressure is a factor of ∼30 less than expected in
a virial-temperature gaseous halo, these UV absorption features
must also trace gas at or near the virial temperature (McQuinn &
Werk 2018; Stern et al. 2018, hereafter S18; Burchett et al. 2019).
Thus, using these observational constraints, we can test cooling
flow solutions in haloes less massive than clusters without any
assumption on the cooling gas mass or the fraction of it which turns
into stars.

Cooling flow solutions are also useful as a benchmark for
cosmological and idealized hydrodynamic simulations, in order to
disentangle the effects of radiative cooling on gaseous haloes from
the effects of other physical processes, such as galaxy feedback. Pre-
vious studies have typically compared gaseous haloes in simulations
to hydrostatic solutions (e.g. McCarthy et al. 2010; Fielding et al.
2017; Oppenheimer 2018). Since in hydrostatic solutions cooling
is neglected, it is not straightforward to discern whether differences
between the simulation and the idealized solution are due to cooling
or due to other physical effects. Cooling flow solutions bypass this
limitation by providing the expected physical properties of gaseous
haloes if only cooling is present.

Cooling flows are also an integral phase of time-dependent
models of feedback such as feedback limit cycles, in which a cooling
flow initially develops, fuels feedback which in turn suppresses the
inflow, after which the supply of gas needed to maintain feedback
stops and a cooling flow redevelops, and so forth (e.g. Ciotti &
Ostriker 2001; Pizzolato & Soker 2005; Li & Bryan 2014a,b; Meece,
O’Shea & Voit 2015; Prasad, Sharma & Babul 2015, 2017; Soker
2016; Yang & Reynolds 2016; Martizzi et al. 2019). Understanding
cooling flows and their observable consequences is hence useful to
test this class of models, and to constrain the duty-cycle of their
cooling flow phase.

The goal of this paper is to systematically adapt the cooling flow
solutions originally derived for cluster-scale haloes, to a wide range
of halo masses, down to the scale of dwarf galaxy haloes. We include
in the solutions updated constraints on the distribution of matter and
properties of radiative cooling, which were not available when the
original cooling flow solutions where derived. We then proceed to
test these cooling flow solutions against the recent X-ray and UV
constraints mentioned above. We focus on redshift z ∼ 0 haloes
where observations are most constraining, and defer an analysis
of haloes at higher redshifts to future work. In two companion
papers we discuss the implications of cooling flow solutions for
the transition between ‘cold mode’ accretion (=‘cold flows’) and
‘hot mode’ accretion (=‘cooling flows’), and compare cooling
flow solutions with gaseous haloes in the FIRE-2 cosmological
simulations (Hopkins et al. 2018). These papers are referred to
below as Paper II and Paper III, respectively.

This paper is organized as follows. In Section 2, we find cooling
flow solutions to the steady-state flow equations, first by deriving a
self-similar solution akin to Fabian et al. (1984), and then by direct
integration of the flow equations. In Section 3, we test the validity
of these steady-state solutions using idealized 3D hydrodynamic
simulations. Section 4 compares the predictions of cooling flow
solutions with available observational constraints. We discuss and
compare our results to previous work in Section 5 and summarize
in Section 6.

A flat �CDM cosmology with H0 = 68 km s−1 Mpc−1, �M =
0.31, and a cosmic baryon fraction fb = 0.158 is assumed throughout
(Planck Collaboration XIII 2016).

2 STEADY-STATE EQUATIONS

In this section, we solve the spherical steady-state equations for
cooling flows. We first present definitions and equations (Sec-
tion 2.1), and discuss the range of radii where our simplifying
assumptions could be applicable (Section 2.2). We then find self-
similar solutions (Section 2.3) and full numerical solutions to the
flow equations (Section 2.4). In the last Sections 2.5–2.6, we discuss
the properties of the solutions for specific halo masses.

2.1 Equations and definitions

The steady-state equations for mass, momentum, and entropy
conservation of a spherically symmetric ideal fluid, with no angular
momentum, magnetic field, viscosity, or thermal conduction, are

Ṁ = 4πr2ρv (1)

1

2

dv2

dr
= − 1

ρ

dP

dr
− v2

c

r
(2)

v
d ln K

dr
= − 1

tcool
. (3)

In these equations r, v, ρ, P, and ln K are respectively the radius,
radial velocity (negative for an inflow), gas density, gas pressure,
and gas entropy (K ∝ P/ργ , where γ is the adiabatic index).
Also,

vc ≡
√

GMgrav(< r)

r
(4)

is the circular velocity where Mgrav(<r) is the gravitating mass
within r, and tcool is the cooling time, defined as the ratio of the
energy per unit volume (γ − 1)−1P to the radiated energy per unit
volume n2

H�

tcool = P

(γ − 1)n2
H�

, (5)

where nH = Xρ/mp is the hydrogen density (X is the hydrogen mass
fraction) and � is the cooling function. We also define the free-fall
time

tff =
√

2r

vc
(6)

and the Bernoulli parameter

B ≡ v2

2
+ c2

s

γ − 1
+ �, (7)

where � = − ∫
(v2

c /r)dr is the gravitational potential.
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Cooling flow solutions for the CGM 2551

The left-hand panel of Fig. 1 plots the values of vc(r) used in this
paper for redshift z = 0 haloes with different masses. The assumed
radial mass distributions are composed of three components: an
NFW halo, a central galaxy, and an outer component. We ignore
the contribution of gas mass to the gravitational mass, validating
this assumption a posteriori with our derived gas models. For the
NFW halo, we calculate the concentration parameter using the
relation in Dutton & Macciò (2014). The implied virial radius for
an overdensity defined as in Bryan & Norman (1998) is

Rvir = 260

(
Mhalo

1012 M�

)1/3

kpc (8)

(we use capital R for radial quantities and small r for the coordinate),
while the virial temperature is

Tvir = μmpvc(Rvir)2

2k
= 6 × 105

(
Mhalo

1012 M�

)2/3

K . (9)

The central galaxy is assumed to have a stellar mass M∗ estimated
from Mhalo based on the Behroozi et al. (2018) relation for central
galaxies. For simplicity, the stellar mass distribution is assumed to
have a radial profile

M∗(< R) = M∗
r

r + R1/2
(10)

with the stellar half-mass radius R1/2 taken from Kravtsov (2013)

R1/2 = 0.015R200c = 3.0

(
Mhalo

1012 M�

)1/3

kpc. (11)

Here, R200c is the radius enclosing an overdensity of 200 relative to
the critical density. The values of R1/2 are marked in the left-hand
panel of Fig. 1. Individual galaxies have a scatter of 0.2 dex around
this value (Kravtsov 2013). The value of R1/2 is also an estimate
of the radius where angular momentum may become important
(see below). For the outer halo component we use the formulation
deduced by Diemer & Kravtsov (2014, hereafter DK14), with their
median values of se = 1.5 and be = 1.

The right-hand panel of Fig. 1 plots �(T, nH, Z) in z = 0 haloes
(T and Z are the gas temperature and metallicity, respectively), based
on the calculations of Wiersma, Schaye & Smith (2009), which
assume optically thin ionization equilibrium conditions and the UV
background of Haardt & Madau (2012, hereafter HM12). When
calculating � we use a density which is half the assumed density,
since the HM12 background likely underestimates the background
by a factor of two (Faucher-Giguère 2019).

We show below that it is convenient to use the logarithmic
derivatives of ρ, v, and T, so we cast the flow equations (1)–(3)
in logarithmic form. The mass equation (1) is equivalent to

d ln ρ

d ln r
+ d ln v

d ln r
= −2 , (12)

while the entropy equation (3) can be cast as

d ln T

d ln r
− (γ − 1)

d ln ρ

d ln r
= tflow

tcool
, (13)

where we used the definition of the flow time

tflow ≡ r/|v| . (14)

Also, defining the adiabatic sound speed

cs =
√

γP

ρ
(15)

and multiplying the momentum equation (2) by r/c2
s yields

M2 d ln v

d ln r
= − 1

γ

d ln P

d ln r
− v2

c

c2
s

, (16)

where M ≡ |v|/cs is the Mach number. Using equations (12) and
(13) to cancel dln P = dln T + dln ρ, we get after some rearranging

d ln v

d ln r

(
M2 − 1

) = 2 − v2
c

c2
s

− tflow

γ tcool
. (17)

For tcool → ∞ equation (17) reduces to the standard equation used
in analysing adiabatic Bondi flows.

2.2 Radii where solutions are applicable

Before finding solutions to the steady-state equations (1)–(3), we
note that the maximum range of radii where we expect them to
apply is

max (R1/2, Rfeedback) � r � min (Rcool, Rshock), (18)

where R1/2 is used here as an approximation of the radius where the
halo gas could be supported against gravity by angular momentum,
Rfeedback is a putative maximum radius where feedback by the
galaxy heats, or otherwise alters the physical properties of the
circumgalactic gas, Rcool is the usual ‘cooling radius’, where the
cooling time equals the age of the system or the time since the last
heating event, and Rshock is the radius of the accretion shock. We
now explain each of these terms.

The R1/2 limit appears on the left side of equation (18) since
the flow equations neglect angular momentum, while centrifugal
forces will be significant on the galaxy scale if the specific angular
momentum of the gas is similar to the average of the dark matter
halo (e.g. Kravtsov 2013). The feedback radius Rfeedback is hard to
estimate a priori, and one of the main goals of this study is to provide
a benchmark solution in which Rfeedback = 0, so deviations from this
solution in observations and simulations could be used to constrain
Rfeedback. The Rcool limit on the right-hand side of equation (18) is
because beyond this radius a steady-state cooling flow does not have
time to develop, and a time-dependent solution such as Bertschinger
(1989) must be found. The value of Rcool is derived below as a
function of halo gas properties. Last, a discontinuity is expected
at Rshock, beyond which the gas is free-falling and close to thermal
equilibrium with the UV background, so a cooling flow solution
does not apply.

2.3 Subsonic self-similar solution

Following Fabian et al. (1984), we derive a self-similar solution to
the flow equations in the subsonic limit (M2 → 0), by approximat-
ing vc as a power law

vc(r) = vc(Rvir)

(
r

Rvir

)m

, (19)

where m is constant. For an isothermal potential m = 0, while
around a point mass m = −0.5. The self-similar solution can then
be found by requiring that all logarithmic derivatives of the gas
properties are constant, in which case the ratios tcool/tflow and v2

c /c
2
s

are also constant (see equations 13 and 17). For constant �, these
two conditions yield (see above definitions of tcool, tflow, and cs)

T ∝ r2m, nH ∝ r− 3
2 +m, M ∝ r− 1

2 −2m, (20)

where here and henceforth we use γ = 5/3. More general relations
can similarly be found for any power-law dependence of � on
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2552 J. Stern et al.

Figure 1. Left: Circular velocities (vc ≡ √
GM(< r)/r) versus radius in z = 0 haloes. Halo masses are indicated in the panel. We include three mass

components for each halo, as plotted by dotted lines for the 1012 M� halo: the central galaxy, an NFW halo, and an outer component following Diemer &
Kravtsov (2014). The assumed stellar half-mass radii are noted with small vertical ticks. The right axis is the circular temperature kTc ≡ (3/5)μmpv

2
c . Right:

Cooling functions for gas in z = 0 dark matter haloes, as a function of temperature, metallicity (marked by line colour), and density (marked by line style).
The adiabatic sound speed is noted on top.

T, nH, or r, though we avoid this complication since it only
mildly increases the accuracy of our analytic estimates while
significantly increasing the complexity of the analytic expressions.
In the numerical integration in the next section we use the full forms
of vc and � plotted in Fig. 1.

Plugging the relations in equation (20) into equations (13) and
(17) yields

v2
c

c2
s

= 9

10
(1 − 2m) ≡ A , (21)

and

tflow

tcool
= 1 + 4

3
m ≡ B . (22)

Equation (21) implies that the gas temperature in cooling flows is
approximately equal to the ‘circular temperature’, defined as

Tc(r) ≡ μmpv
2
c (r)

γ kB
(23)

which is noted in the left-hand panel of Fig. 1. We hence get

T (r) = 1

A
Tc(r) = 6

5A

(
r

Rvir

)2m

Tvir , (24)

where in the second equality we used the definition of Tvir (equa-
tion 9). Also, equation (22) together with equation (13) imply that
the entropy profile in cooling flows scales as

K ∝ rB ∝ r1+4m/3 . (25)

This proportionality was previously derived by McCarthy, Fardal
& Babul (2005), and can also be derived from equation (12) in Voit
(2011), who found K ∝ rT2/3 by assuming tcool ≈ tflow and constant
Ṁ . Adding the self-similar requirement that T ∝ r2m (equation 20)
then yields equation (25).

To complete the solution, we need to derive also the density and
Mach number, which depend on the free parameter Ṁ . Extracting
M from Ṁ = 4πr2ρv (equation 1) and v = r/Btcool (equation 22)

we get

M = XA

mpv2
c

√
5Ṁ�

18πBr
, (26)

where we used equation (5) for tcool, equation (21) for c2
s , and we

remind the reader that X is the hydrogen mass fraction. Similarly,
extracting nH gives

nH =
√

9BṀ

40πAr3�
vc . (27)

From equations (24)–(27) and the numerical values of A and B
given in equations (21)–(22), all the properties of the solution can
be found. These equations show that for a given Mhalo and �, cooling
flow solutions have a single free parameter. This free parameter can
be chosen according to convenience, and below we use either Ṁ ,
the total gas mass Mgas, or the sonic radius Rsonic where M = 1.

An important property of cooling flows is the relation between
tcool/tff and M. From equations (21)–(22) and the definition of tff in
equation (6) we get

tcool

tff
= tflow/B√

2r/vc

=
√

A√
2B

M−1 , (28)

i.e. in cooling flows tcool/tff is equal to M−1 up to a factor of order
unity. At Rsonic we expect tcool ≈ tff.

Below we use these self-similar solutions to derive analytic
estimates of the physical properties of cooling flows. We first though
compare these solutions to more accurate solutions derived by direct
integration.

2.4 Integration of flow equations

Direct integration of the flow equations1 allows us to account for
the effects of a finite M on the solution, and also incorporates

1A python package which implements the integration process described in
this section is available at https://sites.northwestern.edu/jonathanstern/
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Cooling flow solutions for the CGM 2553

the full forms of vc and � shown in Fig. 1, rather than the
approximations used in the previous section. Similar integrations
have previously been done by Cox & Smith (1976) and Mathews
& Bregman (1978). We start the integration from a sonic point
at some radius Rsonic and integrate outward, allowing Rsonic to be
outside the range of radii of interest (i.e. not all solutions are
transonic at halo radii). At Rsonic the right side of equation (17) must
vanish or the velocity derivative will be infinite, hence the three
boundary values ρ(Rsonic), T(Rsonic), and v(Rsonic) must satisfy the
two conditions M = 1 and 2 − v2

c /c
2
s − tflow/γ tcool = 0. A third

condition on the boundary values is deduced by requiring that
the solution is marginally bound, i.e. that B → 0− as r → ∞.
This choice of the outer boundary condition is motivated by the
resemblance to the self-similar solutions discussed in the previous
section, which are also marginally bound. This boundary condition
is enforced on the solution via a shooting method described in
Appendix A, and yields a tight constraint on T(Rsonic). There is
thus only a single marginally bound solution for a given Rsonic, and
the entire process yields a one-parameter family of solutions which
differ in their value of Rsonic.

The details of the integrating through the sonic point are also
given in Appendix A. We note that other choices of the outer
boundary condition, such as an accretion shock or a specific
temperature at the cooling radius, change the solution relative to the
marginally bound solution only near the outer boundary, and hence
do not affect our conclusions. This insensitivity of the solutions
to the exact choice of the boundary condition is demonstrated in
Appendix B.

In Fig. 2, we plot an example transonic marginally bound solution,
for Mhalo = 1012 M�, Z = 0.3 Z�, and an assumed Rsonic = 1 kpc.
The blue lines in the different panels show different properties of
the solution. Going inward the temperature roughly follows Tc (top-
left panel), while the entropy drops (third panel on the left). This
behaviour demonstrates that energy loss to radiation is compensated
by adiabatic compression, and hence the effect of radiative cooling
is most apparent as a drop in entropy rather than a drop in
temperature. Grey lines in the panels plot a self-similar solution
with the same Ṁ = 4.5 M� yr−1 as the integrated solution, using
the approximations �−22 = 0.6 and vc = 140rm

100 km s−1 with m =
−0.1, where r = 100 r100 kpc and � = 10−22�−22 erg cm3 s−1 (see
Fig. 1). With the exception of B, the properties of the self-similar
and integrated solutions differ by order-unity factors. Specifically,
the integrated solution satisfies tflow ≈ tcool at all radii (lower left
panel), comparable to the constant tcool/tflow = 1.15 in the self-similar
solution (equation 22). The order unity differences between the
integrated and self-similar solution are mainly due to the ‘decrease-
flat-decrease’ shape of Tc(r), which is approximated as a straight
power law in the self-similar solution. The roughly constant offset
in B between the two solutions is a result of a constant offset in �,
since the two solutions differ in the shape of �(r) at large scales.

The radii which limit the range of applicability of the solution, as
discussed in Section 2.2, are marked in the top-right panel. These
radii are R1/2 = 3 kpc (equation 11), and Rcool = 200 kpc derived
from the condition tcool = tH = 13.6 Gyr (tH is marked in the tcool

panel). We expect the derived solution not to be valid near or
outside these limiting radii. Near R1/2 a solution which includes
angular momentum must be found. Around Rcool one must find
a time-dependent solution which accounts for the growth of Rcool

with time. Bertschinger (1989) showed that as long as dRcool/dt �
cs(Rcool), such time-dependent solutions join smoothly on to the
self-similar solutions. This property is demonstrated in Section 3
using hydrodynamic simulations. If Rshock < Rcool the maximum

Figure 2. An example cooling flow solution for a 1012 M� halo at z = 0.
Third-solar metallicity is assumed. Panels show temperature, absolute Mach
number, density, Bernoulli parameter, ‘entropy’ (K ≡ kT/ne), tcool, tcool/tflow,
where tflow ≡ r/v, and tcool/tff. The blue curves plot a cooling flow solution,
derived by integrating the steady-state flow equations (1)–(3) from a sonic
point at Rsonic = 1 kpc outward. The solution is required to be marginally
bound, i.e. B → 0− as r → ∞, a criterion which yields a single solution
per choice of Rsonic. Note that the solution satisfies T ≈ Tc and tflow ≈ tcool.
The thin grey lines plot an approximate self-similar solution to the flow
equations with the same Ṁ = 4.5 M� yr−1 as the integrated solution. Small
marks in the top-right panel denote the stellar half-mass radius R1/2 and the
cooling radius Rcool where tcool = tH. We use R1/2 as an approximation for
the radius where angular momentum may become important in the flow.
The radii R1/2 and Rcool delimit the maximum range of applicability of the
cooling flow solution (see Section 2.2).

radius of applicability will be Rshock, and at Rshock the solution must
satisfy the shock jump conditions. In Appendix B, we demonstrate
that such a solution is essentially identical to the marginally bound
solution within Rshock.

2.5 Cooling flows in galaxy-scale haloes

In this section, we discuss several properties of cooling flows in
haloes characteristic of ∼L∗ galaxies (Mhalo ∼ 1012 M�), using both
analytic estimates based on the self-similar solutions (Section 2.3)
and the more accurate integrated solutions (Section 2.4). Fig. 3
plots four integrated and four self-similar solutions for Z = 0.3 Z�,
and M12 = 1, where we define Mhalo = 1012M12 M�. For the
integrated solutions we assume Rsonic = 0.1 kpc (purple), 1 kpc
(blue), 10 kpc (green), and 100 kpc (light green), while for the self-
similar solutions (thin grey lines) we use the values of Ṁ found in
the integrated solutions, as noted in the bottom-left panel. The blue
solution with Rsonic = 1 kpc is the solution shown in Fig. 2. The
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2554 J. Stern et al.

Figure 3. Cooling-flow solutions for third-solar metallicity gas in a 1012 M� halo at z = 0. Coloured lines plot integrated solutions with Rsonic = 0.1 kpc
(purple), 1 kpc (blue), 10 kpc (green), or 100 kpc (light green). The implied Ṁ is noted in M� yr−1 in the bottom-left panel. Subsonic and supersonic parts of
the solutions are denoted by solid and dotted lines, respectively. The curves span the maximum radius range of applicability of the solutions: from R1/2 (marked
in the top-right panel) out to Rcool (tH marked in the lower-left panel). Thin grey lines plot self-similar solutions with the same Ṁ as the integrated solutions.
Note the similarity of the self-similar solutions and the subsonic parts of the integrated solutions. The subsonic parts of the solutions satisfy T ≈ Tc (top-left)
and tflow ≈ tcool (bottom-middle), and have radial slopes of nH ∝ r−1.6, M ∝ r−0.3, tcool ∝ r1.4, and tcool/tff ∝ r0.3. The normalization of these properties is
set by the choice of Rsonic. Within Rsonic the solutions quickly lose their thermal energy and have tcool < tff (bottom-right). In the top-middle panel the black
dashed line marks the gas density if baryons follow the dark matter.

curves span the maximum range of applicability of the solutions,
between R1/2 and Rcool. In cases where Rsonic > R1/2, dotted lines
plot the inner supersonic part of the solution. We first address the
subsonic part of the solutions which are the focus of this paper, and
then address the supersonic part.

The self-similar solutions provide a good approximation to the
subsonic part of the integrated solutions. Specifically, the integrated
solutions satisfy T ≈ Tc (top-left panel) and tflow ≈ tcool (bottom-
middle), as expected from equations (21)–(22) derived in the context
of the self-similar solutions. These two conditions demonstrate why
cooling flows form a single-parameter family of solutions. The free
parameter sets the normalization of other plotted properties – nH,
M, tcool, and tcool/tff. The slope of the profiles of these properties is
however roughly the same in all solutions.

The top-middle panel of Fig. 3 shows the density profile of the
solutions. For the self-similar solutions, this profile can also be
derived analytically. Approximating vc as 140 M0.36

12 rm
100 km s−1 with

m = −0.1 (Fig. 1), equations (21)–(22) imply A = 1.08 and B =
0.87, so we get from equation (27) that

nH = 1.6 · 10−5M0.36
12 Ṁ

1/2
1 �

−1/2
−22 r−1.6

100 cm−3 , (29)

where Ṁ = 1Ṁ1 M� yr−1, and we used X = 0.75. This normaliza-
tion of Ṁ is based on the SFR of the Milky-Way (Bland-Hawthorn
& Gerhard 2016), and corresponds to the purple lines in Fig. 3.
Equation (29) implies that Ṁ ∝ n2

H, as expected in cooling flows
since Ṁ ∝ ρv and v ≈ r/tcool ∝ ρ. Also, the scaling nH ∝ r−1.6 is
consistent with estimates of the hot gas density slope in the Milky-
Way halo based on X-ray emission and absorption (Bregman et al.
2018). We return to this comparison in Section 4.

The dashed black line in the top-middle panel plots the expected
density if baryons follow the dark matter with a cosmic baryon

fraction fb. This estimate is higher than the Ṁ = 1 M� yr−1 solution
by an order of magnitude at Rcool (the right end of the plotted line),
and by a larger factor at smaller radii. Hence the Ṁ = 1 M� yr−1

solution corresponds to a highly baryon-depleted halo.
Using equations (5), (24), and (29), we can derive an expression

for tcool

tcool = 7.2 M0.36
12 Ṁ

−1/2
1 �

−1/2
−22 r1.4

100 Gyr , (30)

which can be compared to the integrated solutions in the lower-
left panel of Fig. 3. The cooling radius where tcool = 13.6 Gyr is
hence

Rcool = 130 M−0.26
12 Ṁ0.36

1 �0.36
−22 kpc . (31)

Equation (31) provides an estimate of the outer limit of applicability
of the cooling flow solution.

Similarly, the Mach number profile in cooling flows can be
derived from equation (26)

M = 0.11 M−0.72
12 Ṁ

1/2
1 �

1/2
−22 r−0.3

100 , (32)

and the ratio tcool/tff in cooling flows follows from equation (28)

tcool

tff
= 7.5 M0.72

12 Ṁ
−1/2
1 �

−1/2
−22 r0.3

100 . (33)

Equations (32) and (33) imply that tcool/tff ∝ M−1 is a weak
function of radius in ∼L∗ haloes, as can be seen in the right-hand
panels of Fig. 3. The flatness of tcool/tff is similar to the basic ansatz of
thermal instability and ‘precipitation’ models based on simulations
with galaxy feedback (Sharma et al. 2012b; Voit et al. 2017), though
note that the physics are different since the cooling flow solution
does not include feedback. We compare cooling flow solutions to
precipitation models in Section 5.
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Cooling flow solutions for the CGM 2555

Figure 4. Cooling-flow solutions for third-solar metallicity gas in a 1015 M� halo at z = 0. The values of Ṁ are noted in the bottom-left panel in M� yr−1.
The curves span from the galaxy scale R1/2 = 30 kpc to the cooling radius Rcool. (Top-left) Gas temperature. The solutions have a positive T slope, though
flatter than Tc (black dashed line). The value of Ṁ has a negligible affect on T. (Top-right) Gas density. The solutions have a similar density slope as the dark
matter (black dashed line). For a baryon to dark matter mass ratio equal to the cosmic baryon fraction (green line) the expected Ṁ is 900 M� yr−1. (Bottom-left)
Entropy. Cooling flows have K ∝ R1.4 (equation 39), steeper than K ∝ R1.1 expected from self-similar cosmological accretion without cooling (black dashed
line). (Bottom-right) Cooling time to free-fall time. Cooling flows in clusters remain stable (tcool > tff) down to R1/2.

We now turn to discuss the supersonic parts of the solutions.
A rough estimate of Rsonic where M = 1 can be derived from
equation (32), which yields

Rsonic = 0.06M−2.4
12 Ṁ1.67

1 �1.67
−22 kpc . (34)

This estimate can be compared to the integrated results in the top-
right panel of Fig. 3. Within Rsonic, the solutions rapidly lose their
thermal energy (top-left panel) and the solution becomes a free-
falling solution rather than a cooling flow solution. Within Rsonic the
solution also has tcool < tff (bottom-right panel and equation 28),
which is incompatible with the assumption of steady-state used
to derive these solutions. That is, within Rsonic the flow is likely
to be subject to thermal instabilities, repressurizing shocks, and
inefficient mixing, so we do not expect the steady-state solutions to
apply.

For solutions with Rsonic > R1/2 (e.g. the green and light green
solutions in Fig. 3), one may ask whether the subsonic part of the
solution at R > Rsonic is valid, if there is no valid steady-state solution
within Rsonic which can support its weight against gravity? In Paper
II, we show that indeed, if Rsonic > R1/2 all the halo gas collapses
on a dynamical timescale, including the subsonic gas beyond Rsonic.
Steady-state solutions for the halo gas are thus possible only if the
gas remains subsonic down to R1/2.

2.6 Cooling flows in cluster-scale haloes

Fig. 4 plots three cooling flow solutions in 1015 M� haloes, derived
assuming Z = 0.3 Z� and either Rsonic = 0.1 kpc (purple), 0.3 kpc
(turquoise), or 1 kpc (green). The implied Ṁ are noted in the bottom-
left panel. In cluster-scale haloes the density at Rcool is directly
observed via its X-ray emission (see Section 4), and is found to be
roughly consistent with the cosmic baryon fraction, corresponding
to the normalization of the green solution in Fig. 4.

To derive the self-similar solution for cluster-scale haloes, we
approximate vc as 850 M0.23

15 rm
100 km s−1 with m ≈ 0.3, where

Mhalo = 1015M15 M� (see Fig. 1). In this case equations (21) and
(22) imply A = 0.36 and B = 1.4. Hence in the self-similar solution
we get (equation 24)

T = 2.8Tc. (35)

The top-left panel in Fig. 4 shows that in the integrated solution T
is a factor of 1.5–2 above Tc, less than suggested by equation (35),
and has a weaker dependence on radius than Tc. These differences
between the integrated and self-similar solutions occur because of
the flattening of the vc profile beyond 300 kpc (see Fig. 1), which
affects the integrated solution but is not captured by the power-
law approximation of the gravitational potential in the self-similar
solution.

Calculating equation (27) in the context of clusters gives

nH = 2.1 × 10−2M0.23
15 Ṁ

1/2
1000 �

−1/2
−23 r−1.2

100 cm−3, (36)

where we defined � = 10−23�−23 erg cm3 s−1 and Ṁ =
103Ṁ1000 M� yr−1. For comparison, the integrated solutions suggest
a somewhat steeper slope of nH ∝ r−1.4 (top-right panel of Fig. 4).
This difference is also due to the flattening of vc beyond 300 kpc.
Note that the density slope in cooling flows is similar to the dark
matter slope at these radii. The cooling time is

tcool = 6.1 M0.23
15 Ṁ

−1/2
1000 �

−1/2
−23 r1.8

100 Gyr , (37)

while the cooling radius is

Rcool = 160 M−0.13
15 Ṁ0.28

1000 �−0.28
−23 kpc . (38)

The value of Rcool is similar to that in ∼L∗ galaxies (equation 30).
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2556 J. Stern et al.

The entropy of the hot gas can be estimated from equations (35)
and (36):

K ≡ kT

(ne)2/3
= 103 M0.31

15 Ṁ
−1/3
1000 �

1/3
−23 r1.4

100 keV cm2, (39)

where ne ≈ 1.2 nH is the electron density. The derived slope is
consistent with the slope found in the integrated solutions, shown
in the bottom-left panel of Fig. 4. Moreover, this slope is steeper
than the K ∝ r1.1 expected from self-similar cosmological accretion
theory in the absence of cooling (e.g. Tozzi & Norman 2001).
Therefore, in the absence of physical processes other than gravity
and cooling, the entropy profile is expected to steepen around Rcool

from ∼r1.1 to ∼r1.4. Note that the entropy profile scales as ∼r1 + 4/3m

(equation 25) and m becomes smaller with decreasing mass (Fig. 1),
so the expected steepening at Rcool is weaker in group-scale haloes
than in cluster-scale haloes

Last, we calculate tcool/tff in clusters. Using equation (28) we get

tcool

tff
= 38 M0.46

15 Ṁ
−1/2
1000 �

−1/2
−23 r1.1

100 . (40)

This relation can be compared to the bottom-right panel of Fig. 4,
where we plot tcool/tff in the integrated solutions. equation (40)
implies that cooling flows in clusters are expected to remain stable
(tcool > tff) down to the galaxy scale R1/2 ≈ 30 kpc.

3 HYDRODYNAMIC SIMULATIONS

In this section, we present a series of idealized 3D hydrodynamic
simulations of gas in dark matter haloes. Concisely put, our
simulations are controlled numerical experiments in which gas that
is initially in hydrostatic equilibrium with an external gravitational
potential is allowed to cool radiatively. Roughly hydrostatic condi-
tions are expected in realistic haloes after a virial shock has formed
(see further discussion in Paper II). Our goal is to verify that in a
hydrodynamic setting the halo gas indeed chooses one of the single-
parameter family of solutions discussed in the previous section.
The simulations are based on the simulations described in Fielding
et al. (2017), though they do not include feedback from the central
galaxy.

3.1 Simulation setup

The simulations are performed using the grid-based hydrodynamics
code ATHENA++ (Stone et al., in preparation). We adopt an
adiabatic equation of state with γ = 5/3 and solve the standard
hydrodynamics equations with additional source terms to include
gravity and optically thin cooling and photoionization heating.
We impose a cooling time constraint on the time-step so that
the global time-step is the smaller of δthydro and min{tcool}/10,
to ensure that cells do not overcool in one time-step. Both the
cooling and hydrodynamics updates are done with this time-step.
The same Wiersma et al. (2009) cooling and heating tables are
used in the simulations as in the analytic calculations in the
previous section (examples are shown in right-hand panel of Fig. 1).
Likewise, the simulations use the same gravitational accelerations
that give rise to the vc profiles shown in the left-hand panel of
Fig. 1.

3.1.1 Simulation domain and geometry

We adopt a spherical-polar coordinate system for our simulations.
Given that our initial and boundary conditions are spherically

symmetric, we do not expect deviations from spherical symmetry
to span broad angular ranges, so we restrict our computational
domain to π /4 ≤ θ ≤ 3π /4 and π /4 ≤ φ ≤ 3π /4, where θ is
the polar angle and φ is the azimuthal angle. This enables us to
reduce the computation expense of a given simulation and to avoid
the small time-steps that arise from the Courant–Friedrichs–Lewy
(CFL) condition near the poles. In the radial direction our domain
extends from 3 to 1000 kpc with logarithmic grid spacing. The outer
radial boundary is chosen to be beyond Rcool (equations 31 and 38),
while the inner boundary is chosen to be within the galaxy scale
for � 1012 M� haloes (equation 11). Our fiducial simulations have
approximately 1:1 cell aspect ratios with 64 cells in the angular
directions and 240 in the radial direction. This corresponds to
cell widths ranging from 73 pc at the inner boundary, 720 pc at
R = 30 kpc, and 24 kpc at the outer boundary. Simulations with
twice and half the resolution resulted in nearly indistinguishable
radial profiles of the gas properties, indicating that the simulations
are well converged at our fiducial resolution.

3.1.2 Boundary conditions

A standard radial outflow boundary condition, which imposes zero
gradients, is insufficient for our problem because the cooling flow
solution that develops has non-zero gradients. Thus, if the flow is
subsonic at the inner boundary (i.e. if Rsonic < Rinner = 3 kpc) then a
zero gradient boundary precludes the development of a steady-state
solution. We therefore adopt boundary conditions that quadratically
extrapolates the primitive variables into the ghost zones. In the polar
and azimuthal directions we adopt periodic boundary conditions.

In practice, the inner radial boundary condition acts as a sink that
allows gas to flow through it without introducing significant numer-
ical artefacts. The outer boundary is beyond Rcool in all cases, so
there are few changes near the outer boundary over the durations of
the simulations, and the extrapolation boundary condition primarily
serves to maintain equilibrium with the gravitational potential.

3.1.3 Initial conditions

We run simulations with a z = 0 UV background and a range of
halo masses, Mhalo, and use the appropriate vc(r) plotted in Fig. 1.
We start with an initially static halo (v(r) = 0), with the density and
temperature given by the hydrostatic relation

∂ ln P

∂ ln r
= −γ

v2
c

c2
s

. (41)

One needs also to specify the entropy profile and the total gas mass.
As any bound hydrostatic solution has c2

s ∼ v2
c , for simplicity we

assume c2
s = v2

c , which yields an entropy profile K ∝ rγ (γ − 1) ∼
r1.1 at radii where vc(r) is flat. We checked that our conclusions are
not sensitive to the exact choice of the ratio v2

c /c
2
s , as long as it is

of order unity. The total gas mass within Rvir is set to equal some
fraction of baryon budget fbMhalo, as detailed below.

To verify that multiphase structure does not develop significantly
in the simulation, as suggested by linear theory when tcool > tff

(e.g. Balbus & Soker 1989), we impose isobaric density pertur-
bations in the initial conditions. The perturbations are generated
so that the power is evenly distributed (Pδρ ∝ k0) between modes
satisfying 1 ≤ kRouter/2π ≤ 64 with an amplitude so that 〈δρ/ρ〉rms =
0.1, where Router is the outer radius of the domain. Testing indicates
that our results are not sensitive to the exact choices we made for
the perturbations, except where noted below.
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Cooling flow solutions for the CGM 2557

3.2 Results

Fig. 5 plots the results of four different simulations, with Mhalo =
1015 M� (left column), 1013 M� (second column), and 1012 M�
(two right columns). The first three simulations initially have Mgas

= fbMhalo − M∗ within Rvir, while the simulation on the right
starts with a gas mass equal to a third of this value. A metallicity
of Z�/3 is assumed throughout. In each column we show the
temperature in units of Tvir (equation 9) and the radial velocity,
at different simulation times t as noted in the panels. To project
the snapshot on to the plotted r − θ plane we calculate the mass-
weighted average of T and v over the simulated range in φ. The
initial hydrostatic conditions are plotted in the top row. Note
how an inflow develops in all simulations. Even though we seed
perturbations in all simulations, strong deviations from spherical
symmetry are apparent only at late times in the fiducial density
1012 M� simulation, and near the inner boundary. As we show
below, only at these regions and times the gas is supersonic and has
tcool < tff, so multiphase structure can develop.

Solid coloured lines in Fig. 6 plot shell-averaged properties in the
1015 M� simulation, as a function of radius and time. The panels
show T (top-left), nH (top-right),M (middle-left), Ṁ (middle-right),
tcool/tff (bottom-left), and tcool/tflow (bottom-right). For each shell
with radius R, we calculate mass-weighted averages for T, nH, M,
and v, while Ṁ is the volume integral of ρv in the shell. The shell
cooling time is calculated as

tcool =
3
2

∫
P d�∫

n2
H�d�

, (42)

where d� = sin θdθdφ. Equation (42) implies that the shell cooling
time is the ratio of the total thermal energy in the shell to the total
luminosity of the shell.

Vertical ticks in Fig. 6 mark the cooling radius Rcool at the different
snapshots, defined via tcool(Rcool, t) = t. This radius mildly increases
from Rcool = 50 kpc at t = 1 Gyr to Rcool = 130 kpc at t = 10 Gyr.
The top two panels demonstrate that within Rcool, T increases and
nH decreases relative to their initial values (light green lines), while
they are essentially unchanged at larger radii.

The two dashed lines plot steady-state solutions with Rsonic =
0.6 kpc (blue) and 0.3 kpc (purple), derived as discussed in Sec-
tion 2. The values of Rsonic are chosen so Ṁ in the steady-state
solution equals Ṁ in the t = 3 Gyr and t = 10 Gyr snapshots,
respectively. Note that only the subsonic part of these two transonic
solutions is within the simulated domain. The radial profiles of all
plotted properties are well reproduced by the steady-state solutions,
between ≈ 6 kpc and ≈Rcool. This result supports the main point of
this paper, that cooling gaseous haloes converge on to the steady-
state cooling flow solutions described above, and that the entire
solution is determined with a single free parameter.

The deviation of the radial profiles from the steady-state so-
lutions within ≈ 6 kpc is a boundary effect, since our boundary
conditions are not exactly consistent with a steady-state solution
(see Section 3.1.2). Other choices of the inner boundary radius
support this conclusion – the radial profiles in the simulation deviate
from a steady-state solution within a factor of ≈2 from the inner
boundary.

The lower-right panel in Fig. 6 shows that tcool ≈ tflow out to the
outer boundary of the simulation, including radii larger than Rcool

where tcool � t. This behaviour is somewhat surprising given that a
cooling flow is expected to form on a timescale tcool. In Appendix C,
we demonstrate why the relation tcool ≈ tflow is established on a sound
crossing timescale rather than a cooling timescale. The condition

tcool ≈ tflow is though insufficient for a flow to lie on one of the steady-
state solutions. The steady-state solutions also require a constant Ṁ

and the appropriate entropy profile (equations 1 and 3), which are
both established on a timescale tcool.

What sets the free parameter Ṁ in the simulation, which in Fig. 6
decreases from 520 M� yr−1 at t = 3 Gyr to 240 M� yr−1 at t =
10 Gyr? Since the conditions beyond Rcool remain near their initial
values, the free parameter must allow the cooling flow solution
within Rcool to smoothly join the roughly static initial conditions
beyond Rcool. The value of Ṁ(t) is hence set by the initial conditions
at a radius Rcool(t). This relation was worked out analytically by
Bertschinger (1989) for the self-similar case, who found that up to
a factor of order unity

Ṁ(t) ≈ 4πR2
coolρ0(Rcool)

dRcool

dt
, (43)

where ρ0(R) is the initial gas density at radius R. We find that Ṁ

near the inner boundary (at R = 20 kpc) in the 1015 M� simulation
is consistent with equation (43) to within a factor of 1.5. For
comparison, the more naive estimate of Ṁ(t) = Mgas(< Rcool(t))/t
is larger by a factor of ∼3 then suggested by equation (43). Note
that if the flow is bounded on the outside by an accretion shock
rather than by Rcool (see Section 2.2), the jump conditions at the
shock will determine Ṁ(t).

Figs 7 and 8 plot the spherically averaged properties of the
1013 M� simulation and the low-density 1012 M� simulation, to-
gether with steady-state solutions corresponding to the t = 3
and t = 10 Gyr snapshots. As in Fig. 6, the spherically averaged
properties of the simulation are well reproduced by the steady-state
solutions, between ≈ 6 kpc and out to ≈Rcool. These simulations
hence also support the main conclusion of this study, that within
Rcool the halo gas settles on one of the single-parameter solutions
derived in Section 2. The value of Ṁ(t) near the inner boundary in
these simulations is consistent with equation (43) to within a factor
of two.

Fig. 9 plots average radial profiles in the 1012 M� simulation
with an initially closed baryon fraction (third column in Fig. 5). To
increase the dynamic range we use a ‘symmetric log’ axis in the
M and Ṁ panels, where the y-axis is linear for absolute values
smaller than unity and logarithmic for absolute values above unity.
At t = 3 Gyr, the flow properties are consistent with the steady-state
solution in the range 6 kpc < R < Rcool, as seen in the snapshots
plotted in Figs 6–8. However, at t = 10 Gyr the flow is supersonic,
with tcool < tff and a temperature significantly below virial. Both
Rsonic and Rcool in this snapshot are at 800 kpc. The steady-state
solutions derived in the previous section are thus invalid if tcool <

tff. The transition between a cooling flow and a supersonic inflow
as seen in this simulation is discussed in Paper II.

Fig. 10 plots the rms density dispersion 〈δρ/ρ〉rms in radial shells
in the four simulations. Each panel corresponds to a different
simulation, while each coloured line corresponds to a different
snapshot as noted in the legend in the top-right panel. The profiles
of tff/tcool in the t = 10 Gyr snapshots are plotted with dashed grey
lines. In the 1015 M� simulation (top-left panel), by t = 1 Gyr the
amplitude of the perturbations has decreased from their initial
value of 〈δρ/ρ〉rms = 0.1 (light green lines). Specifically, at t =
1, 3, and 10 Gyr the relative fluctuations are significantly below
unity, indicating that multiphase structure has not developed. A
similar behaviour is apparent in the 1013 M� and low density
1012 M� simulations (right-hand panels) except at small t and large
R where the initial perturbations remain. Significant fluctuations
where 〈δρ/ρ〉rms is larger than unity are apparent only in the fiducial
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2558 J. Stern et al.

Figure 5. Idealized 3D hydro simulations of radiatively cooling gas in a dark matter halo. Halo mass is noted on top, and Z = Z�/3 is assumed throughout.
The simulations in the three left columns assume an initial gas mass equal to fbMhalo − M∗, while the simulation in the right column has an initial gas mass
equal to a third of this value. In each column we plot snapshots of temperature (in units of Tvir) and radial velocity at different simulation times. The snapshots
are plotted in the r − θ plane, averaged (mass-weighted) over the φ coordinate. The initial conditions are hydrostatic (top row). Note how an inflow develops
in all simulations. Significant deviations from spherical symmetry appear only at late times in the fiducial density 1012 M� simulation.

Figure 6. Spherically averaged properties in the 1015 M� simulation versus steady-state cooling flow solutions. The different panels show the temperature,
density, Mach number, inflow rate, tcool/tff, and tcool/tflow. Coloured solid lines plot spherically averaged properties at different simulation times. Vertical ticks
mark Rcool, where the cooling time equals the simulation time. Initial conditions are static, with M = Ṁ = 0 (light green lines). Coloured dashed lines plot
two solutions to the steady-state equations as discussed in Section 2, corresponding to the t = 3 Gyr and t = 10 Gyr snapshots. The single free parameter Ṁ

of these solutions is set to equal Ṁ near the inner boundary of the corresponding snapshot (see middle-right panel). The spherically averaged properties of the
simulation are well reproduced by the steady-state solutions, between ≈ 6 kpc (a factor of ≈2 from the inner boundary) and out to ≈Rcool.
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Cooling flow solutions for the CGM 2559

Figure 7. Similar to Fig. 6, for the 1013 M� simulation. The spherically averaged properties of the simulation are well reproduced by the steady-state solutions,
between ≈ 6 kpc and ≈Rcool.

Figure 8. Similar to Fig. 6, for the low-density 1012 M� simulation. The spherically averaged properties of the simulation are well reproduced by the
steady-state solutions, between ≈ 6 kpc and ≈Rcool.

density 1012 M� simulation at t = 10 Gyr, in which tff/tcool > 1 and
the flow is supersonic. These fluctuations are also apparent in the
corresponding temperature panel in Fig. 5. Fig. 10 thus demonstrates
that cooling flows do not develop into a multiphase CGM, as long
as tcool > tff.

We emphasize that the latter conclusion applies only to pertur-
bations with an initial amplitude significantly lower than unity.
Stronger perturbations seeded e.g. by the wakes of satellite galaxies
are likely to persist in the halo, and may affect the evolution of the
ambient medium even if it has tcool � tff (e.g. Sharma et al. 2012a;
Choudhury, Sharma & Quataert 2019).

The decrease in amplitude of the perturbations from their initial
value occurs roughly on a free-fall time, which increases with
decreasing halo mass at fixed r. After this initial phase, in the three
simulations which do not collapse the amplitude of the perturbations
is within a factor of 2–3 of tff/tcool (compare the purple lines with the
dashed grey lines). We find an almost identical final perturbation
amplitude in simulations initialized with a higher 〈δρ/ρ〉rms = 0.3,
though simulations with a lower initial 〈δρ/ρ〉rms = 0.01 have a final
〈δρ/ρ〉rms � tff/tcool. A similar saturation of density fluctuations
at an amplitude ≈tff/tcool has previously been seen in simulations
of thermally balanced atmospheres, and attributed to dissipation
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2560 J. Stern et al.

Figure 9. Similar to Fig. 6 for the fiducial density 1012 M� simulation. Note that at t = 10 Gyr the cooling time is shorter than the free-fall time (bottom-left)
and the flow is supersonic (middle-left). The cooling flow solutions are valid only for subsonic flows with tcool > tff.

Figure 10. Density fluctuations in the simulations. Each panel shows
the normalized density dispersion in radial shells in a single simulation.
Coloured line denote snapshots at different times, as noted in Gyr in the
top-left panel. Dashed grey lines plot tff/tcool in the t = 10 Gyr snapshots.
We seed perturbations with 〈δρ/ρ〉rms = 0.1 in the initial conditions (light
green lines). In most snapshots 〈δρ/ρ〉rms is smaller than unity throughout
the domain, with the exception of the fiducial density 1012 M� simulation at
t = 10 Gyr (purple line in bottom-left panel). In this snapshot tcool < tff and
the flow is supersonic (Fig. 9), compared to tcool > tff and subsonic flows in
the other snapshots (Figs 6–9).

of perturbations of this amplitude via non-linear mode coupling
(McCourt et al. 2012; Voit et al. 2017).

4 COMPARISON WITH OBSERVATIONS

In this section, we compare observables of cooling flow solutions
with observational constraints of halo gas at low redshift.

4.1 OVII and OVIII absorption in the Milky Way

The expected column of an ion Xi+ in the halo can be derived via

NXi+ = X

H

∫
nHfXi+ (T , nH)ds , (44)

where NXi+ is the ion column, X/H is the abundance of element X
relative to hydrogen, fXi+ is the fraction of X particles in the i-th
ionization state, and ds is the line-of-sight element. For fXi+ we
use the ionization equilibrium calculations in the TRIDENT package
(Hummels, Smith & Silvia 2017), which used CLOUDY (Ferland
et al. 2013) and assumed the gas is exposed to an HM12 background.
As in Section 2.1, we assume the actual background has twice the
intensity deduced by HM12.

We calculate two cooling flow solutions with a metallicity of
either 0.3 Z� or Z�, Ṁ = 1.65 M� yr−1 equal to the SFR of
the Galaxy, Mhalo = 1.3 × 1012 M�, and M∗ = 6.3 × 1010 M�. All
estimates for Galactic parameters are taken from Bland-Hawthorn
& Gerhard (2016). The choice of Ṁ = SFR is motivated by the
assumption that all fuel for star formation is provided by the hot
CGM, though lower Ṁ are also possible in the context of a cooling
flow CGM, if some of the fuel is supplied by stellar mass loss
(Leitner & Kravtsov 2011). The values of the metallicity are chosen
to bracket the possible range, where the lower limit was deduced by
Miller & Bregman (2013, 2015), who divided the observed NO VII

by the upper limit on the dispersion measure towards the LMC (see
Section 4.3 below), while the upper limit is the ISM metallicity.

Using T(r) and nH(r) from the cooling flow solutions (where r is
the galactocentric radius), we integrate equation (44) along different
sightlines through the Milky-Way halo. For a given solution, the
predicted columns depend on the angle of the sightline relative
to the Galactic Centre. We end the integration at Rcool = 130 kpc
(for the 0.3 Z� solution) or at Rcool = 180 kpc ( Z�), though since
more than 85 per cent of the absorption originates within the inner
∼ 40 kpc, the outer end of the integration does not significantly
affect the predicted columns. The predicted NO VII and NO VIII are
shown in the top-left and top-right panels of Fig. 11, respectively.
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Cooling flow solutions for the CGM 2561

Figure 11. Comparison of cooling flow predictions with O VII (left) and O VIII (right) absorption in the Milky-Way halo. (Top panels) Coloured lines plot the
cooling flow predictions as a function of line-of-sight angle to the Galactic Centre, for two assumed halo gas metallicities. The free parameter of the solutions
is set so Ṁ equals the Milky-Way SFR of 1.6 M� yr−1. Error bars denote measured columns from Gupta et al. (2012). (Bottom panels) The difference between
the data and the cooling flow predictions, coloured by the metallicity of the cooling flow solutions. The error bars are slightly offset horizontally for clarity.
The cooling flow solutions are consistent with the observed Milky-Way X-ray absorption, with no free parameters beyond the uncertainty in metallicity.

The observed NO VII plotted in the top-left panel of Fig. 11 are
taken from Gupta et al. (2012, hereafter G12), who presented a
sample of eight high-S/N sightlines with detections in both the
K α (21.6 Å) and K β (18.63 Å) absorption lines. For comparison,
Faerman, Sternberg & McKee (2017) deduced a similar median
NO VII = 1.4 × 1016 cm−2 based on the sample of Fang et al. (2015),
which included 43 sightlines with lower S/N than G12. The NOVII

measurements in Fang et al. (2015) are based solely on the K α line
and typically have � 1 dex uncertainties, so we do not show them
individually. The bottom-left panel shows the difference between
the observations and the predictions of the cooling flow solutions.
The cooling flow solution with Z = Z�/3 is consistent with the
G12 observations (reduced χ2 = 0.8) while the Z = Z� solution
is marginally consistent (reduced χ2 = 1.7). All solutions with
metallicities 0.3–0.7 Z� yield an acceptable fit with a reduced χ2

lower than unity.
The observed NO VIII shown in the top-right panel of Fig. 11 are

also based on the G12 data. We calculate NO VIII using a curve-
of-growth analysis, based on the O VIII equivalent widths and the
velocity width parameter b measured for O VII, which is justified
if the two ions originate in the same gas (see similar calculation in
Faerman et al. 2017). Comparison of these measurements with the
models yields a reduced χ2 = 0.7 for the Z� model and a reduced
χ2 = 1.1 for the Z�/3 model. Combining the NO VII and NO VIII

observations, the cooling flow solutions yield acceptable fits for
metallicities in the range 0.3–0.8 Z�. Fig. 11 thus demonstrates that
the cooling flow solutions are consistent with the observed NO VII

and NO VIII. We emphasize that there are no free parameters in these
solutions beyond the uncertainty in Z.

The cooling flow solutions used to calculate the predicted
columns in Fig. 11 assume a mass inflow rate equal to the
SFR in the Milky-Way. We also calculate solutions with dif-
ferent values of Ṁ and compare them to the observational
data. We find an acceptable fit for 1.6 < Ṁ < 4 M� yr−1 if
Z = Z�/3, and for 0.2 < Ṁ < 1.3 M� yr−1 if Z = Z�. There-
fore, if the Milky-Way halo gas forms a cooling flow, then
the observed X-ray ion columns allow for mass inflow rates

in the range 0.2–4 M� yr−1, or equivalently 0.12–2.4 times
the SFR.

4.2 OVII and OVIII emission in the Milky Way

Li & Bregman (2017, hereafter LB17) derived the density profile
of the Milky-Way halo gas based on X-ray observations of O VII

and O VIII emission lines, using 648 sightlines from the sample
of Henley & Shelton (2012, 2013). In order to derive the density
profile they assumed a constant temperature of 2 × 106 K, similar
to the cooling flow solutions for the Milky-Way halo discussed
in the previous section, in which the temperature can be approx-
imated as T /106 K ≈ 1.6–0.5 log(R/10 kpc). The observationally
constrained density profile of LB17 can thus be directly compared
to the density profile predicted by cooling flow solutions.

The most detailed model in LB17 (model ‘9’), which accounted
for radiation transfer effects, included a disc component and allowed
for rotation of the hot gas, yielded an electron density profile at large
radii of

ne(r � 2.5 kpc) = (0.028 ± 0.003)

(
R

kpc

)−1.53±0.02

. (45)

This density profile was constrained using the O VII emission line
triplet near 22 Å. LB17 also constrained their model based on the
O VII and O VIII emission lines near 19 Å (their model ‘3’), which
yielded a profile consistent with equation (45), though with larger
errors. The top panel of Fig. 12 plots the LB17 density profile
versus the Milky-Way cooling flow solution with Ṁ = SFR and
Z = 0.3 Z�. LB17 also assumed Z = 0.3 Z�, though since the
density in cooling flows and in LB17 scale similarly with the
assumed Z, the assumed Z does not affect the comparison. Fig. 12
shows that the slope of the LB17 model and the cooling flow
solutions are almost identical at radii � 10 kpc, as also evident from
comparing equation (45) with equation (29). As the density slope
is a robust prediction of the cooling flows, the LB17 result supports
the hypothesis that the Milky-Way halo gas beyond � 10 kpc forms
a cooling flow. At smaller radii the LB17 profile flattens while the
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2562 J. Stern et al.

Figure 12. Hot gas density and mass profiles in cooling flow solutions
versus observational constraints. The cyan line plots a cooling flow solution
with Ṁ equal to the Milky-Way SFR and Z = 0.3 Z�. Diamonds denote
the fit profiles of LB17, constrained via the observed O VII and O VIII

emission along 648 sightlines through the Milky-Way halo, also assuming
Z = 0.3 Z�. The radial density slope in cooling flows is consistent with
the observationally constrained LB17 profile at � 10 kpc, while the density
normalization is a factor of ≈2 higher. Error bars denote hot gas density
estimates based on thermal pressure measurements in the local ISM and
Magellanic Stream. In the bottom panel a small tick on the cooling flow
solution marks Rcool, beyond which the solution is extrapolated. The implied
total hot gas mass within Rvir is 17 per cent of the halo baryon budget.
The blue dash–dotted lines plot the Faerman et al. (2017) model which
assumes feedback heating of the halo gas. This model has a flatter density
profile than cooling flows and a closed baryon fraction within Rvir. The
black dash–dotted lines plot the Voit (2018) model in which the gas has
tcool = 10tff.

cooling flow profile remains steep, though we do not expect the
cooling flow to apply at such small radii due to angular momentum
and deviations of the potential from spherical symmetry.

Fig. 12 shows that the normalization of the LB17 and cooling
flow profiles differ by a factor of ≈2. Roughly 30 per cent of this
difference can be accounted for by the higher temperature assumed
in LB17 compared to the temperatures in the cooling flow solution,
which yields a higher emissivity and hence a lower density for a
given line emission. The remaining difference may suggest that the
actual mass inflow rate is a factor of ≈2 lower than the value of
SFR = 1.65 M� yr−1 assumed in the cooling flow solution.

To produce a good fit to the observations, LB17 assumed an
uncertainty of 2.1 L.U. in their model for the O VII emission
(≈ 40 per cent of the median O VII intensity). They attributed this
uncertainty to unaccounted variations in the emission from either
the Local Bubble or the halo gas. If these emission variations are
not due to the Local Bubble but arise in halo gas, they could indicate
density variations of order � 20 per cent in the cooling flow relative
to spherical symmetry (since emission scales as n2

H).
In the bottom panel of Fig. 12 we show the total hot gas mass

in the Milky-Way halo implied by the cooling flow solutions. The
solutions are extended beyond Rcool (marked by a tick) assuming a
hydrostatic pressure profile with K ∝ R, though we note that this
extension is uncertain. The implied total gas mass within Rvir is

17 per cent of the halo baryon budget. Extending the profile beyond
Rcool with a shallower entropy profile yields a somewhat higher gas
mass (e.g. K ∝ R0.5 yields a gas mass of 22 per cent of the baryon
budget), while assuming a metallicity higher than 0.3 Z� decreases
the implied gas mass by ≈ (Z/0.3 Z�)−1/2. A similar low baryon
mass was derived by Bregman et al. (2018), who deduced the total
hot gas mass by extrapolating the LB17 gas density profile out to
Rvir (marked with diamonds in Fig. 12).

4.3 Dispersion measure towards the LMC

Using measurements of the dispersion measure towards pulsars
in the Large Magellanic Cloud (LMC), Anderson & Bregman
(2010) estimated an electron column of 23 cm−3 pc in the halo,
after subtracting an estimated contribution of 47 cm−3 pc from
the Galactic disc and assuming a negligible contribution from
gas in the LMC. For comparison, the cooling flow solution with
Ṁ = SFR and Z = 0.3 Z� predicts a dispersion measure between
8.3 and 50 kpc of 37 cm−3 pc, while the Z = Z� solution predicts
22 cm−3 pc. The predicted and observed values are comparable,
supporting the cooling flow solution for hot gas in the Milky-
Way halo. The somewhat lower values suggested by the dispersion
measure observations, especially if Z is relatively low or if the LMC
contribution is non-negligible, may suggest Ṁ is actually somewhat
smaller than the SFR, as also suggested by the comparison of the
cooling flow solution with the LB17 profile in Fig. 12.

4.4 OVI absorption

Fig. 13 compares the prediction of cooling flow solutions with
observations of O VI absorption around z ∼ 0.2 star-forming
galaxies and around the Milky-Way. Blue markers in the four left-
hand panels denote NO VI measurements from Werk et al. (2013),
Johnson et al. (2015), and Johnson et al. (2017). The galaxies
are grouped by Mhalo as noted at the top of each panel, where
Mhalo is estimated from the stellar masses of the central galaxies
noted in the papers, using the Behroozi et al. (2018) relation.2 For
each Mhalo bin, we calculate cooling flow models with the median
z = 0.2, either Z = 0.3 Z� or Z = Z�, and Ṁ equal to the median
SFR in the observed galaxies, taken from Werk et al. (2013). In
the left-hand panel where all galaxies do not have a published
SFR estimate we assume Ṁ = 0.07 M� yr−1, the average SFR for
galaxies with the median M∗ = 1.6 × 108 M� in this bin (Behroozi
et al. 2018). In the right-hand panel the lower marker shows the
average of observations along Milky-Way sightlines from Sembach
et al. (2003), multiplied by two to mimic an external galaxy
sightline as in the other panels. Due to confusion with absorption
in the Galactic disc, the Sembach et al. (2003) observations do
not include O VI absorption at local standard of rest velocities
|vLSR| < 100 km s−1, which suggests NO VI are actually a factor of
∼2 higher (Zheng et al. 2015). The corrected average NO VI is noted
with the upper marker. As mentioned by Zheng et al. (2015), the
corrected NO VI in the Milky-Way are similar to columns observed
in other star-forming galaxies with the same mass, suggesting a
similar physical origin. The cooling flow solutions in the right-hand
panel are the same solutions used in Fig. 11.

The predicted ion columns are calculated from the cooling flow
solutions using equation (44), integrated along sightlines with

2One object, J1435+3604 68 12, has Mhalo = 1013 M� and is not shown.
O VI is not detected in this object.
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Cooling flow solutions for the CGM 2563

Figure 13. Comparison of cooling flow solutions with O VI absorption columns around star-forming galaxies at z ∼ 0.2 (four left-hand panels) and around the
Milky-Way (right-hand panel). External galaxies are grouped by halo mass (noted on top), estimated from the stellar mass of the central galaxy. Cooling flow
predictions are plotted for Z = 0.3 Z� (cyan) and Z = Z� (green), assuming Ṁ equals the median SFR in each Mhalo bin in the observed sample (Ṁ noted in
M� yr−1 in the bottom-left of each panel). In the Milky-Way panel the lower marker plots the average NO VI from Sembach et al. (2003), multiplied by two to
mimic an external sightline, while the upper marker includes the correction from Zheng et al. (2015) due to confusion with absorption in the Galactic disc. The
cooling flow solutions for the Milky-Way halo are the same solutions as used in Fig. 11. Cooling flows typically underpredict the observed NO VI by a factor
of ∼5. In the middle panel we plot NO VI of two suggested models which roughly fit the O VI observations, while preserving the good fit of the cooling flow
solutions to the X-ray observations (Figs 11 and 12). The black dash–dotted line denotes a model with a heating mechanism which preferentially affects the
outer halo, while the dashed line denotes a model in which cool photoionized gas shocks at 100 kpc, and subsequently forms a cooling flow at smaller radii
(see Section 5.2 for details).

different impact parameters R⊥. We integrate out to 2Rvir rather
than to Rcool to avoid an unphysical break in the predicted NO VI(R⊥)
profile near Rcool, though in all cases the contribution to NO VI of
gas beyond Rcool is small for sightlines with R⊥ < Rcool. The
cooling flows solutions underpredict the observed NO VI around
most galaxies, typically by a factor of ∼5. A similar conclusion
arises from the Milky-Way observations (right-hand panel) where
the solutions underpredict the average Sembach et al. (2003)
observations by a factor of 1.8–3.2, and the corrected observations
from Zheng et al. (2015) by a factor of 3.5–6.5. This failure in
reproducing the observed NO VI is in contrast with the cooling
flow solutions success in reproducing the observed O VII and O VIII

absorption (Fig. 11), the density slope suggested by the observed
O VII and O VIII emission (Fig. 12), and the dispersion measure
towards the LMC (Section 4.3). In the discussion we suggest
possible resolutions to this apparent discrepancy, in which either
the O VI-bearing outer halo is preferentially heated, or alternatively
the cooling flow extends only out to an accretion shock at� 100 kpc
and O VI predominantly traces cool gas beyond the shock.

The predicted NO VI in cooling flows scales roughly as NO VI ∝
nHfO VI ∝ Ṁ1/2, since nH ∝ Ṁ1/2 (equation 29) while fO VI which
depends mainly on T is roughly independent of Ṁ . Hence, in
principle a cooling flow with Ṁ ∼ 25 SFR could reproduce the O VI

observations, though such a model would have tcool < tff and hence
would be unstable. It has been shown that any model which assumes
O VI traces radiatively cooling gas requires Ṁ � SFR (Faerman
et al. 2017; Mathews & Prochaska 2017; McQuinn & Werk 2018;
Stern et al. 2018).

4.5 Cool clouds

Cool gas clouds (∼ 104 K) are routinely observed in dark matter
haloes via their low-ion (e.g. Mg II, C II, Si II) and H I absorption (see
review by Tumlinson, Peeples & Werk 2017). Around low-redshift
∼L∗ galaxies, such absorption features appear in � 50 per cent of

sightlines to background quasars with impact parameter out to
≈0.5Rvir (Werk et al. 2013; Liang & Chen 2014, see also fig. 11
in Stern et al. 2018). The prevalence of cool gas in haloes is a
challenge for the validity of subsonic cooling flow solutions, in
which the halo gas is expected to be predominantly single phased.
This expectation is evident in Fig. 10, which demonstrates that in
simulations seeded with small-amplitude perturbations (〈δρ/ρ〉rms

= 0.1, see Section 3.1.3) the density dispersion remains smaller
than unity in all snapshots where tcool > tff, consistent with results
based on linear perturbation theory (Malagoli et al. 1987; Balbus &
Soker 1989).

It is however important to note that due to projection effects, the
large observed covering factor of cool clouds does not necessarily
imply that they are widespread throughout the halo. Cool clouds
clustered in a small fraction of the halo volume near ‘local’
disturbances which produce non-linear perturbations, such as in
the extended disc, along collimated outflows, or near satellites and
the material stripped from them (e.g. the Magellanic Stream), could
in principle have a large area covering factor. This association of
cool clouds with specific locations in the halo is suggested by the
tendency of Mg II clouds to align with either the minor axis or the
major axis of the galaxy (Bouché et al. 2012; Kacprzak, Churchill
& Nielsen 2012; Nielsen et al. 2015; Martin et al. 2019). It is thus a
prediction of the cooling flow scenario that the observed cool clouds
are limited to a small fraction of the halo volume. Such a scenario
can be seen in the FIRE simulations where a large fraction of the
cool gas in � 1012 M� haloes is associated with satellite galaxies
and their outflows (Faucher-Giguère et al. 2015, 2016), and in the
simulations of Hummels et al. (2018), where cool clouds form only
near the galaxy or near an inflowing filament.

In regions where cool clouds do form, they can be used as a
rough barometer of the ambient virial-temperature gas by assuming
pressure equilibrium between the cool and hot phases, as initially
done by Spitzer (1956). In the top panel of Fig. 12, we plot the hot gas
density implied by the pressure of clouds in the Magellanic stream
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2564 J. Stern et al.

derived by Stanimirović et al. (2002), who used 21 cm observations
and deduced P/k = 300 cm−3 K assuming a distance of 45 kpc.
We convert their pressure estimate to a density estimate using
T (45 kpc) = 1.3 × 106 K in the cooling flow solution. We estimate
an error of 0.3 dex on the Stanimirović et al. (2002) estimate based
on the dispersion between different Magellanic stream clouds (see
their fig. 16). This pressure estimate is consistent with the cooling
flow solution.

Also plotted in Fig. 12 is the hot gas density implied by the
pressure in the local interstellar medium, as measured by Jenkins &
Tripp (2011). They used observations of C I absorption and deduced
a pressure of P/k = 3800 cm−3 K with a dispersion of 0.175 dex,
which we convert to a density estimate using T (8.3 kpc) = 1.6 ×
106 K in the cooling flow solution. This pressure estimate is
marginally consistent with the 0.3 Z� cooling flow solution. The
median value of Jenkins & Tripp (2011) is equal to the prediction
of the Z = Z� cooling flow solution (not shown).

The pressure of cool clouds in haloes can also be constrained
via photoionization modelling of low-ionization UV absorption
features. In the COS–Halos sample of low-redshift star-forming
galaxies, Werk et al. (2014) and McQuinn & Werk (2018) deduced
a gas pressure which is a factor of �10 lower than expected in
a gaseous halo with a closed baryon fraction. Broadly consistent
results were obtained on a similar sample by Keeney et al. (2017,
also see Voit et al. 2019). Though these estimates are subject to
several systematic uncertainties (Stern et al. 2016; Chen et al.
2017), taking these pressure estimates at face value suggests a hot
gas mass significantly below the baryon budget, roughly consistent
with the � 20 per cent baryon fraction deduced from the cooling
flow solutions in Section 4.2.

4.6 Clusters

The top panel in Fig. 14 compares the predicted entropy profile in
cooling flows with deprojected observations of five bright cool-core
clusters from Hogan et al. (2017). The dashed cyan line plots the
scaling K ∝ r1.1 expected in self-similar cosmological accretion,
i.e. when cooling is neglected (Tozzi & Norman 2001; Voit, Kay &
Bryan 2005). This prediction provides a good fit to the observations
at large radii. The thick black line plots a cooling flow solution with
Mhalo = 1015 M�, Z = 0.3 Z�, and Ṁ = 300 M� yr−1, where the
latter is chosen to match the observations at Rcool = 160 kpc. The
plotted curve spans between R1/2 = 30 kpc (equation 11) and Rcool.
The entropy profile in the cooling flow scales as r1.4 (equation 39),
steeper than expected from gravity alone. Hence, without additional
physical processes beyond gravity and cooling, the entropy profile is
expected to steepen at Rcool. In contrast, the observed entropy profile
appears to flatten, reaching K ∝ r0.7 at small scales (Panagoulia,
Fabian & Sanders 2014; Babyk et al. 2018). The flattening of the
profile appears to occur near Rcool, suggesting that feedback affects
the ICM out to the maximum radius where it is actively cooling.

The Hogan et al. (2017) clusters shown in the top panel were
chosen mainly for their brightness, and are hence relatively repre-
sentative of cool-core clusters. The bottom panel shows model fits
to four objects from McDonald et al. (2019a), which were selected
to be the most dynamically relaxed clusters out of the 100 clusters
in the South Pole Telescope sample (SPT; Bleem et al. 2015). The
entropy profiles at 30–160 kpc of these clusters are steeper than
in the sample shown in the top panel, and similar to the slope
predicted by the cooling flow solution, especially in the Phoenix
and SPT-CLJ2043−5035 clusters. The intracluster medium (ICM)
in the most dynamically relaxed clusters may hence be forming a

Figure 14. Comparison of observed entropy profiles in cool-core clusters
with a cooling flow solution. Top panel shows the deprojected entropy pro-
files of five bright representative cool-core clusters from Hogan et al. (2017),
while the bottom panel shows model fits to the entropy profiles of the
four most dynamically relaxed clusters in the SPT sample (McDonald
et al. 2019a). Dashed cyan lines plot the scaling K ∝ r1.1 expected from
self-similar cosmological accretion without cooling. The black lines plot
a cooling flow solution spanning from R1/2 = 30 kpc to Rcool = 160 kpc,
where the normalization is chosen to roughly match the observations at Rcool.
In the top panel the observed profiles are flatter than expected in cooling
flows. In contrast, the entropy profiles of Phoenix and CLJ2043−5035 in
the bottom panel are apparently consistent with the cooling flow solution.

cooling flow at these radii, i.e. it may not be subject to significant
heating by feedback. The entropy profiles flatten relative to the
cooling flow solution within ∼ 30 kpc ∼ R1/2.

In recent work published after the submission of this manuscript,
McDonald et al. (2019b) compared a cooling flow solution directly
to the observational data for the Phoenix cluster, rather than to
a model fit of the data as done here. They found that a cooling
flow provides a good match to the observations, supporting our
conclusion that the ICM of this cluster may form a cooling flow.

5 DISCUSSION

In the previous sections, we demonstrated that initially hydrostatic
gaseous haloes converge on to one of a single-parameter family of
cooling flow solutions, within a cooling time. In these solutions the
volume-filling gas phase flows inward at a velocity v(r) ≈ −r/tcool,
while the temperature is roughly equal to the circular temperature
Tc ≡ μmpv

2
c /(γ kB). These solutions are similar to the solutions

developed for the ICM in the 1980’s (e.g. Fabian et al. 1984).
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Cooling flow solutions for the CGM 2565

In Fig. 14, we demonstrated that cooling flow solutions fail to
explain the properties of the X-ray emission in typical clusters,
as expected, though they are potentially consistent with the most
dynamically relaxed systems. On the other hand, we showed that a
cooling flow solution with Ṁ ∼ SFR correctly predicts the X-ray
absorption line properties of the Milky-Way halo (Fig. 11), and the
slope of the hot gas density profile derived by modelling the X-
ray line emission in the Milky-Way halo (Fig. 12). Given that the
cooling flow model is the simplest possible model and has no free
parameters beyond the uncertainty in gas metallicity, this success
may suggest that hot gas in the Milky-Way halo forms a cooling flow
with Ṁ ∼ SFR, at least in the inner 10 s of kpc which dominate the
observed X-ray emission and absorption. However, Fig. 13 shows
that similar solutions underpredict the observed O VI by a factor
of ∼5, both in the Milky-Way halo and in the haloes of external
star-forming galaxies. The observations of O VI thus suggest that
the cooling flow picture is incomplete.

In this section, we compare cooling flow solutions with other
existing models of gas in galaxy-scale haloes, and discuss possible
resolutions to the apparently inconsistent conclusions implied by
the X-ray and O VI observations.

5.1 Comparison with hydrostatic models

Several authors have proposed hydrostatic models for gas in galaxy-
scale dark matter haloes (Maller & Bullock 2004; Faerman et al.
2017; Mathews & Prochaska 2017; Voit 2018). Since the hydrostatic
equation on its own is insufficient to fully specify the structure of
the halo gas, these studies evoked additional assumptions on the
density or entropy profile. Specifically, Maller & Bullock (2004)
assumed a flat entropy profile out to Rcool, Faerman et al. (2017)
derived the density profile from the average X-ray emission and
absorption in the Milky-Way and from the O VI absorption around
external galaxies, Mathews & Prochaska (2017) assumed a density
which follows the dark matter density with a flat entropy core, and
Voit (2018) assumed an entropy profile which yields tcool/tff ≈ 10 at
all radii. In the cooling flow solutions for the Milky-Way halo gas
(Figs 11–13), the pressure profile is also close to hydrostatic, since
the correction to the momentum equation is of order M2, while
M is small at halo radii (≈0.1 at 100 kpc, equation 32). However,
although that the flow is relatively slow, it is this weak flow which
sets the entropy profile of the halo gas via the entropy equation (3),
at all radii smaller than Rcool. Specifically, for Milky-Way-mass
haloes we get K ∝ r0.87 (equation 25 with m = −0.1). Thus, in the
absence of physical processes other than cooling, the entropy and
density profiles in a quasi-static halo are not free parameters but
rather set by the cooling flow solution.

5.2 Reconciling OVI and X-ray observations

Fig. 15 summarizes the constraints on Ṁ derived in this study
and in previous studies based on X-ray observations of O VII and
O VIII (black), and based on UV observations of O VI (blue). The
horizontal position of each marker denotes the median distance
contributing to the observations, while the range spans the 16–
84 percentiles. For the X-ray-based constraints this characteristic
distance is estimated from the modelling, which for a density profile
of nH ∝ r−1.6 predicted by cooling flows (equation 29) yields an
X-ray gas distance of ∼ 10–40 kpc. As discussed in Section 4.1,
comparison of the cooling flow solution with X-ray absorption
yields Ṁ ≈ 0.12–2.4 times the Milky-Way SFR of 1.6 M� yr−1

(black square in Fig. 15), while a comparison with the X-ray line

Figure 15. Summary of gas cooling rates in low redshift ∼L∗ haloes
derived in this work and in previous studies, normalized by the SFR of
the central galaxy. Black symbols mark values based on Milky Way O VII

and O VIII observations, while blue symbols mark values based on O VI

columns around external SF galaxies. The cooling flow-based estimates for
the X-ray gas (black square and pentagon) are consistent with the estimate
based on the phenomenological model of LB17 (black diamond), but are
roughly an order of magnitude lower than the cooling rates implied by O VI

if it traces radiatively cooling gas (blue star, blue plus, and blue cross). This
difference may indicate preferential heating of the O VI-bearing outer halo.
Alternatively, if O VI traces thermal-equilibrium gas outside the accretion
shock, the implied preshock mass flow rate (blue circle) is comparable to
the post-shock cooling rates suggested by the X-ray observations.

emission yields a cooling rate of roughly half the SFR (black
pentagon, see Section 4.2 and Fig. 12). These deduced density
profile, characteristic distance, and cooling rate of the X-ray gas
are all consistent with the results of LB17 (black diamond), who
modelled the X-ray observations using a phenomenological model
independent of our cooling flow solutions. The results of LB17 are
based on and consistent with other results by the same group (Miller
& Bregman 2013, 2015; Bregman et al. 2018; Qu & Bregman
2018). The cooling flow solution hence provides a physical ex-
planation for the parameters implied by LB17’s phenomenological
analysis.

In contrast with the relative proximity implied for the X-ray gas,
a deprojection of O VI observations around external galaxies shows
that O VI absorption originates in gas farther out in the halo, at a
radius range of 0.35–0.8Rvir, or 70–150 kpc for the median Rvir of
190 kpc in the COS–Halos sample (fig. 1 in S18, see consistent
result in Mathews & Prochaska 2017). Cooling flow solutions
with Ṁ = SFR underpredict the observed O VI absorption by a
factor of ∼5, and there is no stable cooling flow solution which
can reproduce the observed O VI (Fig. 13, Section 4.4). Fig. 15
plots previous estimates of the O VI-traced Ṁ assuming that it
originates in radiatively cooling gas, from Mathews & Prochaska
(2017, blue star), from McQuinn & Werk (2018, blue cross), and
from S18 (their ‘high-pressure’ scenario, blue plus). In all cases,
we normalized the mass inflow rates found by these studies by
the mean SFR = 4.2 M� yr−1 in the observed sample (Werk et al.
2013). The derived Ṁ/SFR are roughly an order of magnitude
larger than implied by the X-ray emission.
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The O VI columns and dispersion observed around the Milky-Way
are similar to those around external SF galaxies, if one accounts for
the different perspectives and for confusion with the Galactic disc
(Zheng et al. 2015, Fig. 13). It thus seems likely that O VI in the
Milky-Way has the same origin as O VI in other SF galaxies. Fig. 15
therefore suggests a somewhat surprising result that cooling rates in
the O VI-bearing outer halo are significantly different from cooling
rates in the inner halo which dominates the X-ray observations. It
is important to note that this conclusion is already implied by the
comparison of the LB17 and e.g. McQuinn & Werk (2018) data
points even without considering the cooling flow analysis in this
work, as discussed in Qu & Bregman (2018). Our cooling flow
analysis strengthens this conclusion by providing a physical basis
for LB17’s phenomenological results, as mentioned above. We next
discuss several possible resolutions to this apparent tension between
the X-ray and O VI observations.
Preferential heating of the OVI-bearing outer halo: To main-

tain the large cooling rates implied by the O VI observations,
previous studies typically assumed that gas at � 100 kpc is heated
by supernovae or AGN in the central galaxy (Cen 2013; Liang,
Kravtsov & Agertz 2016; Faerman, Sternberg & McKee 2017;
Mathews & Prochaska 2017; Suresh et al. 2017; McQuinn & Werk
2018). If this is the case, a heating mechanism powered by the
central galaxy must avoid depositing most of its energy in the inner
10 s of kpc to explain the order-of-magnitude lower cooling rates
inferred from the X-ray observations. Alternatively, the heating
energy may originate from larger radii, e.g. processes associated
with cosmological structure assembly.

In the middle panel of Fig. 13 we plot a potential O VI profile
in the presence of a heating mechanism that preferentially heats
the outer halo (black dash–dotted line). To produce this profile
we run a simulation similar to the simulations shown in Fig. 5,
with Mhalo = 6 × 1011 M� and an initial baryon mass of 0.4 times
the halo baryon budget. At each assumed impact parameter, we
integrate the O VI volume density in the t = 7 Gyr snapshot out
to a maximum radius of 200 kpc. This snapshot is chosen since it
has a relatively large cooling rate of 20 M� yr−1 within 200 kpc,
compared to a lower cooling rate of 4 M� yr−1 within 40 kpc,
thus mimicking the different Ṁ implied by the O VI and X-ray
observations shown in Fig. 15. Fig. 13 demonstrates that in this
snapshot the O VI columns are roughly consistent with observations.
In our simulations which do not include heating mechanisms, such
a gas structure is necessarily a transient phenomenon, which occurs
only when dRcool/dt increases quickly with time and there is hence
a disparity between Ṁ at large scales and Ṁ at small scales (see
equation 43). A transient solution is unlikely to explain the observed
O VI which are seen around practically all blue galaxies. Potentially,
in the presence of a heating mechanism which preferentially heats
the outer halo as suggested here, such an O VI profile may be long-
lived and thus consistent with the observations.

The low-pressure OVI scenario: The assumption that O VI

traces radiatively cooling gas at T ≈ 105.5 K is mainly based on the
results of cosmological simulations (Stinson et al. 2012; Cen 2013;
Hummels et al. 2013; Liang et al. 2016; Oppenheimer et al. 2016;
Gutcke et al. 2017; Suresh et al. 2017; Nelson et al. 2018). From a
purely observational perspective, O VI along random quasar sight-
lines and in sightlines farther than 0.5Rvir ≈ 100 kpc from galaxies
is almost always observed together with H I, with a column ratio of
NHI/NO VI ≈ 1–10. These H I observations support a scenario where
the O VI and associated H I columns trace single-phase photoionized
gas in thermal equilibrium with the UV background (Thom & Chen
2008; Tripp et al. 2008; Stern et al. 2016, S18). If the O VI-gas is

in thermal equilibrium, then it is not radiatively cooling, and hence
does not imply cooling rates significantly larger than suggested by
the X-ray observations.

O VI can trace gas in thermal equilibrium if the gas has a relatively
low thermal pressure of � 1 cm−3 K, as expected outside the accre-
tion shock. S18 argued that this would require a shock radius around
∼L� galaxies Rshock � 0.5Rvir ≈ 100 kpc, substantially smaller than
predicted by cosmological simulations. They showed that such a
scenario is consistent with the observed C III absorption and lack
of low-ion absorption at R⊥ � 0.5Rvir, and with the observed
linear relation between O VI column and velocity width. Also, if
O VI traces free-falling pre-shock gas then the implied mass inflow
rate is ≈ 5 M� yr−1 (equation 30 in S18), comparable to the mean
SFR = 4.2 M� yr−1 of the central galaxies. This alternative estimate
of Ṁ/SFR ≈ 1.2 implied by O VI is plotted in Fig. 15 (blue circle),
and is comparable to the Ṁ/SFR ∼ 0.5 suggested by the Milky-
Way X-ray observations, thus alleviating the tension implied by
assuming that O VI traces radiatively cooling gas.

In the middle panel of Fig. 13 we plot a possible NO VI profile
based on the model suggested by S18 (black dashed line), calculated
as follows. For the hot gas inside the shock radius, we calculate
a cooling flow solution with the mean Mhalo = 6 × 1011 M� and
z = 0.2 of the galaxies in the panel, Ṁ equal to their average
SFR of 3 M� yr−1, and an assumed metallicity of 0.5 Z�. We
require the outer boundary of the cooling flow to satisfy shock
jump conditions with zero shock velocity. There is only a single
possible solution for jump conditions consistent with pre-shock gas
in thermal equilibrium with the UV background (≈ 3 × 104 K). This
solution is plotted in Fig. B2 in the appendix. For the gas outside the
shock radius, the jump conditions imply the same Ṁ = 3 M� yr−1

as in the post-shock gas and a pre-shock velocity3 of 150 km s−1. We
assume a velocity profile of v ∝ r−1/2 and a clumping factor of δρ/ρ
= 4, which yield a best ‘by-eye’ fit to the O VI observations. This
clumping factor is consistent with the O VI absorber pathlengths of
�10s of kpc implied by observations relative to the total pathlength
through the outer halo (table 1 in S18). As can be seen in Fig. 13,
the expected NO VI in this combined free-fall + cooling flow model
is roughly consistent with the observed NO VI, while also matching
the Ṁ ∼ SFR suggested by the Milky-Way X-ray observations.
Predictions of this model for observations of Ne VIII and other ions
observable in the extreme UV (EUV) are discussed in Stern et al.
(2018).

A density profile shallower than a cooling flow: An alternative
resolution is that the halo density profile is shallower than deduced
by LB17 from the Milky-Way observations (see section 2.4 in
Bregman et al. 2018 for a discussion of this possibility). A flatter
density profile would yield a larger characteristic radius and higher
cooling rates for the X-ray gas. Such a flat density profile was
deduced by Faerman et al. (2017), who fit a hydrostatic model to
the average of the X-ray observations in the Milky-Way and to the
O VI observations around external galaxies. The density and mass
profile in their model are plotted in Fig. 12. Note that Faerman
et al. did not incorporate the dependence of X-ray observations on

3The characteristic velocity offset between the central galaxies and the O VI

absorption profiles is ≈ 100 km s−1 (Tumlinson et al. 2011), lower than the
deduced radial velocity of 150 km s−1 for the O VI gas in this model. This
difference may potentially be explained by projection effects. Alternatively,
assuming a pre-shock gas temperature somewhat higher than equilibrium
with the background (e.g. due to adiabatic compression), would imply a
lower pre-shock velocity which is more consistent with the observations.
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direction in the halo, which was used by LB17 to infer the slope
of the density profile. In the Faerman et al. (2017) model, both the
X-ray and O VI trace cooling rates of ≈ 30 M� yr−1. This model
suggests both significant feedback heating in the halo and a closed
baryon fraction (see lower panel of Fig. 12), in contrast with the
baryon-deficient halo and lack of heating implied by the cooling
flow model and by LB17.

5.3 Comparison with precipitation models

We demonstrate in Fig. 10 and Section 3 that small-amplitude
perturbations in a cooling flow do not develop into multiphase
structure at radii where tcool/tff > 1, consistent with previous results
based on linear perturbation theory (e.g. Balbus & Soker 1989)
and hydrodynamic simulations (e.g. Joung, Bryan & Putman 2012;
Sharma et al. 2012a). In this regime, the gas is predominantly
single phase (by volume) and cool clouds develop only near
strong disturbances which can seed non-linear perturbations (see
Section 4.5).

However, numerical simulations have demonstrated that in the
presence of heating by feedback multiphase structure may develop
even if tcool/tff is as high as ∼10 (Sharma et al. 2012a; Gaspari,
Ruszkowski & Oh 2013; Li & Bryan 2014b; Choudhury & Sharma
2016; Choudhury, Sharma & Quataert 2019). Based on this result
Sharma et al. (2012b) and Voit et al. (2015, 2017) proposed a
feedback-regulated limit cycle. In this cycle, cool clumps in the
halo ‘precipitate’ on to the central galaxy, providing fuel for
feedback which heats the ambient medium and promotes further
condensation. The main ansatz of these precipitation models, based
on the results of numerical simulations, is that the feedback loop
regulates the halo gas to have a minimum tcool/tff ∼ 10. Some
support for this ansatz is provided by observations of X-ray emitting
gas in groups and clusters of galaxies, which apparently adhere to
the limit of tcool/tff � 10 and exhibit evidence for multiphase gas
preferentially in objects and at radii where tcool/tff is close to the
limit (McCourt et al. 2012; Voit & Donahue 2015).

In galaxy-scale haloes, the roughly constant tcool/tff suggested by
precipitation models is expected also in the absence of any feedback
(equation 33 and lower-right panel of Fig. 3). This result follows
from the cooling flow solution (equations 24–27), which yields
tcool/tff ∝ r0.5 + 2m. For the weakly decreasing circular velocity profile
expected in galaxy-scale haloes (vc ∝ rm ∝ r−0.1, see Fig. 1), we
get tcool/tff which depends only weakly on radius. Thus, a roughly
constant tcool/tff in simulations or implied by observations does
not necessarily imply that galaxy-scale haloes are precipitation-
regulated.

In cooling flow solutions, the normalization of tcool/tff is set by the
free parameter of the solution and in principle can have any value
larger than unity. In practice, we expect the total hot gas mass – and
thus the normalization of tcool/tff – to be set either by the cosmic
baryon budget or modified by the loss of baryons driven by galactic
outflows at high redshift. Interestingly, for an Milky-Way-mass halo,
assuming Ṁ = 1 M� yr−1 ≈ SFR implies a characteristic tcool/tff

= 7.5 (equation 33), approximately equal to the basic ansatz of
precipitation models. Thus precipitation-regulated models for the
Milky-Way yield roughly the same halo gas structure as the no-
ongoing-feedback cooling flow solution discussed in this work. This
similarity can be seen in the top panel of Fig. 12, where the density
profile of a precipitation-regulated halo (Voit 2018, black dash–
dotted line) is compared to the density profile of the cooling flow
solution (cyan line). The two profiles differ by less than a factor of
two at all plotted radii, within the uncertainty of the modelling and of

the observational constraints. Thus, the predictions of precipitation-
regulated models for the hot gas structure and their comparison with
observations (e.g. Voit 2018; Voit et al. 2019) do not differentiate
between a precipitation-regulated CGM and a cooling flow CGM.

5.4 Additional implications for feedback

Figs 11 and 12 demonstrate that observational constraints on the
hot gas in the Milky-Way halo are consistent with the predictions
of a cooling flow with Ṁ ≈ SFR. In this scenario ongoing heating
by feedback is weak, and does not significantly change the halo
gas properties. Strong feedback is however still required in this
scenario at earlier epochs to explain the high metallicity (0.3 Z� −
Z�) and low gas mass (� 20 per cent of the cosmic baryon budget,
Section 4.2) of the cooling flow solutions. Such a scenario where
feedback is strong at high redshift but weak in the local Universe is
qualitatively consistent with observational indications that galactic
winds are strong in high SFR surface density galaxies common at
z ∼ 2, while they are weak in the low SFR surface density galaxies
common at z ∼ 0 (e.g. Heckman & Thompson 2017). This scenario
is also (qualitatively) supported by cosmological simulations that
predict strong winds at z ∼ 2 which subside by z ∼ 0 in ∼L∗ haloes
(e.g. in the FIRE cosmological simulations, Muratov et al. 2015,
2017).

Another requirement of the cooling flow model is that ongoing
heating by the central black hole is inefficient. In the Milky-Way,
possible evidence for such heating are the Fermi bubbles (Su, Slatyer
& Finkbeiner 2010), which extend ≈ 10 kpc from the Galactic
Centre. Sarkar, Nath & Sharma (2017) estimated a feedback
energy injection rate into the bubbles of ≈ (0.7–1) × 1041 erg s−1.
If this energy eventually heats the halo gas, it could offset the
energy radiated by a cooling flow with Ṁ = 1.5–2 M� yr−1 at radii
10–100 kpc. Hence for feedback heating to be small relative to
Ṁ ≈ 1.6 M� yr−1, this heating rate estimate needs to be somewhat
biased high, or alternatively the bubble energy is not efficiently
transferred to the surrounding CGM.

In cluster-scale haloes, the similarity of the entropy profiles
of Phoenix and CLJ2043−5035 with cooling flow solutions may
suggest that these clusters are in a cooling flow phase of a feedback
limit cycle (see introduction), as also supported by the large UV-
estimated SFRs in their central galaxy (≈2000 and ≈ 200 M� yr−1,
respectively, McDonald et al. 2012, 2016). It would be useful to
conduct a similar comparison of the cooling flow solutions with
simulations of feedback limit cycles (e.g. Prasad et al. 2015) and
thus derive the predicted duty cycle of the cooling flow phase in such
models. This prediction could then be compared to the observed
fraction of clusters in the cooling flow phase.

6 SUMMARY

In this paper, we solve the spherical steady-state equations of
radiatively cooling gas, in a time-independent gravitational potential
characteristic of dark matter haloes. Our solutions extend previous
solutions derived in the 1980s for cluster-scale haloes to galaxy-
scale haloes. We derive self-similar solutions in the hydrostatic
limit for power-law potential and cooling function, and numerical
solutions for more general potentials and cooling functions. Both
type of solutions have a single free parameter, and are thus fully
determined if either the mass inflow rate or total halo gas mass
are known. We find that in cooling flows the entropy scales with
radius as K ∝ r1 + 4m/3 (equation 13), where m ≡ dlog vc/dlog r is
the power-law index of the circular velocity radial profile.
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Using idealized 3D hydrodynamic simulations of initially hy-
drostatic gas, we showed that the average gas properties in the
simulation converge on to a cooling flow solution within a cooling
time or, equivalently, out to the cooling radius (Figs 6–9). Density
fluctuations remain significantly below unity as long as tcool > tff

(Fig. 10), consistent with expectations based on linear theory. Halo
gas which forms a cooling flow is thus expected to be predominantly
single phase, with cool clouds limited to strong disturbances that
can seed non-linear perturbations (e.g. near the disc plane or due to
stirring by satellite galaxies).

We compare the cooling flow solutions with observational
constraints on halo gas at low redshift. Our conclusions can be
summarized as follows:

(i) Observations of O VII and O VIII absorption in the Milky-Way
halo are consistent with a cooling flow solution with Ṁ ∼ SFR,
with no free parameters (Fig. 11).

(ii) The Milky-Way halo gas density profile of ne ∝ r−1.5, deduced
by Li & Bregman (2017) from modelling of observed O VII and
O VIII emission, is consistent with the prediction of cooling flows
(Fig. 12).

(iii) Estimates of the thermal pressure based on cool clouds in
the ISM and in the Magellanic Stream, and the dispersion measure
towards the LMC, are also consistent with a cooling flow solution
with Ṁ ∼ SFR.

(iv) Cooling flows with Ṁ ∼ SFR underpredict observed O VI

absorption columns in the Milky-Way halo and in the haloes of other
star-forming galaxies, typically by a factor of ∼5, if the cooling
flows are assumed to extend out to�Rvir (Fig. 13). This discrepancy
can be reconciled with the successes of the cooling flow solution
described in (i)–(iii) if the O VI-bearing outer halo is preferentially
heated or, alternatively, if the large NO VI originate in free-falling
gas outside an accretion shock at � 100 kpc which subsequently
develops into a cooling flow at smaller radii, as suggested by Stern
et al. (2018). Upcoming observations of Ne VIII and other ions
observable in the EUV could potentially test these possibilities.

(v) The cooling flow solution for the Milky-Way halo gas predicts
tcool/tff ≈ 7.5(r/100 kpc)0.3, similar to the basic ansatz of thermal-
instability-regulated feedback-loop models, in which tcool/tff ≈ 10
independent of radius. These feedback-loop models thus yield
roughly the same hot gas structure and observables as the no-
feedback cooling flow solution (Fig. 12).

(vi) In galaxy cluster haloes, cooling flows predict a radial
entropy profile of K ∝ r1.4, steeper than the observed profile of
K ∝ r0.7 in typical cool-core clusters. This is consistent with
other evidence that feedback alters the gas properties in the ICM.
However, two of the most dynamically relaxed clusters in the SPT
sample have entropy profiles consistent with cooling flows beyond
the galaxy scale ≈ 30 kpc (Fig. 14). These clusters may be in the
cooling flow phase of a feedback limit cycle.

The possibility that hot gas in Milky Way-like haloes forms a
cooling flow with negligible ongoing feedback heating, could be a
consequence of the fact that galactic winds are weak in galaxies
with low SFR surface density (e.g. Heckman & Thompson 2017).
This is also suggested by simulations that predict weak winds in
low-redshift ∼L� galaxies (e.g. Muratov et al. 2015), as discussed
in Section 5.4. Our analysis thus raises the question of which haloes
(as a function of mass and redshift) can be adequately modelled by
a cooling flow over an interesting range of radii. At high redshift,
stellar feedback is expected to be stronger and is also required to
explain the high metallicity and low gas mass implied by the cooling
flow solutions at low redshift. Comparison of cooling flow solutions

with observations of high-redshift haloes (e.g. Turner et al. 2014;
Rudie et al. 2019) may be able to address this important question.
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APPENDIX A: INTEGRATION DETAILS

In this section, we describe the numerical integration technique used
to derive the marginally bound transonic solutions.

We first integrate the flow equations outward from a sonic point
at an assumed radius Rsonic, in order to derive the subsonic part of
the solution. In the integration we use the form of the flow equations
expressed in equations (1), (13), and (17). The temperature at Rsonic

is initially assumed to equal Tc, while ρ(Rsonic) and v(Rsonic) are
derived from this assumption and from the requirement that both
sides of equation (17) vanish. Since the momentum equation is
indeterminate at Rsonic, we start the integration at a radius R0 = (1 +
ε)Rsonic with ε = 10−5. The values of the hydrodynamic variables
T(R0), v(R0), and ρ(R0) thus differ from their values at Rsonic by
factors of 1 + (dln T/dln r)ε, 1 + (dln v/dln r)ε, and 1 − (dln v/dln r
+ 2)ε, respectively. The derivation of dln T/dln r and dln v/dln r for a
given T(Rsonic) is described below. If the integrated solution reaches
M = 1 with an infinite velocity derivative, then T(Rsonic) is adjusted
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Figure A1. An example of the shooting method used in this work. The panels show the Mach number, temperature, density, Bernoulli parameter, cooling time
to flow time ratio, and ratio of the circular velocity to the sound speed squared. Different lines show different integrations of the steady-state flow equations,
assuming third-solar metallicity gas in a 1012 M� halo at z = 0. Integration starts at the sonic point, assumed to be at Rsonic = 1 kpc, and proceeds outwards.
The temperature at Rsonic is constrained via the shooting method. If the solution becomes unbound (B > 0, green curves) then T(Rsonic) is adjusted downward.
If the solution reaches M = 1 with an infinite velocity derivative (cyan curves) then T(Rsonic) is adjusted upward. Only for a narrow range of T(Rsonic) the
integration reaches large radii with B < 0 (black curves). These ‘marginally bound’ solutions form the single-parameter family of solutions used in this work.

upward, and the flow equations are integrated again. If the solution
becomes unbound (B > 0), then T(Rsonic) is adjusted downward,
and again the integration is repeated. The process continues until we
find a solution which is bound out to a large radius of 10Rvir. Then,
using T(Rsonic) of this marginally bound solution we also find the
supersonic part of the solution, by applying a similar offset to the hy-
drodynamic variables with ε = −10−5, and integrating inward. An
example of this process is shown in Fig. A1. The derived marginally
bound solution in this example is the solution shown in Fig. 2.

To derive dln T/dln r and dln v/dln r at the sonic point we divide
equation (17) by M2 − 1, which gives

d ln v

d ln r
=

2c2
s − v2

c − c2
s tflow
γ tcool

v2 − c2
s

. (A1)

For the velocity derivative to be finite at the sonic radius (where v

= −cs), the numerator must equal zero, i.e.

tflow

γ tcool
= 2 − v2

c

c2
s

≡ 2(1 − x) , (A2)

where for convenience we defined the parameter x ≡ v2
c /2c2

s =
Tc/2T . Note that for adiabatic conditions (tflow/tcool → 0), condi-
tion (A2) is equal to the standard Bondi condition of v2

c = 2c2
s or

x = 1. The logarithmic derivative of v at the sonic point is then
found using l’Hospital’s rule

(
d ln v

d ln r

)
sonic point

=
d
dr

(
2c2

s − v2
c − c2

s tflow
γ tcool

)
d
dr

(
v2 − c2

s

) . (A3)

The denominator is equal to

d

dr

(
v2 − c2

s

) = 2v2 d ln v
d ln r

r
− c2

s
d ln T
d ln r

r

= c2
s

r

(
2

d ln v

d ln r
− d ln T

d ln r

)
, (A4)

where in the second equality we used −v = cs. The relation between
the logarithmic derivative of v and the logarithmic derivative of T
can be derived from mass and entropy conservation (equations 12
and 13)

d ln T

d ln r
+ (γ − 1)

(
2 + d ln v

d ln r

)
= tflow

tcool
. (A5)

Using the sonic point equality (A2) for tflow/tcool, assuming γ = 5/3
and rearranging we get

d ln v

d ln r
= −3

2

d ln T

d ln r
+ 3 − 5x . (A6)

Plugging this equation in equation (A4) then yields for the denom-
inator of equation (A3)

d

dr

(
v2 − c2

s

) = c2
s

r

[
−4

d ln T

d ln r
+ 6 − 10x

]
. (A7)

For the numerator in equation (A3) we note that the term
c2

s tflow/γ tcool is proportional to rρ�/ − v. Hence for vc = vc(r)
and � = �(T, ρ) we get

d

dr

(
2c2

s − v2
c − c2

s tflow

γ tcool

)
= 2c2

s
d ln T
d ln r

r
− 2v2

c
d ln vc
d ln r

r

− 1

r

c2
s tflow

γ tcool

[
1+d ln ρ

d ln r

(
1+d ln �

d ln ρ

)
+ d ln T

d ln r

d ln �

d ln T
− d ln v

d ln r

]
.

(A8)
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Using again mass conservation (dln ρ/dln r = −dln v/dln r − 2) and
the sonic point equality (A2) we get

d

dr

(
2c2

s − v2
c − c2

s tflow

γ tcool

)
= c2

s

r

{
2

d ln T

d ln r
− 4x

d ln vc

d ln r
+ 2 (1 − x)

×
[

d ln v

d ln r

(
2 + d ln �

d ln ρ

)
+ 1 + 2

d ln �

d ln ρ
− d ln T

d ln r

d ln �

d ln T

]}
.

(A9)

Using equation (A6) in equation (A9) and rearranging we get for
the numerator of equation (A3)

d

dr

(
2c2

s − v2
c − c2

s tflow

γ tcool

)

= c2
s

r

[
d ln T

d ln r

(
2 − 6(1 − x) − 2(1 − x)

(
d ln �

d ln T
+ 3

2

d ln �

d ln ρ

))

−4x
d ln vc

d ln r
+ 2(1 − x)

(
7 − 10x + (5 − 5x)

d ln �

d ln ρ

)]
. (A10)

Finally, using equations (A6), (A7), and (A10) in equation (A3) we
get that(

d ln T

d ln r

)2

+d ln T

d ln r

[
29

6
x−17

6
+1

3
(1−x)

(
d ln �

d ln T
+ 3

2

d ln �

d ln ρ

)]

+ 2

3
x

d ln vc

d ln r
+ 5x2 − 13

3
x + 2

3
− 5

3
(1 − x)2 d ln �

d ln ρ
= 0, (A11)

which can be solved as a quadratic equation for a given x = v2
c /2c2

s ,
dln �/dln T, dln �/dln ρ, and dln vc/dln r. Typically, one of these
roots has dM/dr < 0, which corresponds to a cooling flow solution
that is subsonic at large scales and supersonic at small scales, while
the other root has dM/dr > 0, which corresponds to the opposite
transition. We use the former root in the solutions used in this
paper.

A similar derivation was done by Mathews & Guo (2012) for
the specific case of a point mass and constant cooling function, and
their result can be reproduced using dln �/dln T = dln �/dln ρ = 0
and dln vc/dln r = −1/2 in equation (A11). Note that the parameter
‘a’ defined by Mathews & Guo is equal to (1 − x)/x in our notation.

APPENDIX B: OUTER BOUNDARY
CONDITIONS

The outer boundary condition of the transonic marginally bound
solutions used in this work is B → 0− as r → ∞ (see Appendix A).
How will the solution change if we impose a different outer
boundary condition? In Fig. B1, we repeat the integration process
shown in Fig. A1, but applying the shooting method until some
specific temperature at 200 kpc is reached. The marginally bound
solution is marked by a thick black line. For the alternative boundary
conditions, we choose only temperatures which yield a bound
(B < 0) outer boundary condition, since gas withB > 0 will likely
escape from the halo rather than form an accretion flow. As can be

Figure B1. Transonic solutions with the same Ṁ and different choices of the boundary temperature at 200 kpc. All assumed outer boundary conditions are
subsonic and bound. The temperature of static gas with B = 0 is marked in the middle panel. A marginally bound solution as used in this work is plotted as a
thick black line. This figure demonstrates that the choice of the outer boundary condition significantly affects the solution only near the outer boundary.

Figure B2. Comparison of a marginally bound solution with a solution which satisfies shock jump conditions at Rshock = 100 kpc. The solutions have the
same Ṁ . The solutions differ mainly at � 100 kpc.
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seen in the plot, the solutions deviate from the marginally bound
solution only near the outer boundary, with a maximum deviation
in temperature at 100 kpc of ±0.15 dex. A similar conclusion is
reached if we impose some gas density at the outer boundary. The
exact choice of the outer boundary condition thus does not affect
our conclusions.

How would the solution change if the outer boundary is an
accretion shock? In Fig. B2, we compare a marginally bound
solution with the solution discussed in Section 5.2, which satisfies
shock jump conditions at Rshock = 100 kpc. Both solutions have the
same Ṁ . The solutions differ mainly at � 100 kpc, consistent with
the conclusion from Fig. B1.

APPENDIX C: THE TIMESCALE FOR
ESTABLISHING THE tCOOL ≈ tFLOW RELATION

Figs 6–9 show that in the hydrodynamic simulations tcool ≈ tflow

out to radii r � Rcool, indicating that this relation is established
on a timescale �tcool. In this section, we explain the origin of this
behaviour.

At times t � tcool, the radial momentum equation of an initially
hydrostatic halo is

dv

dt
= − 1

ρ

∂P

∂r
− v2

c

r
≈ − 1

ρ

∂(P0(1 − t/tcool))

∂r
− v2

c

r
, (C1)

where P0 is the gas pressure at t = 0 which satisfies ρ−1∂P0/∂r =
v2

c /r . The flow acceleration hence equals

dv

dt
= P0t

ρ

∂(t−1
cool)

∂r
≈ − r2

r2

c2
s

γ

t

t2
cool

∂tcool

∂r
∼ − r/tcool

tff

t

tff

∂ ln tcool

∂ ln r
,

(C2)

where in the last ‘∼’ we used r/cs ∼ tff and disregarded order-
unity factors. At t ≈ tff, the term on the right is of order r/(tcooltff),
indicating that a velocity of order r/tcool can be reached within a
free-fall timescale. The tcool ≈ tflow relation is thus established on a
sound-crossing timescale rather than on a cooling timescale.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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