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A B S T R A C T

We investigate the group velocity distribution of waveguide modes in the presence of disorder. The results are
based on extensive numerical simulations of disordered optical waveguides using statistical methods. We ob-
serve that the narrowest distribution of group velocities is obtained in the presence of a small amount of dis-
order; therefore, the modal dispersion of an optical pulse is minimized when there is only a slight disorder in the
waveguide. The absence of disorder or the presence of a large amount of disorder can result in a large modal
dispersion due to the broadening of the distribution of the group velocities. We devise a metric that can be
applied to the mode group index probability-density-function and predict the optimal level of disorder that
results in the lowest amount of modal dispersion for short pulse propagation. Our results are important for
studying the propagation of optical pulses in the linear regime, e.g., for optical communications; and the non-
linear regime for high-power short-pulse propagation.

1. Introduction

Transverse Anderson localization (TAL) of light was first proposed
by Abdullaev, et al. [1] and De Raedt, et al. [2] in a dielectric medium
with a transversely random and longitudinally uniform refractive index
profile. They showed that an optical beam can propagate freely in the
longitudinal direction while being trapped (Anderson-localized [3–9])
in the disordered transverse direction(s). TAL of light has since been
observed in various optical systems with one or two transversely dis-
ordered dimensions [10–21]. In particular, Karbasi, et al. reported the
first observation of TAL in disordered optical fibers [13–15]. The dis-
ordered optical fibers have since been used for high-quality image
transport [22–26], beam multiplexing [27], wave-front shaping and
sharp focusing [28–30], nonlocal nonlinearity [31,32], single-photon
data packing [33], optical diagnostics [34], and random lasers [35,36].

TAL optical fiber (TALOF) is essentially a highly multimode optical
fiber (MMF) with a transversely random refractive index profile. What
sets a TALOF apart from a conventional MMF is that its guided modes
are spatially localized due to the transverse disorder, while the guided
modes in a conventional MMF typically cover all or a large portion of
the guiding region [37–39]. The modal characteristics of MMFs are
generally responsible for their performance for the desired functionality
[40–44]; e.g., the mean localization radius of the modes in an imaging
TALOF determines the average point spread function (PSF) across the
tip of the fiber, where a stronger localization leads to a narrower PSF

and a higher resolution image transport [22]. Similarly, the standard
deviation in the localization radius of the modes determines the uni-
formity of the image transport across the fiber. Because the refractive
index profile of a TALOF is random and the guided modes are nu-
merous, the modal characteristics of a TALOF must be studied statis-
tically [17,45]. This stochastic nature of TALOFs and the diversity of
the physical attributes of the localized modes is the key differentiating
factor between the linear/nonlinear dynamics observed in TALOFs
versus conventional MMFs.

The modal area statistics of disordered quasi-one-dimensional
(quasi-1D) and quasi-two-dimensional optical waveguides were studied
recently by Abaie, et al. [46,47] using the mode-area probability-den-
sity-function (PDF). The mode-area PDF characterizes the relative dis-
tribution of the mode-areas of the guided modes in a disordered wa-
veguide. In particular, Abaie, et al. showed that the mode-area PDF
converges to a terminal configuration as the transverse dimensions of
the waveguide are increased. Therefore, it may not be necessary to
study a real-sized disordered structure to obtain its full statistical lo-
calization properties and the PDF can be obtained for a considerably
smaller structure. This observation is not only important from a fun-
damental standpoint, it has practical implications because it can reduce
the often demanding computational cost that is required to study the
statistical properties of Anderson localization in disordered wave-
guides. We emphasize that the mode-area PDF encompasses all the
relevant statistical information on spatial localization of the guided
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modes and is a powerful tool for studying the TAL. In this paper, we
employ a similar statistical analysis based on the probability-density-
function to study the dispersive properties of TAL in disordered wave-
guides.

In the modal language, the dispersive properties of a waveguide are
determined by the frequency (ω) dependence of the propagation con-
stant, β ω( ), of the guided modes [48,49]. Determining the optical dis-
persive properties of TALOFs is critical to the understanding of their
linear and nonlinear characteristics, or in the continuous wave (CW) or
pulsed laser operation, a few examples of which are as follows. For each
mode labeled with an index i, the full form of β ω( )i over a broad fre-
quency range is needed to determine the phase-matching wavelengths
for the intermodal (nonlinear) four-wave mixing (FWM) process
[50–54]. In some cases, the Taylor expansion of β ω( ) around a central
frequency of ω0 and the corresponding local frequency derivatives,

= ∂β β |i
n

ω
n

i ω
( )

0, are sufficient to characterize the dispersive properties of
an optical fiber [48,49]. For example, consider β ω( )i

(1) , which de-
termines the group velocity associated with the mode labeled with the
index i: in the linear regime, the difference between group velocities of
different modes in a multimode fiber is responsible for the intermodal
dispersion, which is generally the main limiting factor for the achiev-
able transmission bandwidth (data-rate) in a multimode optical fiber
communications system [49,55,56]. When an optical pulse is sent
through a MMF, the intermodal dispersion (different values of βi

(1) for
different modes) causes the pulse to break into multiple sub-pulses,
each propagating with a different group velocity. Therefore, the dis-
tribution of group velocities determines the achievable data-rate. For
example, a nanosecond-long optical pulse is hardly affected by the
propagation through a 1 km-long high-quality graded index fiber
[57,58]; however, the same pulse is highly distorted by the modal
dispersion in a comparable step-index optical fiber. β ω( )i

(1) also de-
termines the pulsed nonlinear dynamics, including that of soliton pro-
pagation in MMF [59–61]. For CW laser applications, the cavity re-
sponse, including the free spectral range (FSR), is determined by the
values of β ω( )i for the relevant modes, which are excited in the lasing
process; their distribution can dictate the spectrum of the laser via the
optical Vernier effect [62,63]. The pulsed dynamics of such lasers, in-
cluding the Q-switching and mode-locking, are similarly controlled by
the values of β ω( )i

(1) for the relevant modes [35].

1.1. Studying a quasi-1D disordered slab waveguide

In this manuscript, we focus on the statistics of the groups velocity
(GV) of the guided modes and determine the GV-PDF of disordered
waveguides. Understanding the GV distribution underlies a large
number of dispersive phenomena in guided wave systems [64]. Solving
for all the guided modes for a given TALOF and obtaining proper sta-
tistical averages over many fiber samples is a formidable task even for
large computer clusters. For example, the V-number of the disordered
polymer TALOF in Ref. [13] with an air cladding is approximately
2,200 at 405 nm wavelength resulting in more than 2.3 million guided
modes. Recall that the V-number is given by

= −V πt
λ

n n ,co
2

cl
2

(1)

where λ is the optical wavelength, t is the core diameter of the fiber (or
the core width for the case of a quasi-1D slab waveguide), and nco (ncl)
is the effective refractive index of the core (cladding). The total number
of the bound guided modes in a step-index optical fiber is ≈ V /22 . As
such, in order to lay the groundwork for understanding the statistical
behavior of GV distribution in TALOFs, we have decided to present a
comprehensive characterization of a quasi-1D Anderson localized op-
tical waveguide in this manuscript. This exercise is quite illuminating as
it sheds light on the general statistical behavior of GV distribution and
shows the extent of information that can be extracted from such dis-
tributions. The detailed analysis of the TALOF structure will be pre-
sented in a future publication.

1.2. Wave equation for the guided modes

Here, we have chosen to calculate the transverse electric (TE) modes
of the disordered waveguide using the finite element method (FEM)
presented in Refs. [65–68]. Similar observations can be drawn for
transverse magnetic (TM) guided modes, but we limit our analysis to TE
in this paper for simplicity. The appropriate partial differential equation
that will be solved in this manuscript is the Helmholtz equation for
electromagnetic wave propagation in a z-invariant dielectric waveguide

∇ + =A n k A β Ax x x x( ) ( ) ( ) ( ),T
2

T
2

T 0
2

T
2

T (2)

where A x( )T is the transverse profile of the (TE) electric field
= −E z t A iβz iωtx x( , , ) ( )exp( )T T , which is assumed to propagate freely

in the z direction, β is the propagation constant, n x( )T is the (random)
refractive index of the waveguide, xT is generally the one (two) trans-
verse dimension(s) in 1D (2D), =ω ck, and =k π λ2 / where c is the
speed of light in vacuum. Eq. (2) is an eigenvalue problem in β2 and
guided modes are those solutions (eigenfunctions) with >β n k2

cl
2

0
2.

Here, because we consider only quasi-1D waveguides, we only have one
transverse dimension, so = xxT . We use Dirichlet boundary condition,
while noting that the choice of the boundary condition is largely in-
consequential because most guided modes strongly decay before
reaching the boundary.

In this manuscript, we do not consider the chromatic dispersion of
the constituent optical materials; therefore, all refractive indexes are
assumed to be independent of the optical frequency. The reason is
twofold: first, we would like to isolate primarily the waveguiding
contribution to the dispersion, which is driven by the TAL; and second,
the size of the chromatic dispersion depends on the choice of the con-
stituent materials and only makes sense in the context of a specific
design, rather than the broad observations and arguments presented
here.

2. Quasi-1D disordered lattice waveguide index profile

A quasi-1D ordered optical lattice waveguide can be realized by
periodically stacking dielectric layers with different refractive indexes
on top of each other. Fig. 1(a) shows the refractive index profile of a

Fig. 1. Sample refractive index profiles of (a) ordered and (b) disordered slab waveguides are shown.
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periodic quasi-1D optical waveguide where n n,0 1, and nc correspond to
the lower index layers, higher index layers, and cladding, respectively.
We also define the refractive index contrast as = −n n nΔ 1 0. In order to
make a disordered waveguide, the thickness of the layers is randomized
around an average value. We always assume that =n 1.501 and =n nc 0,
while our simulations are carried out for either high contrast
( = =n nΔ 0.1, 1.40 ), or low contrast ( = =n nΔ 0.05, 1.450 ). The total
number of layers alternating in n0 and n1 in each sample waveguide is
always 100, and the average thickness of each waveguide is λ2 , where λ
is the optical wavelength at which the simulations are performed. The
average thickness is chosen for maximum localization according to Ref.
[45]. The actual thickness of each layer is a random number +λ d2 Δ ,
where dΔ represents the variation in the thickness. dΔ is a random
number that is chosen from a uniform random distribution of

− rλ rλunif[ 2 , 2 ]. The amount of randomness is controlled by the r-
parameter, ⩽ ⩽r0 1; where =r 0 corresponds to the periodic lattice.
We refer to r as the disorder strength. The waveguide is padded from
each side with a layer of λ5 in thickness and refractive index of nc.
Fig. 1(b) shows a sketch of the refractive index profile of a quasi-1D
disordered optical waveguide, where the number of layers are reduced
for an easier visualization.

Note that because the total number of alternating layers is fixed at
100 but the thickness of each layer is random, the total width of the
waveguide varies in each element of the random ensemble (each wa-
veguide). The width variation ranges from zero to 5.6% for ⩽ ⩽r0 1,
respectively. Although a larger value of r is associated with a larger
variation in the width of the waveguide, it also results in a stronger
confinement, hence making the calculations less dependent on the
width of the waveguide [46]. Therefore, the very same disorder that
induces the waveguide width variation is responsible for Anderson lo-
calization, which makes the results of this paper independent of the
width variation.

In Fig. 2(a), we plot two guided modes of a quasi-1D periodic wa-
veguide with the highest propagation constant. These two modes be-
long to a large group of standard extended Bloch periodic guided modes
supported by the ordered optical waveguide, which are modulated by
the overall mode profile of the quasi-1D waveguide [45]. The total
number of guided modes depends on the total thickness and the re-
fractive index values of the slabs and cladding. The key point is that
each mode of the periodic structure extends over the entire width of the
waveguide structure. A similar exercise can be done with a quasi-1D
disordered waveguide, where two arbitrarily selected modes are plotted
in Fig. 2(b) using the same refractive index parameters as that of the
periodic waveguide. It is clear that the modes become localized in the
quasi-1D disordered waveguide. While there are variations in the shape
and width of the modes, the mode profiles shown in Fig. 2(b) are ty-
pical.

3. Mode group index PDF

The group index of mode i is defined as the =n cβg
i

i
(1), where c is the

speed of light in vacuum. In Fig. 3, we plot the group index PDF for the

periodic waveguide ( =r 0.0), and disordered waveguides with
= =r r0.25, 0.50, and =r 1.0; with =nΔ 0.1. The area under each PDF

curve integrates to unity, and each curve is generated using the sta-
tistical information from stimulating 6,000 waveguides, amounting to
nearly 770,000 guided modes. The PDF of the periodic waveguide is
highly peaked around ≈n 1.5065g ; however, there are also broad sec-
ondary peaks near ≈n 1.520g and ≈n 1.485g . The modal patterns do not
give any obvious clues on which category of mode shapes belong to
which group-index bins. When a moderate amount of disorder with

=r 0.25 is introduced, the broad peak near ≈n 1.485g disappears, the
main peak near ≈n 1.520g is lowered and broadened, while the peak
around ≈n 1.5065g is raised. As the amount of disorder is further in-
creased to =r 0.5 and =r 1.0, third and fourth peaks appear at larger
values of group index, respectively.

By looking at the general shapes of PDF curves in Fig. 3, one can
claim that a higher level of disorder amounts to a broader PDF curve,
i.e., the diversity in groups index values is increased. In other words, on
average, a broader range of group velocities becomes accessible in the
presence of increasing disorder. In order to further verify this claim, in
Fig. 4, we repeat the simulations of Fig. 3, except for the lower re-
fractive index contrast of =nΔ 0.05. In Fig. 4, the mode group index
PDF related to =r 0.25 appears to have the narrowest and highest form.
Looking at Fig. 4, one can claim that there appears to be an optimal
amount of disorder strength that narrows the range of group velocities
and possibly reduces the pulse broadening. We will come back to these
two seemingly contradictory conclusions in Section 4, but for now we
continue to look for other clues on the impact of disorder on the sta-
tistical behavior of group index in these waveguides.

In Fig. 5 we present a scatter plot of the group index, ng , versus the
effective mode refractive index, =n cβ ω/p , for each guided mode. The
plots are presented again for = = =r r r0.0, 0.25, 0.50, and =r 1.0, and
each scatter plot is generated from stimulating 100 waveguides with the
refractive index contrast of =nΔ 0.1. Note that for the periodic case of

=r 0.0, the result is always the same, because the waveguide refractive
index profile is fully deterministic. For =r 0.0, bandgaps in np are ob-
served and the range of ng is limited. As the disorder is introduced and
gradually increased, the available range of both np and ng are expanded
and the gaps in ng eventually close. Again, the disorder increases the
diversity in the values of both np and ng. We recall that the accessible
values of np in a waveguide are responsible for the shape of the spatial
patterns, in addition to the modal intensity profiles. For example, if the
values of ng are regularly spaced, the beam pattern in the waveguide
repeats its shape periodically; e.g., in a graded-index optical fiber, this
repetition happens with a sub-millimeter period as the beam propagates
along the fiber [69–71]. For disordered waveguides where such an
order is broken, pattern repetition is eliminated because of the large
number of modes and random values of np. This behavior combined
with the localized modal intensity profiles is responsible for the high
quality of image transport through TALOFs. Similar comments can be
made about the diversity in values of ng and its impact of the temporal
shape of an optical pulse, which will be discussed in detail in Section 4.

In order to further elaborate on the diversity of the ng values of the

Fig. 2. Typical mode profiles for (a) an ordered slab waveguide where each mode extends over the entire waveguide, and (b) a disordered slab waveguide, where the
modes are spatially localized.
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guided modes, in Fig. 6 we plot the values of ng for both the periodic
waveguide with =r 0.0 and the maximally disordered waveguide

=r 1.0. The refractive index contrast is assumed to be =nΔ 0.1 in this
figure. In the left panel corresponding to =r 0.0, we plot the values of
ng versus the mode number (138 guided modes), where we have or-
dered the modes based on their ng values. In the right panel corre-
sponding to =r 1.0, we simulate 100 waveguides and show the ng va-
lues in an ascending order. The result shows that in a highly disordered
waveguide, the group index values for the majority of the modes are
still similar to those of a periodic waveguide with =r 0.0; however,
nearly 10%–20% of the modes exhibit strong deviations in group index
and assume considerably smaller or larger values.

4. Pulse propagation and broadening

The results presented in Figs. 3 and 4 show the impact of the dis-
order strength and refractive index contrast on the group index

distribution in these disordered waveguides. However, it may be hard
to make a concrete conclusion about pulse broadening from such fig-
ures, especially because the results appear to be somewhat contra-
dictory as explained in Section 3. The reason is that the pulse broad-
ening is affected by the GV distribution of only those guided modes
which are excited by the input pulse. For example, a typical input beam
with a Gaussian spatial profile is likely to excite those modes which
have less phase variations. As we explained in Section 3, we tried to
look at the modal profiles to build a correlation between the profiles
and GV values; however, it was inconclusive. As such, in this section,
we resort to direct computation to evaluate the impact of the GV dis-
tribution of Figs. 3 and 4 on pulse width. The pulse width is important
in setting the accessible communication bandwidth and is also essential
for nonlinear properties of these waveguides.

In order to evaluate the pulse broadening, we assume that the in-
coupling electric field is Gaussian in spatial profile, but is extremely
narrow (Dirac delta function) in its temporal profile. The Gaussian

Fig. 3. Mode group index PDF for the periodic waveguide ( =r 0.0), and disordered waveguides with = =r r0.25, 0.50, and =r 1.0. Simulations are for the refractive
index contrast of =nΔ 0.1 and the area under each PDF curve integrates to unity.

Fig. 4. Similar to Fig. 3, except for the refractive index contrast of =nΔ 0.05.
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spatial profile has a radius of =w 5 μm, is centrally aligned with the
waveguide, and is expressed as

⎜ ⎟〉 = ⎛
⎝

⎞
⎠

⎛
⎝

− ⎞
⎠

W
πw

x
w

| 2 exp ,2

1/4 2

2 (3)

where 〈 〉 =W W| 1. The bra-ket notation indicates integration in the
transverse x-coordinate. The guided modes in each waveguide are
identified with 〉i| (〈 〉 =i i| 1), where = ⋯i M1, , is the mode index. For
example, for =nΔ 0.1, there are approximately =M 140 guided modes
supported by the waveguide. For each waveguide, the modal excitation
amplitudes are calculated as = 〈 〉c i W|i and the fractional power in each
mode is given by =p c| |i i

2. The fractional power is nonzero mainly for
those modes which are positioned near the center of the waveguide and
have an overlap with 〉W| . We define the coupling efficiency as

= ∑ =η pi
M

i1 , where ⩽ ⩽η0 1. When <η 1, which is almost always the
case, some of the power does not couple to the guided modes and is
radiated out. In order to calculate the pulse broadening due to the
modal dispersion, we follow the procedure outlined in Ref. [72,73]. The
temporal profile of the input excitation is δ t( ); however, as it couples
into different modes that propagate with different GVs, the pulse breaks
into multiple subpulses:

∑→ −
=

δ t p δ t τ( ) ( ),
i

M

i i
1 (4)

where =τ n L c/i g
i is the modal delay for mode 〉i n| , g

i is the group index
of mode 〉i L| , is the propagation length, and c is the speed of light in

vacuum. The pulse broadening, δτ , is calculated using

∑= −−

=

δτ η p τ τ( ) 2 ( ¯) ,
i

M

i i
2 1

1

2

(5)

where τ̄ is the temporal center of the broken (broadened) pulse given by

∑= −

=

τ η p τ¯ .
i

M

i i
1

1 (6)

In Fig. 7, we plot the coupling efficiency, η, as a function of the disorder
strength for the two cases of =nΔ 0.1 and =nΔ 0.05. For each data
point, we have simulated 1,000 waveguides and calculated the value of
η for each waveguide; the dark circle shows the mean value of η
averaged over the 1,000 waveguides and the error-bar indicates one
standard deviation around the mean value. Of course, η is generally
higher for =nΔ 0.1 than =nΔ 0.05, because a larger number of guided
modes are supported in the former case. This result is important be-
cause it shows that in coupling to a typical disordered waveguide, on
average, only 70%–80% of the power can be coupled in and the rest is
radiated out. In Fig. 8, we show the pulse broadening per unit length,
δτ L/ , as a function of the disorder strength for two cases of =nΔ 0.1 and

=nΔ 0.05. Again, the results are averaged over the 1,000 waveguides
for each data point. These figures indicate that a small amount of dis-
order, typically around ≈ −r 0.1 0.15, achieves minimal pulse broad-
ening compared to the case of no-disorder or highly disordered wave-
guides.

Fig. 5. Scatter plot of the group index, ng, versus the effective mode refractive index, =n β ω/p , for each guided mode. The plots are presented for
= = =r r r0.0, 0.25, 0.50, and =r 1.0. The refractive index contrast is =nΔ 0.1.

Fig. 6. Values of the group index, ng, versus the mode number for the periodic waveguide with =r 0.0 and the maximally disordered waveguide =r 1.0. For =r 1.0,
we simulate 100 waveguides and show the ng values in a ascending order. The refractive index contrast is =nΔ 0.1.
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The data from Fig. 8 indicates an optimal disorder value to achieve a
minimal amount of pulse broadening. Equipped with this information,
we can now go back to the discussion surrounding Figs. 3 and 4 in
Section 3. We recall that Fig. 3 indicated that a higher level of disorder
amounts to a broader range of group velocities, while Fig. 4 indicated
an optimal value for the disorder strength. In order to address this issue,
in Fig. 9, we plot the mode group index PDFs at =r 0.1 for =nΔ 0.1 and

=r 0.15 for =nΔ 0.05, respectively. These values correspond to the
minima of the pulse broadening curves in Fig. 8. By comparing Fig. 9
and Fig. 4, it can be clearly seen that for = =n rΔ 0.05, 0.15 provides
the narrowest and tallest PDF curve, which is clearly consistent with the
results reported in Fig. 8. For =nΔ 0.1, by comparing Fig. 9 and Fig. 3,
in particular comparing =r 0.1 and =r 0.0, it can be observed that both
the primary peak at ≈n 1.5065g and the secondary peak at ≈n 1.520g
narrow down considerably for =r 0.1 and the mode group index values
below the primary peak disappear for =r 0.1. As such, both results
confirm the presence of an optimal value in the disorder strength to
achieve the minimum pulse broadening.

It must be noted that although the input pulse is assumed to be
extremely narrow, i.e., a Dirac delta function, the same results would be
readily obtained with a longer input pulse. The choice of a Dirac delta
function is merely a matter of convenience. In other words, for a
Gaussian input pulse of temporal width τin, which broadens to τout upon
propagation through the waveguide, it can be shown that

= −δτ τ τ( )out
2

in
2 1/2, where δτ is independent of τin. Therefore, the same

value of pulse broadening is obtained from a broader Gaussian pulse as
from a Dirac delta function. Note that this statement does not strictly
hold if the second or higher order dispersive effects are taken into ac-
count, all of which are of higher-order-contribution and play a less
important role in the pulse broadening in normal circumstances.

4.1. Metric for pulse broadening using the PDF curves

In light of the observations in Fig. 8 and how they relate to
Figs. 3,4,9, we define a metric to assess the width of the PDF curves; the

goal is to establish a relationship between this metric and the pulse
broadening values in Fig. 8. A metric, at the minimum, should be able
to predict the optimal of the disorder strength for minimal pulse
broadening. We use the square of the inverse population ratio (IPR) of the
PDF curves as the metric. The IPR is defined as:

∫=IPR [PDF(n )] dn ,g
2

g (7)

where nPDF( )g represents any of the PDF curves in Figs. 3, 4, and 9.
Note that unlike the commonly used 4th power in the definition of IPR
(see, e.g., Ref. [74]), we only use the 2nd power of PDF in Eq. 7: the
reason is that the PDF is a non-negative probability density function
and is similar to ψ| |2, if ψ is regarded as the (quantum–mechanical)
wave amplitude. We recall that the area under each PDF curve in-
tegrates to unity: ∫ =n dnPDF( ) 1g g . In Fig. 10, we plot the metric, i.e.
IPR2 as a function of the disorder strength, both for =nΔ 0.1 and

=nΔ 0.05. Fig. 10 should be compared with Fig. 8; the disorder contrast
corresponding to the minimum pulse broadening is almost exactly
predicted by the metric. Moreover, the correlation factor between the
metric and the mean values presented in Fig. 10 is 89% for =nΔ 0.1 and
99% for =nΔ 0.05. Therefore, the IPR2 metric appears to be a powerful
tool that can predict the pulse broadening performance of such dis-
ordered waveguides directly using the PDF curves and without re-
sorting to specific pulse propagation simulations.

5. Mode group index PDF versus localization length

We discussed earlier that the presence of disorder results in the TAL
of the guided modes. Therefore, as the disorder strength is increased, on
average, the modes should become smaller in width. In this section, we
explore the correlation between the localization width of the guided
modes and their group index. For each guided mode, the mode width
W is defined based on the standard deviation σ of the (1D) normalized
intensity distribution ∝I x A x( ) | ( )|2 of the mode according to

Fig. 7. The coupling efficiency is plotted as a function of the disorder strength for two cases of =nΔ 0.1 and =nΔ 0.05. Each data point is averaged over 1000
waveguides and the error-bar indicates one standard deviation around the mean value.

Fig. 8. Pulse broadening per unit length is plotted as a function of the disorder strength for two cases of =nΔ 0.1 and =nΔ 0.05. Each data point is averaged over
1000 waveguides and the error-bar indicates one standard deviation around the mean value.
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∫= −
−∞

+∞
σ x x I x dx( ¯) ( ) ,2 2

(8)

where we define the mode center as

∫=
−∞

+∞
x xI x dx¯ ( ) . (9)

x is the spatial coordinate across the width of the waveguide and the
mode intensity profile is normalized such that ∫ =−∞

+∞ I x dx( ) 1. We
defineW = σ2 as a measure of the width of the modes, i.e. a largerW
signifies a wider mode intensity profile distribution.

In Fig. 11, we present a scatter plot of the group index, ng, versus the

mode width, W , for each guided mode. The plots are presented for
= = =r r r0.1, 0.25, 0.50, and =r 1.0, while the refractive index con-

trast is assumed to be =nΔ 0.1. We note that =r 0.1 corresponds to the
minimum pulse spreading for =nΔ 0.1 according to the left panel in
Fig. 8. Similarly, in Fig. 12, we present a scatter plot of the group index,
ng , versus the mode width, W , for each guided mode. The plots are
presented for = = =r r r0.15, 0.25, 0.50, and =r 1.0, while the re-
fractive index contrast is assumed to be =nΔ 0.05. We note that =r 0.15
corresponds to minimum pulse spreading for =nΔ 0.05 according to the
right panel in Fig. 8. The data in each subfigure is generated from the
simulation of 1,000 independent waveguides resulting in 138,000

Fig. 9. Similar to Fig. 3, except for =nΔ 0.1 and =r 0.1 in the left panel and =nΔ 0.05 and =r 0.15 in the right panel.

Fig. 10. The IPR2 metric is calculated from the PDF curves as a function of the disorder contrast (r) for both =nΔ 0.1 and =nΔ 0.05. Each PDF curve is obtained by
simulating 1000 waveguides.

Fig. 11. Scatter plot of the group index, ng, versus the mode width,W , for each guided mode. The plots are presented for = = =r r r0.1, 0.25, 0.50, and =r 1.0. The
refractive index contrast is =nΔ 0.1.

A. Mafi Optical Fiber Technology 53 (2019) 102061

7



modes. We note that the lowest value of r in each figure corresponds to
the narrowest group index distribution and the widest mode-width
distribution. As the disorder is increased, the group index distribution
increases, while the mode-width distribution decreases. This observa-
tion is consistent with the TAL behavior is disordered waveguides and
our discussions on group index distribution in previous sections.

6. Conclusion

In this manuscript, we have introduced the mode group index PDF
as a powerful tool to study the dispersion properties of guided modes in
a disordered quasi-1D slab optical waveguide. We observe that the
minimum amount of modal dispersion corresponds to a small amount of
disorder, i.e., no disorder or large disorder both result in a large modal
dispersion. We establish a metric that is applied to the mode group
index PDF and can reliably predict the optimal amount of disorder for a
minimal pulse dispersion. The metric is a measure of the width of the
PDF and its value is strongly correlated with the modal dispersion of a
pulse propagating in the disordered waveguide. While the simulations
are for a certain class of disordered quasi-1D waveguides, they appear
to conform well with the physical intuition and are likely to hold in
other designs. The results presented in the manuscript are intended to
establish the framework for a comprehensive analysis of the group
velocity statistics for quasi-2D transverse Anderson localization in dis-
ordered optical fibers in the future.

It is quite plausible to expect that in a transversely disordered op-
tical fiber, similar to the disordered quasi-1D slab optical waveguide,
the minimum amount of modal dispersion corresponds to an optimal
(and likely a small) amount of disorder. While a longitudinally in-
variant and transversely disordered optical fiber is not inherently more
lossy than a conventional core-cladding optical fiber, it is likely to be
fabricated by a method that is more prone to manufacturing un-
certainties, such as the stack-and-draw method [13]. Such manu-
facturing uncertainties can break the longitudinal invariance and result
in attenuation, as well as polarization coupling. The undesirable at-
tenuation must be addressed in a case-by-case basis by making better
fibers or amplifying the signal. Pulse broadening due to the random
polarization coupling is likely going to be negligible compared to the
modal dispersion, similar to a conventional optical fiber; however, this
issue warrants further research.
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