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THE HOMOTOPY GROUPS OF THE
η-PERIODIC MOTIVIC SPHERE SPECTRUM

KYLE ORMSBY AND OLIVER RÖNDIGS

We compute the homotopy groups of the η-periodic motivic sphere spectrum
over a field k of finite cohomological dimension with characteristic not 2 and
in which −1 is a sum of four squares. We also study the general character-
istic 0 case and show that the α1-periodic slice spectral sequence over Q de-
termines the α1-periodic slice spectral sequence over all extensions k/Q. This
leads to a speculation on the role of a “connective Witt-theoretic J-spectrum”
in η-periodic motivic homotopy theory.

1. Introduction

The motivic sphere spectrum S is the unit object in the tensor triangulated stable
homotopy category of motivic spectra (SHA1

(k),∧) over a field k. In this category,
both the simplicial circle S1 and the punctured affine line A1r0 are∧-invertible, so it
is crucial that we understand the bigraded homotopy groups π?S :=

⊕
m,n∈Z πm+nαS

where πm+nαS := [(S1)∧m
∧ (A1 r 0)∧n,S]

SHA1
(k)

. See the introduction to [Ormsby
et al. 2018] for a more complete discussion of the importance of this ring.

The motivic Hopf map η ∈ παS which is represented by the canonical Gm-torsor
A2 r 0→ P1 plays an especially important role in π?S. This class is nonnilpotent
over all fields [Morel 2004] and thus represents a first example of exotic behavior
in π?S, differentiating it from the classical stable stems. (Recall that η4

= 0
classically, and that the Nishida nilpotence theorem [1973] tells us that all classes
of nonzero degree in the classical stable stems are nilpotent.) Let

η−1S := hocolim(S η
−→6−αS η

−→6−2αS η
−→6−3αS η

−→ · · · )

denote the η-periodic sphere spectrum.1 We have π?η−1S∼=η−1π?S (where the latter
term represents the localization of the ring π?S at the multiplicative set {η, η2, . . .}),
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1Other authors have referred to this object as the η-local or η-inverted sphere. We have chosen our
terminology to match the language of classical vn-periodic homotopy theory, which seems appropriate
given the emerging role of η in motivic nilpotence and periodicity [Andrews 2018; Gheorghe 2017].
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so inverting η annihilates 0η := {x ∈ π?S | xηN
= 0 for some N } and induces an

injection π?S/0η→ π?η
−1S.

A number of authors have studied π?η−1S over particular fields, including
M. Andrews and H. Miller [2017] over C, B. Guillou and D. Isaksen [2015; 2016]
over C and R, and G. Wilson [2018] over finite fields, local fields, and Q. Over C,
πm+nαS∼=W (C)∼=Z/2 for nonnegative m congruent to 0 or 3 mod 4, whereas more
complicated “image of J”-style patterns occur in π?η−1S∧2 (the bigraded homotopy
groups of the η-periodic 2-complete sphere) over R and Q. These authors work
with either the motivic Adams–Novikov or motivic Adams spectral sequence in
order to produce their results. In addition to these results, Röndigs [2018] has
shown that π1η

−1S= π2η
−1S= 0 over all fields of characteristic different from 2.

In this note, we use the α1-periodic slice spectral sequence to completely de-
termine π?η−1S over finite-cohomological dimension fields with characteristic
different from 2 in which −1 is a sum of four squares.2 Let W (k) denote the Witt
ring of quadratic forms over k modulo the hyperbolic plane.

Main Theorem (see Theorem 4.8). Let k be a field of finite cohomological dimen-
sion with characteristic not 2. If −1 is a sum of four squares in k, then

π?η
−1S∼=W (k)[η±1, σ, µ]/(σ 2),

where |σ | = 3+ 4α and |µ| = 4+ 5α. In particular, the bigraded homotopy groups
of η−1S are

πm+nαη
−1S∼=

{
W (k) if m ≥ 0 and m ≡ 0 or 3 (mod 4),
0 otherwise.

In Corollary 4.9 (see also [Ormsby et al. 2018, Theorem 5.5]), we see that for
fields satisfying the same hypotheses,

πm+nαS∼= πm+nαη
−1S

for 2n≥max{3m+5, 4m}, so we have also computed a bi-infinite range of homotopy
groups of the motivic sphere spectrum.

The picture is less clear for fields in which −1 is not a sum of four squares, but
we are able to produce some partial results in Section 4. Let α−1

1 S (k) denote the
α1-periodic slice spectral sequence over k. In Theorem 4.5, we show that α−1

1 S (Q)

determines α−1
1 S (k) for any field extension k/Q. This leads to a conjecture on the

differentials in α−1
1 S (k) and some speculations regarding the structure of π?η−1S

in general.

2The smallest r such that −1 is a sum of r squares in k is called the level of k and is often
denoted s(k). (The s is for Stufe). By a theorem of Pfister [1965], s(k) is always a power of 2. See
[Lam 2005, Examples XI.2.4] for examples of fields of various levels.
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2. The α1-periodic slice spectral sequence

In this section, we set up the α1-periodic slice spectral sequence and discuss its
convergence properties and first two pages over a general field of characteristic
different from 2.

We refer to [Röndigs et al. 2019] for the setup of the slice spectral sequence, and
only briefly recall some pertinent facts here. The sphere spectrum S is effective and
thus has a slice tower of the form

· · · f3S f2S f1S f0S= S

s3S s2S s1S s0S

where fqS is the q-th effective cover of S and sqS is the q-th slice of S. Associated
with this tower is the slice spectral sequence S with E1-page S

q,m+nα
1 = πm+nαsqS.

(If we need to refer to the base field, then we will denote this spectral sequence
by S (k).) The differentials take the form dr :S

q,m+nα
r →S

q+r,m−1+nα
r .

The following theorem states the basic convergence properties of S ; it is a
concatenation of [Röndigs et al. 2019, Theorem 3.50] and [Ormsby et al. 2018,
Theorem 1.3]. Recall that the η-complete sphere spectrum is S∧η := holim S/ηn

where S/ηn is the cofiber of ηn
:6nαS→ S.

Theorem 2.1. The slice spectral sequence for S conditionally converges to π?S∧η .
Moreover, if cd k <∞, then S∧η ' S and the slice spectral sequence for S converges
conditionally to π?S.

We also have control over S1 via the following slice computation. We let
Exts,tMU∗MU denote the cohomology of the MU-Hopf algebroid in cohomological
degree s and internal degree t . (Recall that this is the E2-page of the Novikov, i.e.,
MU-Adams, spectral sequence from topology.)

Theorem 2.2 [Röndigs et al. 2019, Theorem 2.2]. The q-th slice of the motivic
sphere spectrum is

sqS'
∨
s≥0

6q−s+qαH Exts,2q
MU∗MU

at least after inverting the exponential characteristic of the base field.

We refer to [Ravenel 1986] for basic facts about ExtMU∗MU, and we use its
naming conventions for elements. Importantly, there is a single nonzero class
α1 ∈ Ext1,2MU∗MU that represents η. Multiplication by α1 induces a map of spectral
sequences α1 :S

q,m+nα
→S q+1,m+(n+1)α. Taking the colimit of the tower given

by iterating this map produces the α1-periodic slice spectral sequence, α−1
1 S . We

will analyze the target and convergence properties of α−1
1 S momentarily, but it
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certainly appears that this construction ought to say something about η−1S or a
related object.

There is another obvious spectral sequence we could consider, namely the slice
spectral sequence for η−1S, but it turns out that the two spectral sequences are the
same. For a motivic spectrum X, recall from [Röndigs et al. 2019, Definition 3.1]
that sc(X) is the slice completion of X.

Theorem 2.3. The slice spectral sequence for η−1S and α−1
1 S are isomorphic as

spectral sequences. They both have first page additively isomorphic to

π?HF2[α
±1
1 , α3, α4]/(α

2
4)

and conditionally converge to π? sc(η−1S) in the sense of [Boardman 1999]. If
cd k<∞, then sc(η−1S)' η−1S and the isomorphic spectral sequences condition-
ally converge to π?η−1S.

Remark 2.4. In Corollary 2.9 and Section 3, we will see that convergence is in
fact strong if k has odd characteristic or cd2 k<∞. In Section 4, we will see that
convergence over characteristic 0 fields to π? sc(η−1S) is strong.

Remark 2.5. As a ring object, s∗η−1S is not an HF2-algebra [Röndigs et al. 2019,
Remark 2.33], and our identification of α−1

1 S1 in Theorem 2.3 is not multiplicative.
By a bidegree argument and the general properties of slice multiplicativity given
in [Röndigs et al. 2019, Section 2.4], the multiplication on α−1

1 S1 agrees with the
“naive” multiplication up to addition of some terms involving Sq1. Our determination
of α−1

1 S2 does not depend on the precise multiplicative structure, and we will see
in Theorem 2.6 that the multiplication on α−1

1 S2 is fairly simple.

Proof of Theorem 2.3. Let E denote the slice spectral sequence for η−1S. Then

E1 ∼= π?HF2[α
±1
1 , α3, α4]/(α

2
4)

by [Röndigs et al. 2019, Theorem 2.35].3 In particular, the canonical map S →

E takes α1 to a unit and hence induces a map α−1
1 S → E . By [Andrews and

Miller 2017, Corollary 6.2.3], α−1
1 ExtMU∗MU ∼= F2[α

±1
1 , α3, α4]/(α

2
4). Given this

result and the form of S1 in Theorem 2.2, we conclude that α−1
1 S1→ E1 is an

isomorphism, and it follows that α−1
1 S ∼= E .

The first convergence statement in Theorem 2.1 is formal given the construction
of the slice spectral sequence (see [Röndigs et al. 2019, §3.1]). For the second
convergence statement, Theorem 2.2 tells us that sc(S)' S when cd k<∞. Given
the conditional convergence conditions of [Boardman 1999, Definition 5.10], our
result follows as long as the sequential colimit that inverts α1 commutes with

3Although Theorem 2.2 holds after inverting the exponential characteristic, the slices s∗η−1S
are known without inverting the exponential characteristic. The reason is that if k is a field of odd
characteristic p, multiplication with p is an isomorphism on the Witt ring of k, and hence on η−1S.
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the limit defining slice completion. Our assumption on cohomological dimension
implies a vanishing line parallel to α1-multiplication, and hence the limit in question
is finite and commutes with sequential colimits. �

This leads us to the main theorem of this section, a determination of the first
slice differentials and α−1

1 S2:

Theorem 2.6. Over any field k of characteristic different from 2, the first slice
differential for η−1S is represented by the (4, 4)-periodic matrix

Sq2 0 τ 0 0 0 0 · · ·

0 0 0 0 0 0 0 · · ·

Sq3Sq1 0 Sq2
+ ρSq1 0 0 0 0 · · ·

0 0 0 Sq2 0 τ 0 · · ·

0 0 Sq3Sq1 Sq2Sq1
+ Sq3 Sq2 ρ τ · · ·

0 0 0 Sq3Sq1 0 Sq2
+ ρSq1 0 · · ·

0 0 0 0 Sq3Sq1 Sq2Sq1
+ Sq3 Sq2

+ ρSq1
· · ·

0 0 0 0 0 Sq3Sq1 0 · · ·

0 0 0 0 0 0 Sq3Sq1
· · ·

...
...

...
...

...
...

...
. . .


.

Here the i-th column, i ≥ 0, gives the first slice differential restricted to the summand
6i+qαHF2 of sqη

−1S (the summand is 0 if i = 1). The j-th row, j ≥ 0, describes the
incoming first slice differential for the summand 6 j+1+(q+1)αHF2 of 6sq+1η

−1S
(the summand is 0 if j = 1).

This results in an isomorphism of kM
∗

-algebras

α−1
1 S2 ∼= k M

∗
[α±1

1 , α4, α5]/(α
2
4),

where |α4| = (4, 3+ 4α) and α5 = α
2
3α
−1
1 has degree (5, 4+ 5α).

Remark 2.7. The factor of α−1
1 in the definition of α5 is not strictly necessary, but

is there so that ᾱ5 7→ α5 under the localization map S → α−1
1 S .

Remark 2.8. The determination of the first slice differential for η−1S complements
the occurrences of multiplications with τ , which were used in [Ormsby et al.
2018, page 11] to deduce vanishing columns in the Andrews–Miller range of the
unlocalized slice spectral sequence.

The pattern of differentials indicated by Theorem 2.6 is represented graphically
in Figure 1. The form of α−1

1 S2 also implies an important convergence result,
which we state presently.

Corollary 2.9. If cd2(k) = r <∞, then α−1
1 S (k) collapses at its (r+1)-th page

and converges strongly to π?(η−1S).
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FIGURE 1. The first page of the ↵1-periodic slice spectral sequence with its
differentials. A ⇤ in position (m, n) represents a copy of ⇡?⌃m+n↵HF2

⇠=
⌃m+n↵kM

⇤ [⌧ ] in slice degree n. The black portions of the diagram are de-
tected by the unit map ⌘�1S ! kw, and the red portions are induced by
�1 : ⌃3kw ! ⌘�1S. Arrows with slope �1/2 represent ⌧ , arrows with
slope �1 represent ⇢, solid vertical arrows represent Sq2, dashed vertical
arrows represent Sq2 + ⇢Sq1, arrows with slope 1 represent Sq2Sq1 + Sq3,
and arrows with slope 1/2 represent Sq3Sq1.

Our proof of Theorem 2.6 requires a fascinating detour through connective Witt K-
theory. Let KQ denote the motivic spectrum representing Hermitian K-theory,3 let KW =
⌘�1KQ denote the ⌘-periodization of KQ, which is the motivic spectrum representing
Balmer’s higher Witt groups, and let kw denote the connective cover of KW (in the sense
of Morel’s homotopy t-structure).

The slices of kw, the d1-differentials of its slice spectral sequence, and the effect of s⇤ on
the unit map ⌘�1S ! kw are known.

Theorem 2.10 ([1, Theorem 19]). Suppose the base scheme S is a scheme over Spec(Z[1/2]).
Then

s⇤kw ' HZ[⌘±1,
p
�]/(2⌘, 2

p
�, ⌘2 Sq1

��!
p
�)

3The Q is for Quadratic.

Figure 1. The first page of the α1-periodic slice spectral sequence
with its differentials. A � in position (m, n) represents a copy of
π?6

m+nαHF2 ∼= 6
m+nαk M

∗
[τ ] in slice degree n. The black portions

of the diagram are detected by the unit map η−1S→ kw, and the red
portions are induced by σ∞ : 63kw→ η−1S. Arrows with slope − 1

2
represent τ , arrows with slope −1 represent ρ, solid vertical arrows
represent Sq2, dashed vertical arrows represent Sq2

+ρSq1, arrows with
slope 1 represent Sq2Sq1

+Sq3, and arrows with slope 1
2 represent Sq3Sq1.

Proof. The form of α−1
1 S2 (which is presented graphically in Figure 2) and the fact

that k M
>r (k)= 0 imply that d>r = 0. This collapse along with the conditional con-

vergence of Theorem 2.1 imply the strong convergence portion of the corollary. �
Our proof of Theorem 2.6 requires a fascinating detour through connective Witt

K -theory. Let KQ denote the motivic spectrum representing Hermitian K -theory,4

let KW= η−1KQ denote the η-periodization of KQ, which is the motivic spectrum
representing Balmer’s higher Witt groups, and let kw denote the connective cover
of KW (in the sense of Morel’s homotopy t-structure).

The slices of kw, the d1-differentials of its slice spectral sequence, and the effect
of s∗ on the unit map η−1S→ kw are known.

Theorem 2.10 [Ananyevskiy et al. 2020, Theorem 19]. Suppose the base scheme S
is a scheme over Spec(Z[1/2]). Then

s∗kw' HZ[η±1,
√
β]/(2η, 2

√
β, η2 Sq1

−→
√
β),

4The Q is for Quadratic.
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where |η| = α, |
√
β| = 2+ 2α, and the first slice differential takes the form

Sq2 0 τ 0 0 0 0 · · ·

0 0 0 0 0 0 0 · · ·

Sq3Sq1 0 Sq2
+ ρSq1 0 0 0 0 · · ·

0 0 0 0 0 0 0 · · ·

0 0 Sq3Sq1 0 Sq2 0 τ · · ·

0 0 0 0 0 0 0 · · ·

0 0 0 0 Sq3Sq1 0 Sq2
+ ρSq1

· · ·

0 0 0 0 0 0 0 · · ·

0 0 0 0 0 0 Sq3Sq1
· · ·

...
...

...
...

...
...

...
. . .


(with the same conventions as Theorem 2.6). Moreover, there is a splitting of s0η

−1S
such that the unit η−1S→ kw induces an inclusion on every even summand, and
Sq1 on every odd summand.

Proof. The description of the slices, as well as their multiplicative structure, is given
in [Ananyevskiy et al. 2020, Theorem 19]. The behavior of the unit map follows
from [Röndigs et al. 2019, Lemmas 2.28 and 2.29]. �8 KYLE ORMSBY AND OLIVER RÖNDIGS
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FIGURE 2. The weight n portion of ↵�1
1 S2 with simplicial degree on the

horizontal axis and slice degree on the vertical axis. This page is 0 below
slice degree n and the kM

⇤ -towers extend upwards. Differentials respect
weight, and dr has degree (�1, r) in this representation. If the cohomo-
logical dimension of k is at most 1, then this page is concentrated in slice
degrees n and n + 1 and there are no nonzero targets for dr, r � 2.

induced by ⌘ is the projection pr
y2n+2

2 . Hence already after one multiplication with ⌘, the
degree 2 + ↵ part of the first differential is zero on that summand. It follows that c2n = 0.

Given the form of the differentials, the additive calculation of ↵�1
1 S2 is nearly the same

as the proof of [20, Theorem 6.3]. The exotic multiplication on ↵�1
1 S1 mentioned in Re-

mark 2.5 reduces to kM
⇤ [↵±1

1 , ↵4, ↵5]/(↵2
4) in the subquotient ↵�1

1 S2 since Sq1 is only po-
tentially nonzero on terms involving an odd power of ⌧ , and there are no ⌧ ’s in ↵�1

1 S2. ⇤

3. COMPUTATIONS FOR FIELDS WITH ODD CHARACTERISTIC OR COHOMOLOGICAL
DIMENSION AT MOST 1

Given the form of ↵�1
1 S2 and the spectral sequence’s convergence properties deter-

mined in the previous section, we can now make short work of the following computa-
tions.

Proposition 3.1. If cd2 k  1, then the ↵1-periodic slice spectral sequence for S collapses
with ↵�1

1 S2 = ↵�1
1 S1 and converges strongly to ⇡?⌘�1S.

Proof. This is a specialization of Corollary 2.9. ⇤

Theorem 3.2. If k has odd characteristic, then the ↵1-periodic slice spectral sequence for S collapses
with ↵�1

1 S2 = ↵�1
1 S1.

Proof. Suppose k has characteristic p and write i for the map Spec k ! Spec Fp. The essen-
tially smooth base change functor i⇤ induces a map of spectral sequences i⇤ : ↵�1

1 S2(Fp) !

Figure 2. The weight n portion of α−1
1 S2 with simplicial degree

on the horizontal axis and slice degree on the vertical axis. This
page is 0 below slice degree n and the k M

∗
-towers extend upwards.

Differentials respect weight, and dr has degree (−1, r) in this
representation. If the cohomological dimension of k is at most 1,
then this page is concentrated in slice degrees n and n + 1 and
there are no nonzero targets for dr , r ≥ 2.
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Note that s∗kw and the pattern of d1 differentials are precisely the black portion
of Figure 1. The remaining portion of s∗η−1S (the red part of Figure 1) is handled
by the following theorem. Following the standard convention, we write 5n for⊕

m∈Z πn+mα.

Theorem 2.11. Over k= C, there is a unique homotopy class σ∞ :63kw→ η−1S
inducing an isomorphism on 53. This map induces (1, Sq1) on every summand of a
slice.

Proof. Fix k= C. Observe first that kw= η−1kq is a cellular spectrum, where kq
is the connective cover of KQ. In fact, kq is slice-finitary by [Ananyevskiy et al.
2020, Theorem 17]; hence its slice completion sc(kq) is cellular by [Röndigs et al.
2019, Proposition 3.45]. It follows that the slice completion sc(kw) is cellular also.
On the level of homotopy sheaves, [Levine 2011, Theorem 1] implies that the slice
filtration on kw induces the fundamental ideal filtration on Witt sheaves. The latter
is finite over the complex numbers, whence sc(kw)' kw is cellular. Recall from
[Röndigs 2018, Section 4] that there is a cell presentation of kw over C of the
following form. Namely, there is a sequence of cellular motivic spectra factoring
the unit of kw as

η−1S= D1
i1
−→ D2

i2
−→ · · · → Dn

in
−→ · · · → kw

such that for every n the map Dn→ kw is (4n−1)-connective and the composition
η−1S→Dn→ kw induces isomorphisms on54k . For every n≥ 1, there is a unique
nontrivial class an :6

4n−1η−1S→ Dn in π4n−1Dn ∼= π4n−1η
−1S such that

64n−1η−1S an
−→ Dn

in
−→ Dn+1

cn
−→64nη−1S

is a homotopy cofiber sequence with cn inducing an isomorphism on 54k+3 when-
ever k ≥ n. Taking the colimit as n→∞ gives a cell presentation of kw.

We now construct σ∞. Consider the map σ1 = η
−4σ :63η−1S=63D1→ η−1S.

Assume for induction that for some n≥1 a map σn :6
3Dn→η−1S is given such that

(1) σnin−1 = σn−1 and

(2) [64an−1, η
−1S] : [64Dn−1, η

−1S] → [64n−1η−1S, η−1S] is an isomorphism.

Then the cofiber sequence above induces a long exact sequence

[64n+2η−1S, η−1S] an
←− [63Dn, η

−1S] in
←− [63Dn+1, η

−1S]
cn
←− [64n+3η−1S, η−1S] an

←− [64Dn, η
−1S] ← · · · .

The Andrews–Miller theorem [2017] on π?η−1S implies

0= [64n+2S, η−1S] = [64n+2η−1S, η−1S],

showing that σn lifts to a map σn+1 such that σn+1in = σn .
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Now note that assumption (2) implies that

[64cn−1, η
−1S] : [64nη−1S, η−1S] → [64Dn, η

−1S]

is surjective; furthermore, the composition

[64nη−1S, η−1S] [6
4cn−1,η

−1S]
−−−−−−−→ [64Dn, η

−1S] [6
4an,η

−1S]
−−−−−−−→ [64n+3η−1S, η−1S]

is the map sending η−5nµn to η−5n−4σµn , and hence an isomorphism. It follows
that the map [64an, η

−1S] is an isomorphism, as desired. (In fact, we also get that
there is a unique σn+1 :6

3Dn+1→ η−1S such that σn+1in = σn .)
Induction and the universal property of colimits now produce a map

σ∞ :6
3D∞ '63kw→ η−1S

sending 1 ∈ π36
3kw to η−4σ ∈ π3η

−1S. The uniqueness of σ∞ follows from
the Milnor exact sequence and the vanishing of lim1

n[6
4Dn, η

−1S] (every group
[64Dn, η

−1S] being finite of order 2).
Since σ∞ is a map of η−1S-modules, it induces isomorphisms on 54m+3 for

every integer m. The statement on slices follows from the behavior of the unit map
η−1S→ kw on slices given in Theorem 2.10. �

Proof of Theorem 2.6. As η−1S and s∗η−1S are invariant under base change, it
suffices to determine the first slice differential d1 over Z[1/2]. On a summand
6n HF2, it is of the form

(xnτ, anτSq
1
+βn, bnSq

2
+ γn, cnSq

2Sq1
+ dnSq

3, enSq
3Sq1)

with xn, an, bn, cn, dn, en elements in Z/2, and βn, γn square classes of units in
Z[1/2]. The behavior of the unit map η−1S→ kw on slices from Theorem 2.10
provides immediate restrictions:

x4n = 0, a4nρ+β4n = γ4n, b4n = 1, e4n = 1+c4n,

x4n+1+a4n+1= 1, (a4n+1+1)ρ=β4n+1, c4n+1= 1, b4n+1= d4n+1,

x4n+2= 1, (a4n+2+1)ρ+β4n+2= γ4n+2, b4n+2= 1, e4n+2= 1+c4n+2,

x4n+3= a4n+3, a4n+3ρ=β4n+3, c4n+3= 1, b4n+3= d4n+3.

The map σ∞ : 63kwC → η−1SC on slices from Theorem 2.11 imposes further
restrictions:

x4n+1 = 1, a4n+1 = 0, e4n+1 = 1+ d4n+2,

b4n+1 = c4n+1 = d4n+1 = 1, b4n+3 = c4n+3 = d4n+3 = 1,

x4n+3 = 0= a4n+3, e4n+3 = 1+ d4n+4.
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Base change and the previous equations then provide the following equations:

β4n+1 = ρ, γ4n+1+β4n+2 = ρ, β4n+3 = γ4n+3 = γ4n = β4n = β4n+2 = 0.

Since the composition d1◦d1 is equal to 0, Adem relations imply further coefficients.
Considering the component

d2
1 :6

4n+2 HF2→64n+1+2αHF2

implies that a4n+2 = a4n = 0. Considering the component

d2
1 :6

4n HF2→64n+2+2αHF2

provides that c4n = d4n = 0, and hence e4n = 1= e4n+3. The similar component

d2
1 :6

4n+2 HF2→64n+4+2αHF2

gives only c4n+2 = d4n+2, and hence e4n+1 = e4n+2. Resorting to s∗S provides
the solution c4n+2 = d4n+2 = 0 and e4n+1 = e4n+2 = 1 as follows. Consider the
summand62n+(2n+1)αHF2 in s2n+1S generated by α2n+1. The first slice differential
maps it via inc2

y2n+2
Sq2Sq1 to the top degree summand 62n+1+(2n+2)αHZ/(y2n+2)

in s2n+2S by [Röndigs et al. 2019, Lemma 4.1]; here y2n+2 is the order of a cyclic
group and divisible by four, and inc2

y2n+2
is the map HF2→ HZ/(y2n+2) induced

by the canonical inclusion Z/(2)→ Z/(y2n+2). The map

6α62n+1+(2n+2)αHZ/(y2n+2)→62n+1+(2n+3)αHF2

induced by η is the projection pry2n+2
2 . Hence already after one multiplication with η,

the degree 2+ α part of the first differential is zero on that summand. It follows
that c2n = 0.

Given the form of the differentials, the additive calculation of α−1
1 S2 is nearly

the same as the proof of [Röndigs and Østvær 2016, Theorem 6.3]. The exotic
multiplication on α−1

1 S1 mentioned in Remark 2.5 reduces to k M
∗
[α±1

1 , α4, α5]/(α
2
4)

in the subquotient α−1
1 S2 since Sq1 is only potentially nonzero on terms involving

an odd power of τ , and there are no τ ’s in α−1
1 S2. �

3. Computations for fields with odd characteristic or
cohomological dimension at most 1

Given the form of α−1
1 S2 and the spectral sequence’s convergence properties

determined in the previous section, we can now make short work of the following
computations.

Proposition 3.1. If cd2 k ≤ 1, then the α1-periodic slice spectral sequence for S
collapses with α−1

1 S2 = α
−1
1 S∞ and converges strongly to π?η−1S.

Proof. This is a specialization of Corollary 2.9. �
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Theorem 3.2. If k has odd characteristic, then the α1-periodic slice spectral se-
quence for S collapses with α−1

1 S2 = α
−1
1 S∞.

Proof. Suppose k has characteristic p and write i for the map Spec k→ Spec Fp.
The essentially smooth base change functor i∗ induces a map of spectral sequences
i∗ : α−1

1 S2(Fp)→ α−1
1 S2(k) which is given by the extension of scalars map on k M

∗

and the identity on αi for i =1, 4, 5. Given the form of α−1
1 S2(k), it suffices to show

dk
r α5 = 0 for all r ≥ 2, but dk

r α5 = i∗dFp
r α5, and dFp

r α5 = 0 by Proposition 3.1. �

At this point, we know that if k has odd characteristic or if cd2 k≤ 1, then the
α1-periodic slice spectral sequence collapses with

α−1
1 S2 = α

−1
1 S∞ ∼= k M

∗
[α±1

1 , α4, α5]/α
2
4 .

Paired with the conditional convergence portion of Theorem 2.3, this implies that
the spectral sequence in fact converges strongly to π?η−1S. In order to completely
determine π?η−1S for such k, we must resolve extension problems and understand
the multiplicative structure.

Suppose that s ≡ 0 or 3 (mod 4), and consider the short exact sequences

(3-1) 0→ fq+1πsη
−1S→ fqπsη

−1S→ k M
q → 0

obtained from the slice filtration and the determination of α−1
1 S∞ for a field of

odd characteristic. Choose a lift gs ∈ f0πsη
−1S= πsη

−1S of the nontrivial element
in k M

0 , compatible with field extensions from the prime field. If s = 0, π0η
−1S

is known to be the Witt ring by Morel’s theorem, and g0 should be chosen as
the unit. The slice filtration on π0η

−1S coincides with the filtration by powers of
the fundamental ideal I, as one deduces for example from [Levine 2011]. The
multiplicative structure on the slice filtration then supplies a natural transformation
to the sequence (3-1) from the short exact sequence

0→ I q+1
→ I q

→ hq,q
→ 0

solving Milnor’s conjecture on quadratic forms [Orlov et al. 2007]. The convergence
statement Corollary 2.9 shows that this natural transformation is an isomorphism
for fields of finite cohomological dimension. Since the constructions involved
commute with filtered colimits of fields, it is thus an isomorphism for any field of
odd characteristic. In particular, the slice filtration is Hausdorff by the main result
of [Arason and Pfister 1971].

Proposition 3.3. If k has odd characteristic or if cd2 k≤ 1, then, as a ring,

π? sc(η−1S)∼=W (k)[η±1, σ, µ]/(σ 2),

where |η| = α, |σ | = 3 + 4α, and |µ| = 4 + 5α. If , additionally, cd k < ∞,
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then sc(η−1S)' η−1S and this is a computation of the η-periodic homotopy groups
of the motivic sphere spectrum.

Proof. The additive structure (which is simply a copy of W (k) in nonnegative
simplicial degrees congruent to 0 or 3 mod 4) follows from the above filtration
considerations. There is no room for hidden extensions, so the result follows. �

4. Characteristic 0 fields

We now consider the α1-periodic slice spectral sequence over a general field k of
characteristic 0. We prove that for any k this spectral sequence converges strongly
to π? sc(η−1S). Moreover, the spectral sequence over Q completely determines the
spectral sequence over k in a manner that we make precise in Theorem 4.5. This
allows us to extend the conclusion of Proposition 3.3 to fields with cd2 k≤ 2 and to
extensions of Q(

√
−1), resulting in Theorem 4.8. We conclude with a conjectural

description of the differentials which we hope will inspire further work on this
problem.

The structure of our argument is somewhat surprising. After proving that dQ
2 = 0,

we are able to put strong restrictions on the form of the differentials which may
appear in α−1

1 S (Q). We then employ a theorem of Orlov, Vishik and Voevodsky
[Orlov et al. 2007] to show that for arbitrary k/Q, the differentials in α−1

1 S (k)

are of the same form. The proscribed form of the differentials guarantees that
Boardman’s RE∞=0, whence strong convergence follows. The primary obstruction
to computing the differentials seems to be the lack of a good description of sc(η−1S).

We make some preliminary definitions in order to start our arguments. Recall
that α−1

1 S1 ∼= π?HF2[α
±1
1 , α3, α4]/α

2
4 . For k ≥ 0, set α2k+1 := α

k
3α

1−k
1 , and for

k ≥ 2 set α2k := α4α
k−2
3 α2−k

1 . These classes are chosen so that ᾱ` 7→ α` under the
localization map S1→ α−1

1 S1 for all ` 6= 2. Note that as a π?HF2[α
±1
1 ]-module,

α−1
1 S1 is generated by 1, α3, α4, α5, α6, . . .. Also note (for the purposes of applying

the Leibniz rule) that, up to multiplication by a unit, α4k+1 is the square of α2k+1.

Lemma 4.1. The d2 differential in α−1
1 S (Q) is trivial.

Proof. It suffices to prove that dQ
2 α5 = 0. We know that dQ

2 α5 ∈ k M
2 (Q){α

3
1α4}.

Base change to Qp provides a comparison map α−1
1 S (Q)→ α−1

1 S (Qp). Since
cd2(Qp)= 2, Corollary 2.9 implies that α−1

1 S (Qp) converges strongly to π?η−1S.
Furthermore, every class in k M

2 (Q) is detected in some k M
2 (Qp).5 As such, the

computations of Wilson [2018] over Qp imply that dQ
2 α5 = 0. �

5Indeed, [Milnor 1970, Lemma A.1] tells us that the map k M
2 (Q)→ k M

2 (R)⊕
⊕

p k M
2 (Qp) is

injective and computed on components by quadratic Hilbert symbols. Hilbert reciprocity then implies
that k M

2 (Q)→
⊕

p k M
2 (Qp) is injective as well.
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Theorem 4.2. There is a nondecreasing6 sequence of extended integers rk ∈

Z≥3 ∪ {∞} for k ≥ 2 such that if rk < ∞ then dQ
rk
α2k+1 = ρ

rkα2kα
rk+1
1 , and if

rk =∞ then α2k+1 is a permanent cycle in α−1
1 S (Q). The rest of the differentials

in α−1
1 S (Q) are determined by the Leibniz rule.

Remark 4.3. The above theorem may be thought of in the following terms. In the
weight n α1-periodic slice spectral sequence, the 4k-column of α−1

1 S2 is, up to
multiplication by some power of the unit α1, generated by α4k+1, and the 4k− 1-
column is generated by α4k in the same sense. These columns are connected by
drν2(4k) = ·ρ

rν2(4k) on k M
∗

, where ν2 is 2-adic valuation.

Proof. By Lemma 4.1 and Theorem 2.6,

α−1
1 S3 ∼= k M

∗
[α±1

1 , α4, α5]/α
2
4 .

If the spectral sequence does not collapse, then the first nonzero differential is
necessarily of the form drα5 = xα4α

r+1
1 for some r ≥ 3 and x ∈ k M

r (Q). Since
k M

r (Q) = Z/2{ρr
} for r ≥ 3, we in fact have drα5 = ρ

rα4α
r+1
1 . Set r2 equal

to this r . The α−1
1 Sr2+1-page then has k M

∗
[α±1

1 ]/ρ
r2 in positive stems congru-

ent to 3 mod 8 and ρr2 k M
∗
[α±1

1 ] in positive stems congruent to 4 mod 8 (where
x k M
∗
= {y ∈ k M

∗
| xy = 0} is the x-torsion in k M

∗
); the (r2+1)-page also continues to

have k M
∗
[α±1

1 ] in nonnegative stems congruent to 0 or 7 mod 8, and is 0 otherwise.
The potential targets of the ρr2 k M

∗
[α±1

1 ] terms are all 0; hence these classes are
permanent. Thus the next nonzero differential in the spectral sequence (if one
exists) is necessarily of the form dr3α9 = ρ

r3α8α
r3+1
1 . The ρr3-torsion terms in the

(r3+1)-page are again permanent, and the next differential is of the form

dr4α24+1 = ρ
r4α24α

r4+1
1 .

Proceeding inductively proves the theorem. �

We now abstract the behavior observed in Theorem 4.2 and show that it is in
fact generic.

Definition 4.4. For a given field k, suppose that there is a nondecreasing se-
quence of extended integers rk ∈ Z≥3 ∪ {∞} for k ≥ 2 such that the differentials
drkα2k+1 = ρ

rkα2kα
rk+1
1 and the Leibniz rule determine α−1

1 S (k). In this case, we
call {r2, r3, . . .} the profile of α−1

1 S (k) and say that α−1
1 S (k) is determined by the

profile {rk}.

Theorem 4.5. Let {rk} denote the profile of α−1
1 S (Q) (guaranteed to exist by

Theorem 4.2). Then for any characteristic 0 field k, α−1
1 S (k) is also determined by

the profile {rk}.

6In fact, the sequence is strictly increasing unless it is eventually constant at∞.
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Proof. Consider the map of spectral sequences i∗ : α−1
1 S (Q)→ α−1

1 S (k) induced
by essentially smooth base change along Spec k→ Spec Q. We have

dk
rk
α2k+1 = i∗dQ

rk
α2k+1 = i∗ρrkα2kα

rk+1
1 = ρrkα2kα

rk+1
1 .

It remains to show that ρrk k M
∗
[α±1

1 ]{α2k+1} supports no higher differentials. In-
voking [Orlov et al. 2007, Theorem 3.3], we see that ρrk k M

∗
is generated in degree 1

as a k M
∗

-module, so it suffices to show that dk
r [u]α2k+1 = 0 for all r > rk and u ∈ k×

such that [u]ρrk = 0∈ k M
rk+1. Fix such a u and consider the subextension k/Q(u)/Q.

Let j : Spec Q(u)→ Spec Q denote the corresponding map with associated map of
spectral sequences j∗ : α−1

1 S (Q(u))→ α−1
1 S (k). Our argument now splits into

two cases: u algebraic, and u transcendental.
First suppose that u is algebraic, in which case Q(u) is a number field. Tate’s

theorem [Milnor 1970, Theorem A.2] implies that k M
n (Q(u))= Z/2{ρn

} or 0 for
n≥3 and we have already seen that dQ(u)

rk α2k+1 = ρ
rkα2kα

rk+1
1 . Recall that rk ≥3, so

this differential kills k M
∗

classes at and above degree rk . In particular, for r > rk the
target group for dQ(u)

r [u]α2k+1 is 0 and hence the differential is 0. Finally, we see that

dk
r [u]α2k+1 = j∗dQ(u)

r [u]α2k+1 = 0

as well, as desired.
Now suppose that u is transcendental, in which case [Milnor 1970, Theorem 2.3]

implies that there is a split short exact sequence

0→ k M
∗

Q→ k M
∗

Q(u)
⊕
∂π

−−→

⊕
π

k M
∗−1Q[u]/(π)→ 0,

where π ranges over monic irreducible polynomials in Q[u] and

∂π : k M
∗

Q→ k M
∗−1Q[u]/(π)

is the residue map taking [π, u2, u3, . . . , un] to [u2, . . . , un]. In particular, for n≥4,
k M

n Q(u) has F2-basis consisting of ρn and [π ]ρn−1 for π ∈Q[u] monic irreducible.
Thus the differential

dQ(u)
rk

α2k+1 = ρ
rkα2kα

rk+1
1

kills k M
∗
(Q(u))[α±1

1 ]{α2k } in Milnor-degree rk + 1 and above. It follows that
dQ(u)

r [u]α2k+1 = 0 for r > rk and the same base change trick as in the previous
paragraph implies that dk

r [u]α2k+1 = 0. We conclude that α−1
1 S (k) is determined

by the profile {rk}. �
Theorem 4.6. Let k be any field of characteristic different from 2. Then α−1

1 S (k)

converges strongly to π? sc(η−1S). If cd k<∞, this target is isomorphic to π?η−1S.

Proof. We have already verified this result for odd characteristic fields and fields
with finite cohomological dimension. It remains to check characteristic 0 fields of
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arbitrary cohomological dimension. By Theorem 2.3, we have weak convergence
to sc(η−1S), so it suffices to check vanishing of Boardman’s RE∞ term (for E =
α−1

1 S (k)). By [Boardman 1999, Remark after Theorem 7.1], it in turn suffices to
check that for each tridegree (s,m+ nα) there are at most finitely many nonzero
differentials dr : α

−1
1 S s,m+nα

r → α−1
1 S s+r,m−1+nα

r . By Theorem 4.5, α−1
1 S (k) has

profile {rk} where {rk} is the profile of α−1
1 S (Q). In particular, the finiteness

condition on nonzero differentials is met, and we may conclude that we indeed
have strong convergence. �

Theorem 4.7. Suppose k is a field of characteristic 0 which has profile {rk}. Let ν2

denote 2-adic valuation. If rk <∞ for all k, then

πm sc(η−1S)∼=


W (k) if m = 0;

W (k)/2rk if m > 0, m = 4`− 1, and k = ν2(4`);

2rk W (k) if m > 0, m = 4`, and k = ν2(4`);

0 otherwise.

If {rk} eventually takes the value∞ with first instance rK =∞, then

πm sc(η−1S)∼=



W (k) if m = 0;

W (k)/2rk if m > 0, m = 4`− 1, and k = ν2(4`) < K ;

2rk W (k) if m > 0, m = 4`, and k = ν2(4`) < K ;

W (k) if m > 0, m = 4`− 1 or 4`, and ν2(4`)≥ K ;

0 otherwise.

Proof. This all follows from the slice filtration being the I -adic filtration, ρ rep-
resenting 2 in W (k), the structure of the differentials in Theorem 4.5, and strong
convergence in Theorem 4.6. �

Theorem 4.8. Suppose that k is not of characteristic 2 and that −1 is a sum of four
squares in k. Then, as a ring,

π? sc(η−1S)∼=W (k)[η±1, σ, µ]/(σ 2)

where |η| = α, |σ | = 3+ 4α, and |µ| = 4+ 5α. If additionally cd k <∞, then
sc(η−1S)' η−1S and this is a computation of the η-periodic homotopy groups of
the motivic sphere spectrum.

Proof. By Proposition 3.3, we may additionally assume that char k = 0. It is
standard that the latter condition is equivalent to ρ3

= 0 ∈ k M
3 (k) (see [Lam 2005,

Corollary X.6.20]). By Theorem 4.5, we see that the spectral sequence collapses
(regardless of the profile of Q). By Theorem 4.6, this proves the theorem. �
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Corollary 4.9. If cd k<∞ and n≥max{3m+5, 4m}, then πm+nαS∼=πm+nαη
−1S;

if , additionally, k is not of characteristic 2 and −1 is a sum of four squares
in k, then these groups are 0 or W (k) according to whether m ≡ 1, 2 (mod 4) or
m ≡ 0, 3 (mod 4), respectively.

Proof. All but the final statement was already observed in [Ormsby et al. 2018,
Theorem 5.5]. �

We certainly do not expect that the α1-periodic slice spectral sequence collapses at
its E2 page in general. Indeed, inspired by the computations of π?η−1S∧2 by Guillou
and Isaksen [2016] over R and Wilson [2018] over Q, we make the following
conjecture.

Conjecture 4.10. The α1-periodic slice spectral sequence over Q has profile
{3, 4, 5, . . .}, i.e., rk = k+ 1 for all k.

If Conjecture 4.10 holds, then over k of characteristic 0,

πm sc(η−1S)∼=


W (k) if m = 0,

W (k)/2ν2(4`)+1 if m = 4`− 1> 0,

2ν2(4`)+1 W (k) if m = 4` > 0,

0 otherwise.

Curiously, this makes it appear as if sc(η−1S) might fit into a “connective image of
J fiber sequence” of the form sc(η−1S)→ kw→64kw where kw is the connective
cover of the 2-complete Witt K -theory spectrum. Over k= C, one may show that
the cone on the map σ∞ :63kw→ η−1S of Theorem 2.11 coincides with kw. In
fact, the composition 63kw→ η−1S→ kw is zero, as one may deduce inductively,
starting with the triviality of

63η−1S→63kw→ η−1S→ kw

and continuing along the cell presentation of kw given in the proof of Theorem 2.11.
Hence there is an induced map from the cone of 63kw→ η−1S to kw. This map
induces an isomorphism on homotopy groups, and hence is an equivalence by
cellularity. In particular, one may express η−1S over the complex numbers as the
fiber of a map kw→64kw.

The Adams operations on the 2-complete algebraic K -theory spectrum KGL∧2
constitute an action of Z×2 , the units in the 2-adic integers. When k has finite
virtual cohomological dimension, the results of [Hu et al. 2011] imply that KQ∧2 '
(KGL∧2 )

h{±1} inherits an action of Z×2 /{±1} ∼= Z2 by Adams operations. Inverting η
and taking the connective cover results in Adams operations on kw∧2 . For any
such ψg, the difference of ring maps ψg

− 1 : kw∧2 → kw∧2 lifts to a map ψg
− 1 :

kw∧2 → 64kw∧2 . (This can be seen by observing that 64kw∧2 is the 4-connective
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cover of kw∧2 and the cofiber of64kw∧2 → kw∧2 is the Eilenberg–MacLane spectrum
associated with the homotopy module W∧2 [η

±1
].)

The η-periodic unit η−1S∧2 → kw∧2 factors through the fiber jwg of ψg
− 1 :

kw∧2 → 64kw because ψg
− 1 is a difference of ring maps. This leads to the

following conjecture, which is similar in spirit to Mahowald’s presentation of the
v1-periodic sphere in topology.

Conjecture 4.11. The map η−1S∧2 → jw3 induced by the η-periodic unit η−1S∧2 →
kw∧2 is an equivalence.

Let H W denote the Eilenberg–MacLane spectrum associated with the homotopy
module W [η±1

]. Work in progress of Tom Bachmann and Mike Hopkins suggests
that the action of ψ3 on H W ∧ k̂w2 is such that the unit map smashed with H W∧2
induces an equivalence H W∧2 → H W ∧ jw3. Since η−1S is H W -complete, this
would immediately prove that η−1S∧2 ' jw3. It is presumably also the case that
(ψ3
−1)(βk)= (9k

−1)βk on π?kw∧2 , in which case a comparison of slice spectral
sequences would prove Conjecture 4.10.

Remark 4.12. The equivalence η−1S∧2 ' jw3 would also lead to a complete deter-
mination of the homotopy type and groups of η−1S. Let Xk denote the Harrison
space of orderings of k. Then π?{η−1, 1/2}S ∼= H 0(Xk;π

top
m S[1/2]), which can

be seen by the results of [Bachmann 2018], a descent spectral sequence, and the
fact that Xk is a Stone space. The 2-primary arithmetic fracture square would then
imply that

πmη
−1S∼=

W (k) if m = 0,

H 0(Xk;π
top
m S[1/2]) if m > 0 and m ≡ 1 or 2 (mod 4),

W (k)/2ν2(4`)+1
⊕ H 0(Xk;π

top
m S[1/2]) if m = 4`− 1> 0,

2ν2(4`)+1 W (k)⊕ H 0(Xk;π
top
m S[1/2]) if m = 4` > 0,

0 otherwise.
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