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THE HOMOTOPY GROUPS OF THE
n-PERIODIC MOTIVIC SPHERE SPECTRUM

KYLE ORMSBY AND OLIVER RONDIGS

We compute the homotopy groups of the n-periodic motivic sphere spectrum
over a field k of finite cohomological dimension with characteristic not 2 and
in which —1 is a sum of four squares. We also study the general character-
istic 0 case and show that the «;-periodic slice spectral sequence over Q de-
termines the a-periodic slice spectral sequence over all extensions k/Q. This
leads to a speculation on the role of a “connective Witt-theoretic J-spectrum”
in 5-periodic motivic homotopy theory.

1. Introduction

The motivic sphere spectrum S is the unit object in the tensor triangulated stable
homotopy category of motivic spectra (SHN(k), A) over a field k. In this category,
both the simplicial circle S! and the punctured affine line A'\.0 are A-invertible, so it
is crucial that we understand the bigraded homotopy groups m,.S := EBm’ nez Tm-+nad
where 7,4 S 1= [(SHM A (Al L 0)7, S] sel(o” See the introduction to [Ormsby
et al. 2018] for a more complete discussion of the importance of this ring.

The motivic Hopf map 1 € m,S which is represented by the canonical G,,-torsor
A%~ 0 — P! plays an especially important role in 7,S. This class is nonnilpotent
over all fields [Morel 2004] and thus represents a first example of exotic behavior
in 7,S, differentiating it from the classical stable stems. (Recall that n* = 0
classically, and that the Nishida nilpotence theorem [1973] tells us that all classes
of nonzero degree in the classical stable stems are nilpotent.) Let

n~'S :=hocolim(S - £7¢S 1> £72s s peg s )

1

denote the n-periodic sphere spectrum.! We have ,n~'S=»n~!x,S (where the latter

term represents the localization of the ring 7, S at the multiplicative set {n, n2, .,
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so inverting 1 annihilates I')) := {x € 7, S | xn™ =0 for some N} and induces an
injection 7S/ T";) — TS,

A number of authors have studied 7,n~'S over particular fields, including
M. Andrews and H. Miller [2017] over C, B. Guillou and D. Isaksen [2015; 2016]
over C and R, and G. Wilson [2018] over finite fields, local fields, and Q. Over C,
Tim+neS = W(C) = Z /2 for nonnegative m congruent to 0 or 3 mod 4, whereas more
complicated “image of J”-style patterns occur in ﬂ*n_ISQ (the bigraded homotopy
groups of the n-periodic 2-complete sphere) over R and Q. These authors work
with either the motivic Adams—Novikov or motivic Adams spectral sequence in
order to produce their results. In addition to these results, Rondigs [2018] has
shown that 717~'S = 7,7 ~'S = 0 over all fields of characteristic different from 2.

In this note, we use the «-periodic slice spectral sequence to completely de-
termine 7,n~'S over finite-cohomological dimension fields with characteristic
different from 2 in which —1 is a sum of four squares.2 Let W (k) denote the Witt
ring of quadratic forms over k modulo the hyperbolic plane.

Main Theorem (see Theorem 4.8). Let k be a field of finite cohomological dimen-
sion with characteristic not 2. If —1 is a sum of four squares in k, then

T IS = WWIE, 0, 1)/ (0?),

where |0| =3 +4a and || =4 + Sa. In particular, the bigraded homotopy groups
of n”'S are

W(k) ifm=>0andm=0o0r3 (mod4),

—1 ~
T S =
m-+nal] {0 otherwise.

In Corollary 4.9 (see also [Ormsby et al. 2018, Theorem 5.5]), we see that for
fields satisfying the same hypotheses,

~ 71
TmtnaS = Tmana S

for 2n > max{3m+>5, 4m}, so we have also computed a bi-infinite range of homotopy
groups of the motivic sphere spectrum.

The picture is less clear for fields in which —1 is not a sum of four squares, but
we are able to produce some partial results in Section 4. Let al_ly (k) denote the
o -periodic slice spectral sequence over k. In Theorem 4.5, we show that al_ly (@)
determines aflf (k) for any field extension k/Q. This leads to a conjecture on the
differentials in afly (k) and some speculations regarding the structure of 7,7~ 'S
in general.

2The smallest r such that —1 is a sum of r squares in k is called the level of k and is often
denoted s(k). (The s is for Stufe). By a theorem of Pfister [1965], s(k) is always a power of 2. See
[Lam 2005, Examples X1.2.4] for examples of fields of various levels.
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2. The o;-periodic slice spectral sequence

In this section, we set up the «-periodic slice spectral sequence and discuss its
convergence properties and first two pages over a general field of characteristic
different from 2.

We refer to [Rondigs et al. 2019] for the setup of the slice spectral sequence, and
only briefly recall some pertinent facts here. The sphere spectrum S is effective and
thus has a slice tower of the form

> f3S > f2S > f1IS —— foS=S

L

S3S st Sls S()S

where f,S is the g-th effective cover of S and s, is the g-th slice of S. Associated
with this tower is the slice spectral sequence .#” with E-page 7" " = 11,1 a5, S.
(If we need to refer to the base field, then we will denote this spectral sequence
by .#(k).) The differentials take the form d, : ./ — gatrm=ltne

The following theorem states the basic convergence properties of .; it is a
concatenation of [Rondigs et al. 2019, Theorem 3.50] and [Ormsby et al. 2018,
Theorem 1.3]. Recall that the n-complete sphere spectrum is SQ := holim S/n"
where S/n" is the cofiber of n" : ¥"*S — S.

Theorem 2.1. The slice spectral sequence for S conditionally converges to n*SQ.
Moreover, if cdk < 00, then SQ >~ S and the slice spectral sequence for S converges
conditionally to m,S.

We also have control over .#; via the following slice computation. We let
Extfv’[’U* mu denote the cohomology of the MU-Hopf algebroid in cohomological
degree s and internal degree ¢. (Recall that this is the E,-page of the Novikov, i.e.,
MU-Adams, spectral sequence from topology.)

Theorem 2.2 [Rondigs et al. 2019, Theorem 2.2]. The g-th slice of the motivic
sphere spectrum is
s¢S=\/ B HExe!
s>0

at least after inverting the exponential characteristic of the base field.

We refer to [Ravenel 1986] for basic facts about Extyy, My, and we use its
naming conventions for elements. Importantly, there is a single nonzero class
o] € Ext&,ﬁj* My that represents 1. Multiplication by a1 induces a map of spectral
sequences o : .M 5 gqtlmtthe Taking the colimit of the tower given
by iterating this map produces the o -periodic slice spectral sequence, ozl_ljﬂ . We
will analyze the target and convergence properties of al_lﬂ momentarily, but it



682 KYLE ORMSBY AND OLIVER RONDIGS

certainly appears that this construction ought to say something about 'S or a
related object.

There is another obvious spectral sequence we could consider, namely the slice
spectral sequence for 'S, but it turns out that the two spectral sequences are the
same. For a motivic spectrum X, recall from [Rondigs et al. 2019, Definition 3.1]
that sc(X) is the slice completion of X.

Theorem 2.3. The slice spectral sequence for n~'S and o ' 7 are isomorphic as
spectral sequences. They both have first page additively isomorphic to

T HE [, a3, 4]/ (03)

and conditionally converge to m, sc(n™'S) in the sense of [Boardman 1999). If
cdk < 0o, then sc(n™'S) ~ n~'S and the isomorphic spectral sequences condition-
ally converge to w,n~'S.

Remark 2.4. In Corollary 2.9 and Section 3, we will see that convergence is in
fact strong if k has odd characteristic or cd; k < co. In Section 4, we will see that
convergence over characteristic 0 fields to m, sc(n~'S) is strong.

Remark 2.5. As a ring object, s*n*IS is not an H[;-algebra [Rondigs et al. 2019,
Remark 2.33], and our identification of aflfl in Theorem 2.3 is not multiplicative.
By a bidegree argument and the general properties of slice multiplicativity given
in [Rondigs et al. 2019, Section 2.4], the multiplication on al—ly] agrees with the
“naive” multiplication up to addition of some terms involving Sq'. Our determination
of ay 1.7 does not depend on the precise multiplicative structure, and we will see
in Theorem 2.6 that the multiplication on ozl_lyz is fairly simple.

Proof of Theorem 2.3. Let E denote the slice spectral sequence for 7'S. Then
E\ = HF[oi, a3, as]/ (@)

by [Rondigs et al. 2019, Theorem 2.35].3 In particular, the canonical map .7 —
E takes o; to a unit and hence induces a map al_lf — E. By [Andrews and
Miller 2017, Corollary 6.2.3], o, ' Extyu, mu = Falaif, a3, 41/ (a2). Given this
result and the form of .#; in Theorem 2.2, we conclude that al’lﬁﬁ — E1 is an
isomorphism, and it follows that al’ly =ZE.

The first convergence statement in Theorem 2.1 is formal given the construction
of the slice spectral sequence (see [Rondigs et al. 2019, §3.1]). For the second
convergence statement, Theorem 2.2 tells us that sc(S) >~ S when cd k < co. Given
the conditional convergence conditions of [Boardman 1999, Definition 5.10], our
result follows as long as the sequential colimit that inverts oy commutes with

3Although Theorem 2.2 holds after inverting the exponential characteristic, the slices s« 1S
are known without inverting the exponential characteristic. The reason is that if & is a field of odd
characteristic p, multiplication with p is an isomorphism on the Witt ring of k, and hence on nls.
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the limit defining slice completion. Our assumption on cohomological dimension
implies a vanishing line parallel to o;-multiplication, and hence the limit in question
is finite and commutes with sequential colimits. U

This leads us to the main theorem of this section, a determination of the first
slice differentials and a; '.%5:

Theorem 2.6. Over any field k of characteristic different from 2, the first slice
differential for n='S is represented by the (4, 4)-periodic matrix

5> 0 T 0 0 0 0
0 0 0 0 0 0 0
59°Sq' 0 Sq” + pSq! 0 0 0 0
0 0 0 Sq? 0 T 0
0 0 5Sq¢°Sq' Sq’Sq'+Sq® Sq? 0 T
0 0 0 Sq°Sq! 0 Sq” + pSq' 0 .
0 0 0 0 54°Sq' Sq%Sq' +Sq® Sq® + pSq! - --
0 0 0 0 0 Sq3Sq! 0
0 0 0 0 0 0 5q¢°Sq’

Here the i-th column, i > 0, gives the first slice differential restricted to the summand
Tt HF, ofsqn_1 S (the summand is 0 if i = 1). The j-th row, j >0, describes the
incoming first slice differential for the summand /1T aTDeHE, of S5, 1 1n7!'S
(the summand is 0 if j = 1).

This results in an isomorphism of kM -algebras

ar ' A = o, au, a5/ (@),
where a4 = (4,3 +4a) and as = a%o{l—l has degree (5,4 + Sa).

Remark 2.7. The factor of 011_1 in the definition of o5 is not strictly necessary, but
is there so that as — a5 under the localization map . — ozl_lf/’ .

Remark 2.8. The determination of the first slice differential for 'S complements
the occurrences of multiplications with 7, which were used in [Ormsby et al.
2018, page 11] to deduce vanishing columns in the Andrews—Miller range of the
unlocalized slice spectral sequence.

The pattern of differentials indicated by Theorem 2.6 is represented graphically
in Figure 1. The form of ozl_lyz also implies an important convergence result,
which we state presently.

Corollary 2.9. If cdy(k) =r < o0, then al_lﬂ(k) collapses at its (r+1)-th page
and converges strongly to w,(n~'S).
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Figure 1. The first page of the «;-periodic slice spectral sequence
with its differentials. A [J in position (m, n) represents a copy of
T, X [, = mtne M) in glice degree n. The black portions
of the diagram are detected by the unit map 'S — kw, and the red
portions are induced by o4, : Z3kw — n~!'S. Arrows with slope —%
represent T, arrows with slope —1 represent p, solid vertical arrows
represent Sq?, dashed vertical arrows represent Sq” 4+ pSq', arrows with
slope 1 represent Sq2Sq' +Sq°3, and arrows with slope % represent Sq°Sq’.

Proof. The form of (xl_lﬂz (which is presented graphically in Figure 2) and the fact
that k¥ (k) = 0 imply that d-., = 0. This collapse along with the conditional con-
vergence of Theorem 2.1 imply the strong convergence portion of the corollary. [

Our proof of Theorem 2.6 requires a fascinating detour through connective Witt
K -theory. Let KQ denote the motivic spectrum representing Hermitian K -theory,*
let KW = 5~ 'KQ denote the n-periodization of KQ, which is the motivic spectrum
representing Balmer’s higher Witt groups, and let kw denote the connective cover
of KW (in the sense of Morel’s homotopy ¢-structure).

The slices of kw, the d;-differentials of its slice spectral sequence, and the effect
of s, on the unit map 'S — kw are known.

Theorem 2.10 [Ananyevskiy et al. 2020, Theorem 19]. Suppose the base scheme S
is a scheme over Spec(Z[1/2]). Then

sikw > HZ[n*' /Bl @2n. 2y B. n* 35> /P).

4The Q is for Quadratic.
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where |n| = a, |/B| =2+ 2, and the first slice differential takes the form

Sq?
0
Sq°Sq!
0

[N el elBeole]l

eleololNeoRcReoBolole)

Sq? + pSq’

T
0

0

Sq°Sq!

= eNeNe]

o

S OO O O O oo

0
0
0
0

Sq?

0
Sq°Sq!

0
0

S OO O O OO oo

Sq*+ pSq! ---

0

SO a4 O OO

0

Sq3Sq!
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(with the same conventions as Theorem 2.6). Moreover, there is a splitting of son™'S

such that the unit n~'S — kw induces an inclusion on every even summand, and

Sq' on every odd summand.

Proof. The description of the slices, as well as their multiplicative structure, is given
in [Ananyevskiy et al. 2020, Theorem 19]. The behavior of the unit map follows

from [Rondigs et al. 2019, Lemmas 2.28 and 2.29].

n+6| kM kY KM kY kM kM kM
nt5| kM kM kM kM kM KM kM
n+4| kM kY kM kY kM kY kM
n+3| kY Kk K R K kM
n+2| k¥ S kY kM kM kM
n+1| kM MM kY kM kT kM
n | R R R
0 2 4 6 8 10 12

Figure 2. The weight n portion of ozl_lyg with simplicial degree
on the horizontal axis and slice degree on the vertical axis. This
page is 0 below slice degree n and the k -towers extend upwards.
Differentials respect weight, and d, has degree (—1,r) in this
representation. If the cohomological dimension of k is at most 1,
then this page is concentrated in slice degrees n and n 4 1 and
there are no nonzero targets for d,, r > 2.

O
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Note that s.kw and the pattern of d; differentials are precisely the black portion
of Figure 1. The remaining portion of s,7~'S (the red part of Figure 1) is handled
by the following theorem. Following the standard convention, we write I1, for

@m ez Tn+ma-

Theorem 2.11. Over k = C, there is a unique homotopy class oo, : kw — n~!'S
inducing an isomorphism on T3. This map induces (1, Sq") on every summand of a
slice.

Proof. Fix k = C. Observe first that kw = 5~ 'kq is a cellular spectrum, where kq
is the connective cover of KQ. In fact, kq is slice-finitary by [Ananyevskiy et al.
2020, Theorem 17]; hence its slice completion sc(kq) is cellular by [Rondigs et al.
2019, Proposition 3.45]. It follows that the slice completion sc(kw) is cellular also.
On the level of homotopy sheaves, [Levine 2011, Theorem 1] implies that the slice
filtration on kw induces the fundamental ideal filtration on Witt sheaves. The latter
is finite over the complex numbers, whence sc(kw) >~ kw is cellular. Recall from
[Rondigs 2018, Section 4] that there is a cell presentation of kw over C of the
following form. Namely, there is a sequence of cellular motivic spectra factoring
the unit of kw as

n7'1S=D; 25 Dy 25 ... 5 D, 25 ... — kw

such that for every n the map D,, — kw is (4n—1)-connective and the composition
n~'S — D, — kw induces isomorphisms on I14. For every n > 1, there is a unique
nontrivial class a, : 24”_177_18 — D, in m4,_1D, = m,,,,m_ls such that

DIRLRTV R SIS ) SN » IPCTING RPN
is a homotopy cofiber sequence with ¢, inducing an isomorphism on Il4;3 when-
ever k > n. Taking the colimit as n — oo gives a cell presentation of kw.

We now construct os,. Consider the map oy = %0 : £35S = £°D; — 5~!S.
Assume for induction that for some n > 1 amap o,, : £°D,, — 'S is given such that

(1) opin—1 =o0,-1 and
() [Z*an_1,n7"'S]: [Z*D,_1, n~1S] — [=*~1y~1S, n~'S] is an isomorphism.
Then the cofiber sequence above induces a long exact sequence
(2718, n7!S] < [2°D,, n7'S] <= [Z3D,41, 7S]
< B TIS IS < (29D, 7S] -
The Andrews—Miller theorem [2017] on 7,n~'S implies
0= [E4+28, n~1s] = [24+251s, n~ 18],

showing that o, lifts to a map 0,1 such that o, i, = 0,.
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Now note that assumption (2) implies that
[Stcumr, n7'S1: [£¥77"S, n7!S] — [£*Dy, 0 'S]

is surjective; furthermore, the composition

[Z*cu—1,n'S] [Z%a,.n~'S]

[Z*n71S, n7'S] [24D,, n7'S] — 21 20 243y 71s, 1)

is the map sending n~>" 11" to n~>""*o ", and hence an isomorphism. It follows

that the map [Z%a,, n~'S] is an isomorphism, as desired. (In fact, we also get that
there is a unique 0,41 : E3Dn+1 — n*IS such that 0,411, = 0,,.)
Induction and the universal property of colimits now produce a map

0ot 2°Doo >~ T3%kw — 'S

sending 1 € m32°kw to n™% € m3n~!S. The uniqueness of o, follows from

the Milnor exact sequence and the vanishing of lim,ll[E“Dn, n~'S] (every group
[Z4D,, n_IS] being finite of order 2).

Since o4 is a map of n_IS—modules, it induces isomorphisms on Iy, 3 for
every integer m. The statement on slices follows from the behavior of the unit map
n~'S — kw on slices given in Theorem 2.10. (]

Proof of Theorem 2.6. As n~'S and s,n~'S are invariant under base change, it
suffices to determine the first slice differential d; over Z[1/2]. On a summand
X" HF,, it is of the form

(xn7, an‘L’Sql + B, bn5q2 + VY, Cnsqzsq1 + dn5q3, €n5q35q1)

with x,,, a,, by, cu, dy, e, elements in Z/2, and B, v, square classes of units in
Z[1/2]. The behavior of the unit map n~'S — kw on slices from Theorem 2.10
provides immediate restrictions:

Xan = 0, a4np+,34n = Van, b4n = la €an = 1+C4na

Xdn1+a4n1 =1, (agn1+1)p = Ban+1, Canv1=1, banr1 =dant1,
Xanp2 =1, (aani2+1)p+Bant2="Van12, bany2o=1, e4n12=14cC4n42,

X4n+3 = A4n+3, Aan+30 = Ban+3, Cant3 =1, bany3=dsn3.

The map o : >3kwe — n_IS@ on slices from Theorem 2.11 imposes further
restrictions:

X4n1 =1, a1 =0, e4nt1 =1 +danya,
bant1 = Cany1 =dapy1 =1, bani3 = cang3 =dapyz =1,

X4nt3 = 0= asny3, e4n3 = 1 +dapya.
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Base change and the previous equations then provide the following equations:

Bant1 =p,  Vant1 + B2 =10, Ban+3 = Van+3 = Van = Ban = Pan42 =0.

Since the composition d; od is equal to 0, Adem relations imply further coefficients.
Considering the component

d12 SR, o w2 g
implies that a4, = a4, = 0. Considering the component
d12 ST, - Rt g
provides that c4,, = da, = 0, and hence e4, = 1 = e4,,43. The similar component
d12 N2 L w2 g

gives only c4y4+2 = da,+2, and hence es, 1 = esn+2. Resorting to s, S provides
the solution c44+2 = dan42 = 0 and esq41 = eqp+2 = 1 as follows. Consider the
summand X2 +C D I, in s55,,1S generated by 1. The first slice differential
maps it via inc},  Sq°Sq' to the top degree summand S2* D7/ (yy, 1)
in s7,42S by [Rondigs et al. 2019, Lemma 4.1]; here y,,,4» is the order of a cyclic
group and divisible by four, and incin+2 is the map HFy — HZ/(yz,+2) induced

by the canonical inclusion Z/(2) — Z/(yan+2). The map
Ea22n+1+(2n+2)a HZ/(y2n+2) - ZZIZ+1+(2}’!+3)O(H|]:2

induced by 7 is the projection prgz””. Hence already after one multiplication with 7,
the degree 2 + o part of the first differential is zero on that summand. It follows
that ¢y, = 0.

Given the form of the differentials, the additive calculation of al_lﬂz is nearly
the same as the proof of [Rondigs and @stvaer 2016, Theorem 6.3]. The exotic
multiplication on al’ljﬁ mentioned in Remark 2.5 reduces to ki” [afﬂ, oy, as]/ (ozf)
in the subquotient al_lyg since Sq' is only potentially nonzero on terms involving
an odd power of 7, and there are no 7’s in al—lyz, O

3. Computations for fields with odd characteristic or
cohomological dimension at most 1

Given the form of al_lyz and the spectral sequence’s convergence properties
determined in the previous section, we can now make short work of the following
computations.

Proposition 3.1. If cdy k < 1, then the ay-periodic slice spectral sequence for S
collapses with al_lyz = al_lfﬂoo and converges strongly to w,n~'S.

Proof. This is a specialization of Corollary 2.9. ]
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Theorem 3.2. If k has odd characteristic then the a1 -periodic slice spectral se-
quence for S collapses with o Loy = o, L.

Proof. Suppose k has characteristic p and write i for the map Spec k — Spec[F .
The essentially smooth base change functor i* induces a map of spectral sequences

i*: ozl_lf’z(l]: p)—> o 15”2(k) which is given by the extension of scalars map on kM
and the identity on «; fori =1, 4, 5. leen the form of o 1,5”2(k) it suffices to show
dras = 0 for all r > 2, but dkas —i*d " as, and d "as = 0 by Proposition 3.1. [

At this point, we know that if k has odd characteristic or if cdy k < 1, then the
a-periodic slice spectral sequence collapses with

—1 -1 ~ 1 M =+l 2
ay y2:a1 <5ﬁ<>o:k>¢< [Oll sa4,a5]/054~

Paired with the conditional convergence portion of Theorem 2.3, this implies that
the spectral sequence in fact converges strongly to 7,7~ 'S. In order to completely
determine 71,77_] S for such k, we must resolve extension problems and understand
the multiplicative structure.

Suppose that s =0 or 3 (mod 4), and consider the short exact sequences

(3-1) 0= formn ™ 'S— fymn™'S > k) -0

obtained from the slice filtration and the determination of ozl_lyoo for a field of
odd characteristic. Choose a lift g; € fomyn~'S = m,n~'S of the nontrivial element
in kg” , compatible with field extensions from the prime field. If s =0, mon~'S
is known to be the Witt ring by Morel’s theorem, and g¢ should be chosen as
the unit. The slice filtration on o5~ 'S coincides with the filtration by powers of
the fundamental ideal I, as one deduces for example from [Levine 2011]. The
multiplicative structure on the slice filtration then supplies a natural transformation
to the sequence (3-1) from the short exact sequence

0— 1971 5 19 5 p79 5

solving Milnor’s conjecture on quadratic forms [Orlov et al. 2007]. The convergence
statement Corollary 2.9 shows that this natural transformation is an isomorphism
for fields of finite cohomological dimension. Since the constructions involved
commute with filtered colimits of fields, it is thus an isomorphism for any field of
odd characteristic. In particular, the slice filtration is Hausdorff by the main result
of [Arason and Pfister 1971].

Proposition 3.3. If k has odd characteristic or if cdy k < 1, then, as a ring,
ese(n”'S) EW W™, o, ul/(0?),

where |n| = o, |o| =3 +4a, and || = 4 + Sa. If, additionally, cdk < oo,
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then sc(n™'S) ~ n~'S and this is a computation of the n-periodic homotopy groups
of the motivic sphere spectrum.

Proof. The additive structure (which is simply a copy of W (k) in nonnegative
simplicial degrees congruent to O or 3 mod 4) follows from the above filtration
considerations. There is no room for hidden extensions, so the result follows. [

4. Characteristic 0 fields

We now consider the o -periodic slice spectral sequence over a general field k of
characteristic 0. We prove that for any k this spectral sequence converges strongly
to 7, sc(n~'S). Moreover, the spectral sequence over @ completely determines the
spectral sequence over k in a manner that we make precise in Theorem 4.5. This
allows us to extend the conclusion of Proposition 3.3 to fields with cdy k <2 and to
extensions of @(+/—1), resulting in Theorem 4.8. We conclude with a conjectural
description of the differentials which we hope will inspire further work on this
problem.

The structure of our argument is somewhat surprising. After proving that déQ =0,
we are able to put strong restrictions on the form of the differentials which may
appear in “1_] < (Q). We then employ a theorem of Orlov, Vishik and Voevodsky
[Orlov et al. 2007] to show that for arbitrary k/Q, the differentials in o} Lo (k)
are of the same form. The proscribed form of the differentials guarantees that
Boardman’s R E, =0, whence strong convergence follows. The primary obstruction
to computing the differentials seems to be the lack of a good description of sc(n~!S).

We make some preliminary definitions in order to start our arguments. Recall

that al_ljﬂl = n*H[Fg[afcl, o3, om]/ozi. For k > 0, set app41 := alga}_k, and for

k > 2 set ap, := oe4a§_2af_k . These classes are chosen so that &y — o, under the
localization map .% — al_lyl for all £ #~ 2. Note that as a 7, H [Fz[ozft]]—module,
al_l 71 is generated by 1, o3, a4, @5, @, - . .. Also note (for the purposes of applying

the Leibniz rule) that, up to multiplication by a unit, a4t is the square of gy 1.
Lemma 4.1. The d, differential in oy '.7(Q) is trivial.

Proof. 1t suffices to prove that dyas =0. We know that dy s € k¥ (Q){o3ay).
Base change to Q, provides a comparison map ozfly Q) — afl,jﬂ (Qp). Since
cd2(Q,) =2, Corollary 2.9 implies that ozflf (Q,,) converges strongly to T~ 'S.
Furthermore, every class in ké” (@) is detected in some ké"l @ p).s As such, the
computations of Wilson [2018] over Q,, imply that d?og =0. (]

>Indeed, [Milnor 1970, Lemma A.1] tells us that the map k3 (@) — k3" (R) & @, k3" (@) is
injective and computed on components by quadratic Hilbert symbols. Hilbert reciprocity then implies
that k37 (@) — @, k37 (Qp) is injective as well.
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Theorem 4.2. There is a nondecreasing® sequence of extended integers ry €
Zs3 U {00} for k > 2 such that if ry < oo then dSanH = ,0”‘(sz(qu+1, and if
ry = 00 then oy, 1 is a permanent cycle in al_ly (Q). The rest of the differentials
in ozl_ly (Q) are determined by the Leibniz rule.

Remark 4.3. The above theorem may be thought of in the following terms. In the
weight n a;-periodic slice spectral sequence, the 4k-column of al_ljﬂz is, up to
multiplication by some power of the unit «, generated by a4y, and the 4k — 1-
column is generated by oy in the same sense. These columns are connected by

dryy iy = "2 on k', where v, is 2-adic valuation.

Proof. By Lemma 4.1 and Theorem 2.6,
ay LA =M o, ay, as]/ag.

If the spectral sequence does not collapse, then the first nonzero differential is
necessarily of the form d,a5 = xa4ai+1 for some r > 3 and x € kf”(@). Since
kf”(@) = 7/2{p"} for r > 3, we in fact have d,as = ,0’0{40(1“. Set r, equal
to this r. The ozl_lfrzﬂ—page then has k¥ [ozlil] /p"™ in positive stems congru-
ent to 3 mod 8 and ,n» ki‘/[ [afcl] in positive stems congruent to 4 mod 8 (where
xk,’:” ={ye kfk” | xy = 0} is the x-torsion in ki‘” ); the (r,+1)-page also continues to
have ki"[ [afﬂ] in nonnegative stems congruent to 0 or 7 mod 8, and is 0 otherwise.
The potential targets of the ,»kM [afl] terms are all 0; hence these classes are
permanent. Thus the next nonzero differential in the spectral sequence (if one
exists) is necessarily of the form d,,c9 = ,0’30580413“. The p’3-torsion terms in the
(r3+1)-page are again permanent, and the next differential is of the form

_ A4 ra+1
dryopay ) = ptogaat .

Proceeding inductively proves the theorem. ([

We now abstract the behavior observed in Theorem 4.2 and show that it is in
fact generic.

Definition 4.4. For a given field k, suppose that there is a nondecreasing se-
quence of extended integers ry € Z>3 U {oo} for k > 2 such that the differentials
dy oy = p o (x;k *1 and the Leibniz rule determine ozl_ljﬂ (k). In this case, we
call {ra, r3, ...} the profile of ;' (k) and say that a; .7 (k) is determined by the
profile {r;}.

Theorem 4.5. Let {ry} denote the profile of afIY (Q) (guaranteed to exist by
Theorem 4.2). Then for any characteristic 0 field k, al_lf (k) is also determined by
the profile {r;}.

SIn fact, the sequence is strictly increasing unless it is eventually constant at co.
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Proof. Consider the map of spectral sequences i * : ozfly Q) — ocflf (k) induced
by essentially smooth base change along Spec k — Spec (. We have

drkkoezkH = i*dffoezkﬂ =i*p*ayal e g kOlIk+].

It remains to show that ,n kM [O[itl]{()lzk 11} supports no higher differentials. In-
voking [Orlov et al. 2007, Theorem 3.3], we see that ,« ki‘” is generated in degree 1
asa kfk” -module, so it suffices to show that d,l,([l/t]O[Zk 41 =0forallr >r; and u € k*
such that [u]p* =0 € kf” +1- Fix such a u and consider the subextension k/ Qu)/Q.
Let j : Spec Q(u) — Spec Q denote the corresponding map with associated map of
spectral sequences j* : al_lﬂ Q) — al_lﬂ (k). Our argument now splits into
two cases: u algebraic, and u transcendental.

First suppose that u is algebraic, in which case Q(u) is a number field. Tate’s
theorem [Milnor 1970, Theorem A. 2] implies that kfl"[ (Qu)) =2/2{p"} or O for
n > 3 and we have already seen that drk Olzk 11 = pFagk oc;”]. Recall that r, > 3, so
this differential kills k¥ classes at and above degree r¢. In particular, for r > r the
target group for dP(”) [u]ayk g 1s 0 and hence the differential is 0. Finally, we see that

df[uloi g = j*d2ulag =0

as well, as desired.
Now suppose that « is transcendental, in which case [Milnor 1970, Theorem 2.3]
implies that there is a split short exact sequence

0— kM@ — kM Q) B @k "1 QLul/(m) —> 0,

where 7 ranges over monic irreducible polynomials in ([#] and
vk Q- kL Qlul/(r)

is the residue map taking [, uo, us, ..., u,] to[us, ..., u,]. Inparticular, for n >4,
k,ll” Q(u) has [F,-basis consisting of p" and [7] "1 for m € Q[u] monic irreducible.
Thus the differential

d@( )Olzk | = pogrart netl

kills kM (@(u))[a ]{O[zk} in Milnor-degree r; + 1 and above. It follows that
d, Q0 )[M]d2k+1 = 0 for r > r; and the same base change trick as in the previous
paragraph implies that d*[u]a,x . = 0. We conclude that o ~1.2(k) is determined
by the profile {r;}. (I

Theorem 4.6. Let k be any field of characteristic different from 2. Then afly (k)
converges strongly to 1, sc(n™'S). If cd k < oo, this target is isomorphic to w,n~'S.

Proof. We have already verified this result for odd characteristic fields and fields
with finite cohomological dimension. It remains to check characteristic O fields of
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arbitrary cohomological dimension. By Theorem 2.3, we have weak convergence
to sc(n~'S), so it suffices to check vanishing of Boardman’s RE term (for E =
al_ljﬂ (k)). By [Boardman 1999, Remark after Theorem 7.1], it in turn suffices to
check that for each tridegree (s, m + no) there are at most finitely many nonzero
differentials d, : ay .73+ — oL gstrm=l4ne By Theorem 4.5, a; .7 (k) has
profile {r;} where {r;} is the profile of aflﬁﬂ(@). In particular, the finiteness
condition on nonzero differentials is met, and we may conclude that we indeed
have strong convergence. ([l

Theorem 4.7. Suppose k is a field of characteristic O which has profile {r}. Let v,
denote 2-adic valuation. If ry < oo for all k, then

W(k) ifm=0;
W(k)/2™ ifm>0,m=4L— 1, and k = v,(4L);
o W(k) ifm>0,m=4¢, and k = v,(4¢);

0 otherwise.

T sc(n*IS) =

If {ry} eventually takes the value oo with first instance rg = oo, then

W (k) ifm=0;

W(k)/2% ifm>0,m=40—1,and k =v,(4f) < K;
Tmsc(n 1) = { i W(k) ifm>0,m=4¢, and k =v,(4¢) < K;

W (k) ifm>0,m=4¢—1 or4t, and v,(4¢) > K

0 otherwise.

Proof. This all follows from the slice filtration being the /-adic filtration, p rep-
resenting 2 in W (k), the structure of the differentials in Theorem 4.5, and strong
convergence in Theorem 4.6. (]

Theorem 4.8. Suppose that k is not of characteristic 2 and that —1 is a sum of four
squares in k. Then, as a ring,

mese(n™1S) = WHIn*', o, nl/(0?)

where |n| = «a, |o| =344, and || = 4 + Sa. If additionally cdk < oo, then
sc(n™'S) ~ n~'S and this is a computation of the n-periodic homotopy groups of
the motivic sphere spectrum.

Proof. By Proposition 3.3, we may additionally assume that chark = 0. It is
standard that the latter condition is equivalent to p> =0 € ké"[ (k) (see [Lam 2005,
Corollary X.6.20]). By Theorem 4.5, we see that the spectral sequence collapses
(regardless of the profile of (2). By Theorem 4.6, this proves the theorem. (]
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Corollary 4.9. Ifcdk < oo and n > max{3m+5, 4m}, then 7y 1naS = Tmsnan ' S;
if, additionally, k is not of characteristic 2 and —1 is a sum of four squares
in k, then these groups are 0 or W (k) according to whether m = 1,2 (mod 4) or
m =0, 3 (mod 4), respectively.

Proof. All but the final statement was already observed in [Ormsby et al. 2018,
Theorem 5.5]. U

We certainly do not expect that the «; -periodic slice spectral sequence collapses at
its £ page in general. Indeed, inspired by the computations of n*n*ISQ by Guillou
and Isaksen [2016] over R and Wilson [2018] over @, we make the following
conjecture.

Conjecture 4.10. The o,-periodic slice spectral sequence over Q has profile
{3,4,5,.. .} ie,rp=k+1 forall k.

If Conjecture 4.10 holds, then over k of characteristic 0,

W (k) if m=0,
W(k)/22@O0+ ifm =40 —1>0,
vy (40)+1 W(k) ifm=4¢ > 0,

0 otherwise.

T sc(n™!S) =

Curiously, this makes it appear as if sc(n~'S) might fit into a “connective image of
J fiber sequence” of the form sc(n™!'S) = kw — Z*kw where kw is the connective
cover of the 2-complete Witt K -theory spectrum. Over k = C, one may show that
the cone on the map 0 : X°kw — 'S of Theorem 2.11 coincides with kw. In
fact, the composition ©3kw — ~!S — kw is zero, as one may deduce inductively,
starting with the triviality of

3n71S » 2%kw - 7S > kw

and continuing along the cell presentation of kw given in the proof of Theorem 2.11.
Hence there is an induced map from the cone of 3kw — n~!S to kw. This map
induces an isomorphism on homotopy groups, and hence is an equivalence by
cellularity. In particular, one may express 'S over the complex numbers as the
fiber of a map kw — Z4kw.

The Adams operations on the 2-complete algebraic K -theory spectrum KGL%
constitute an action of Z3, the units in the 2-adic integers. When k has finite
virtual cohomological dimension, the results of [Hu et al. 2011] imply that KQj} =~
(KGL$)"=1) inherits an action of Z5 /{=1} = Z, by Adams operations. Inverting n
and taking the connective cover results in Adams operations on kw5. For any
such 8, the difference of ring maps ¥¢ — 1 : kw} — kw) lifts to a map ¢& — 1 :
kwj — E4kw§. (This can be seen by observing that E4kwf is the 4-connective
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cover of kw4 and the cofiber of E“kwg — kw) is the Eilenberg-MacLane spectrum
associated with the homotopy module W/ [n*11)

The n-periodic unit 77_182A — kw?' factors through the fiber jwg of Y& —1:
kw) — Y4kw because ¢ — 1 is a difference of ring maps. This leads to the
following conjecture, which is similar in spirit to Mahowald’s presentation of the
vi-periodic sphere in topology.

Conjecture 4.11. The map 77_182A — jws induced by the n-periodic unit n_ISQ —
kw? is an equivalence.

Let HW denote the Eilenberg—MacLane spectrum associated with the homotopy
module W[n*!']. Work in progress of Tom Bachmann and Mike Hopkins suggests
that the action of 3 on HW A l?v?z is such that the unit map smashed with H W,
induces an equivalence HW;* — HW A jw;. Since n~'S is HW-complete, this
would immediately prove that n*ISQ =~ jws. It is presumably also the case that
(¥ — D(BF) = (9F — 1)B* on m,kw, in which case a comparison of slice spectral
sequences would prove Conjecture 4.10.

Remark 4.12. The equivalence 1! S% =~ jws would also lead to a complete deter-
mination of the homotopy type and groups of n~'S. Let X, denote the Harrison
space of orderings of k. Then mdn~", 1/2)S = HO(Xy; Jr,fpS[l/2]), which can
be seen by the results of [Bachmann 2018], a descent spectral sequence, and the
fact that Xy is a Stone space. The 2-primary arithmetic fracture square would then
imply that

ﬂnﬂfls =
W (k) if m=0,
HO(Xy; 7 PS[1/2]) ifm>0and m=1or2 (mod4),

1 W(k) 2240+ @ HO(X s mnPS[1/2]) ifm=4¢—1 >0,
st W(K) @ HO(Xy; 7, PS[1/2]) ifm=4¢>0,

0 otherwise.
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