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Abstract

Many manufacturing environments have implemented methods of collecting data from their processes relating to vibration, temperature, or sound.
With the data stored, manufacturers can run analytics to plan maintenance schedules and track machine health. However, in many cases, these
maintenance schedules and health tracking are largely reactionary, largely implemented through experience rather than through predicting the
onset of critical events and taking measures to prevent them. This paper describes a case of using time series data analytics of vibration from an
automotive paint shop PVC dispensing pump (doser) attached to a robot using a novel combination of unsupervised learning and feature
extraction. The goal is the determination of healthy versus unhealthy data and the implementation of predictive maintenance on the machine cell.
Since the robot is a multi-axis robot, direct application of traditional health monitoring methods is lacking; instead a combination of methods
suitable to the multidimensional nature of the robotic pumping process is employed. The goal of the first phase of the project is to build the tools
to aid in this feature extraction using unsupervised learning and begin to establish a baseline of healthy data versus unhealthy data or fault data.
The doser cell has been monitored for six months gathering data from seven sensor sets. Traditional methods of data analysis such as spectral
analysis through Fast Fourier Transforms (FFTs) were used to establish the capability of reading vibration signals before moving to feature
extraction of the time series data. For feature extraction, a Gaussian Mixture Model is utilized for the learning and the model building. These
methods utilized not only determine the vibration of each specific component, but also help differentiate between the nozzle flow rate and angle.
In extracting these features from the data, patterns can be traced from the variation of each production process and differentiation can take place
based on what is healthy and unhealthy data. The goal of the continuing process phase is to inform the predictive maintenance function to improve
equipment uptime.
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1. Introduction analytics, frequency analytics, or a combination of the two [2].

As data generation has exponentially expanded with the ease of

Today’s manufacturing industry has become quite data-
heavy, leading to an expected 1 petabyte daily data generation
in a smart factory by 2020 [1]. Companies are left questioning
the proper tools and methods for making use of data.
Manufacturing processes accumulate data quickly, collecting
from people, machines, materials, and systems. The task is then
to translate that data effectively to useful information for
making decisions. Traditionally for sequential quantitative
scales, analysis has been performed using either time series
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sensing, the amount of available data vastly exceeds the
capability of timely and traditional analysis after the initial
collection. To address this issue, unsupervised learning has
been introduced as an autonomous method in representing time
series and frequency data, in order to analyze phenomena more
effectively. Upon creating a fully functional model,
unsupervised learning can rapidly detect trends and patterns to
derive analysis useful to the operator or engineer of the process.
More importantly, the key objective is to provide data to
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operator and engineer when machine faults (degradation or
impending catastrophic failure) are imminent. Unsupervised
learning will continually teach itself and update as the model
gathers more data. Sharp deviations can be treated as
anomalous data and acted upon, thereby saving time and
money.

Hardware to support this analysis approach is a coupled
issue; cyber-physical systems and cloud computing have
emerged in recent years to support monitoring and analyzing
these large data sets as well as communicating data to both
machines and people [3]. Cyber-Physical Systems (CPS) are
hardware/software platforms for facilitating gathering,
formatting, communicating, analyzing, and sharing
information within the system. This integrated analysis and
information sharing makes CPS useful to manufacturers.

Data collection as a first step has rapidly expanded using
newly-available, low-cost, off-the-shelf sensors implementable
on the shop floor. Using popular microcontrollers such as the
Raspberry Pi or BeagleBone Black to collect data and
communicate to a cloud database or a front facing visualization
space is easily implementable [4]. Utilizing data protocols
such as MTConnect or MQTT, the standardization of data from
multiple sources allows the user quick access to make informed
decisions [5]. With this end goal in mind, here we lay out
details for the analytical phase of data.

The objective of this paper is to introduce a different
approach from traditional methods for analyzing data from a
manufacturing process. The paper focuses on vibration and
health analysis of a high-use critical doser pump system with
data gathered wusing condition-based monitoring. The
manufacturing process being monitored is a PVC pump used
for dispensing sealant to the joints and seams of an automotive
body-in-white. This paper focuses on the time series analysis
utilizing a method of k-means analysis, variance analysis, and
peak-to-peak data [6]. The objective of this analysis is to
establish trends in the cycle time, investigate the underlying
signatures of data patterns, and use that information to
determine when faults will occur to plan actions under a
predictive maintenance program.

2. Literature Review
2.1. Condition Based Monitoring

Condition based monitoring is not a new technique. It was
formally introduced in the 1970s in the aerospace and
petroleum industries specifically for gathering vibration data
[2]. Condition-based monitoring is characterized by a
predictive rather than preventive approach, specifically the idea
of identifying component or system degradation that could lead
to unexpected failure, and planning maintenance schedules
around this knowledge. Preventive Maintenance (PM) has
relied on the expected machine failure of equipment based on
past uptime rather than active use over time. However, this
method assumes the machine is back to “100%” work status.
Rather, whenever repairs occur the machine does not go back
to a perfect machine status or “as if new” [7]. Predictive
maintenance however takes into account changes in equipment
behavior over time, as characterized by signals from sensors,
rather than assuming perfect functionality [8]. Predicting when

a machine shall fail allows for managers and engineers to
schedule downtime around an event to ensure the machine is
back up and running in the smallest amount of time [8].

Figure 1 below highlights the shift of manufacturing
through the past two centuries. Beginning with mechanical
steam process first, as each successive industrial revolution
occurs, more mechanization and automation has taken place.
This leads to an increase in the need for sustainability of the
work environment these machines are operating [9].
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Figure 1: The Evolution of Manufacturing through the years

Condition-based monitoring has also given rise to an
increased push in manufacturing for increased integration of
sensing and data sharing (Industry 4.0 / Smart Manufacturing
paradigm). Lee notes that cyber-physical systems are
implemented in advancing Industry 4.0 referencing Figure 1
following a 5C principle of Configure, Cognition, Cyber,
Conversion, and Connection [3]. Using these 5C devices for
computation and communication increases the amount of
computation power distributed throughout the factory. It is
possible to perform all the analysis as well as communicate
alerts to operators and maintenance staff when a problem has
occurred. By differentiating between healthy data and faulty
data, maintenance schedules can be determined based on the
likelihood of a failure event [10]. Healthy data is initially
recorded to determine when the machine is operating within
normal parameters to determine a baseline. This baseline data
allows subsequent data comparison in real time to determine if
the machine is continually healthy, and the expected limits of
that health in the measured dimension(s) [8]. Deviations of the
data would signal that the machine, or a component has
changed (assumedly for the worse). However, data from one
sensor does not always readily indicate failure, especially for a
complex process or machine. Sensor Fusion or other forms of
multisensor analysis using multiple independent inputs allow
more data to contribute to the baseline belief. This concept
applies not just to multiple sensors, but also to multiple sources
of information including the machine itself and people who
interface with it.
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Figure 2: Example data flow of a connected machine to a cloud database.

Figure 2 shows an example of multiple sources of data
collected from the machine and pathways for data
communication. Multiple avenues of data allow for more
complete analysis, resulting in a more accurate representation
of the health of the machine and a means of communicating this
information to the operator. Data flows bidirectionally to gather
and then compare before it is stored and then communicated
back to the user. Humans can also contribute data based on
manual input of environmental factors. With the rise of new
sensor technologies and lower costs, leading to increased
collection of data, different methods can be utilized to store and
process the data.

Cloud computing is a method of storing, analyzing location
and communicating data across a wide network. Cloud
computing, as defined by NIST, is characterized by on-demand
self-service, broad network access, and resource pooling [11].
The cloud also provides a way to centralize large analytic tools
needing high computational power. Commercial products such
as Amazon Web Services and Microsoft Azure provide
consumers and businesses with commercial cloud services; the
main issues with such data security as well as managing energy
expenditure [12]. Other techniques derived from cloud
computing are edge and fog computing, which offer different
location alternatives of where the data storage and analysis
could occur.

Fog computing is a form of cloud computing that takes place
closer to the physical processes on the network and locally
spreads out the computational analysis of a data process [13].
The crucial difference between cloud and fog computing
methodology is where the data is being processed and stored.
The cloud serves as a “central hub” on the network, operating
purely on the network whereas fog computing happens on
multiple devices at the edge of the network, the idea being
decentralized devices working on different type of
computations, storing or sending the data to other parts of the
network [14]. Fog computing suffers from limited storage
capacity and coordination of all the devices working in
conjunction with each other [14]. Utilizing the cost
effectiveness of sensors and such computation methods,
companies can handle the transference of data from machine to
operator. Problems arise in terms of applications and the
question of which method is better for a given situation.

2.2. Vibration Analysis and Feature Extraction

Vibration analysis involves different methods of looking at
acceleration data corresponding to machine shocks and feature
extraction. For time series analysis, researchers look to the peak
to peak output voltage of a transducer and determine variations
against a prior model of a healthy machine, as well as the raw
base level value, represented by the signal root mean square
(RMS). RMS analysis is good for detecting systemic failures,
but has trouble identifying failures with specific components.
Two common measures of signal summary are the Kurtosis
value and Crest Factor, measures which examine the
distribution and threshold values of the signal, and the ratio of

the expected and recorded value respectively; these are
considered part of the time series analysis [15]. When
performing this analysis, specific features are selected which
contribute to certain instances in a machine’s cycle. This is
considered feature extraction and corresponds specific shapes
and patterns in the data to determine if a machine failure. In the
frequency domain models take shape using Fast Fourier
Transform (FFT) and Wavelet Packet feature extraction and
decomposition [15][16][17]. Feature Extraction also occurs in
the time series data and has been used as a prediction analysis
for others [18]. It congregates around similar scalar values
relating to certain instances of this data. Pairing a form of
feature extraction from time series analysis or frequency
analysis with unsupervised learning would allow the model to
update autonomously as more data is added, rather than having
to reanalyze the data each time. This would allow for quicker
fault detection and reduce the computational power required of
the system.

2.3. Unsupervised Learning

Traditional data analysis is performed typically over a finite
data set [19]. The data must also be structured in a specific way
for the analysis to take place. This usually comprises such
methods as the Fast Fourier Transform and the Hilbert Huang
Transform. There are other common methods as well for
vibration analysis over multi point data [15]. Over smaller sets
of data, these methods work well. However, these methods
don’t adapt or change over time, precluding their application to
larger data sets and nonstationary systems. They are meant to
run repetitively, performing analysis as each set of data comes
in. However, in a complex process such a multi axis robot
simply analyzing each individual frequency point is not a valid
solution. When looking at the variation in the signal, there is no
discernible trend looking at the frequency spectrum during an
individual production process. Specifically looking at the robot
doser pattern, there is too much variation regarding the
spraying patterns of the robot and the angle that sealant is being
applied to create a fixed model of the system behavior. Instead
of breaking the production process into individual points, the
entire process must be analyzed, and then specific features can
be extracted.

Unsupervised Learning involves detecting patterns and
extracting features among the measured signals through a
method of learning that can either be autonomous or semi-
autonomous. Unsupervised learning has been used to cluster
word documents in large databases or organizing large amounts
of big data [20]. Some popular uses of Unsupervised Learning
involve self-organizing maps and k-means clustering, which
make use of nodes that data clusters around that are similar to
each other [20]. Self-Organizing Maps (SOM) allows as many
reference vectors to be chosen irrespective of the data. These
reference vectors then formulate the clusters that enable the
unsupervised learning. Self-Organizing maps are used to take
higher dimensional vectors onto a lower 2-D space. k-means
assigns ecach observation/event to a cluster based on its
proximity to that cluster’s mean. The algorithm iteratively
calculates a new cluster mean and an event’s vector distance
from that mean until the sum of squared errors (SSE) are
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minimized. k-means also requires that the number of clusters
(k) be defined upfront. As more clusters are generated for k-
means, the slower the clustering occurs. For datasets with
higher amounts, self-organizing maps are a better solution.

Gaussian Mixture Modeling (GMM) is utilized to perform
the analysis below. GMM affords more with regards to
flexibility. The data points can be considered gaussian
distributed and a better cluster covariance [21]. The
methodology follows like k-means, by first choosing several
clusters. The probability that each point belongs to a cluster is
calculated and then is assigned to the cluster that data point
most matches. Applying that to manufacturing and looking for
trends and patterns in the data could allow an operator to know
the present cycle step from simply looking at the data flowing
from the process.

Each of the seven tested sensors in this study can collect
20GB of data each week, for a total of 140 gigabytes of data a
week in the test environment. Over the course of 6 months of
testing, more than a terabyte of data has been passed. With
regards to the scalability of the situation, the amount of data
would vastly exceed any local storage or time sensitive
analytics such as fault detection. This is the reason behind
building the model with unsupervised learning and specifically
using the Gaussian Mixture Model. More flexibility is afforded
when utilizing this analysis.

For analyzing large sets of data, the need for parallel data
analysis becomes apparent. Parallel data analysis distribute the
analysis across many computer clusters or data platforms [22]
With data that has been gathered from as many sources and
then stored in those sources, utilizing parallel analysis speeds
the up the overall analysis, sending to the model the key
features gathered after the data has been analyzed locally.
Rather than sending up the billions of data points, the
completed analysis is sent for the overall model to make the
decision. The need for dedicated computer clusters and parallel
analysis therefore becomes a growing need to aid in this
distributed analysis. In a shop or production facility where
automated processes make up most of the production line, such
level of computational hardware and software may become a
necessity.

3. Methodologies
3.1. The Test Environment

Data were collected from a sealant dosing pump carried by
6-axis robot arm in the paint shop of an automotive
manufacturing facility. While in operation, this doser is
subjected to vibrations from multi axis motions while
dispensing PVC to the body of the car. Data show a tendency
for this machine to break down from continuous vibration in
key areas causing failure. While this is the most common
failure, there are also failure cases such as material
contamination. To gather this data, the vibration signal of the
doser was captured using accelerometers mounted in a rigid
frame to seven different areas of the pumping system. These
seven areas are: the left ball screw case and the right ball screw
case, the left and right inlet valves, the left and right outlet

valves and the nozzle (see Figure 3 for a nozzle-mounted sensor
system).

Figure 3: The box circled in red is the sensor box containing accelerometers
mounted to the nozzle of the robot.

Like the nozzle mounting, 6 other boxes are also fixed to
these locations similarly in the robot/pump system.

Sensor # Location Side of the Robot

1 Nozzle NA

2 Inlet Valve Left
3 Inlet Valve Right
4 Outlet Valve Right
6 Bearing Case Right
7 Outlet Valve Left
8 Bearing Case Left

Table 1: Device Number and Location

Table 1 above highlights the naming convention while
Figure 4 shows the robot in the production environment and
highlights the location of all sensors. A typical production cell
would have 4 robots.

Figure 4: Sensor Placement in Production Cell

The boxes containing the sensors were constructed from
aluminum to protect them from the harsh environment and
ensure good vibration transmissibility from the underlying
structure. The sensor kit, which met the compliance of the paint
shop environmental, health and safety requirements, consists of
a microcontroller, a real time clock and accelerometer (see
Figure 5).
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Figure5: Sensor boxes used to gather data

These components were chosen based on cost, off-the-shelf
accessibility, hardware capability and software capability. The
criteria for choosing the sensor involved sampling rate, cost,
and the ability to sample in multiple axes. The ADXL335 met
all of these design criteria. The real time clock utilized
partnered well with the accelerometer used. The Teensy
microcontroller was chosen based on both the size constraints
as well as the ability to pass serial data. Having a separate
microcontroller also allows for future sensor inputs to be added
such as temperature and acoustic emission. The real time clock
ensures the data are collected at specific time intervals and can
be synchronized with each other. Data values corresponding to
specific time instances can be related to events within the
machine cycle. The sensor box samples at 500 Hz, as the
dominant frequencies of operation were below 250Hz.

Cloud
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Sensor Box

Figure 5: Hierarchy of Devices in the test environment

Figure 5 shows the hierarchy of the system from the data
collection to the overall analysis level. After buffering, data are
passed to a secondary collector microcontroller (Raspberry Pi)
mounted outside the process through USB cable. To this end,
the local collector microcontroller is used as the database and
control for now but will soon be replaced by direct access to
plant IT systems.
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Figure 6: Method of Data Collection and Analysis

Figure 6 refers to the method of collecting data and then
placing it into the database. The manual method refers to
uploading the data to the higher database. The GMM refers to
the method Gaussian Mixture Modeling used for building the

model. The following Equation 1 is the base method for
clustering Gaussian Mixture Models:

Gi(x) = ®g,(x),6; = (wpof) M

In Equation 1, the G(x) refers to the gaussian density that
will eventually be centered around the mean and variance given
by 6. This is what handles our clustering. The collected data
(the new data box in Figure 6) are analyzed together with the
historical data (the database box in Figure 6) to create a
representative behavioral model which is updated through
machine learning based on the new data. The analysis is
performed at the top-level hierarchy in the cloud rather than the
local level at either the secondary collector or the sensor box.
Having the analysis occur in the cloud provides an “unlimited”
computational power to access. At the local level, analysis is
limited by the chip used for the microcontroller, due to the
memory and graphics specifications. Cloud level analytics also
allow for access to all data in a database, instead of limitation
of local storage limits. The limit again is the amount of storage
allocated for the project.

At the local level, a microcontroller is limited to the amount
of storage available. Analysis can, however, occur at the local
level with such embedded systems. Having the analysis
distributed reduces the need for computational power to run the
overall analytics at the cloud level. The microcontroller could
also be utilized to run a data visualization module. This would
provide the operator with the local analytics of a particular
machine and a sensor area without having to draw in the entire
model set from the cloud. Partnering this system on the cloud
also allows access to the production data of the manufacturing
system and correlation between good or bad parts can then be
validated. The cloud analytics only then need to focus on the
pattern analytics rather than the conversion of raw data to
analyzed data. This reduces the need to have a huge database
ofunanalyzed data in addition to the analyzed data. This allows
only relevant information that can provide actionable change to
remain. Superfluous data can be discarded at the local level
without having the cloud attempting the filtering. The model
learning then updates with the new data added. Currently, the
system is gathering data to build the model learning and
beginning the event classification.

4. Results

Data were first collected from an offline test cell. This initial
data gathering was done to simulate the signals expected from
each of the key areas and to indicate the measurability of
vibration readings from each area. Overall, 7 tests were initially
run to simulate each flow pattern. Table 2 refers to each
situation that was tested. The test was run over a purge cycle of
the robot, during which the robot dispenses sealant inside of a
bucket. The differentiator between each test is the nozzle angle
and then whichever side is dispensing the sealant. The side
column refers to which side is running. The event time for each
test took around 100 seconds in dispensing sealant.

Test # Nozzle Angle Side
1 0 Right
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2 0 Left
3 45 Right
4 45 Left
5 90 Right
6 90 Left

Table 2: Sealant Tests and Description

Frequency analysis was performed on each set of test data
in order to characterize the frequency content. A model is not
being created at this point. Simply, there needs to be validation
that vibration data can be taken from these key areas. In
addition to moving in multiple dimensions, the sealant doser
also applies sealant in different patterns and angles. The flow
of sealant can vary greatly from one type of nozzle to another.
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Figure 7(a)-7(c): FFT results of each angle of sealant tests

Figures 7(a) — 7(c) show the frequency content of three of the
different tests on the inlet valve on the M1 side of the robot.
They are tests 1,3 and 5 as referred in Table 2. In Figure 7(a)
the robot was spraying at a 0-degree angle. Figure 7(b) was at
a 45-degree angle, and Figure 7(c) shows spraying at a 90-
degree angle. Each test shows a consistent peak of around 60
Hz. The variation in the signal depending on spraying pattern
comes in the higher and lower frequency range based around
peak. For the 0-degree angle and 45-degree angle are similar in
the lower frequencies. The 0-degree angle has a higher power
density in the higher frequency range. The 45-degree test and
the 90-degree test have a similar higher frequency look,
however the lower frequency power density for the 90-degree
test is less than the 45-degree test.

Looking at the test results, the frequency analysis validated
the ability to see changes in the system with regards to flow
rate and nozzle angle. However, in terms of differentiating
production process, the frequency analysis failed to help
identify the different production processes. As a whole system
health could be ascertained, however, variation is difficult to
determine. Therefore, for the model learning, it was determined
to utilize the variance analysis of the time series data to allow
for each production process to be utilized.

This led the research team to utilize the time series analysis
to examine the variance of the signal versus the frequency
spectrum utilizing k-means and eventually a Gaussian Mixture
Model. The goal will be models that update continuously in
real-time and estimate the probability of a disruptive event.
These disruptive events need to be identified or classified
through the data. Once a data set with classified events is
available, then various supervised training processes are widely
available, such as support vector machines, for training the
models. The time-consuming portion of the model building
process (also the current status of the project) is collecting data
and correctly classifying it. This is typically the work of skilled
subject matter experts. Thus, the focus here is establishing
techniques and tools to use for automating event classification.
A secondary goal is providing the tools for consumers to repeat
the learning on other equipment.

Raw signals from sensors, like accelerometers, do not have
flags to indicate what an event is or when it starts and stops.
This is where “traditional” forms of data analysis step in, such
as the FFT and HHT. However, these processes cannot handle
massive amounts of data continuously. A Discrete Fourier
Transform, for example, requires a finite amount of time set to
process and generate analysis. It does not function well to
continuously add data and then run another test continuously.
The data set cannot simply be added to the database and allow
the learning to take place autonomously.

An example of the raw vibration data is shown in Figure 8
below. Signal processing tools are needed in order to extract
data related to individual events. Since this is a valve, an event
is defined as any time that the valve operates. Or, in other
words, whenever the valve opens or closes. It is assumed that
the accelerometer will sense vibrations that are greater in
magnitude when the valve opens or closes than when it is
resting in a static position. Over time and use, these peaks
should become more pronounced with a higher amount of
variability. This variation could occur with regards to either
higher peaks or occur at different times over the event space.
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Therefore, events are identified by peaks in the raw sensor
signal and by increases in the data’s variability over a short
window of time.
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Figure 8: Raw data from accelerometer on valve

It can be seen from the data in Figure 8 that there are
multiple types of these events, and they occur all throughout
the spectrum of data and not in an organized manner or even a
cyclic manner. Unsupervised learning is introduced to enhance
the analysis, specifically through a learning technique known
as clustering, used to identify different types of events. The
vectors comprise descriptive features of the events.

Event duration and area under the curve were chosen as the
features to describe these events for the subject application.
Therefore, the duration and area under the curve were
calculated for each event that was extracted from the raw signal
and these features are used to establish clusters. A Gaussian
Mixture Model, a variation of k-means, was used for this
learning. Since k needed to be defined up for the GMM to work
an elbow plot was generated to determine optimal values for k.
Multiple values of k were used but ultimately improvements to
the SSE were minimal beyond & = 3.

The points representing each event in feature space is shown
in Figure 9, which also shows the cluster identifiers.
Qualitatively, there is more variability within cluster 3 than the
other two clusters. In Figures 10(a) — 10(c), each event is
plotted based on the cluster it belongs too. The data in clusters
1 and 2 seem to follow a set path consistently with some
variation at the peaks. This gives a consistent area under the
curve which supports the clustering seen in Figure 9. For
Cluster 3 the data seem to follow the first initial peak and then
split off with peaks occurring at different instances from then
out. The amount of variability also supports the clustering as
seen in Figure 9. This seems to support that clustering was done
successfully. Out of the 182 events clustered, only 1 event
failed to fit into a given set. However even with this one event,
a probability is obtained of the event and then used to estimate
which cluster it should go to based on the other clusters.

Quantitatively, each cluster event follows a formula of
acceleration with regards to time. The area under the curve is

determined with regards to the following formula:
tr
Velocity = f a()dt (2)
to
The acceleration, a(?), plotted is with regards to the vibration
monitored during the production process. Each event is
considered an individual production process of dispensing
sealant. The event times, 7 and 7, also match up to the
beginning and end of the production process of the doser robot
for apply sealant. Therefore, they were chosen as the start and
end times of each graph. The total event duration, then
corresponds to the actual time duration of dispensing sealant to
a car body. This was obtained by collecting data from the cell
and taking a video of the production cell at the same time.
Utilizing the timestamps, the event duration was able to be

configured and matched to each cluster.

The event data from each cluster is color-coded and plotted
on the raw timeseries data as shown in Figure 11. Cluster 3
represents the most frequent event in the data. Within the
sample data shown, there are 142 events within Cluster 3 as
compared to 26 events within Cluster 1 and 13 events within
Cluster 2. The average duration for an event in Cluster 3 is less
than 20 seconds, whereas the average duration of events in
Clusters 1 and 2 are just over 60 seconds.
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Figure 9. Clusters within the feature space.
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Figure 11. Cluster overlay on raw data

After observing the operation of this system, it was
determined that Clusters 1 and 2 represent events when the
entire mechanical system is moving and the vibrations due to
the valve become masked by the vibrations of the system.
While the doser is in motion, it will undoubtedly move in the
same motion each time for the same operation accounting for
the similarity of each point. The doser is also a multi-axis
system, moving according to program. It is good to note that a
current hypothesis of the team is that Cluster 1 and Cluster 2,
are believed to be two different car bodies. This supports that
the clustering can also help pick out different production
processes and differentiate data points based around that.

However, events from Cluster 3 occur when the mechanical
system is still, and the valve is the primary contributor to the
sensed vibration, validating the increased variability.
Therefore, Cluster 3 is expected to contain data that will reflect
degradation of the valve over time. Qualitatively it is possible
to observe variation in the dispensing time already from the
differences in the shapes of the signals.

5. Conclusion

A review of condition-based monitoring has been presented
with work done in vibration analysis and unsupervised learning
in an application to a PVC dosing pump used in automotive
painting. Key takeaways are an understanding of the selection
of the materials used, the use of unsupervised learning to
organize the data, in addition to the analysis taking place.
Frequency spectrum tests were first utilized to characterize the
signal and see if variation can be seen, before moving to
unsupervised learning. With the unsupervised learning, it is a
more robust method for model learning as well as variance
analysis. From this point it is possible to determine the variance
of signal and different production processes being performed
on the machine. The sensors were readily accessible to the
group and provided the versatility needed to capture the
vibration signal. They met the compatibility of the sampling
rate as well as the off-shelf accessibility. The sensor also paired
well with the real time clock used to record timestamps and
allow for matching the data to the production shift. The use of
unsupervised learning sorts the data into a pattern from which
a baseline and deviations are discerned. From the data
collected, key events can be drawn to characterize the signal
from when the valve on the doser is opening and closing, when
the machine is inactive versus when the machine is active.
Using this data as “healthy”, the model can start to be built to
establish machine health and characterize more variability with
the signal.

6. Further Work

Future work will involve implementing more on
formalization of the predictive maintenance strategy; training
the model to handle the predictive analysis rather than simply
characterizing the data. This will also include modeling and
testing against failed components and predicting instances

during the doser dispensing cycle corresponding to specific
times in the cycle time of the doser. More specific features for
Cluster 3 will be generated and analyzed for long-term trends.
With feedback regarding undesired valve behavior, a model
will be trained to correlate feature trends with the undesired
valve behavior for the prediction of that behavior. In addition,
this will involve gathering more data, particularly fault data,
and building up the infrastructure side. The infrastructure side
involves implementing an off-the-shelf hardware solution as
well as establishing automatic data transference and analysis on
the industrial network. Production data will also be integrated
into the system to allow for better matching of the clusters and
data points to specific cars. On the IT side, computational
analysis will occur using the techniques of fog and cloud
computing discussed earlier. This will involve implementing a
concrete database system to handle the device configuration as
well as the analysis. Pipelines will be created to run the data
from the database to the model. From the model, machine status
will be displayed to the operator and engineers, providing real-
time data.

A separate use case of vehicle track elevator Automated
Storage and Retrieval System (ASRS) has been identified as a
strong candidate for inclusion in a predictive maintenance
program, as this system periodically experiences catastrophic
bearing failure. While the ASRS and doser are functionally
different, the practice of unsupervised learning and analysis is
applicable to both. Upon the completion of the sensor box
design, analysis strategy and system modeling, it is envisioned
to deploy such a system to new equipment cases with new types
of phenomena and failure modes.
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