
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect 
Procedia Manufacturing 00 (2017) 000–000  

 www.elsevier.com/locate/procedia 

* Paulo Afonso. Tel.: +351 253 510 761; fax: +351 253 604 741  
E-mail address: psafonso@dps.uminho.pt 

2351-9789 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 2017.  

Manufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30 June 
2017, Vigo (Pontevedra), Spain 

Costing models for capacity optimization in Industry 4.0: Trade-off 
between used capacity and operational efficiency 

A. Santanaa, P. Afonsoa,*, A. Zaninb, R. Wernkeb 

a University of Minho, 4800-058 Guimarães, Portugal 
bUnochapecó, 89809-000 Chapecó, SC, Brazil  

Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Many manufacturing environments have implemented methods of collecting data from their processes relating to vibration, temperature, or sound. 
With the data stored, manufacturers can run analytics to plan maintenance schedules and track machine health.  However, in many cases, these 
maintenance schedules and health tracking are largely reactionary, largely implemented through experience rather than through predicting the 
onset of critical events and taking measures to prevent them. This paper describes a case of using time series data analytics of vibration from an 
automotive paint shop PVC dispensing pump (doser) attached to a robot using a novel combination of unsupervised learning and feature 
extraction. The goal is the determination of healthy versus unhealthy data and the implementation of predictive maintenance on the machine cell. 
Since the robot is a multi-axis robot, direct application of traditional health monitoring methods is lacking; instead a combination of methods 
suitable to the multidimensional nature of the robotic pumping process is employed. The goal of the first phase of the project is to build the tools 
to aid in this feature extraction using unsupervised learning and begin to establish a baseline of healthy data versus unhealthy data or fault data. 
The doser cell has been monitored for six months gathering data from seven sensor sets. Traditional methods of data analysis such as spectral 
analysis through Fast Fourier Transforms (FFTs) were used to establish the capability of reading vibration signals before moving to feature 
extraction of the time series data. For feature extraction, a Gaussian Mixture Model is utilized for the learning and the model building. These 
methods utilized not only determine the vibration of each specific component, but also help differentiate between the nozzle flow rate and angle. 
In extracting these features from the data, patterns can be traced from the variation of each production process and differentiation can take place 
based on what is healthy and unhealthy data. The goal of the continuing process phase is to inform the predictive maintenance function to improve 
equipment uptime.  
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1. Introduction 

Today’s manufacturing industry has become quite data-
heavy, leading to an expected 1 petabyte daily data generation 
in a smart factory by 2020 [1]. Companies are left questioning 
the proper tools and methods for making use of data. 
Manufacturing processes accumulate data quickly, collecting 
from people, machines, materials, and systems. The task is then 
to translate that data effectively to useful information for 
making decisions. Traditionally for sequential quantitative 
scales, analysis has been performed using either time series 

analytics, frequency analytics, or a combination of the two [2].  
As data generation has exponentially expanded with the ease of 
sensing, the amount of available data vastly exceeds the 
capability of timely and traditional analysis after the initial 
collection. To address this issue, unsupervised learning has 
been introduced as an autonomous method in representing time 
series and frequency data, in order to analyze phenomena more 
effectively. Upon creating a fully functional model, 
unsupervised learning can rapidly detect trends and patterns to 
derive analysis useful to the operator or engineer of the process. 
More importantly, the key objective is to provide data to 
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operator and engineer when machine faults (degradation or 
impending catastrophic failure) are imminent. Unsupervised 
learning will continually teach itself and update as the model 
gathers more data. Sharp deviations can be treated as 
anomalous data and acted upon, thereby saving time and 
money.  

Hardware to support this analysis approach is a coupled 
issue; cyber-physical systems and cloud computing have 
emerged in recent years to support monitoring and analyzing 
these large  data sets as well as communicating data to both 
machines and people [3]. Cyber-Physical Systems (CPS) are 
hardware/software platforms for facilitating gathering, 
formatting, communicating, analyzing, and sharing 
information within the system. This integrated analysis and 
information sharing makes CPS useful to manufacturers.  

Data collection as a first step has rapidly expanded using 
newly-available, low-cost, off-the-shelf sensors implementable 
on the shop floor. Using popular microcontrollers such as the 
Raspberry Pi or BeagleBone Black to collect data and  
communicate to a cloud database or a front facing visualization 
space is easily implementable [4].  Utilizing data protocols 
such as MTConnect or MQTT, the standardization of data from 
multiple sources allows the user quick access to make informed 
decisions [5]. With this end goal in mind, here we lay out 
details for the analytical phase of data. 

The objective of this paper is to introduce a different 
approach from traditional methods for analyzing data from a 
manufacturing process. The paper focuses on vibration and 
health analysis of a high-use critical doser pump system with 
data gathered using condition-based monitoring. The 
manufacturing process being monitored is a PVC pump used 
for dispensing sealant to the joints and seams of an automotive 
body-in-white. This paper focuses on the time series analysis 
utilizing a method of k-means analysis, variance analysis, and 
peak-to-peak data [6]. The objective of this analysis is to 
establish trends in the cycle time, investigate the underlying 
signatures of data patterns, and use that information to 
determine when faults will occur to plan actions under a 
predictive maintenance program. 

2. Literature Review 

2.1. Condition Based Monitoring 

Condition based monitoring is not a new technique. It was 
formally introduced in the 1970s in the aerospace and 
petroleum industries  specifically for gathering vibration data 
[2]. Condition-based monitoring is characterized by a 
predictive rather than preventive approach, specifically the idea 
of identifying component or system degradation that could lead 
to unexpected failure, and planning maintenance schedules 
around this knowledge. Preventive Maintenance (PM) has 
relied on the expected machine failure of equipment based on 
past uptime rather than active use over time. However, this 
method assumes the machine is back to “100%” work status. 
Rather, whenever repairs occur the machine does not go back 
to a perfect machine status or “as if new” [7]. Predictive 
maintenance however takes into account changes in equipment 
behavior over time, as characterized by signals from sensors, 
rather than assuming perfect functionality [8]. Predicting when 

a machine shall fail allows for managers and engineers to 
schedule downtime around an event to ensure the machine is 
back up and running in the smallest amount of time  [8].   

Figure 1 below highlights the shift of manufacturing 
through the past two centuries. Beginning with mechanical 
steam process first, as each successive industrial revolution 
occurs, more mechanization and automation has taken place. 
This leads to an increase in the need for sustainability of the 
work environment these machines are operating [9].  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Evolution of Manufacturing through the years 
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implemented in advancing Industry 4.0 referencing Figure 1 
following a 5C principle of Configure, Cognition, Cyber, 
Conversion, and Connection [3]. Using these 5C devices for 
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computation power distributed throughout the factory. It is 
possible to perform all the analysis as well as communicate 
alerts to operators and maintenance staff when a problem has 
occurred. By differentiating between healthy data and faulty 
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likelihood of a failure event [10]. Healthy data is initially 
recorded to determine when the machine is operating within 
normal parameters to determine a baseline. This baseline data 
allows subsequent data comparison in real time to determine if 
the machine is continually healthy, and the expected limits of 
that health in the measured dimension(s) [8]. Deviations of the 
data would signal that the machine, or a component has 
changed (assumedly for the worse). However, data from one 
sensor does not always readily indicate failure, especially for a 
complex process or machine. Sensor Fusion or other forms of 
multisensor analysis using multiple independent inputs allow 
more data to contribute to the baseline belief. This concept 
applies not just to multiple sensors, but also to multiple sources 
of information including the machine itself and people who 
interface with it.  
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Figure 2: Example data flow of a connected machine to a cloud database. 

Figure 2 shows an example of multiple sources of data 
collected from the machine and pathways for data 
communication. Multiple avenues of data allow for more 
complete analysis, resulting in a more accurate representation 
of the health of the machine and a means of communicating this 
information to the operator. Data flows bidirectionally to gather 
and then compare before it is stored and then communicated 
back to the user. Humans can also contribute data based on 
manual input of environmental factors. With the rise of new 
sensor technologies and lower costs, leading to increased 
collection of data, different methods can be utilized to store and 
process the data. 

Cloud computing is a method of storing, analyzing location 
and communicating data across a wide network. Cloud 
computing, as defined by NIST, is characterized by on-demand 
self-service, broad network access, and resource pooling [11]. 
The cloud also provides a way to centralize large analytic tools 
needing high computational power. Commercial products such 
as Amazon Web Services and Microsoft Azure provide 
consumers and businesses with commercial cloud services; the 
main issues with such data security as well as managing energy 
expenditure [12]. Other techniques derived from cloud 
computing are edge and fog computing, which offer different 
location alternatives of where the data storage and analysis 
could occur.  

Fog computing is a form of cloud computing that takes place 
closer to the physical processes on the network and locally 
spreads out the computational analysis of a data process [13]. 
The crucial difference between cloud and fog computing 
methodology is where the data is being processed and stored. 
The cloud serves as a “central hub” on the network, operating 
purely on the network whereas fog computing happens on 
multiple devices at the edge of the network, the idea being 
decentralized devices working on different type of 
computations, storing or sending the data to other parts of the 
network [14]. Fog computing suffers from limited storage 
capacity and coordination of all the devices working in 
conjunction with each other [14]. Utilizing the cost 
effectiveness of sensors and such computation methods, 
companies can handle the transference of data from machine to 
operator. Problems arise in terms of applications and the 
question of which method is better for a given situation.  

 
2.2. Vibration Analysis and Feature Extraction 

Vibration analysis involves different methods of looking at 
acceleration data corresponding to machine shocks and feature 
extraction. For time series analysis, researchers look to the peak 
to peak output voltage of a transducer and determine variations 
against a prior model of a healthy machine, as well as the raw 
base level value, represented by the signal root mean square 
(RMS).  RMS analysis is good for detecting systemic failures, 
but has trouble identifying failures with specific components. 
Two common measures of signal summary are the Kurtosis 
value and Crest Factor, measures which examine the 
distribution and threshold values of the signal, and the ratio of 

the expected and recorded value respectively; these are 
considered part of the time series analysis [15].  When 
performing this analysis, specific features are selected which 
contribute to certain instances in a machine’s cycle. This is 
considered feature extraction and corresponds specific shapes 
and patterns in the data to determine if a machine failure. In the 
frequency domain models take shape using Fast Fourier 
Transform (FFT) and Wavelet Packet feature extraction and 
decomposition [15][16][17]. Feature Extraction also occurs in 
the time series data and has been used as a prediction analysis 
for others [18]. It congregates around similar scalar values 
relating to certain instances of this data. Pairing a form of 
feature extraction from time series analysis or frequency 
analysis with unsupervised learning would allow the model to 
update autonomously as more data is added, rather than having 
to reanalyze the data each time. This would allow for quicker 
fault detection and reduce the computational power required of 
the system.        

2.3. Unsupervised Learning 

Traditional data analysis is performed typically over a finite 
data set [19]. The data must also be structured in a specific way 
for the analysis to take place. This usually comprises such 
methods as the Fast Fourier Transform and the Hilbert Huang 
Transform. There are other common methods as well for 
vibration analysis over multi point data [15]. Over smaller sets 
of data, these methods work well. However, these methods 
don’t adapt or change over time, precluding their application to 
larger data sets and nonstationary systems. They are meant to 
run repetitively, performing analysis as each set of data comes 
in. However, in a complex process such a multi axis robot 
simply analyzing each individual frequency point is not a valid 
solution. When looking at the variation in the signal, there is no 
discernible trend looking at the frequency spectrum during an 
individual production process. Specifically looking at the robot 
doser pattern, there is too much variation regarding the 
spraying patterns of the robot and the angle that sealant is being 
applied to create a fixed model of the system behavior. Instead 
of breaking the production process into individual points, the 
entire process must be analyzed, and then specific features can 
be extracted.   

Unsupervised Learning involves detecting patterns and 
extracting features among the measured signals through a 
method of learning that can either be autonomous or semi-
autonomous. Unsupervised learning has been used to cluster 
word documents in large databases or organizing large amounts 
of big data [20]. Some popular uses of Unsupervised Learning 
involve self-organizing maps and k-means clustering, which 
make use of nodes that  data clusters around that are similar to 
each other [20]. Self-Organizing Maps (SOM) allows as many 
reference vectors to be chosen irrespective of the data. These 
reference vectors then formulate the clusters that enable the 
unsupervised learning. Self-Organizing maps are used to take 
higher dimensional vectors onto a lower 2-D space. k-means 
assigns each observation/event to a cluster based on its 
proximity to that cluster’s mean. The algorithm iteratively 
calculates a new cluster mean and an event’s vector distance 
from that mean until the sum of squared errors (SSE) are 
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minimized. k-means also requires that the number of clusters 
(k) be defined upfront. As more clusters are generated for k-
means, the slower the clustering occurs. For datasets with 
higher amounts, self-organizing maps are a better solution.   

Gaussian Mixture Modeling (GMM) is utilized to perform 
the analysis below. GMM affords more with regards to 
flexibility. The data points can be considered gaussian 
distributed and a better cluster covariance [21]. The 
methodology follows like k-means, by first choosing several 
clusters. The probability that each point belongs to a cluster is 
calculated and then is assigned to the cluster that data point 
most matches. Applying that to manufacturing and looking for 
trends and patterns in the data could allow an operator to know 
the present cycle step from simply looking at the data flowing 
from the process.  

Each of the seven tested sensors in this study can collect 
20GB of data each week, for a total of 140 gigabytes of data a 
week in the test environment. Over the course of 6 months of 
testing, more than a terabyte of data has been passed. With 
regards to the scalability of the situation, the amount of data 
would vastly exceed any local storage or time sensitive 
analytics such as fault detection. This is the reason behind 
building the model with unsupervised learning and specifically 
using the Gaussian Mixture Model. More flexibility is afforded 
when utilizing this analysis. 

 For analyzing large sets of data, the need for parallel data 
analysis becomes apparent. Parallel data analysis distribute the 
analysis across many computer clusters or data platforms [22] 
With data that has been gathered from as many sources and 
then stored in those sources, utilizing parallel analysis speeds 
the up the overall analysis, sending to the model the key 
features gathered after the data has been analyzed locally. 
Rather than sending up the billions of data points, the 
completed analysis is sent for the overall model to make the 
decision. The need for dedicated computer clusters and parallel 
analysis therefore becomes a growing need to aid in this 
distributed analysis. In a shop or production facility where 
automated processes make up most of the production line, such 
level of computational hardware and software may become a 
necessity.    

3. Methodologies 

3.1. The Test Environment 

Data were collected from a sealant dosing pump carried by 
6-axis robot arm in the paint shop of an automotive 
manufacturing facility. While in operation, this doser is 
subjected to vibrations from multi axis motions while 
dispensing PVC to the body of the car. Data show a tendency 
for this machine to break down from continuous vibration in 
key areas causing failure. While this is the most common 
failure, there are also failure cases such as material 
contamination. To gather this data, the vibration signal of the 
doser was captured using accelerometers mounted in a rigid 
frame to seven different areas of the pumping system. These 
seven areas are: the left ball screw case and the right ball screw 
case, the left and right inlet valves, the left and right outlet 

valves and the nozzle (see Figure 3 for a nozzle-mounted sensor 
system).  

 
 
 
 
 
 
 
 
 

 

Figure 3: The box circled in red is the sensor box containing accelerometers 
mounted to the nozzle of the robot. 

Like the nozzle mounting, 6 other boxes are also fixed to 
these locations similarly in the robot/pump system.  

Sensor # Location Side of the Robot 
1 Nozzle NA 
2 Inlet Valve Left 
3 Inlet Valve Right 
4 Outlet Valve Right 
6 Bearing Case Right 
7 Outlet Valve Left 
8 Bearing Case Left 

 
Table 1: Device Number and Location 

 
Table 1 above highlights the naming convention while 

Figure 4 shows the robot in the production environment and 
highlights the location of all sensors. A typical production cell 
would have 4 robots.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 4: Sensor Placement in Production Cell 

 
The boxes containing the sensors were constructed from 

aluminum to protect them from the harsh environment and 
ensure good vibration transmissibility from the underlying 
structure. The sensor kit, which met the compliance of the paint  
shop environmental, health and safety requirements, consists of 
a microcontroller, a real time clock and accelerometer (see 
Figure 5). 
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Figure5: Sensor boxes used to gather data 

These components were chosen based on cost, off-the-shelf 
accessibility, hardware capability and software capability. The 
criteria for choosing the sensor involved sampling rate, cost, 
and the ability to sample in multiple axes. The ADXL335 met 
all of these design criteria. The real time clock utilized 
partnered well with the accelerometer used. The Teensy 
microcontroller was chosen based on both the size constraints 
as well as the ability to pass serial data. Having a separate 
microcontroller also allows for future sensor inputs to be added 
such as temperature and acoustic emission. The real time clock 
ensures the data are collected at specific time intervals and can 
be synchronized with each other. Data values corresponding to 
specific time instances can be related to events within the 
machine cycle. The sensor box samples at 500 Hz, as the 
dominant frequencies of operation were below 250Hz. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Hierarchy of Devices in the test environment 

 
Figure 5 shows the hierarchy of the system from the data 

collection to the overall analysis level. After buffering, data are 
passed to a secondary collector microcontroller (Raspberry Pi) 
mounted outside the process through USB cable. To this end, 
the local collector microcontroller is used as the database and 
control for now but will soon be replaced by direct access to 
plant IT systems.  

 
 
 
 
 
 
 
 

 
Figure 6: Method of Data Collection and Analysis 

 
Figure 6 refers to the method of collecting data and then 

placing it into the database. The manual method refers to 
uploading the data to the higher database. The GMM refers to 
the method Gaussian Mixture Modeling used for building the 

model. The following Equation 1 is the base method for 
clustering Gaussian Mixture Models: 

 
𝐺𝐺𝐺𝐺𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥) =  𝛷𝛷𝛷𝛷𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗(𝑥𝑥𝑥𝑥),𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗 = �µ𝑗𝑗𝑗𝑗 ,𝜎𝜎𝜎𝜎𝑗𝑗𝑗𝑗2�      (1)  

 
In Equation 1, the G(x) refers to the gaussian density that 

will eventually be centered around the mean and variance given 
by θj. This is what handles our clustering. The collected data 
(the new data box in Figure 6) are analyzed together with the 
historical data (the database box in Figure 6) to create a 
representative behavioral model which is updated through 
machine learning based on the new data. The analysis is 
performed at the top-level hierarchy in the cloud rather than the 
local level at either the secondary collector or the sensor box. 
Having the analysis occur in the cloud provides an “unlimited” 
computational power to access. At the local level, analysis is 
limited by the chip used for the microcontroller, due to the 
memory and graphics specifications. Cloud level analytics also 
allow for access to all data in a database, instead of limitation 
of local storage limits. The limit again is the amount of storage 
allocated for the project.  

At the local level, a microcontroller is limited to the amount 
of storage available. Analysis can, however, occur at the local 
level with such embedded systems. Having the analysis 
distributed reduces the need for computational power to run the 
overall analytics at the cloud level. The microcontroller could 
also be utilized to run a data visualization module. This would 
provide the operator with the local analytics of a particular 
machine and a sensor area without having to draw in the entire 
model set from the cloud. Partnering this system on the cloud 
also allows access to the production data of the manufacturing 
system and correlation between good or bad parts can then be 
validated. The cloud analytics only then need to focus on the 
pattern analytics rather than the conversion of raw data to 
analyzed data. This reduces the need to have a huge database 
of unanalyzed data in addition to the analyzed data. This allows 
only relevant information that can provide actionable change to 
remain. Superfluous data can be discarded at the local level 
without having the cloud attempting the filtering. The model 
learning then updates with the new data added. Currently, the 
system is gathering data to build the model learning and 
beginning the event classification.   

4. Results 

Data were first collected from an offline test cell. This initial 
data gathering was done to simulate the signals expected from 
each of the key areas and to indicate the measurability of 
vibration readings from each area. Overall, 7 tests were initially 
run to simulate each flow pattern.  Table 2 refers to each 
situation that was tested. The test was run over a purge cycle of 
the robot, during which the robot dispenses sealant inside of a 
bucket. The differentiator between each test is the nozzle angle 
and then whichever side is dispensing the sealant. The side 
column refers to which side is running. The event time for each 
test took around 100 seconds in dispensing sealant. 

  
Test # Nozzle Angle Side 

1 0 Right 
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2 0 Left 
3 45 Right 
4 45 Left 
5 90 Right 
6 90 Left 

 
Table 2: Sealant Tests and Description 

 
Frequency analysis was performed on each set of test data 

in order to characterize the frequency content. A model is not 
being created at this point. Simply, there needs to be validation 
that vibration data can be taken from these key areas. In 
addition to moving in multiple dimensions, the sealant doser 
also applies sealant in different patterns and angles. The flow 
of sealant can vary greatly from one type of nozzle to another. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 

Figure 7(a)-7(c): FFT results of each angle of sealant tests  
 

Figures 7(a) – 7(c) show the frequency content of three of the 
different tests on the inlet valve on the M1 side of the robot. 
They are tests 1,3 and 5 as referred in Table 2. In Figure 7(a) 
the robot was spraying at a 0-degree angle. Figure 7(b) was at 
a 45-degree angle, and Figure 7(c) shows spraying at a 90-
degree angle. Each test shows a consistent peak of around 60 
Hz. The variation in the signal depending on spraying pattern 
comes in the higher and lower frequency range based around 
peak. For the 0-degree angle and 45-degree angle are similar in 
the lower frequencies. The 0-degree angle has a higher power 
density in the higher frequency range. The 45-degree test and 
the 90-degree test have a similar higher frequency look, 
however the lower frequency power density for the 90-degree 
test is less than the 45-degree test.  

Looking at the test results, the frequency analysis validated 
the ability to see changes in the system with regards to flow 
rate and nozzle angle. However, in terms of differentiating 
production process, the frequency analysis failed to help 
identify the different production processes. As a whole system 
health could be ascertained, however, variation is difficult to 
determine. Therefore, for the model learning, it was determined 
to utilize the variance analysis of the time series data to allow 
for each production process to be utilized.   

This led the research team to utilize the time series analysis 
to examine the variance of the signal versus the frequency 
spectrum utilizing k-means and eventually a Gaussian Mixture 
Model. The goal will be models that update continuously in 
real-time and estimate the probability of a disruptive event. 
These disruptive events need to be identified or classified 
through the data. Once a data set with classified events is 
available, then various supervised training processes are widely 
available, such as support vector machines, for training the 
models. The time-consuming portion of the model building 
process (also the current status of the project) is collecting data 
and correctly classifying it. This is typically the work of skilled 
subject matter experts. Thus, the focus here is establishing 
techniques and tools to use for automating event classification. 
A secondary goal is providing the tools for consumers to repeat 
the learning on other equipment.  

Raw signals from sensors, like accelerometers, do not have 
flags to indicate what an event is or when it starts and stops. 
This is where “traditional” forms of data analysis step in, such 
as the FFT and HHT. However, these processes cannot handle 
massive amounts of data continuously. A Discrete Fourier 
Transform, for example, requires a finite amount of time set to 
process and generate analysis. It does not function well to 
continuously add data and then run another test continuously. 
The data set cannot simply be added to the database and allow 
the learning to take place autonomously.  
  An example of the raw vibration data is shown in Figure 8 
below. Signal processing tools are needed in order to extract 
data related to individual events. Since this is a valve, an event 
is defined as any time that the valve operates. Or, in other 
words, whenever the valve opens or closes. It is assumed that 
the accelerometer will sense vibrations that are greater in 
magnitude when the valve opens or closes than when it is 
resting in a static position. Over time and use, these peaks 
should become more pronounced with a higher amount of 
variability. This variation could occur with regards to either 
higher peaks or occur at different times over the event space. 
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Therefore, events are identified by peaks in the raw sensor 
signal and by increases in the data’s variability over a short 
window of time.  

Figure 8: Raw data from accelerometer on valve 
 
It can be seen from the data in Figure 8 that there are 

multiple types of these events, and they occur all throughout 
the spectrum of data and not in an organized manner or even a 
cyclic manner. Unsupervised learning is introduced to enhance 
the analysis, specifically through a learning technique known 
as clustering, used to identify different types of events. The 
vectors comprise descriptive features of the events.  

Event duration and area under the curve were chosen as the 
features to describe these events for the subject application. 
Therefore, the duration and area under the curve were 
calculated for each event that was extracted from the raw signal 
and these features are used to establish clusters. A Gaussian 
Mixture Model, a variation of k-means, was used for this 
learning. Since k needed to be defined up for the GMM to work 
an elbow plot was generated to determine optimal values for k. 
Multiple values of k were used but ultimately improvements to 
the SSE were minimal beyond k = 3.  

The points representing each event in feature space is shown 
in Figure 9, which also shows the cluster identifiers. 
Qualitatively, there is more variability within cluster 3 than the 
other two clusters. In Figures 10(a) – 10(c), each event is 
plotted based on the cluster it belongs too. The data in clusters 
1 and 2 seem to follow a set path consistently with some 
variation at the peaks. This gives a consistent area under the 
curve which supports the clustering seen in Figure 9. For 
Cluster 3 the data seem to follow the first initial peak and then 
split off with peaks occurring at different instances from then 
out. The amount of variability also supports the clustering as 
seen in Figure 9. This seems to support that clustering was done 
successfully. Out of the 182 events clustered, only 1 event 
failed to fit into a given set. However even with this one event, 
a probability is obtained of the event and then used to estimate 
which cluster it should go to based on the other clusters.   

Quantitatively, each cluster event follows a formula of 
acceleration with regards to time.  The area under the curve is 
determined with regards to the following formula: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  � 𝑎𝑎𝑎𝑎(𝑉𝑉𝑉𝑉)𝑑𝑑𝑑𝑑𝑉𝑉𝑉𝑉       (2)
𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓

𝑡𝑡𝑡𝑡0
 

The acceleration, a(t), plotted is with regards to the vibration 
monitored during the production process. Each event is 
considered an individual production process of dispensing 
sealant. The event times, T0 and Tf, also match up to the 
beginning and end of the production process of the doser robot 
for apply sealant. Therefore, they were chosen as the start and 
end times of each graph. The total event duration, then 
corresponds to the actual time duration of dispensing sealant to 
a car body. This was obtained by collecting data from the cell 
and taking a video of the production cell at the same time. 
Utilizing the timestamps, the event duration was able to be 

configured and matched to each cluster.      
The event data from each cluster is color-coded and plotted 

on the raw timeseries data as shown in Figure 11. Cluster 3 
represents the most frequent event in the data. Within the 
sample data shown, there are 142 events within Cluster 3 as 
compared to 26 events within Cluster 1 and 13 events within 
Cluster 2. The average duration for an event in Cluster 3 is less 
than 20 seconds, whereas the average duration of events in 
Clusters 1 and 2 are just over 60 seconds. 

 
  
 
 
 
 
 
 
 
 
 

Figure 9. Clusters within the feature space. 
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(b) 

 
 
 
 
 
 
 
 
 
 

(c) 
Figure 10. Data from multiple events: (a) cluster 1, (b) cluster 2, and 

(c)cluster 3 
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Figure 11. Cluster overlay on raw data 

 
After observing the operation of this system, it was 

determined that Clusters 1 and 2 represent events when the 
entire mechanical system is moving and the vibrations due to 
the valve become masked by the vibrations of the system. 
While the doser is in motion, it will undoubtedly move in the 
same motion each time for the same operation accounting for 
the similarity of each point. The doser is also a multi-axis 
system, moving according to program. It is good to note that a 
current hypothesis of the team is that Cluster 1 and Cluster 2, 
are believed to be two different car bodies. This supports that 
the clustering can also help pick out different production 
processes and differentiate data points based around that.  

However, events from Cluster 3 occur when the mechanical 
system is still, and the valve is the primary contributor to the 
sensed vibration, validating the increased variability. 
Therefore, Cluster 3 is expected to contain data that will reflect 
degradation of the valve over time. Qualitatively it is possible 
to observe variation in the dispensing time already from the 
differences in the shapes of the signals.  

5. Conclusion 

A review of condition-based monitoring has been presented 
with work done in vibration analysis and unsupervised learning 
in an application to a PVC dosing pump used in automotive 
painting. Key takeaways are an understanding of the selection 
of the materials used, the use of unsupervised learning to 
organize the data, in addition to the analysis taking place. 
Frequency spectrum tests were first utilized to characterize the 
signal and see if variation can be seen, before moving to 
unsupervised learning. With the unsupervised learning, it is a 
more robust method for model learning as well as variance 
analysis. From this point it is possible to determine the variance 
of signal and different production processes being performed 
on the machine. The sensors were readily accessible to the 
group and provided the versatility needed to capture the 
vibration signal. They met the compatibility of the sampling 
rate as well as the off-shelf accessibility. The sensor also paired 
well with the real time clock used to record timestamps and 
allow for matching the data to the production shift. The use of 
unsupervised learning sorts the data into a pattern from which 
a baseline and deviations are discerned. From the data 
collected, key events can be drawn to characterize the signal 
from when the valve on the doser is opening and closing, when 
the machine is inactive versus when the machine is active. 
Using this data as “healthy”, the model can start to be built to 
establish machine health and characterize more variability with 
the signal.  

6. Further Work 

Future work will involve implementing more on 
formalization of the predictive maintenance strategy; training 
the model to handle the predictive analysis rather than simply 
characterizing the data. This will also include modeling and 
testing against failed components and predicting instances 

during the doser dispensing cycle corresponding to specific 
times in the cycle time of the doser. More specific features for 
Cluster 3 will be generated and analyzed for long-term trends. 
With feedback regarding undesired valve behavior, a model 
will be trained to correlate feature trends with the undesired 
valve behavior for the prediction of that behavior. In addition, 
this will involve gathering more data, particularly fault data, 
and building up the infrastructure side. The infrastructure side 
involves implementing an off-the-shelf hardware solution as 
well as establishing automatic data transference and analysis on 
the industrial network. Production data will also be integrated 
into the system to allow for better matching of the clusters and 
data points to specific cars. On the IT side, computational 
analysis will occur using the techniques of fog and cloud 
computing discussed earlier. This will involve implementing a 
concrete database system to handle the device configuration as 
well as the analysis. Pipelines will be created to run the data 
from the database to the model. From the model, machine status 
will be displayed to the operator and engineers, providing real-
time data.  

A separate use case of vehicle track elevator Automated 
Storage and Retrieval System (ASRS) has been identified as a 
strong candidate for inclusion in a predictive maintenance 
program, as this system periodically experiences catastrophic 
bearing failure. While the ASRS and doser are functionally 
different, the practice of unsupervised learning and analysis is 
applicable to both. Upon the completion of the sensor box 
design, analysis strategy and system modeling, it is envisioned 
to deploy such a system to new equipment cases with new types 
of phenomena and failure modes.  
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