
A SmartNIC-Accelerated Monitoring Platform for
In-band Network Telemetry

Yixiao Feng‡, Sourav Panda†, Sameer G Kulkarni†, K. K. Ramakrishnan†, Nick Duffield‡
†University of California, Riverside, ‡Texas A&M University

Abstract—Recent developments in In-band Network Telemetry
(INT) provide granular monitoring of performance and load on
network elements by collecting information in the data plane. INT
enables traffic sources to embed telemetry instructions in data
packets, avoiding separate probing or infrequent management-
based monitoring. INT sink nodes track and collect metrics
by retrieving INT metadata instructions appended by different
sources of INT information. However, tracking the INT state in
packets arriving at the sink is both compute intensive (requiring
complex operations on each packet), and challenging for the
standard P4 match-action packet processing pipeline to maintain
line-rate. We propose a network telemetry platform in which
the INT sink is implemented using distinct (C-based) algorithms
on a SmartNIC in the monitoring host, complementing the
P4 packet processing pipeline. This design accelerates packet
processing and handles complex INT-related operations more
efficiently than P4 match-action processing alone. While the
P4 pipeline parses INT headers, a general-purpose Micro-C
algorithms performs complex INT tasks (e.g. aggregation, event-
detection, notification, etc.). We demonstrate that partitioning of
INT processing significantly reduces processing overhead vs. a
P4-only implementation, providing accurate, timely and almost
loss-free event notification.

Index Terms—In-band network Telemetry, Network Monitor-
ing, P4

I. INTRODUCTION

Network monitoring provides information crucial for the
control, operation and management of computer networks.
Over the last few years, In-band Network Telemetry (INT) [1]
has represented an important development in network moni-
toring that supports collecting and reporting network state in
the data plane. INT enables traffic source to embed telemetry
instructions in data packets. This capability will improve on
long-standing practices of management based monitoring via
relatively infrequent SNMP-based polling or event detection
via RMON [2], or performance measurement using probe
packets, by providing timely and precise measurements from
user packets in the network data plane. In addition to enabling
detailed and granular monitoring of network performance, the
information provided through INT can potentially improve
congestion control and alert to the occurrence of complex
events defined by the cumulative information of a packets
traversal of network elements.

The advent of programmable switches has been a significant
development, both for enabling acquisition of information
from packets, and to enable both control and data paths to
adapt the dynamic conditions in the network informed through
monitoring. In particular, the P4 [3] language provides a
framework with which to program switches to process packet

flows more flexibly with a richer match/action functionality
than was previously possible. In the context of INT, P4 is
able to leverage recent advances in the compute capabilities of
the networking devices such as switches, routers and end host
network interface cards (NICs) to enhance monitoring capabil-
ity. Specifically, additional packet fields can be introduced for
each switch (we use the generic term, switch, to refer to both
layer-2 switches and layer 3 routers) in the network to provide
monitoring information. These fields are embedded within
the data packets and switches are able to use them to insert
granular telemetry information concerning the performance
and functioning of the network switches and links in the data
path. Thus, to provide the most actionable information to an
end system requires processing all INT packet fields populated
by switches in a packet’s path and providing that information
in a timely manner can be a significant challenge.

With the need for ever higher link bandwidths in datacenters
(DC), servers increasingly depend on smartNICs (sNIC) to of-
fload network packet processing1 because of the performance
boost they can provide. The main challenge that our work
addresses is how to design a cost-efficient traffic measurement
and analysis infrastructure that can act as a monitoring sink
platform for In-Network Telemetry (INT) to provide loss-free
and timely INT notification of complex events dependent on
entire packet paths to the monitoring host by leveraging the
sNIC. Our work addresses a gap in current approaches, which
do not achieve scalable cost-efficient INT packet processing at
the monitoring sink. Specifically, most of the existing solutions
[4], [5], [6] rely on the host-CPU to perform INT packet
processing and event detection and typically are unable to
achieve high-performance (line-rate) INT event processing.

In this work, we present the architecture, design and
implementation of a high-performance INT processing and
INT event detection framework, in which we partition INT
processing between the sNIC and the monitoring host. The key
advantage of this architecture, compared to existing solutions,
is the ability of the sNIC to provide key processing functions
– transformation and application level steering – that are
much more difficult to support in a programmable switch,
while relieving the host CPU of the requirement to process
packets in software at full line rate. We illustrate the scheme
to collect and aggregate INT information across the packets
of different network flows (i.e., network flows identified by

1SmartNICs are the programmable and extensible network interface cards
(NICs) that provide the network traffic processing capabilities within the NIC,
allowing the CPU to program and offload certain packet processing to be
performed within the NIC978-1-7281-8154-7/20/$31.00 c©2020 IEEE

unique IP 5-tuple) within the sNIC and export the INT metrics
to the monitoring host. This allows us to improve packet
processing rates by a factor of around 3 compared with rates
reported in the literature [6] by having the sNIC relieve the
packet processing demands on the host CPU. Furthermore,
we propose mechanisms to program the INT event parameters
on the monitoring framework to have the sNIC detect and
export INT events to the monitoring host in a timely manner.
The host can then process these events to take necessary
data/control plane measures, readjust/reprogram the INT event
thresholds on the sNIC, and also timestamp and store the event
information (time-series data) in externalized database (Redis).

Our work incorporates the most recent advances and spec-
ifications of INT v2.0 [7]. Our frameworks support all INT
metrics (packet path information: switch id, hop latency,
queue occupancy, congestion etc.) listed in the current INT
specification and is also extensible to support additional met-
rics as necessary. Our approach not only enables us to achieve
line-rate packet processing, but also drastically reduces the
host CPU consumption for INT-related processing.

To summarize, the key contributions of our work include:
• Flexible partitioning and INT processing offload: The

INT monitoring functionality is judiciously split between
the sNIC and host to cooperatively process the INT packets
and INT events at full line rate. With a large cohort of
much less powerful microengines (MEs), the sNIC performs
INT packet processing in-path at line rate (with the MEs
performing the processing in parallel) to extract the key flow
information, while intelligently avoiding slowdowns from
locks used for coordination;

• INT data and Event Aggregation: The sNIC processes
each flow to collect and aggregate INT information across
different packets in a hash table and also transforms the INT
packet data to INT events and notifies the events in a timely
manner to the monitoring host;

• Adaptable and Mutable INT data and event support:
Our platform provides a data structure to facilitate platform
specific INT data collection that is adaptable to custom re-
quirements and allows for filtering the INT events based on
configured thresholds, while allowing us to mutate threshold
parameters dynamically based on the INT event processing
rate and characteristics of the monitoring platform.

II. BACKGROUND AND RELATED WORK

A. SmartNIC architecture overview and capabilities

In this work, we used the Netronome SmartNIC [8]
for offloading critical INT processing functions. In addi-
tion to network processing capabilities of traditional NICs,
e.g., checksum, segmentation and reassembly, the sNIC also
has 60 flow processing cores (that run at 633MHz), also
known as Microengines (MEs), for implementing the more
complex network data plane functionality. This may include
encryption/decryption, flow table (match-action) processing,
traffic shaping, security and traffic analysis functions, etc.
The Netronome sNIC supports P4 for programmable parsing

(header extraction), which is conducted by a subset of MEs,
known as the packet processing cores. We dedicate 54 MEs
for packet processing pipeline and INT header processing. A
global load balancer on the sNIC distributes the incoming
packets among these 54 PMEs based on a credit-based scheme
to provide considerable parallelism for high throughput packet
processing. The rest of the MEs run dedicated MicroC pro-
grams i.e., separate functions executed asynchronously to en-
able stateful packet processing within the sNIC. (e.g., stateful
event processing, micro-burst detection, etc.).

The sNIC has a hierarchical memory sub-system, providing
a large external memory 2GB, which we leverage to im-
plement custom data structures (user configured) for caching
flow specific INT data (called a FlowCache) for several flows,
while aggregating INT metrics across packets of a flow. We
also use the memory to store the P4/SDN match action tables.

B. INT and telemetry report specification

Ethernet header
IP

UDP (dstPort = 1000)
INT

TCP header

Type = 1 (4b) NPT = 2 (2b) R(2b) Length(8b) R(8b) IP proto = 17(8b)INT Shim Header:
INT Metadata Header (INT Spec v2.0, §5.7)

INT Metadata
TCP Payload

Fig. 1: INT over TCP packets

INT [7] provides real-time, fine-grained, end-to-end network
monitoring in the dataplane [9]. Our platform currently
supports INT processing and monitoring for the INT-MD type
where the INT data is carried along with the packet.
INT Header format and location: The current specifica-
tion [7] has multiple ways to place the INT header and
metadata fields. To allow support for INT even with SSL i.e.,
encrypted TCP data, we choose the INT with new UDP header
encapsulation approach for TCP packets where we insert a
new UDP header, INT header and INT data in between the
original Layer-3 (IP) and Layer-4 (TCP) headers. However,
for UDP packets we leverage the original UDP header, as per
the specification. For both cases, we set the destination port of
the outer UDP header to INT PORT (0x1000) to indicate the
presence of INT data. Although this approach requires the sink
node to perform different processing for TCP vs. UDP packets
(which we feel is not ideal), we seek to be consistent with the
current specification. The primary motivation for the different
treatment for UDP packets in the specification appears to be to
try and minimize the overhead for inserting the INT headers
with UDP packets. Fig. 1 shows the INT shim header, which
is 4 bytes long, followed by the INT metadata header of 12
bytes. After the INT shim and metadata header, each INT hop
adds the same length of metadata[7] as set in the metadata
header. In our experiment settings, every packet traverses a
fixed path of 5 INT intermediate switches.
INT Event and Telemetry Reporting At the INT sink, the
INT metadata is extracted and telemetry reports are generated
and communicated to the monitoring host based on the guide-
lines detailed in P4 telemetry report specification[7]. Further,
we incorporate additional mechanisms to distinctly report the
aggregate information for the regular INT telemetry data, and

to provide specific INT event notifications along with the
associated INT data to the monitoring host.

C. Related Work

A large number of works [10], [11], [12], [13], [14], [15]
have addressed different aspects of processing and collection
of INT packets. Here, we focus primarily on INT monitors.
INT Monitors and Event Processing: IntMon [16] imple-
ments an INT monitoring service on the Open Networking
Operating System (ONOS). However, it achieves very low
processing rates and high cpu utilization. IntCollector [9] also
uses UDP encapsulation for INT packets and the monitor
reports INT change events based on a predefined threshold.
However the INT packet processing and event detection are
implemented on the host CPU, splitting INT packet processing
into a fast path (accelerated by an eXpress Data Path (XDP))
and a slow path for exporting and inserting INT events into
a database. Because of the packet processing being done on
the host CPU, performance is limited. The work in [5] is
closest to ours. They implement the INT packet processing
and INT event detection using the sNIC P4 pipeline. But,
they only report simple threshold-crossing INT events to the
stream processor (running on the host CPU) using the kernel
bypass technique AF XDP. However, the use of P4 pipeline
restricts the per-flow state information to simple registers and
counters only, and does not give us the ability to maintain
complex per flow state that are required by most server-based
networking applications [17]. Also, additional miscellaneous
functions such as timeouts etc. are not easily implementable
using P4 [17]. By using callable C functions and P4, we
design a highly efficient INT monitoring platform that not only
supports notification of INT events, but also exports the basic
INT telemetry report for every INT packet.

III. DESIGN AND IMPLEMENTATION

SmartNIC

Header Parsing – P4

Ethernet header

Callable C Functions

INT Parsing

PCIe
𝑡" 𝑡# 𝑡$…

Redis

ThreadsINT Metrics

INT
Events

Avg
Metrics

UDP

UDP Payload/TCP

… …

PMEs

Age
O
ut

CMEs

Host

𝑯𝑷

IP

𝑹𝑮

𝑹𝑰

Distribution
Metrics

Fig. 2: Architecture

A. Architecture and Data Structure

Fig. 2 presents the high-level architecture of our INT
monitoring platform. While generally an INT sink is the
’last’ switch and the monitoring node is a host connected
over a link to that switch, we propose an architecture that
utilizes a combination of a sNIC and host (commercially

available off-the-shelf server) to serve as combined INT sink
and monitoring node. Packets flow through the monitor (which
acts as a line-rate bump-in-the-wire) to the destination. The
packet processing pipeline in the sNIC takes advantage of P4
packet parsing, match-action rules and Micro-C algorithms to
achieve fine-grained INT traffic analysis at line rate. The sNIC
aggregates the INT metrics across multiple packets of a flow
and collects the INT metrics for a large number (∼ 6Million)
of flows in the INT Flowcache. We utilize the general-purpose
Micro-C algorithms to perform more complex INT tasks (e.g.,
averaging across INT messages per flow, event detection, and
notification). We describe below the key components, data
structure and algorithms that seek to achieve an accurate,
timely, and close to loss-free INT monitoring platform.

B. sNIC Data Structure and operations

Fig. 2 also shows the data structure on sNIC and the corre-
sponding operations for INT packet processing. We allocate a
large hash table (a.k.a. INT FlowCache, HP), with 219 rows
on the sNIC memory and 12 buckets per row to accommodate
hash collisions. The IP 5-tuple of the incoming packet header
is hashed to identify the row index in the hash table. Each
bucket in the hash table includes a flow key (i.e., 5-tuple),
packet count, the timestamp of the most recent update and the
INT metrics. The INT metrics consists of the most recent as
well as the average statistics of the INT metadata (i.e., switch
ID, hop latency, queue occupancy, link utilization) for each
INT transit node. We allocate 52 micro engines for the packet
processing pipeline (PMEs) and dedicate 2 micro engines for
custom processing (CMEs). We leverage the CMEs to age
out the entries in HP that have not been updated over a
predefined time period. Based on the available credits at each
of the PMEs, a global load balancer on the sNIC distributes
incoming packets among these 52 PMEs. This allows all PMEs
to process packets in parallel. (Each ME has 4 threads and
each of these threads may process the packets concurrently).
Hence, to guarantee consistency and accurate operations on
primary hash table, each thread locks the corresponding row
entry to update or evict to host.
Ring buffers: We leverage the ring buffers to export necessary
INT information to the monitoring host. Each ring buffer is
configured to hold 64K entries. We use a total of 8 general
ring buffers (RG) to export an evicted bucket (INT entry of
a flow) to the host (i.e., upon collision and no free bucket
in the row, we evict one bucket (least recently updated) to
make space for a new flow.) We also use 8 INT event ring
buffers (RI) to export the INT events that are generated by
the packet processing pipeline. The collected INT flow metrics
would be inaccurate if the ring buffer overflows. We found that
64K entries for each ring buffer is sufficient space to prevent
evictions from overflow on the ring buffer.
Packet Processing and key operations: An incoming flow
might result in one of the two operations in HP : 1) Update
operation: the incoming INT flow matches one of the keys in
HP or, has no match but has an empty bucket in the row in
HP . 2) Eviction: all the buckets of a row in INT FlowCache

are occupied and the incoming INT flow does not match any
keys in HP . In this scenario, one existing entry (LRU) is
evicted to the corresponding general ring buffer RG. In either
case (1 or 2), the PME thread will update the data structure and
update the most recent as well as the average statistics of the
INT metadata (i.e., switch ID, hop latency, queue occupancy,
link utilization) for each INT transit node. In addition, an INT
data update may result in one or more INT event notification
operations, as described below.

C. INT Data and Event Notification

Our INT Flowcache aggregates and collects INT infor-
mation carried in each packet of the flow on the sNIC.
For every packet, we extract the INT metrics (i.e., the four
metadata fields: switch ID, hop latency, queue occupancy, link
utilization) embedded by each INT transit node. Further, when
the incoming packet’s INT data for a metric at any transit
node exceeds a predefined threshold–configurable for each
INT metric for each of the T and C events–an INT event (i.e.,
event T and/or event C described below) is generated and
notified to the monitoring host through the INT event ring
buffer RI . For each INT event, we store the corresponding
INT fields (i.e., switch ID, measurement value at that switch,
bitmap indicating the event type and the timestamp) in the ring
buffer RI . In the flow entry in HP , we also track the average
for each of the metrics for each of the switches in the path.

We specify two broad classes of INT events: 1) Change
events C, and 2) Threshold-crossing events T . Change events,
C, occur when the difference between the previous and the cur-
rent INT metadata value (i.e., hop latency, queue occupancy,
or link utilization) exceed a predefined threshold. Threshold-
crossing events, T , occur when the current INT metadata value
exceeds a predefined threshold. We further categorize Event
set for C and T into a) Per switch and b) End-to-end.
Per switch: Since we store the INT metadata value for each
of the INT transit nodes (switches), we can account for i)
the current INT metadata value that exceeds the predefined
threshold; ii) the change in INT metadata value for these
switches by comparing the previous and current reported
values for the same flow. We generate an event when current
absolute value or the difference between two values of the
same metric exceeds a predefined threshold.
End-to-end The use of Micro-C allows us to also compute
the aggregate (end-to-end measure) across all the INT transit
node reported values, especially for the hop latency and also to
build the path information by concatenating the IDs of each
of the transit nodes. We generate an event when either the
current aggregate value exceeds the threshold or the difference
(previous and current) for the aggregated hop latency exceeds
the predefined threshold.
Tracking Distribution for INT Metrics Each switch reports
metrics in INT packets, and it is desirable to collect the
distribution of the INT metadata by storing the occurrence
for each possible value, or a range of values, over time. We
allocate three arrays for the three INT measurements (i.e.,
hop latency, queue occupancy, link utilization) per switch in

the sNIC memory. Each entry in the array has a counter for
a certain range of values (bin) of an INT metric, and the
counter is incremented by 1 each time the observed metadata
value corresponds to the bin’s range. The distribution of each
measurement per switch can provide important information
on switch and path status (e.g., determine the bottleneck by
identifying the switch with the worst hop latency).

D. Host Data Structure and operations

The monitoring host reads the exported INT information
including the flow statistics from sNIC. The INT notifica-
tionsfrom the sNIC are also periodically flushed to the Redis
database at the host. We dedicate a number of host threads
(up to 10 CPU cores/threads) for reading from the sNIC rings
RG, RI and the distribution arrays plus a CPU core to flush
the INT metrics to the Redis [18] database.

IV. EVALUATION

A. Evaluation Setup

1) Testbed: We evaluate our monitoring platform on a
Linux (kernel version 4.4.0-142) server with 10 Intel Xeon
2.20GHz CPU cores and 256GB memory and Netronome
Agilio 4000 CX Dual-Port 10 Gigabit sNICs.

2) Evaluation Trace: We use a publicly available packet
trace from CAIDA 2019 [19] containing about 186 millions
packets over a 5 minute interval. We speed up the trace by
reducing the packet size to 64 bytes, to achieve the highest
packet arrival rate. The INT headers are inserted into every
packet using the UDP encapsulation option, and emulate each
transit node and the number of metrics (INT instructions) by
creating a version of the trace with the corresponding number
of INT metadata fields for each packet. We simulate a number
of INT transit nodes, varying from 1 to 5 and a number of
instructions varying from 1 to 4 for each packet.

3) Synthetic INT metadata: Assuming for example that
there are 5 INT transit nodes and 4 instructions on each
node, the values embedded inside each packet are randomly
generated according to a exponential distributed probabilities
across all possible values for each measurements (i.e., hop
latency, queue occupancy, link utilization). For example, the
queue occupancy takes values from 0 to 300 with exponential
decreasing probabilities. The INT layer and corresponding
metadata are inserted into the 64-byte CAIDA 2019 trace to be
used in our evaluation. For our experiments, we use MoonGen
[20] as pcap trace replay tool.

B. Throughput and INT Events Rate

When traffic arrives at the sNIC, we process the packet
through the packet processing pipeline and update the primary
hash table HP with the flow information, count, timestamp
as well as the INT metadata. Fig. 3(a) shows the throughput
achieved through our system (packets being processed and
then routed back to the MoonGen packet generator. The
throughput essentially overlaps the incoming packet arrival
rate at sNIC, for different numbers of INT transit nodes and
varying number of INT metrics reported (instructions). The

highest incoming packet arrival rate is around 11 Mpps with 1
instruction on 1 INT transit node (64 byte packets plus the INT
headers and meta-data). As the number of INT transit nodes
and the number of instructions increases, the size of each
packet would also increase, reflected in the lower per-packet
throughput in Fig. 3(a). We are able to maintain full throughput
across all of the configurations tested, and match the incoming
rate even when processing multiple (4) instructions per packet
at each of the 5 transit nodes. Thus, our monitoring node can
fully function as a ’bump-in-the-wire’.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of INT Transit Nodes

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

illi
on

 P
ac

ke
ts

/s
ec

)

SNIC throughput
1 Instruction
2 Instructions
3 Instructions
4 Instructions

 Incoming packet arrival rate
1 Instruction
2 Instructions
3 Instructions
4 Instructions

(a) Packet Throughput
(processed by sNIC)

250 260 270 280 290 300
Thresholds

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (M

illi
on

 P
ac

ke
ts

/s
ec

)

Throughput
Event Notification Rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ev
en

t N
ot

ifi
ca

tio
n

Ra
te

 (M
illi

on
/s

ec
)

(b) Tput vs. Event Notif. Rate,
varying Q len. threshold

Fig. 3: sNIC & complete system Tput vs. event notifications

Fig. 3(b) shows the throughput achieved by our complete
INT monitoring platform as the rate of INT event notifications
posted successfully to the host changes when we vary the
threshold for when the metric reported by an INT packet is
detected as an event. The operation on receiving a packet with
INT meta-data in it is to first update the primary hash table
HP (i.e., update the latest INT information and update the
cumulative statistics) for every packet. We also have to evict
entries to the general ring buffer RG on a hash collision, to
accommodate a new flow. When the threshold for a metric
is smaller, an arrival of an INT packet is more likely to
generate an INT event notification to the host. While the
sNIC can receive INT packets at the full line rate for different
configurations of transit nodes and metrics reported in each
INT packet (as shown in Fig. 3(a)), the throughput of INT
packets processed through the complete platform (including
notifications delivered up to the host without loss) varies
depending on the threshold used to generate an event. We
show the result for varying INT threshold-crossing events,
since they generate a much higher notification rate than change
events, thus stressing our platform more. Fig. 3(b) is for
varying the queue occupancy threshold, generating a varying
amount of INT notification events to RI . Our monitoring
platform can maintain full line rate (i.e., 6.57 Mpps as shown
in Fig. 3(a) with 5 switches and 4 instructions each) even
when the notification rate is around 0.6-0.8 Million INT events
per second. The throughput decreases when there is a higher
rate of notifications, as this introduces more overhead on the
packet processing pipeline. However, our monitoring platform
can still maintain a throughput of around 5.3 Mpps when there
are 1.6 Million INT event notifications to RI .

C. Host Thread Usage

Fig. 4 shows the number of CPU threads used by the host
to read the two ring buffers RI and RG. Fig. 4(a) shows the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Event Notification Rate (Million/sec)

1

2

3

4

5

6

7

8

Th
re

ad
s

Threads/Cores

(a) Host Thread Usage: RI

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of INT Transit Nodes

0.96

0.98

1.00

1.02

1.04

Th
re

ad
s

1 Instruction
2 Instructions
3 Instructions
4 Instructions

(b) Host Thread Usage: RG

Fig. 4: Number of Host Threads Required

thread usage for reading the INT ring buffers RI at different
event notification rates. The maximum threads/cores we need
to allocate on the host for each ring buffer is 8, which can
support a notification rate of 1.6 Million INT events per
second. The host only needs 1 thread(core) to read the general
ring buffer across all of the experiment scenarios.

Update INT Flow in HP Evict INT Flow into RG Evict INT Flow into RI

5

10

15

20

25

La
te

nc
y

(
s)

Fig. 5: INT Processing Latency
D. Latency

Fig. 5 shows the processing latency for INT flows through
the different components of the packet processing pipeline.
There are three major operations: updating the INT and flow
information in the primary hash table HP ; eviction of a flow
entry (including INT meta-data) to the general ring buffer RG

when required; the notification of a flow’s INT information
to the INT event ring buffer to deliver the information to
the host. The eviction to RG takes the least amount of time.
The averaging of the INT metric when writing the entry
into the ring RG takes less time than updating the complete
path’s information, which includes up to 20 measurements
(5 switches and 4 measurements each). On the other hand,
the first step of updating the INT and flow information in
HP is to write the latest INT metrics received for each of
the INT transit node, which takes additional processing. The
latency for notification of the INT event into RI depends on
the event notification threshold and the resulting rate. A higher
event notification rate has a significant impact on the latency
because of the need to have a lock on RI . We configure the
experiment to have around 0.4 million INT events sent to RI

per second. A lock is necessary to ensure correctness and to
avoid a race among the different threads of 52 PMEs that can
concurrently access and update the ring buffer. Nonetheless,
we can observe that the median latency within the sNIC for
the three operations of INT processing and event notification
are less than 5µs and a maximum of 25µs which is orders of
magnitude lower than processing INT on the host CPU.

E. Accuracy
Fig. 6 shows the histogram of the metrics collected across

the INT transit nodes and their accuracy relative to the ground

0 10 20 30 40 50
values

10

20

30

40

50
#.

 O
cc

ur
re

nc
es

1e6
Ground Truth
Experiment Results
Loss Rate

0.0340

0.0345

0.0350

0.0355

0.0360

0.0365

0.0370

Lo
ss

 R
at

e
(%

)

(a) End-to-end Hop Latency

0 50 100 150 200 250 300
values

0.2

0.4

0.6

0.8

1

1.2

#.
 O

cc
ur

re
nc

es

1e6
Ground Truth
Experiment Results
Loss Rate

0.024

0.026

0.028

0.030

0.032

0.034

0.036

0.038

Lo
ss

 R
at

e
(%

)

(b) Queue Occupancy at Switch 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
values

0

20

40

60

80

#.
 O

cc
ur

re
nc

es

1e6
Ground Truth
Experiment Results
Loss Rate

0.030

0.031

0.032

0.033

Lo
ss

 R
at

e
(%

)

(c) Link Utilization at Switch 1

Fig. 6: Accuracy in collecting INT metric distribution. Loss rate = 1−(#Observed sNIC Occurrences)/(#Occurrences in trace).

truth. Collecting each metric requires extracting the INT
metrics for each switch in the path. Our experiments consider
three metrics (i.e., end-to-end hop latency, queue occupancy
and link utilization for the first switch in the path) with the
notification rate configured to be around 0.4 Million INT
events/sec. Each metric value is randomly generated according
to an exponential distribution. Data for Fig. 6(a) is collected by
summing hop latency across all switches, while for Fig. 6(b)
and (c), we consider data from the first switch. Fig. 6 shows
that the inaccuracy at the host for each of the metrics reported
to the host is less than 0.04% at the full line rate. This is
significantly better than what has been observed with other
efforts reported in the literature. We are currently designing
methods to robustly identify the bottleneck link in the network
(and in the path of individual flows). Flows with the highest
end-end latency can be identified, with the host using exported
statistics to determine the switch in the path of those flows with
the highest queue occupancy/link utilization.

V. CONCLUSION

Efficiently collecting INT traffic statistics at an INT sink,
in a loss-free manner and generating notifications without
impacting throughput is crucial for an INT network monitoring
platform. To strike a balance between having more complex
INT metric collection and maintaining a high throughput,
we proposed a smartNIC-based host as an INT sink and
monitoring platform. Unlike using a P4 switch as an INT sink,
the sNIC is able to perform INT-packet processing at high rates
as well as the complex statistics collection tasks in a loss-free
manner. The packet processing pipeline in the sNIC combines
the packet header extraction using P4, and callable C functions
running on micro-engines to achieve the high performance we
desire. While INT traffic is aggregated on a large hash table
on the sNIC, the INT events are exported to a set of ring
buffers retrieved by the monitoring host. The history of INT
events and aggregated INT metrics are stored using in-memory
database in the monitoring host. Our evaluations show that the
monitoring platform achieves full line-rate throughput through
the sNIC, high event notification rates, and good accuracy for
traffic statistics collection. The latency incurred by our INT-
sink and monitoring platform is quite low–a few µsecs–so the
platform can function as a ’bump-in-the-wire’.
Acknowledgement: This work was supported by National Sci-
ence Foundations awards CNS-1763929 and CNS-1618030.

REFERENCES

[1] “In-band Network Telemetry (INT).” [Online]. Available: https:
//p4.org/assets/INT-current-spec.pdf

[2] W. Stallings, SNMP, SNMP v2, SNMP v3, and RMON 1 and 2 (Third
Edition). Reading, Mass.: Addison-Wesley, 1999.

[3] “P4 language specification.” [Online]. Available: https://p4.org/specs/
[4] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman,

“The case for in-network computing on demand,” in Proceedings of
the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303979

[5] J. Vestin, A. Kassler, D. Bh, K.-j. Grinnemo, J.-O. Andersson, and
G. Pongracz, “Programmable event detection for in-band network
telemetry,” 09 2019.

[6] J. Hyun, N. Tu, J.-H. Yoo, and J. Hong, “Real-time and fine-grained
network monitoring using in-band network telemetry,” International
Journal of Network Management, vol. 29, p. e2080, 10 2019.

[7] “In-band network telemetry (int) dataplane specification v2.0.” [Online].
Available: hhttps://github.com/p4lang/p4-applications/blob/master/docs/
INT v2 0.pdf

[8] “Netronome NFP-4000 Flow Processor.” [Online]. Available: https:
//www.netronome.com/m/documents/PB NFP-4000.pdf

[9] N. Van Tu, J. Hyun, G. Y. Kim, J.-H. Yoo, and J. W.-K. Hong,
“Intcollector: A high-performance collector for in-band network teleme-
try,” in 2018 14th International Conference on Network and Service
Management (CNSM). IEEE, 2018, pp. 10–18.

[10] S. Tang, D. Li, B. Niu, J. Peng, and Z. Zhu, “Sel-INT: A runtime-
programmable selective in-band network telemetry system,” IEEE Trans-
actions on Network and Service Management, vol. PP, 11 2019.

[11] Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry for
overhead reduction,” 10 2018, pp. 1–3.

[12] J. Marques, M. Caggiani Luizelli, R. Iraja Tavares da Costa Filho, and
L. Gaspary, “An optimization-based approach for efficient network mon-
itoring using in-band network telemetry,” Journal of Internet Services
and Applications, vol. 10, 12 2019.

[13] D. Suh, S. Jang, S. Hanb, S. Pack, and X. Wang, “Flexible sampling-
based in-band network telemetry in programmable data plane,” ICT
Express, vol. 6, 09 2019.

[14] J. Liang, J. Bi, Y. Zhou, and C. Zhang, “In-band network function
telemetry,” 08 2018, pp. 42–44.

[15] D. Bh, A. Kassler, J. Vestin, M. A. Khoshkholghi, and J. Taheri,
“IntOpt: In-band network telemetry optimization for nfv service chain
monitoring,” 05 2019, pp. 1–7.

[16] N. Tu, J. Hyun, and J. Hong, “Towards onos-based sdn monitoring using
in-band network telemetry,” 09 2017, pp. 76–81.

[17] “P4 data plane programming for server-based networking applications.”
[Online]. Available: https://www.netronome.com/m/documents/WP P4
Data Plane Programming.pdf

[18] “Redis.” [Online]. Available: https://redis.io/
[19] “The CAIDA anonymized internet traces,” http://www.caida.org/data/

passive/passive dataset.xml.
[20] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,

“MoonGen: A Scriptable High-Speed Packet Generator,” in Internet
Measurement Conference 2015 (IMC’15), Tokyo, Japan, Oct. 2015.

