®

Check for
updates

Learning Stochastic Dynamical Systems
via Bridge Sampling

Harish S. Bhat®™@® and Shagun Rawat

Applied Mathematics Unit, University of California, Merced, CA 95343, USA
hbhatQucmerced.edu

Abstract. We develop algorithms to automate discovery of stochastic
dynamical system models from noisy, vector-valued time series. By dis-
covery, we mean learning both a nonlinear drift vector field and a diago-
nal diffusion matrix for an Ité stochastic differential equation in R?. We
parameterize the vector field using tensor products of Hermite polyno-
mials, enabling the model to capture highly nonlinear and/or coupled
dynamics. We solve the resulting estimation problem using expectation
maximization (EM). This involves two steps. We augment the data via
diffusion bridge sampling, with the goal of producing time series observed
at a higher frequency than the original data. With this augmented data,
the resulting expected log likelihood maximization problem reduces to
a least squares problem. We provide an open-source implementation of
this algorithm. Through experiments on systems with dimensions one
through eight, we show that this EM approach enables accurate estima-
tion for multiple time series with possibly irregular observation times.
We study how the EM method performs as a function of the amount of
data augmentation, as well as the volume and noisiness of the data.

Keywords: Stochastic differential equations - Nonparametric
estimation - Diffusion bridges - Expectation maximization

1 Introduction

Often, the goal of mathematical modeling in the sciences and engineering is the
development of equations of motion that describe observed phenomena. Classi-
cally, these equations of motion took the form of deterministic systems of ordi-
nary or partial differential equations (ODE or PDE, respectively). In systems of
contemporary interest where intrinsic noise must be modeled (e.g., in biology and
finance), we find stochastic differential equations (SDE) used in place of deter-
ministic ones. Regardless, comparisons of model predictions against observed
data typically occur only after the model has been built from first principles.
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Recent years have seen a surge of interest in using data to automate discovery
of ODE, PDE, and SDE models. Such machine learning approaches complement
traditional modeling efforts, using available data to constrain the space of plau-
sible models, and shortening the feedback loop linking model development to
prediction and comparison to real observations. We posit two additional reasons
to develop algorithms to learn SDE models. First, SDE models—including the
models considered here—have the capacity to model highly nonlinear, coupled
stochastic systems, including systems whose equilibria are non-Gaussian and/or
multimodal. Second, SDE models often allow for interpretability. Especially if
the terms on the right-hand side of the SDE are expressed in terms of commonly
used functions (such as polynomials), we can obtain a qualitative understanding
of how the system’s variables influence, regulate, and/or mediate one other.

In this paper, we develop an algorithm to learn SDE models from high-
dimensional time series. To our knowledge, this is the most general expectation
maximization (EM) approach to learning an SDE with multidimensional drift
vector field and diagonal diffusion matrix. Prior EM approaches were restricted
to one-dimensional SDE [8], or used a Gaussian process approximation, lin-
ear drift approximation, and approximate maximization [25]. To develop our
method, we use diffusion bridge sampling as in [12,13], which focused on Bayesian
nonparametric methods for SDE in R'. After augmenting the data using bridge
sampling, we are left with a least-squares problem, generalizing the work of [6]
from the ODE to the SDE context.

In the literature, variational Bayesian methods are the only other SDE learn-
ing methods that have been tested on high-dimensional problems [34]. These
methods use approximations consisting of linear SDE with time-varying coef-
ficients [1], kernel density estimates [2], or Gaussian processes [3]. In contrast,
we parameterize the drift vector field using tensor products of Hermite polyno-
mials; as mentioned above, the resulting SDE has much higher capacity than
linear and/or Gaussian process models. Many other techniques explored in the
statistical literature focus on scalar SDE [4,14,15,33].

Differential equation discovery problems have attracted considerable recent
interest. A variety of methods have been developed to learn ODE [6,7,18,27,
28,30,32] as well as PDE [19,20,24,26]. We do not describe these methods in
detail here because, generally speaking, methods for learning deterministic mod-
els (such as ODE/PDE) do not readily generalize to SDE. Note, however, that
prior work on ODE/PDE learning has led to developments in model selection,
which we do not address here. If needed, the method we propose can be combined
with model selection procedures developed in the ODE context [10,11].

2 Problem Setup

Let W; denote Brownian motion in R?—informally, an increment dW; of this pro-
cess has a multivariate normal distribution with zero mean vector and covariance
matrix Idt. Let X, denote an R%valued stochastic process that evolves according
to the It6 SDE

dXy = f(Xy)dt + LdWs. (1)
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For rigorous definitions of Brownian motion and SDE, see [5,35]. The nonlinear
vector field f : 2 ¢ R? — R? is the drift function, and the d x d matrix I’
is the diffusion matrix. To reduce the number of model parameters, we assume
I' = diag~.

Our goal is to develop an algorithm that accurately estimates the functional
form of f and the vector ~ from time series data.

We parameterize f using Hermite polynomials. The n-th Hermite polynomial
takes the form

dn
H(2) = (Vamn!) " /2(=1)e 2 e/ (2)
x
Now let a = (0417.. ,aq) € Z% denote a multi-index. We use the notation

la| = >, a; and 2% = [];(z;)* for @ = (21,...,2q) € R?. For x € R? and a
multl-lndex o, we also define

d
) = [[ Ha, (x;)- (3)
j=1

We write f(z) = (f1(z),... fa(x)) and then parameterize each component

M
=Y > BiHa(@). (4)

m=0 \a|:m

We see that the maximum degree of H, () is |a|. Hence we think of the double
sum in (4) as first summing over degrees and then summing over all terms
with a fixed maximum degree. We say maximum degree because, for instance,
Hy(z) = (22 — 1)/(v/272)'/? contains both degree 2 and degree 0 terms.

There are (m;rfl; 1) possibilities for a d-dimensional multi-index « such that

|a] = m. Summing this from m = 0 to M, there are M = (M;d) total multi-
indices in the double sum in (4). Let (i) denote the i-th multi-index according

to some ordering. Then we can write

M
2) = Bl He(@). ()

i=1
Essentially, we parameterize f using tensor products of Hermite polynomials.
Let (f,9)w = [gf(x)g(x)exp(—2?/2)dx denote a weighted L? inner prod-
uct. Then (Hl,Hj>w = (5”, i.e., the Hermite polynomials are orthonormal

with respect to the weighted inner product. With respect to this inner prod-
uct, the one-dimensional Hermite polynomials form an orthonormal basis of
L2 (R ( )= {f {f, [)w < co}. Consequently, by taking M sufficiently large, a vec-
tor field whose j-th component is given by (5) can approximate any continuous
vector field. Hence the above model has the capacity to learn many SDE that
occur i physics, including all Langevin equations driven by standard Brownian
motions.
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We consider our data x = {z; }]L:o to be direct observations of X; at discrete
points in time t = {t;}/~,. Note that these time points do not need to be
equispaced. In the derivation that follows, we will consider the data (t,x) to
be one time series. Later, we indicate how our methods generalize naturally to
multiple time series, i.e., repeated observations of the same system.

To achieve our estimation goal, we apply expectation maximization (EM).
We regard x as the incomplete data. Let At = max;(¢; — t;_1) be the maxi-
mum interobservation spacing. We think of the missing data z as data collected
at a time scale h < At fine enough such that the transition density of (1) is
approximately Gaussian. To see how this works, let A/ (i, X) denote a multivari-
ate normal with mean vector p and covariance matrix Y. Now discretize (1) in
time via the Euler-Maruyama method with time step h > 0; the result is

Xni1 = Xn+ f(Xp)h+ hY?TZy 4, (6)

where Z, 11 ~ N(0,1) is a standard multivariate normal, independent of X,,.
This implies that

(X411 Xn = v) ~ N(v + f(0)h, hT?). (7)

As h decreases, )?n+1|)?n = v—a Gaussian approximation—will converge to the
true transition density X, 1),/ Xnn = v, where X refers to the solution of (1).

To augment or complete the data, we employ diffusion bridge sampling, using
a Markov chain Monte Carlo (MCMC) method with origins in the work of [17,
23]. Let us describe our version here. We suppose our current estimate of 8 =
(8,~) is given. Define the diffusion bridge process to be (1) conditioned on both
the initial value z; at time ¢;, and the final value x;41 at time ¢;;1. The goal is
to generate sample paths of this diffusion bridge. By a sample path, we mean
F — 1 new samples {ziyj}f:ll at times ¢; + jh with h = (t;41 — t;)/F.

To generate such a path, we start by drawing a sample from a Brownian
bridge with the same diffusion as (1). That is, we sample from the SDE

dX, = LdW, (8)
conditioned on )’Q = x; and )A(tHl = z;y1. This Brownian bridge can be
described explicitly:

- t—t;
Xt = F(Wt - Wm) +x; — tlit(F(WtHl - th) +x; — JIH_l). (9)
i+1 — b

Here Wy = 0 (almost surely), and W; — Wy ~ N(0, (t — s)I) for t > s > 0.
Let IP denote the law of the diffusion bridge process, and let Q denote the law
of the Brownian bridge (9). Using Girsanov’s theorem [16], we can show that

dP tit1 N =N 1 tit1 e e
— =Cexp </ f(X)Tr2dX, - 7/ F(X)TI2f(X) ds> ., (10)
dQ ” 2 /i

where the constant C' depends only on z; and x;41. The left-hand side is a
Radon-Nikodym derivative, equivalent to a density or likelihood; the ratio of
two such likelihoods is the accept/reject ratio in the Metropolis algorithm [31].
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Putting the above pieces together yields the following Metropolis algorithm
(steps M1-3 below) to generate diffusion bridge sample paths. Fix F > 2 and
1 €{0,...,L —1}. Assume we have stored the previous Metropolis step, i.e., a

path z(¥) = {zgé?}fgll. Then:

M1 Use (9) to generate samples of X, at times t; + jh, for j =1,2,...,F —1
and h = (t;+1 — t;)/F. This is the proposal z* = {z;‘,j}fgf.

M2 Numerically approximate the integrals in (10) to compute the likelihood of
the proposal. Specifically, we compute

F-1
p(z")/C = f(zi) T 722 40 — 205)

=0

=
i

[f(z;'k,j)TF72f(ZZj) + f(zj,j+1)TF72f(Z;j+1)] .

NI

<.
Il
o

We have discretized the stochastic d.X s integral using It6’s definition, and
we have discretized the ordinary ds integral using the trapezoidal rule.
M3 Accept the proposal with probability p(z*)/p(z¥))—note the factors of C

cancel. If the proposal is accepted, then set z¢TD) = z*. Else set 2T =
()
7't

We initialize this MCMC algorithm with a Brownian bridge path and use post-
burn-in steps as the diffusion bridge samples we seek.

We now justify the intuition expressed above, that employing the diffusion
bridge to augment the data on a fine scale will enable estimation. Let z(") =
{ZZ(T]) }5;11 be the r-th diffusion bridge sample path. We interleave this sampled
data together with the observed data x to create the completed time series

y() = {yj(»r)}é\]:l, where N = LF + 1. By interleaving, we mean that yﬁ)zF =z

for i = 0,1,...,L, and that yii)jHF =z forj =1,2,...,F —1and i =
0,1,...,L—1. With this notation, we can more easily express the EM algorithm.

Assume that we currently have access to @) our estimate of the parameters
after k iterations. If k = 0, we set 8(9) equal to an initial guess. Then we follow

two steps:

E-step: For the expectation (E) step, we first generate an ensemble of R diffusion
bridge sample paths. Interleaving as above, this yields R completed time series
y( for r = 1,..., R. Define the Q function, or complete data expected log
likelihood:

Q(ea e(k)) = ]Ez|x,0(k> [logp(xvz | 0)] (11)

In what follows, we will use an empirical average over diffusion bridge paths to
approximate the expected value on the right-hand side of the @) function. Let h;
denote the elapsed time between observations y; and y;41. Using the completed
data, the temporal discretization (6) of the SDE, the Markov property, and
property (7), we have:
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1 R 1 R N-—1
Q0,6%) ~ = logp(y™ [0) = 5> > logp(, )y [ ).6)
I 1 . . 1 r=1 n=1
"R Z [Z 9 log(27hn77)
r=1 n=1 Lj=1
1 () (r) e[
+ T r- (yn+1 —Yp’ —hn ;5(14)1{(2) (yy, )) 2] - (12)

Me-step: For the maximization (M) step, we have

0+ — arg max Q(8, H(k)).

Starting from the approximation of ¢ developed in (12), we maximize over 6
analytically. In what follows, note that yj(»r)

by y](.r)’i. The maximization over (3 yields a least squares problem—we omit the

derivation here. The upshot is that to find B+ we solve M = p where M is
the M x M matrix

€ R%—we denote the i-th component

R N-1

1
Mie =5 > haH () Hi (05), (13)
7‘:1 n=1
and p is the M x d matrix
R N-—
Pri=T Z Z W W) =y, (14)

We return to (12) and maximize over ~. This yields a formula for v*+1):

R N-1

1
2 _ Z (r), (r),
BT RIN-D) TZ: — ot = = I Zﬁw ©@)?  (15)

where 6&) denotes the ¢-th row and i-th column of the 3+ matrix. We then
set 9+ — (5(k+1)7,y(k+1)).

We iterate EM steps until ||§*+1) — @®)||/|0®)|| < § for some tolerance
0> 0.

When the data consists of multiple time series {t(*) x(¥}7 | everything
scales accordingly. For instance, we create an ensemble of R diffusion bridge
samples for each of the S time series. If we index the resulting completed time
series appropriately, we simply replace R by RS in (13), (14), and (15) and keep
everything else the same.
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There are three sources of error in the above algorithm. The first relates to
replacing the expectation by a sample average; the induced error should, by the
law of large numbers, decrease as R~1/2. The second stems from the approximate
nature of the computed diffusion bridge samples—as indicated above, we use
numerical integration to approximate the Girsanov likelihood. The third source
of error is in using the Gaussian transition density to approximate the true
transition density of the SDE. Both the second and third sources of error vanish
in the F' — oo limit [9].

3 Experiments

We present a series of experiments with synthetic data. We have made avail-
able all source code required to reproduce our results and/or run further tests:
https://github.com/hbhat4000/pathsamp/. For further details regarding simu-
lations, experiments, and results, see [21].

To generate synthetic data, we start with a known stochastic dynamical
system of the form (1). Using Euler-Maruyama time stepping from a randomly
chosen initial condition, we march forward in time from ¢ = 0 to a final time
t = 10. In all examples, we step forward internally at a time step of A = 0.0001,
but for the purposes of estimation, we only use data sampled every 0.1 units of
time, discarding 99.9% of the simulated trajectory. We use a fine internal time
step to reduce, to the extent possible, numerical error in the simulated data. We
save the data on a coarse time scale to test the proposed EM algorithm.

To study how the EM method performs as a function of data augmentation,
data volume, and noise strength, we perform four sets of experiments. In all
experiments, we treat all noise strengths 7; as known and estimate § only. When
we run EM, we randomly generate the initial guess 39 ~ N (u = 0,02 = 0.5).
We set the EM tolerance parameter § = 0.01. The only regularization we include
is to threshold g—values less than v are set to zero. In the figures presented
below, we refer to this value of v as the threshold. Finally, in the MCMC diffusion
bridge sampler, we use 10 burn-in steps and then create an ensemble of size
R =100. _

To quantify the error between the estimated § and the true 3, we use the

Frobenius norm
] N
. \/Z; CORED) (16)

The B coeflicients are the Hermite coefficients of the estimated drift vector field
f. For each example system, we compute the true Hermite coefficients 8 by
multiplying the true ordinary polynomial coefficients by a change-of-basis matrix
that is easily computed.

We test the method using stochastic systems in dimensions d = 1,2, 3,4, 8.
In 1D, we use

dX; = (1+ X, — X2)dt + vdW,.
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Table 1. Results for average compute time (in seconds) per EM iteration for varying
amount of data augmentation. As the Brownian bridge is created explicitly using the
discretized version of (9), increasing the amount of data augmentation does significantly
increase in the compute time. The time required to compute each EM iteration increases
with the dimensionality of the system.

Sys% 1 2 3 4 5 6 7 8 9 10

1D 0.59 0.54| 0.54| 0.54 1.00| 0.57| 0.58| 0.57| 0.85| 0.55
2D 0.65| 0.57| 0.58| 0.57| 0.57| 0.57| 0.57| 0.62| 0.56| 0.57
3D 6.51| 9.58| 6.29| 6.55  6.46| 6.82| 6.47| 6.36| 6.69| 6.59
4D 24.08 | 24.34 | 23.94 | 23.98 | 24.93 | 25.65 | 23.99 | 23.17 | 25.64 | 24.54

In 2D, we use a stochastic Duffing oscillator with no damping or driving:
dXoy = X1dt +v0dWo,  dX1y = (—Xo4 — X3 ,)dt +y1dWi
For the 3D case, we consider the stochastic, damped, driven Duffing oscillator:

dX07t = Xl,tdt + ,YOdWOJ
dX1, = (Xou — X{, — 0.3X1,4 + 0.5cos(Xo,))dt + y1dWi
dX27t = 1.2dt + ’)/QdWQ,t

Next, we consider linear, stochastic, coupled oscillator systems with d = 2d’.
Assume we have a mass vector m € R and a spring constant vector k € RY+1,
The network then consists of the following equations, for j = 0,1,2,...,d — 1,
with the convention that X;, =0ifi <0ori>d:

dXoj: = Xojr1,6 + v2;dWa; ¢
dXoji1,e = [—kj/m;(Xaje — Xoj—2.t) = kjy1/m;(Xoje — Xojioy)]dt
+ goj+1dWaji1s

We consider this system for both d = 4 and d = 8. In d = 4, we set k =
[1,0.7,0.6] and m = [0.2,0.3]. In d = 8, we set k = [1,0.7,0.6,1.2,0.9] and
m =[0.2,0.3,0.5,1.1].

3.1 Experiment 1: Varying Data Augmentation

We start with S = 10 time series with L + 1 = 51 points each. Here we vary the
number of interleaved diffusion bridge samples: F = 1,...,10. For F' = 1, no
diffusion bridge is created; the likelihood is computed by applying the Gaussian
transition density directly to the observed data. The results, plotted in Figs. 1
and 2, show that increased data augmentation dramatically improves the quality
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Fig. 1. As we increase the length F' of the diffusion bridge interleaving observed data
points, the quality of estimated drifts improves considerably. From left to right, top to
bottom, we have plotted Frobenius errors (16) between true and estimated coefficients,

for systems in d = 1,2, 3,4, 8.

Comparison of true drift function vs estimated drift functions in 30d

o truedit

—— num subintervals = 10

Fig. 2. Though Fig.1 shows the Frobenius norm error for the 3D system is greater
than = 2.6 at all noise levels, when plotted, the estimated drift functions lie close to
the true drift function. The three components of the vector field are plotted as in the

third row of Fig. 3.

of estimated drifts for systems with d = 1,2, 3,4, 8. Though the Frobenius error
for the 3D system exceeds 2.6, Fig. 2 shows that EM’s estimates are still accurate.

We have not plotted results for the scarce data regime where we have S = 10
time series with L = 11 points each. In this regime, data augmentation enables
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Table 2. Results for average acceptance rate for Metropolis-Hastings sampler for vary-
ing amount of data augmentation, F. For F' = 1, no diffusion bridge has been created
and thus the acceptance probability is 1. The algorithm in this case reduces to solving
a least squares problem using only the observed time series. As we increase data aug-
mentation, the acceptance probability decreases as it becomes more difficult to create
a bridge between the observed values. The acceptance probability also decreases with
an increase in the dimensionality and complexity of the system.

Seem |1 |2 3 4 5 6 7 8 9 10
1D 100 75.04 67.08 61.78 61.23 58.71|55.22 | 53.57  52.58 49.52
2D 100 13.17| 9.04| 6.54| 4.75 4.35 411 4.94 2.87| 4.02
3D 100 6.07| 3.20 282 2.74 2.54| 248 227 251 241

4D 100 | 25.69 1 19.22 | 13.69 | 11.63| 7.81| 6.88 | 5.83| 4.10| 4.04

Table 3. Results for number of EM iterations required to converge. We consider a
threshold of 0.01, 0.05, 0.1 and 0.1 for the 1D, 2D, 3D and 4D systems respectively.
Note that the number of iterations does not vary significantly as a function of the
amount of data augmentation F'.

_F
System

1D
2D
3D
4D

NN N| N =
N | W[ | W| N
N WOt W W
N | W || W | &
N|W| | W] ot
N|W|oo|Ww| o
N|© |00 | Ww|
N | W || W| oo
N | W Ol Ww| o
N|Ww| O W

highly accurate estimation for the 2D and 3D systems. For the 1D system, the
observations do not explore phase space properly, leading to poor estimation of
the drift.

In Tables 1, 2, and 3, we report the average compute time (in seconds), the
average MCMC acceptance rate, and the average number of iterations (for con-
vergence), all as a function of F, the amount of data augmentation performed.
Broadly speaking, none of these metrics show dependence on F'. Instead, they
depend primarily on d, the dimension of the problem under consideration.

The main point of EM, generally speaking, is to augment data. These experi-
ments thus show that even with a basic diffusion bridge sampler, there is merit to
the EM approach for estimating drift functions in diffusion processes. In ongo-
ing/future work, we seek to explore using more sophisticated diffusion bridge
samplers, e.g., those that use the drift function to guide the proposal, rather
than only incorporating the drift into the accept/reject ratio. Such approaches
may help to reduce the d-dependence of the metrics we have plotted/tabulated.
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‘Comparison of true drift function vs estimated drift functions in 1D ‘Comparisan of true drif function vs estimated drift functions in 2D

@ X

Fig. 3. As we increase the number S of time series used to learn the drift, the estimated
drift more closely approximates the ground truth. From top to bottom, left to right,
we have plotted estimated and true drifts for the 1D, 2D, and 3D systems. For the 1D
and 2D systems, the true drifts depend on only one variable. For the dX; ; component
of the 3D system, we have plotted the dependence of the drifts on Xy only, keeping X1
and X fixed at 0.

3.2 Experiment 2: Varying Number of Time Series

Here we vary data volume by stepping the number S of time series from S =1
to S = 10. Each time series has length L + 1 = 101. The results, as plotted
in Figs.3 and 4, show that increasing S leads to improved estimates of (3, as
expected. As a rule of thumb, the results indicate that at least S > 4 time series
are needed for accurate estimation.

3.3 Experiment 3: Varying Length of Time Series

Here we vary data volume by stepping the length L + 1 of the time series from
L+1=11to L+ 1 =101, keeping the number of time series fixed at S = 10.
Also note that in this experiment, observation times strictly between the initial
and final times are chosen randomly. In Fig.5, we have plotted the estimated
and true drifts for only the 3D system; in Fig. 6, we have plotted the error (16)
for all three systems. Comparing with Experiment 1, we see that randomization
of the observation times improves estimation. That is, even with L+1 = 11 data
points per time series, we obtain accurate estimates.

3.4 Experiment 4: Varying Noise Strength

Here we vary the noise strength ~, stepping from 0.5 to 0.0001 while keeping
other parameters constant. Specifically, we take S = 10 time series each of length
L+ 1 =101. In Fig. 7, we have plotted Frobenius errors for all three systems.
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Fig. 4. As we increase the number S of time series used to learn the drift, the Frobenius
norm error between estimated and true drifts—see (16)—decreases significantly. From
left to right, top to bottom, we have plotted results for systems with d = 1,2, 3,4, 8.

Comparison of true drift function vs estimated drift functions in 3Dd

® truedrit

time points = 51
—— time points = 101

Fig. 5. We plot true and estimated drifts for the 3D system as a function of increasing
time series length L. The three components of the vector field are plotted as in the third
row of Fig.3. The results show that randomization of observation times compensates
for a small value of L, enabling accurate estimation.

Though the error in the estimated coefficients for the 3D system may seem
large, the estimated and true drift functions are close—see Fig. 8. Even when
the algorithm does not recover ground truth parameter values, it yields a drift
function that reproduces qualitative features of the ground truth drift.
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Fig. 6. As we increase the length L of each time series used for learning, the Frobenius
norm error between estimated and true drifts—see (16)—decreases significantly. From
left to right, we have plotted results for the 1D, 2D, 3D, and 4D systems.
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Fig. 7. Varying the strength of the noise in the simulated data alters the quality of
estimated drift coefficients, quantified using the Frobenius error (16). We proceed from
left to right. For the 1D and 2D systems, the maximum noise strength of 0.5 remains
below the magnitude of the drift field coefficients. For these systems, as the noise
strength decreases, the error drops close to zero. For the 3D system, the maximum
noise strength of 0.5 is greater than or equal to two of the drift field coefficients,
leading to apparently decreased performance—however, see Fig. 8.
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Comparison of true drift function s estimated drift functions in 30d

Fig. 8. Though Fig.7 shows a Frobenius norm error for the 3D system greater than
=~ 1.8 at all noise levels, when plotted, the estimated drift functions lie close to the
true drift function. The three components of the vector field are plotted as in the third
row of Fig. 3.

4 Conclusion

We have developed an EM algorithm for estimation of drift functions and diffu-
sion matrices for SDE. We have demonstrated the conditions under which the
algorithm succeeds in estimating SDE. Specifically, our tests show that with
enough data volume and data augmentation, the EM algorithm produces highly
accurate results. Our tests also show that there is room for improvement, espe-
cially with regards to the basic Brownian bridge sampler incorporated here. In
future work, we plan to study the effect of replacing the Brownian bridge sam-
pler with a guided diffusion bridge sampler [29], especially with an eye towards
increasing the MCMC acceptance rate for high-dimensional problems.

Here we have assumed direct access to discrete-time observations of the state
X; of the system. Such an assumption will be satisfied if we take as data low-
dimensional projections of the solution process of a high-dimensional system; in
this case, the method proposed in this paper can be used to derive SDE models
for the evolution of the low-dimensional system. In future work, we also seek to
further test our method on high-dimensional, nonlinear problems, problems with
non-constant diffusion matrices, and real experimental data. In the latter case,
we will explore coupling our EM method with a highly efficient batch filtering
algorithm [22]. This will enable us to deal with observations of Y; = X; + &4,
rather than observations of X; itself.
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