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ABSTRACT 1 INTRODUCTION

There are many applications where positive instances are rare but
important to identify. For example, in NLP, positive sentences for
a given relation are rare in a large corpus. Positive data are more
informative for learning in these applications, but before one labels a
certain amount of data, it is unknown where to find the rare positives.
Since random sampling can lead to significant waste in labeling effort,
previous “active search” methods use a single bandit model to learn
about the data distribution (exploration) while sampling from the
regions potentially containing more positives (exploitation). Many
bandit models are possible and a sub-optimal model reduces label-
ing efficiency, but the optimal model is unknown before any data
are labeled. We propose Meta-AS (Meta Active Search) that uses a
meta-bandit to evaluate a set of base bandits and aims to label posi-
tive examples efficiently, comparing to the optimal base bandit with
hindsight. The meta-bandit estimates the mean and variance of the
performance of the base bandits, and selects a base bandit to propose
what data to label next for exploration or exploitation. The feedback
in the labels updates both the base bandits and the meta-bandit for the
next round. Meta-AS can accommodate a diverse set of base bandits
to explore assumptions about the dataset, without over-committing to
a single model before labeling starts. Experiments on five datasets for
relation extraction demonstrate that Meta-AS labels positives more
efficiently than the base bandits and other bandit selection strategies.
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In many applications of classification, a large unlabeled dataset can
be collected without much cost (e.g. via Internet crawling), while
identifying the rare positive data instances can be labor-intensive. In
NLP, relation extraction classifies a pair of words/phrases in a sentence
into one of the multiple relations. For example, a model can extract
the relation hasSpouse between the occurrences of the two concepts
(Barack_Obama, Michelle_Obama) from the text snippets “... Barack
Obama and his wife Michelle Obama . ..”. Such an occurrence of the
pair in a sentence is called a mention or an instance, which needs to
be classified as having a specific relation (positive) or not (negative).
The current best relation extractors are based on machine learning
and need to be trained on a large number of labeled data. And yet
humans have to label the data, which is costly. In particular, positive
mentions are informative for model training and yet are much more
rare and difficult to find. The more prevalent negative mentions can
be obtained less expensively by randomly sampling pairs of arbitrary
words/phrases from any sentences.

To learn a relation extractor on a new corpus, one starts with an
unlabeled dataset. Weak supervision for relation extraction [20] can be
helpful in data augmentation but can only complement human-labeled
data whenever an annotation budget is available. Data annotation will
face the exploration vs. exploitation dilemma: an annotator needs to
find positive samples without knowing where they are ahead of time,
but also has to explore the data distribution by labeling certain samples
that are negatives. On the one hand, more exploratory labeling leads
to better knowledge of the data distribution but leaves less budget to
exploit the regions that have more positives. On the other hand, less
exploration may trap the annotator in a narrow part of the dataset,
missing the areas potentially with more positives.

To address the dilemma, active search (AS) algorithms are designed
to carefully balance the exploration and exploitation in order to obtain
the most positive samples. Active search differs from active learning
(AL): an AL algorithm labels data for a specific model and is evaluated
by the model’s performance trained on the data, while an AS algorithm
is model-agnostic and aims to find as many positives as possible
that potentially can be used to train a model, construct a knowledge
base, or for other downstream tasks. Greedy active search algorithms
with limited steps of look-ahead and without exploration have been
proposed in [6, 8, 23], but their search scales poorly with the number of
unlabeled data due to the look-ahead. Bandit algorithms can manage
the trade-off between exploration and exploitation in active search [2—
4,11, 12, 17, 18]. However, prior bandit based active search [13, 16]
committed to a single bandit model by making an implicit assumption
about the data distribution, which is unknown before the bandit is
selected. As a result, the selected bandit can be sub-optimal with
respect to the true data distribution. Indeed, we empirically show
that different bandit algorithms lead to a rather diverse annotation
efficiency. One possible explanations is that, a bandit may assume
that the positives are from multiple clusters under a specific distance
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metric, while another bandit uses a different distance metric, so that
the positives form a single cluster and less exploration is needed.

To avoid over-committing to a presupposition of data distribution
of a particular dataset, in an online fashion, the “usefulness” of dif-
ferent bandit algorithms should be actively evaluated (exploration
of the algorithms), and then be selected to propose unlabeled data
for annotation (exploration in the data space). For the purpose, we
propose Meta-AS (Meta Active Search) that has the following benefit
over the prior work. First, Meta-AS has a set of more diverse bandit
models, including linear [3, 11, 17], kernel-based [18], and graph-
based bandits [1, 21] to fit the unknown data distribution. The EXP4
algorithm [2] uses a bandit to manage a set of linear bandits, while
Meta-AS adopts more diverse bandits to allow more exploration in
the algorithm space. Second, specific to the annotations for relation
extraction, a bag of multiple mentions regarding the same pair of
words/phrases appearing in one or multiple sentences, can be anno-
tated all at once to save human mental effort. We design Meta-AS to
propose bags of mentions, rather than individual mentions.

2 PROBLEM DEFINITION

Let {x1,...,Xn} denote the feature vectors of n mentions, which are
initially in the set of unlabeled data U = {x;}",. Let B = {x;, i=
1,...,mj} C {x1,...,X,} denote the j-th bag of mentions (instances).
The label of x; is y; € {0, 1}. A bag is positive if and only if at least
one of the mentions it contains is positive. The subset # ¢ U is
the designated set of positive instances to be discovered using a
budget of M units of human annotation. The generic active search
algorithm works iteratively, as shown in Algorithm 1. At iteration
t, the algorithm chooses a bag B/®) from the unlabeled set U/ and
asks the human annotator to label the mentions in B/(*). Since we are
interested in collecting positive data, an instance labeled as positive
leads to reward 1 and a negative instance leads to reward 0. The model
is updated according to the label of instances in B/ (®), which are then
removed from U as their labels are now revealed. The labels of the
data points that are not selected remain unknown. The goal is to
design a query strategy, parametrized by 6, that can select B/ ) over
t = 1,... until the budget is used up, so that the number of positive
instances labeled is maximized.

Algorithm 1 Generic Active Search

Input: unlabeled dataset U/; labeling budget M.
Output: labeled dataset £
Initialize the parameters 0 of the selection strategy.
t=1,L0=0.
fort=1,... do

if | £)|> M then

Out of budget and return L0,

end if

(*) Use 6 to select a bag B/(®) of unlabeled instances.

Label the instances in B/(*).

Remove B/(®) from U and let L+ = £(8) y B/(®),

Update parameters 6 using the labeled data in B/(* ).
end for

3 METHODOLOGIES

The above generic framework can be implemented using a single
bandit algorithm, such as UCB [3] or Thompson sampling [4, 11], or a
meta-bandit with multiple base bandit algorithms. We describe each
of these bandit algorithms.

3.1 Base bandits

3.1.1 UCB. The UCB [3] for the multi-armed bandit problem aims
to attain maximal cumulative rewards by pulling K arms {1,...,K}
over time to explore the arm reward distributions and collect the
rewards. At iteration ¢, it pulls the arm a(t) € {1,...,K} with the
highest upper bound of the mean rewards:
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a(t) =

argmax fi;(t) + C
je{1,....K} J
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where fi;(t) is the empirical average reward collected by arm j up to
time t, and t; is the number of times the arm j has been pulled up
to time t. The parameter 6 in Algorithm 1 for UCB is fij(t) and t; for
Jj =1,...,K. When the reward of the pulled arm a(t) is revealed, fi;(t)
and t; will be updated accordingly for the next iteration.

UCB will be used in two ways. As a base bandit, the data will be
clustered into K clusters, so that each resulting cluster is an arm. See
Section 3.1.4 for more details. UCB will be used as a meta-bandit to
select base bandits as arms (see Section 3.2).

3.1.2  Thompson sampling. Thompson sampling (TS for short) is a
Bayesian treatment of the bandit problem. Here we adopt Thompson
sampling in the contextual bandit setting [4] to take feature vectors x;
into account. As the rewards are binary, logistic regression is used to
model the likelihood of a positive label/reward p(y; = 1|x;; ), given
a context x; and a linear model 0:

Pplyi = 1]x;) = (1 + exp(-w ' x;)) " )

For exploration, TS draws a sample of w from the posterior p(w|.£L()),
where £) is the set of instances labeled up to time t. Using Laplace
approximation, the posterior p(wlL(t )) can be parametrized by the
mean vector m and a diagonal covariance matrix q. When a new
batch of data is labeled, the mean and the covariance are updated in
an online fashion. See [4] for more details.

3.1.3 UCB using Gaussian Process. TS assumes a linear relationship
between y; and x;. The GP-UCB algorithm [18] uses Gaussian Process
and kernel functions to model a nonlinear relationship between the
data and the labels. Let f(x) be a function that predicts the reward
when x is selected for labeling. GP-UCB assumes the function f is
sampled from a Gaussian Process GP(f), which controls the smooth-
ness of f via a kernel function k(x,x’) € R for any two instances x
and x’. Given ¢ labeled points {(x1,41), - - ., (X¢, y¢)}, the reward of
any unlabeled point x can be estimated using the posterior Gaussian
distribution with the following mean and variance:

fr®) = kX (K + )y,
o2(x) = k(x,x)—kex) (K +0%;) ke(x),

where kp(x) = [k(x,X1), ..., k(x,x;)]T is the function k(x, -) evaluated
on the ¢ labeled instances, K¢ is the kernel matrix with K (i, j) =



k(xi,xj), and yp = [y1,. .. ,yg]T. GP-UCB [18] selects

®)

X = argmax, cqq | fe(X) + ﬂl/ZO'g(X) ,
where f balances exploitation and exploration.

3.1.4 UCB using graph information. If there are some relationships
among the instances beyond the data vectors, a graph can describe
the relationships to benefit active search. In the graph, an instance is
a node and two related nodes are connected by an edge. For example,
the "homophily relationship” assumes that connected instances are
more likely to have similar labels. In particular, graph bandits (Graph-
UCB for short) assume that the rewards of a node can be inferred
from those of its neighbors [1, 21]. We construct a graph of mentions
so that two mentions are connected if they shared at least one word.
The motivation is that if a mention is positive, then other mentions
including the shared word(s) are likely to be positive. We first run
DeepWalk [15] on the constructed graph to obtain embeddings of
the nodes, and then run the k-means algorithm to cluster the nodes
into clusters. Each cluster will contain instances that are likely to
have similar labels. A UCB bandit uses the clusters as arms and all
instances from a cluster will receive the same UCB score (Eq. (1)).

3.1.5 Proposing Bags of Instances. Each base bandit (TS, GP-UCB,
Graph-UCB) returns a score for each instance while we need to pro-
pose multiple instances in a bag to reduce annotator mental effort. For
each bag and each base bandit, we can take the minimum, average, or
maximum of the scores of instances in the bag to estimate the value
of the bag. Note that different instances from a bag can belong to
multiple clusters in Graph-UCB.

3.2 Meta-bandit for Active Search

We don’t know which of the above bandits (called “base” bandits) is
the best for active search on an unlabeled dataset. We propose Meta-
AS, a “meta-bandit” that uses UCB to learn to select base bandit to
propose data for labeling to collect as many positives as possible. The
faster Meta-AS can find the optimal base bandit, the more remaining
budget can be used to exploit the positive part of the dataset. The
meta-bandit maintains performance statistics of a set A of base bandit
algorithms. To diversify the base bandit portfolio, we set different
values to the hyper-parameters of each base bandit (kernel function,
exploration rate, etc.). At iteration ¢ of Algorithm 1, step (x), Meta-AS
first samples a base bandit according to
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na(t) |’

where p,(t) is the number of positives collected using the a-th base
bandit, p(t) = X4 pa(t) is the number of all positive instances collected
so far, and r4(t) is the proportion of iterations that arm a was selected
by the meta-bandit among the first t iterations. The exploration is
controlled by the hyper-parameter C and how frequent the base bandit
a has been used to sample data (nq(t)). The selected base bandit
(indexed by a(t) € A) then selects an unlabeled bag B/ ® for labeling,
and the labeled instances are used to update the parameters of the
selected base bandit (e.g. Graph-UCB) and the parameters pq(t), p(t),
rq(t) and ng(t) of the meta-bandit (Eq. (4)).

Palt)
t) X ra(t)

a(t) = argmax, ¢ 4 {p( 4)

Table 1: Datasets statistics

Datasets ‘ # of Bags ‘ # of Pos Instances ‘ # of all instances | # Edges

Pet
Auto
Instruments
Videos
5-Products

4 EXPERIMENTS

Datasets. We adopt a review corpus used in [7] and four larger prod-
uct review corpora (Pet, Auto, Instruments, and Videos) from [14].
Our goal is to discover mentions of an adjective and a noun that
appear in the same sentence, where the adjective modifies the noun
(considering “modification” as a relationship). For example, in the sen-
tence “This large screen is what I have been looking for for long time”,
the adjective “large” modifies “screen” and they are a positive men-
tion of the pair (“large”, “screen”), while the pair (“long”, “screen”) is a
negative one. The statistics of the bags and instances in the corpora
are listed in Table 1.

Bandits settings and baselines. There are hyper-parameters for
the base bandits: the covariance matrix q in Thompson sampling (set
to the identity matrix multipled by a scalar in {0, 0.01, 0.1, 1.0, 10.0}),
the bandwidth of the radial basis function kernel in GP-UCB (set to
the inverse of the number of features in x), the § in Eq. (3) (set to
values from {1, 10, 100, 1000, 10000}). We vary the length of walks in
{3,4,7,10} with a fixed walk length 80 for DeepWalk and the number
of clusters in Graph-UCB is fixed at 20 for all datasets. When running
UCB on the resulting clusters, the hyper-parameter C = V2 in Eq.
(1). To show that Meta-AS can learn from a set of base bandits with
diverse performances, on each unlabeled dataset, we evaluate each
base bandit with different combinations of hyper-parameter values
and aggregation functions (min, mean, and max) for bag proposal,
and identify the worst, median, and best settings. We then have three
instances of TS, denoted as TS-0, TS-1, and TS-2, with increasing
performances, and similarly for GP-UCB (GP-0, GP-1, and GP-2) and
Graph-UCB (GU-0, GU-1, and GU-2). Note that GP-UCB is not scale
only tested on the small dataset.

We use two sets of baselines. The first contains any single base
bandit with a particular hyper-parameter setting. By comparing the
performances of Meta-AS and a single base bandit, we can see how
much Meta-AS can approach or even exceed the best base bandit, and
by comparing different base bandits with different hyper-parameters,
we can see the diverse performance of the base bandits and confirming
the need of bandit selection during data annotation.

1163
1439
1463
1963
961

721
776
1084
841
795

3052
2758
3946
3841
2117

204883
99708
343214
339603
118309

4.1 Results

Overall performance. We run Meta-AS with the selected set of base
bandits on the five datasets. In Figure 1, we show the performance
of each bandit, measured in recall (the percentage of all positive
instances that are selected and annotated by the bandit). On the
smaller 5-product dataset, Meta-AS is the runner-up among all nine
base-bandits, indicating that Meta-AS learned to identify the best
base bandit and aimed to approximate the best performance. Even
more interesting is the performance of Meta-AS on the four larger
corpora: Meta-AS learned to find the best base bandit and started to
exceed the best after between 200 to 300 rounds of human feedback.
We believe that the better performance comes from less exploration
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Figure 1: From left to right: how the recall rates change as Meta-AS and the base bandits on the datasets 5-Products, Pet, Auto, Instruments, and Videos.
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Figure 2: From left to right: the performance of Meta-AS under different exploration parameter C on the five datasets.

in the meta-bandit, which safely enter the exploitation mode early.
Note the diversity of the performances in the base bandits indicate the
necessity of Meta-AS to learn to avoid the low-performing bandits.
Although not shown here, we observed that more base bandits leads
to better Meta-AS performance, confirming the capability of Meta-AS
to learn to focus on the optimal base bandit.

Sensitivity studies. In Figure 2, we study how sensitive Meta-AS
is to its hyper-parameter C in Eq. (4) that controls the amount of
exploration in the space of base bandits. We can see that on all five
datasets, the hyper-parameter C (set to values in {3, 4, 5, 6}) does not
affect the performance of Meta-AS much.

5 RELATED WORK AND CONCLUSION

The selection of base bandit algorithms is an instance of “algorithm
selection” [5] and more broadly an instance of “meta learning” [22].
In [5], they proposed to use a bandit to select SAT solvers to find
solutions to different SAT problem instances in an online learning
setting. In meta learning [22], features describing different problem
instances (in our case, different datasets to be actively searched) are
designed to guide the selection the best from a portfolio of algorithms
to solve each problem. In [9], the performance of a trained classifier
is actively evaluated. An ensemble of base bandits has been applied to
recommendation systems [24]. However, the experts or base models
themselves are not learning as more data are annotated and therefore
can’t reflect the latest exploration results.

We conclude that Meta-AS is needed when multiple search algo-
rithms exist but have unknown and diverse performance. We plan to
include more base bandit algorithms in Meta-AS, and demonstrate its
usefulness beyond text data.
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