IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

4563

Phase Retrieval by Alternating Minimization
With Random Initialization

Teng Zhang

Abstract— We consider the phase retrieval problem, where the
goal is to reconstruct an n-dimensional complex vector from its
phaseless scalar products with m sensing vectors, independently
sampled from complex normal distributions. We show that,
ifm>M n®/? log” 2 n for some M > 0, then the classical
algorithm of alternating minimization with random initialization
succeeds with high probability as n,m — oo. This is a step
toward proving the conjecture in, which conjectures that the
algorithm succeeds when m = O(n). The analysis depends
on an approach that enables the decoupling of the dependency
between the algorithmic iterates and the sensing vectors.

Index Terms— Iterative algorithms, convergence of numerical
methods.

I. INTRODUCTION

HIS article concerns the phase retrieval problem as
follows: let z € C™ be an unknown vector, and given
m known sensing vectors {a;}i; € Cm", we have the
observations
yi = l|ajzl,i=1,2,-- ,m.

Then can we reconstruct z from the observations {y;}",?
In this work, we assume that the sensing vectors {a;}I%;
are sampled from a complex normal distribution C'N (0, I).
That is, their real component and imaginary components are
independent and follow a real Gaussian distribution N (0,1/2).

This problem is motivated by the applications in imaging
science, and we refer interested readers to [6], [12], [24] for
more detailed discussions on the background in engineering
and additional applications in other areas of sciences and
engineering.

Because of the practical ubiquity of the phase retrieval
problem, many algorithms and theoretical analyses have been
developed for this problem. For example, an interesting recent
approach is based on convex relaxation [7], [8], [29], that
replaces the non-convex measurements by convex measure-
ments through relaxation. Since the associated optimization
problem is convex, it is possible to solve it in polynomial time,
and it has been shown that under some assumptions on the
sensing vectors, this method recovers the correct z [5], [17].
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However, since these algorithms involve semidefinite program-
ming for n x n positive semidefinite matrices, the computa-
tional cost is prohibitive when n is large. Recently, several
works [1], [16], [18], [19], [23] proposed and analyzed an
alternate convex method that uses linear programming instead
of semidefinite programming, which is more computationally
efficient, but the program itself requires an “anchor vector”,
which needs to be a good approximate estimation of z.

Another line of works are based on Wirtinger flows,
i.e.,, gradient flow in the complex setting [4], [6], [9],
[10], [25], [30]-[32]. Some theoretical justifications are also
provided [6], [25], and in particular, the geometric analysis
in [26] allows random initialization to be used with this
method. However, this method requires choosing step sizes,
which makes the implementation slightly more complicated.
Most existing theoretical analyses assume sufficiently small
step sizes.

The most widely used method is perhaps the alter-
nate minimization (Gerchberg-Saxton) algorithm and its
variants [13]-[15], that is based on alternating projections onto
nonconvex sets [2]. As a result, in some literature, it is also
called the alternating projection method [28]. This method
is very simple to implement and is parameter-free. However,
since it is a nonconvex algorithm, its properties such as conver-
gence are only partially known. Netrapalli ef al. [22] studied a
resampled version of this algorithm and established its conver-
gence as the number of measurements m goes to infinity when
the measurement vectors are independent standard complex
normal vectors. Marchesini ef al. [20] studied and demon-
strated the necessary and sufficient conditions for the local
convergence of this algorithm. Recently, Waldspurger [28]
showed that when m > Cn for sufficiently large C, the alter-
nating minimization algorithm succeeds with high probability,
provided that the algorithm is carefully initialized. This work
also conjectured that the alternate minimizations algorithm
with random initialization succeeds with m > C’'n for
sufficiently large C’.

One particular difficulty in the analysis of the alternating
minimization algorithm is the stationary points. Currently,
most papers on nonconvex algorithms depend on the analysis
showing that all (attractive) stationary points of the algorithm
are well-behaved in the sense that it is the desired solution,
or close to the desired solution, for example, [26]. Then
standard algorithms such as gradient descent algorithm or
trust-region method can be applied to the problem to obtain
the stationary point. However, as pointed out in [28], in the
regime m = O(n), the alternating minimization algorithm has
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attractive stationary points that are not the desired solution.
While empirically these undesired stationary points are not
obstacles for the success of the algorithm since their attraction
basins seem small, it prevents us from applying the common
approach of analyzing stationary points.

Recently, [33] shows that the algorithm improves the
correlation between the estimator and the truth in each iteration
with high probability. Based on this observation, it shows that
a resampled version of the alternating minimization algorithm
converges to the solution with high probability when m =
O(nlog® n). However, this approach can not be applied to
analyze the alternating minimization algorithm directly, since
the estimator at the k-th iteration is correlated with the sensing
vectors. As a result, to analyze the non-resampled version,
one needs to find a way to decouple the estimator at the k-th
iteration and the sensing vectors.

We remark that there are also algorithms based on
Douglas-Rachford splitting [12], which is popular in practice,
but we skip detailed introductions and comparisons as they
lack strong theoretical guarantees as the other works reviewed
here.

The contribution of this work is to show that the alternating
minimization algorithm with random initialization succeeds
with high probability when m > Mn!5 log®® n. While it does
not match the conjecture of m = O(n), it is an improvement
over the result of m > Cn?2 in [28]. Compared with [33],
which analyzes a resampled version of the alternating min-
imization algorithm, this work introduces an approach that
decouples of the sensing vectors and the estimator at the
k-th iteration, by fixing the first £ — 1 algorithmic iterates and
analyzing the conditional distribution of the sensing vectors.
This approach, inspired by the analysis of LASSO in [3],
is the main technical contribution of this work. In spirit, this
contribution is very similar to the leave-one-out approach that
also enables decoupling in [10], where the authors show that
an algorithm for the phase retrieval converges linearly based on
the leave-one-out approach. However, the analyzed algorithm
is very different and their work assumes that the sensing
vectors and the signal z are real-valued. Besides, it seems
more difficult to apply the leave-one-out approach for the
alternating minimization algorithm, as the update formula is
more complicated.

The paper is organized as follows. Section I-B presents the
algorithm and the main result of the paper, Theorem 1. The
proofs are given in Section II, where the proof of Theorem 1 is
given in Section II-B, the proof of the main lemmas are given
in Section II-C, and the auxiliary lemmas and their proofs are
given in Section II-D.

A. Notations

For any z € C, |z| represents the modulus of z and

phase(z) = z/|z| represents the phase of z. We use
Sp(a;,---,a,) to represent the subspace spanned by
ar,---,an, ie, the set {x € C" : x = Y caj

for some ¢y, - -, ¢, € C}. Note that this subspace is slightly
different from the standard subspace in R™, by allowing the
coefficient of each vector to be a complex number. We use
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Py, to denote the projection onto the subspace L: Pr(z) is the
nearest point on L to z.

For any vector z = (z1, - ,2m), phase(z) is the vector
whose coordinates are the phases of the coordinates of z:

phase(z) = (phase(z1),- - - , phase(zy,)).

We use © to denote the pointwise product between the phase
of the first vector and the modulus of the second vector.
That is, w:

WOY)i = —|uyil.

( )“ | w§| | 3|
For any vector z € C™, ||z|| represents its Euclidean norm:
|z|| = \/)_;_; |i|? and its 1-norm and co-norm are defined

by [zlls = 32, |=i| and ||zlco = maxi<i<m |2i-

B. Algorithm and Main Result

The alternating minimization method is one of the
earliest methods that was introduced for phase retrieval
problems [13]-[15], and it is based on alternating projections
onto nonconvex sets [2]. Let A = C™*" be a matrix
with columns given by aj,as,---,a,,, then its goal is to
find a vector in C™ such that it lies in both the subspace
L = range(A) € C™ and the set of correct amplitude
A={w e C™: |w; =y, fori=1,---,m}. For this
purpose, the algorithm picks an initial guess x(*) in C™ and
alternatively projects Ax(!) to both sets. Define the projections
PL,PA :Cm —Cm by

Po(w) = AATA) AW, [PAW)) = wirct
1
and the alternating minimization algorithm is given by
iteratively applying the operator PP, to the vector
w) = Ax® je.,

wik+1) :prAw(k)' (1)

Then the estimator of x at the k-th iteration is obtained by
solving w®) = Ax(F)

This algorithm has been studied in [28] and Theo-
rem 2 in [28] shows the convergence of the algorithm if
m > Mn and if x*) is a good initialization. Besides,
it conjectures that random initialization also succeeds in this
setting. In this article, we prove that this conjecture holds when
m > Mn'-5log*® n for some M > 0. The rigorous statement
is as follows:

Theorem 1: Assuming that the sensing vectors {a; }{~, are
i.i.d. sampled from the complex normal distribution CN (0, I),
there exists M > 0 such that if m > Mn3/21log"/?n, then
the alternating projection algorithm with random initialization
(obtained from a uniform distribution on the sphere of C"™)
succeeds almost surely in the sense that

Pr ( lim inf ||e¥x®) —z|| = 0) — 1, asn,m — oo.
koo PER

(2)

Specifically, there are two stages in the convergence of x(F)
to z. In the first stage, the correlation between w(¥) and Az
increases linearly: with probability goes to 1 as n,m — oo,
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there exist constants C' > 1 and C); > 0 such that C' does not
depend on n, C; depends on n, C}; < O(log n), and

|wk+1)= A g |w(k)* Az|
> , forall 1 <k < )
(nw(kﬂ)nnAzn WO [AzZ]
— 1, as n,m — oo. (3)

Note that w®) = Ax® it implies that the correlation

between Ax*) and Az increases in the first C’; iterations.
In the second stage, the distance between x(*) and z

decreases linearly: there exists 0 < § < 1 such that

Pr( min ||z —

xFD|| <5 min |eVz —
0<w<2r

x (%) I
0<y<am ’

for all k > C:i) 1, as n,m — oo ()

In the proof, for simplicity when we talk about a “random
unit vector in C™/subspace L”, we implicitly assume that it
is sampled from the uniform distribution on the unit sphere in
C™ or the unit sphere in subspace L. The constants ¢, C' are
used to represent a constant that is independent of m and n,
and it is used to represent different constants in different
equations. In addition, since the theorem focus on the setting
when n and m are both large, we sometimes apply inequalities
that hold only under this assumption. For example, we may
write log®n < n even though it only holds for large n.

II. PROOF OF THEOREM 1

In the proof, we will first present a reduced form of the
statement of Theorem 1 in Section II-A, and then present
the proof of this reduced statement in Section II-B. The
proof of the main lemmas are given in Section II-C, and the
auxiliary lemmas (which are mostly generic results on measure
concentration) and their proofs are given in Section II-D.

A. An Equivalent Form of Theorem 1

In this section, we introduce some modifications to the algo-
rithm, which do not impact the performance of the algorithm
but will simplify the proof later.

First, we investigate the performance of the same algorithm
if the sensing matrix A, the underlying signal z and the
initialization x*) are replaced by A = AD, z = D'z,
and XV = D~1x(1) respectively, for some D € C»*",
Then w1 and y are unchanged, and range(A) = range(A),
which means that the update in (1) is unchanged, and the
estimators between these two settings have the connection of
%(*) = D1x(®). As a result, ||e¥%(*) — Z|| — 0 if and
only if ||e"¥x®) — z|| — 0. For the rest of the proof, we will
analyze the equivalent problem where D = (A*A)~/2 and
A is replaced with A = AD = A(A*A)~'/2, an orthogonal
matrix with columns being an orthonormal b3515 of L.

Second, WLOG we assume that ||z| = 1 (which implies
that ||y|| = 1 because A is an orthogonal matrix) and we
normalize w in the update formula (1):

Y T R Pw e

)
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Compared with the original form (1), w(®) is normalized
to a unit vector in each iteration. Since the operator Py
is invariant to scaling (P4(cx) = P4(x)), the alternating
minimization algorithm with normalization (5) is equivalent
to the standard version (1) with a “correct” scaling, and it
is relatively straightforward to verify that Theorem 1 holds
for (5) if and only if it holds for (1).

Since {a;}}", are i.i.d. sampled from CN(0,L,xm), L
is a random n-dimensional subspace in C™. Combining the
analysis above, to prove Theorem 1, we will address the
following equivalent problem:

» Choose a unit vector z € C™ and a random n-dimensional
subspace L in C™, and a random unit vector in L, denote
itby w(!). Let y = |IT} z|, where IT, represents a matrix
in C™*™, whose columns form an orthonormal basis of
L (there are many choices of IT: for any unitary matrix
U e Cm*", TIU also satisfies this property, and we
randomly choose one).

« The iterative update formula is given by

PL[ (k) ® Y]

(k+1)
w —
I1PLIw® ©y]|”

(6)
and x®) = 1Ty w®),
+ Goal: prove (2).

B. Main Proof
In the proof, we first define a set of orthogonal unit vectors
in C™:
ug = Iz, (note that ||ug|| =1 since ||z = 1)
w®) — Y aurw®)

[wW® =323 wauyw® ||

_ _ 1
where d = Cjlogn with constant Cy = a5 + 1,
where C; will be defined later in (30) and does not depend
on m or m.

Since d < m, {u;}4_, is a set of d + 1 orthogonal vectors

in C™. By definition, w(") € Sp(ug,uy,--- ,ug) forany 1 <
k < d and w®) can be written as

k
wk) = chk)ua

i=0

forall 1 <k <d,

By writing P[w®) © y] in the basis of ug,---,ug; as
PL[W(;:) oyl = E(k-i-l) ~(1)

Cky1Wi, the update formula (6) can
then be rewritten as the update of {c; (k) |5
¢V = uzw® and ¢V = /1 — |c{"|2. Then, for 1 < k <
d — 1, the update formula of w(¥) in (6) is equivalent to

k
&R g [(Z cﬁ")u,) ® uu] L 0<i<k, (7)
i=0

o as follows: first,

k k
D — (Z cg’ﬂu,) up— Y&kt ”ug-] (8)
i=0
&+
(k+1) _ L 0<i<k+1. )

\/Zk+1 E (k+1)|2
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While (8) seems complicated, this explicit formula will not be
used later in the proof. Instead, the estimations

Z | (k+1) |2

and (13) (will be presented later) are sufficient, where

~(k+1)
0<gi’ <

(10)

the second meq) ality of (10) follows from the fact
tat Yo @D = P 0 3P < W o
ylI” = llyll* = 1.

The outline of the proof is as follows: first, we show
that u; can be well approximated by random vectors v;
from CN(0,I/m) in Lemma 1. This step decouples the
dependency between the sensing vectors and the estimations
at the k-th iteration. Second, Lemma 3 and 4 investigate
the approximate dynamics of {Ck +k_, defined in (7) - (9),
by replacing u; with v;. Third, we obtain the dynamics of
{C;(:)}?:u from applying a perturbation result in Lemma 2 to
the dynamics we obtained in the second step. The above steps
describe the first stage in Theorem 1. Finally, we prove that at
the d-th iteration, the estimation is already sufficiently good,
and Lemma 5, which is a direct corollary of [28, Theorem 2],
will be used to prove that the algorithm succeeds. This step
describes the second stage in Theorem 1.

Lemma 1: There exists {v;}¢ , such that v; are i.i.d.
sampled from CN(0,1/m), up = vo/||vo||, and

Pr (||uk vi| > l"ﬂ) < Cexp(—Clog?m) for k = 0,1
T
(11)

(||uk — Vil > 2\/_) < Cexp(—Cn)for2<k<d

(12)
(|§§:‘)| > QD < Cexp(—Cn) for1 <k <d. (13)

In addition, the properties
logm

i

[[vill <2, ||Villoo < forall0<i<d
(14)

hold with probability 1 — 2m(d + 1) exp(—log?m) — 2m

(d + 1) exp(— log® m).

Lemma 2: For x € C™ sampled from CN (0,1, xm/m),
with probability at least 1 — mexp(—n/6), the following
statement holds for all y € C™:

1 n

- _ < —

— [phase(x +y) — phase(x)||: < C'logm max ((|y]|, — )
Lemma 3: Define f,g:[-1,1] — R by

CI0—|—\31—02I1

fle) = =Eqgy 2 ~en(o,1) e \/1—02I1||ID|ID (15)
and
() = 1 E exo + V1 — 21 s
g(c) = V= o~ CNON T T A= |zo|z7-
(16)
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Then for {v;}%_, i.i.d. sampled from CN(0,1/m), any fixed
: d d

{ei}g such that Y0 c? = 1, and x = Y civa,

2m

) >1— exp(—C']og4 m),
amn

Pr (valx  vol-f (ol 22

and for any 1 < j < d,

n
Pr (|v;f [x @ vo] —g(|cu|)cj| < \/%) >1— exp(—Chn).

(18)
Lemma 4: Given any 0 < Cy < 1, we have

fle) =1, forall 0 << Cy. (19)

In addition, there exists 0 < Cy; < Cy2 < 1 depending on
Cp such that

0<Cy1<gle)<Cya<l, forall0<c<Cy. (20)

The following lemma follows from [28, Theorem 2]:

Lemma 5: There exists 0 < Cp < 1, C1,C4 > 0 such
that if |¢; 0)| > Cy for some kp > 0, then the algorithm (6)
converges to the solution with probability 1 — exp(—n/2) —
C1 exp(—C%m), in the sense that there exists § € (0, 1) such
that

Pr ( min [|e¥z — x*tD|| <6 min ¥z — x®|],
0<p<an 0<w<2m

for allkzkg) — 1, as n,m — oo.

Lemma 6: With probability at least 1 — 1/logn —
1

1
exp(~Cn). || > 57

For the rest of the proof, we first assume that for all
1<k <d, |c'gk)| < Cp, since otherwise Lemma 5 already
implies Theorem 1. Then we will show that |c'(3d+1)| > Gy
and Lemma 5 implies Theorem 1.

Let ¢ = {c;}2 , € C4*L, we choose a set of covering balls
of radius n/m in the set S = {c € C! : ||c[| = 1,]|co| <
Cy}. That is, we find a subset Sy C S such that for any ¢ € S,
there exists an element ¢ = {¢;}¢_, € Sp such that ||c—¢|| <
n/m. Following [27, Lemma 5.2], & can be chosen such
that [Sp| < (1 + 22)2(@+1) We assume that for all € € Sp,
the property in Lemma 2 holds for x = Ef:o ¢;Vv;, and the
property in Lemma 3 also holds. Then for all j =0,1,---,d,
we have

d d
u; E ciu; O ug [ — v E Civi @ Vo (21
i=0 i=0
1 d d
=== D cwove| —v; |d aviove
[[voll — —
i=0 i=0

d
1 )
= u —V; [} FROR Y,
|(||vu|| i E ” ]
d d
—v; Hch-u@@vﬂ - l Evi @%H ‘
i=0

i=0
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<H L~ v fvol
=N 1]
Tvol ™
d d
+ 1v31leo [[phase(> " cius) — phase(3 " &va)|| [volloe
i=0 i=0 1

<llag =5l +llIvoll = 1[IVl + [IVlleol Vollcomn

(Z leill[us — Vil + |ei — &l vall, _)

]g lgm 3n
+ log? m( —|—2dmax c; )
N Vm | lV
+ [y = vyl

In the last line, |||vo|| — 1| ||v;]| is bounded by 2%‘% (com-
bining Lemma 16 and (14)), ||V;||co||Vo||oc™ is bounded by

log? m (applying (14)), and max (3¢ |esl||us — Vil| + e -
Gil||vill, =) is bounded by applying (11) and (12):

d
_ n
max (Z |eilllws — vil| + [es — &l vl E)

i=0
a mn
< . v . , —
<3l = vall + les = alival) + =
i=0
a n
< 2l = vil+ llo— & maxlvil + 7
i=

<Z i — vl +Z lealllus — vill + |lc — || max || ;||+—

0<i<d
<oM8™ | i max 2lci]
- ym 2D<1a§d “

By the definition of Sy, we have that for each 1 < k < d,

there exists ¢®) = [&, .- ,&F] € S such that

(22)

ny2
< (), 18?1 < Co.

k
S
1
i=0

Combining the analysis in (21) (with c,C replaced by
c® €(®)), and applying (7) and Lemma 3, we have that for
1<j <k,

~(k+1 _(k) |y (K
&0 — g(1eg )| @3)
/™ 4 1og? () [ 30 ylogm
<4 m-l—]og m(ergagck“ | m+m+2\/ﬁ)
and for j =0,
~(k+1 _(k) |\ (K
a0 — £l el 24)

log” ! L3n
<3 o\g/ﬁm +log®m (Qd max le (k)| =+

log m)

4567

Combining (23), (24), (20), and (10),

E+1
Z|~(k+1)|2> Zl'-(k-i-l)lz (25)
>\/f2(l P Dle” 2 + g2(1e6” ) — 1267 1?)
n logZm
— 4k — —3
m . Jm
- G [ n  logm
2d(k—|—1)log2m(max|ci| —+—+ \/ﬁ)
10 m
>Cyale)| — aky | = \g/_
- G [ n  logm
2d(k—|—1)log2m(2:rg%xk|ci| —+—+ \/ﬁ)

Combining (23) and (25) with the update formula (9),
using induction we can verify that for sufficiently large n, m,
we have

4 max(y/m,log®m)
Cya vm

forall 0 < k < d—1. By the assumption m > Mn*2log"/*n
and Lemma 6, we have that as n, m — oo,

(k+1)
3 26
2<j<k+1 e (26)

D> — > glog_m @7
o l= 2v/nlogn NLD

9 4 max(y/n, logsm) n  3n _logm
log m(ZCd logncg‘Il N m—l— — +2 )

Similarly to (25), and applying the estimation (13), we have

~(k+1 ~(k+1 k+1
Zl(“l2< ZN“PHLIRI (28)
g\/cg +C2,(1— C2) + (4k + 6), /%
®, [n  n logm
+2d(k—|—1)log2m(2rg%xk|ci |ﬁ/m+m+ \/ﬁ)

Combining (27), (24), (26), and (10), it can be verified by
induction that when M is sufficiently large, forall 1 <k <d
we have

|c(k+1)| > |—(k‘)| log m

f 3
—logZm (2d max |c(k)| =
<i<k

logm)
k+1

+
Do IE" IR < /3 + C25(1 - CB) + (4k +6)y | —

i=0
logm
vm )’

(k) /N
a.gxk|c§ | m+m+

: 2
+2d(k+ 1) log"m (2{%
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and
|~(k+1)|

\/Zk-i-l ~(_;c+1)|2
Cr+1 Cr+1
> L) > 2L (ol -

k+1
e | =

n Cr+3
=) = L),
(29)

where
1

C =
VJC3+C2,(1-C)

and it can be verified from Cyo < 1 that Cf > 1.
Combining (29) with the definition of c\”’, we obtain (3),
the convergence in the first stage.

Combining (29) with Lemma 6 we have

C 3 Cylogn 1
el > (222 L — >
4 2/nlogn

In fact, the second inequality requires

(30)

(3D

log(2Cy) + é logn + 3 Lloglogn

C
“ log(gfﬁ) logn

¥

and for large n, our choice of Cy = —c—-rr + 1 suffices.

g(—L—)
With (31), Lemma 5 implied (4), the convergence of the sec-

ond stage. Then (2) is proved.

In the end, we summarize the probability that the above
analysis holds: the proof requires the events in all lemmas,
and in addition, the events in Lemma 2 and Lemma 3 should
hold for all x = E:::u ¢;Vv;, where © = [¢p, &1, -+ ,&4] is an
element in Sp. As a result, the probability is at least

1 — 2Cmd exp(— log? m) — exp(—n/2) —
1 Ymy 2d+2
— —— —exp(Cn) — (1 + _m)
logn n

. (m exp(—n/6) — exp(—Clog* m) — dexp(—On)),

1 exp(—Cym)

which can be verified to converge to 1 as n,m — ooc.

C. Proof of the Main Lemmas

Proof of Lemma 1: Since L is a random n-dimensional
subspace in C™, and ITj, is a random projection matrix to L,
ug is a random unit vector in C™ that is uniformly sampled
from the sphere in C™. Therefore, it can be obtained through
vop ~ CN(0,I/m) by

[[voll

Applying Lemma 16 (with a scaling of /m) and ||up— vo| =
||[vo|| — 1|, we proved (11) for k = 0.

Under the o-algebra generated by ug, the conditional dis-
tribution of L is a random subspace generated by

Sp(ll(]) @ LU:

where Ly is a random n — 1-dimensional subspace in the
m — 1-dimensional hyperplane Sp(up)+ (here & represents
the direct sum of two subspaces). Since w(!) is a random
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initialization on L and u® is the projection of w(!) onto
Sp(uu)J-, u; is a random unit vector on Ly. Combining it
with the conditional distribution of Lg, u; is a random unit
vector that is orthogonal to up. As a result, it can be generated
from v; ~ CN(0,I/m) as follows:

— UgUjVy
— upug vy

Applying Lemma 16, we have

1 =
' v

Pr(|1 —||v1||| > \/_) < exp(— C]og m). (32)

In addition, since ujvy ~ CN(0,1/m), Lemma 17 with
m = 1 implies that
[ugvy| > 1 ) < exp(—Clog’m).  (33)
P> 373

Applying Lemma 12, under the events of (32) and (33),

Vi
lar — vil| < [Jug||val| — || + [[va]] |[u1 — il ‘
Vi — gl vy Vi
=[lvi]l = 1| + [[va]| -
[vi —wougvy||  [|vafl
Uglivy
<Jvall = 11+ lvall - 2% — [Ivall = 1 + 2lugvs|

logm
=
which implies (11) with & = 1.

To prove (12), we first investigate the conditional distrib-
ution of L under the o-algebra generated by the algorithm
so far, that is, generated by {u;}*7} and {w;}*~]. That
is, what is the conditional distribution of L when {u;}*7}
and {w;}*_! are fixed? Under this o-algebra, L satisfies the
following properties:

wel, 0<i<k-1
w® oy —witw D wh oy 1L 1<i<k-2

The second property above holds since w0+ is the nor-
malization projection of w® ©y onto L, and as a result,
witHDw (it [w(® o y] = PL[w(® © y]. Recall that L is a
random n-dimensional subspace in C™, with this o-algebra,
its conditional distribution then can be written as

L= Sp{ui}?;ol @ Ly,

where L is a random n — k-dimensional subspace in the
m — 2k + 2-space Ry, that is orthogonal to u;, 0 <i < k—1
and [w? ©y] - witDwlitD*w o y] 1 <i <k -2

Since w'*) is the projection of w*~1) )y onto the subspace
L and uy, is the unit vector of the projection of w®) to the
subspace orthogonal to Sp{ui}?:_&, in conclusion, u®) is the
unit vector that corresponds to the projection of Pg, [w“‘ Yo
y] onto L, a random n — k-dimensional subspace in Ry.
Applying Lemma 7 (with m, n, C™ replaced by m — 2k + 2,
n — k, Ry), ug can be written as

Pr, WD o y]
u; =4/ 1—a?v; -
‘ VT P WD Gy

(34)
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where v}, is a unit vector on R}, the m — 2k + 1-dimensional
subspace inside Rj and orthogonal to Pg, [w*—1) & y],
and a is the length of the projection of Pg, [w(*~1) ©
¥1/|[Pr, [w*=D © y]|| onto Ly

Since Ly, is a random subspace in Ry, v}, is a random unit
vector on R, and can be derived through v; ~ CN(0,I/m)
by

P, R;“ Vi

| Pry V|l

Vi =

Again use the fact that

1 [n
Pr (|1 = Ivilll > g/ =) < exp(~Cn)

and Lemma 17 implies

Pr (||vk—PRka|| >%\/§) < 2(2k-1) exp(—Cn/(2k—1)),

and Lemma 8 implies
n—k

P(2>2-—)<4 —C(n—k)). 35
r(a?>2 —om) <dexp(~C(n—K).  (39)
Combining all estimations above with (34) and
Lemma 12, (12) is proved as follows:
[ug = Vil < a+ V1 —a?||vg —V:cll
<a+V1—a(||lvill = 1|+ IVi = == 1)

|| kll
<a+ ([[[vell = 1]+ 2|| Privie — V|l /[ V&l])

2.#}&+(6\/_+21i‘_/;7) \/_

Note ¢ ”(k) is the length of projection of Pg, [W(k_l) ®yl
onto Lk, and ||Pg [w* D o y]| < ||{W(k_1) @yl
|l¥|]| = 1, by the definition of a we have Ekk < a. Then (35)
implies (13).

At last, (14) is obtained by applying Lemma 17 (with union
bound and m =1 for the || - || norm). 0

Proof of Lemma 2: It is based on a combination of
Lemma 10, 11, and 12. In particular, ¢ = max(||y||,n/m) in
Lemma 10 (remark: there is a scaling factor of \/m between
X in Lemma 2 and Lemma 10). O

Proof of Lemma 3: The proof is based on two components:
first, we have

Evg[x ® vo] = f(|eol)eos (36)
and for any 1 < j < d,
Ev}[x ® vo] = g(|co|)cj- (37

To prove (37), we write X = covp + /1 — |ep|?Vv’ with
I 1

d
v = O > i_1 CiVi, then v’ and v are independently

>
sampled from CN (0,I/m). The definition of ¢ then implies

V1= leol?g(leol)

Noting that the correlation between v; and v’ is

Ev™*[x® vo] =
.

;;1 leol?
both are sampled from ~ C'N (0 I/m), using the properties

of Gaussian distributions, v/ = v v follows a
I ;;1 leol?

and
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Gaussian distribution and is independent of v’. Since v is

independent of v/, ¥’ is also independent of x = cpvp +

V1 —|co|?v'. As a result, E¥*[x ® vo] = 0 and (37) is

proved as follows:

G
V1= leol?

== EV"[x ® vo] = g(lcol)c;.

Vi TP

Since each element of vy is sampled from C'N(0,1/m),
it can be verified that the real component and the imaginary
component of each entry of x © vp is sub-Gaussian, with
sub-Gaussian parameter bounded above by C//m. Applying
Lemma 13, (18) is proved.

The proof of (17) is based on the proof of (36), which is
similar to the proof of (37). (]

Proof of Lemma 4: The proof addresses (19), the upper
bound in (20), and the lower bound in (20) separately.

We start with the proof of (19). Applying the property of
Gaussian distribution, =y and z; are independently sampled
from CN(0,1) if and only if zp = cxp+v1 — cZryand z; =
V1 — c?zg — ex; are independently sampled from C'N(0,1).
As a result,

Evi[x® vo] = Ev™*[x® vo] + E¥™[x ® vg]

ezp+ V1 — 22

lezo + V1 — 22|

! lCID+ L ll O(C.ED+‘\/1_CZ.L'1)

:—Eﬂ:o,lleCN(D,l) |I |

¢
1 cro+vV1 — 2z .
¢ Ezo,2 L |zo| 1|RG(ID(CID+ V1—c?r)"),

where the last step follows from the fact that f(¢) is
real-valued (because of symmetry). Combining it with the
original definition of f(¢) in (15), we have

2f(c)
1 lezo + V1 — 24|

:E ]EQ:D,TI |ID|

fle) = zu, z1~CN(0,1) |z0]2g

(38)
RB(Iu(CIu +4/1— 02151)*)
1 |zo| —
T, L1 R 1— 2z}
" lexo + V1 — x| e((CID-i- ¢ 1:1)1:0)
Ezy,z, Re(czo + V1 — c2x1)xp)
i 1)

c—I—O)

_|_

>

nlwnlw

2

where the last equality applies Eg, gz, z12{ =
(Eg,21 1) (Eqg 2, 25) = 0-0 =0, and (19) is proved.

To prove the upper bound in (20), we first prove that for
0<e<l1

lezo + V1 — 22|

|zo]

E., Re(zpz7) > 0. (39)
In fact, if we fix zp and WLOG assume that it is real-valued
and positive, and let Z2; = —Re(z1) + 7lm(z1), then when

Re(z1) > 0,

Re(z027) < 0, |eczo+ V1 —c2z1| —|czo + V1 —c%21] <0,
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and when Re(21) < 0,

Re(z027) > 0, |czo+ V1 —c2z1| —|czo + V1 —c%21| > 0.

Combining these two cases, we have

V1 — 23 V1_ 2
lezo + c zllRﬁ(zuff lezo + c z1|Rﬁ(z02I
|20l |20l
VI—5| - Vi—&
_ ('“0 i &l || ||‘3z“ tVie m) Re(x03}) = 0.
20
(40)
As a result, for any zp, we have
czo+V1—Ez .
2E,, le20 o 1|Re(zuz1) (41)
czg+V1—c2z o |ezo+V1—c22 -
:[E(—| 0 o] 1|Re(z0z1)—|——| 2 llRB(zuzl))
1—¢2 1—
:[E(— lezo+V1—c z1|RB(zugl)+|czu—|—\/ c z1|R (ZDZD)
|20l |20l
=0.

Here the first equality follows from the fact that z; and
z1 have the same distribution, the second equality follows
from Re(z027) = —Re(z0Z7), and the first inequality follows
from (40). Then, (39) is proved by taking the expectation
of (41) to zp.

Applying (39), the upper bound of g(c) can be estimated as

follows:
o) = 1 E crp + V1 —c2ry \zolz!
Vi on lezo + V1 — 2| o

1 -1
:ﬁ Ezy 2, lz—z||:cu|(\/ 1—c229 —c21)*

c__|zol
=Egy,2, |20/|zo| = T2 [ RB(ZOZJ
2 2 1_ 2
<E |z0“+|zo|* c |cz0—|—\f c zllRﬁ(zuz;‘) <1,
2 V1-c? |20l

where the last inequality follows from (39). With the conti-
nuity of g(c), it means that there exists Cy 2 < 1 such that
g(e) < Cy2 for all 0 < ¢ < Cp, and the upper bound in (20)
is proved.
To prove the lower bound in (20), we define h : [0, 00) — R
as follows: 14 ex
h(c) = Ezep m:

where p is the uniform distribution on the unit circle in C.
Since RE(IHHI) > Re(lcml) = Re( III) and ]ERe(I 1) =0,
we have E ]L_L'C—II ]ERE(]I—'"EI) > 0 (the equality applies
the symmetry of the distribution p), and

1 er1 + V1 — 2z

C :—E . I I*
g() m Tg,T1 CN(D,l)l 1—|—\/1—62Iu|| 1| 0
1 clz] )
Vie o (mw ol

Since g(c) is strictly positive for any 0 < ¢ <
and is continuous, there exists Cy; such that mingc.<¢,
g(e) > Cy,1. This proves the lower bound in (20).
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Fig. 1. The empirical values of f, g, and f/g.

We include the numerical values of f(¢) and g(c)
in Figure 1, to show that the inequalities (19) and (20) hold
empirically. O

Proof of Lemma 5: For convenience, we first write down
[28, Theorem 2] explicitly:

Theorem 2 ( [28], Theorem 2): There exists

C},C1,C5 M > 0 such that when m > Mn, then
with probability at least 1 — C exp(—C%m), for any x € C"
such that

inf |e¥z — x| < Ch||z

in ez — x| < Gy,
then

inf ||e™z — xF|| < 4 inf ||z — x|,
PeR YEeR

where xT is the vector obtained by applying one iteration
of the standard alternating projection algorithm (without nor-
malization) (1) to x, and with {a;}, ii.d. sampled from
CN(0,1).

By the analysis in Section II-A, (1) is equivalent to the
algorithm that we are analyzing in (6) in terms of w(¥)
as in C™. Therefore, [28, Theorem 2] implies that for
At =A*(A*A)~L, if

inf | A% (¢"uo — w)| < Cl[A* o]

then for any k > ko,
inf ||AT(eug — wktD)|| < 6 inf ||AT(e¥ug — wH)].
PeER YER

Since A is a complex Gaussian, [11, Theorem 2.13] implies
that the condition number of A is bounded with high
probability:

Pr (C’maX(A) vm+yn+t
Omin(A) ~ \/_ \/’-’_"_t

) < 1-—2exp(—t2/2).
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Combining it (use t = /n) with

k
. i (k) 1By (k)2
inf e uo =W = | (1= leg” )2 +D_lei”|

i=1

k k
/1= D2 +1— PP,

there exists 0 < Cp < 1 such that when |cék)| > Cp,
infyeg || AT (e®uy — w®)|| < C5||ATug|| (note that A and
AT have the same condition numbers), and then [28, Theo-

rem 2] implies limy ., infyep AT (e¥ug — w®)|| = 0.
Applying the fact that the condition number of A™ is bounded
again, we have limy_, o, infycg [|e¥1uy — w® || = 0. O

Proof of Lemma 6: WLOG we may assume that L =
Sp(e1,---,en) and up = e1, and w(l) ~ CN(0, Pp) (since
w() is a random vector on L). Then

iV
WO

1
e =

Applying Lemma 16 and note that |[w(!)||? is the sum of
n unit complex gaussian squared, Pr(|[w(| > 2,/m) <
2exp(—Cn); and Lemma 9 implies that Pr(|[w()| <

O

1/\/Togn) < logn.

D. Auxillary Lemmas

Lemma 7: Assuming that the projection of a unit vector
x € C™ to a random n-dimensional subspace L has length a,
ie., | PLx|| = a, then

PLX o
I Prx||

ax+ v 1— a?v,

where v is a unit vector perpendicular to x, that is, v*x = 1.

Proof: Since ﬂ%ﬂ is a unit vector, we may assume that

=bx++/1— b2%v,

where ||v|| =1 and v*x = 0. It remains to prove a = b.

By the definition of projection, we have (x — Prx) L Prx,
i.e., Ppx*(x — Ppx) = 0. Applying the assumption (42) and
| PLx|| = @ we have

(bx+ VI=—82v) ' (1 - abpx— ay/T=82v) =0.

With v*x = 0 and ||x|| = ||v|| = 1, it implies b(1 — ab) =
a(l —b?) and a = b. O

PLX
I Prx||

(42)

Lemma 8: Given a vector X € R™ and a random n-
dimensional subspace L, then

_ 2
Pr 1—e - m||PLx|| - 1+e€
1+e~ n|x||2 ~—1-—¢

] e e
>1 —4exp | —cnmin reviXel ,

Proof: WLOG we may assume that x ~ CN(0,I)
and L is the subspace spanned by the first n standard
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basis eq,--- ,e,. Then ||x[|? = Y_I%, |z;]? and ||Prx||? =
>, |zi|%. Applying Lemma 16, we have

Pr ((1 —em <) |mP < (1+ f)m)

i=1

. e e
>1—2exp | —emmin T

Pr ((1 —on <Yy |mff <1 —l—f)n)

i=1

) e e
>1—2exp | —enmin 2T

Combining these two inequalities and m > n, the lemma is
proved. O
Lemma 9: For £ ~ CN(0,1) and any r > 0,

Pr(|z| <7) <2

Proof: By the definition of CN(0,1), Pr(|z| < r) is
the equivalent to Pr(|ly| < r) for y € R? and sampled
from N(0,I242/2), which has a probability density function
of 2 exp(—||y||?). This function is maximized at y = 0 with a
value of 1/, and as a result, Pr(|ly|| < r) <7 -1 =720

Lemma 10: Given a vector x € R™ sampled from
CN(0,Imxm), for all y € R™ satisfies = > 7", |y;]? < ¢2
and ¢ > n/m, with probability at least 1 — mexp(—n/6),

we have m
izmax(w*',l) < (4+V2)t
m 4]

for | = max(0, | —logy t]).

Proof: WLOG we may rearrange the indices and assume
that |z1| < |z2| < -+ < |zm|. Then Lemma 11 implies that

Pr(|z;| > /7/2m) > 1 —exp(—j/6).  (43)
Applying a union bound,
Pr (|Ij| > /j/2m for all j > n) > 1— mexp(—n/6).
(44)

Denote the set of natural numbers by /, and when the event
in (44) holds, for all 7 = n we have

> >

PEN j<i<2] ENj<i<2j

1 .
<z > wl <mev2.
J PEN 1 <i<2j

Combining (45) for j = tm,2tm,4tm,--- ,2'%m (I is the
largest integer such that 2!t < 1) and j = m/2, we have

|yz'| Si
Bz

|yl (45)

|ys|

Y. T <@+hmeva (46)
ieNtm<i<m |I§|
In addition, it is clear that
3 max(|y‘|,1) < tm. (47
iEN1<i<tm |zl
Combining (46) and (47), the lemma is proved. O
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ot

Fig. 2. Visualization of the proof of Lemma 12 when r < 1.
Lemma 11: For a random vector x € C™ sampled from
CN (0,1 xm), we have

Pr (i Iz <7) < 2r2m) > 1 — exp(—r?m/3)

i=1
for all » > 0.

Proof: We apply Lemma 15 with p = Pr(|z¢| < r) and
6 = 2r%/p — 1. Applying Lemma 9,

6p = 2r2 — Pr(|z1] < 1) > 2,
which implies Lemma 11. O

Lemma 12: For any complex numbers =,y € C, |phase
(z +vy) — phase(z)| < mi_n(2]|%|[, 2). Similarly, for any vector

Wy e O™ B - | < min(2{2.2)

Proof: WLOG we only need to prove the first sentence
and we may assume that = = 1 and |y| = r. Then phase(z) =
e’ = 1, and on the complex plane, x+y lies on a circle center
at 1 with radius r.

When r > 1, |phase(z + y) — phase(z)| is maximized
when y = —r and phase(z + y) = —1, then we have |phase
(z +y) — phase(z)| = 2.

When r < 1, we would like to find a point on the circle
such that its direction is as far from the direction of x-axis as
possible. As visualized in Figure 2, |phase(z+vy) — phase(z)|
is achieved when the line connecting = + y and the origin
is tangent to the circle. It implies that the maximal value is
le?® — 1|, where § = sin~'r. Then we have the estimation
e —1| = 2sin(0/2) = sin(f)/ cos(A/2) < v/2sin(f) = /2r
(the inequality uses the fact that 8 < 7 /2).

Combining these two cases, Lemma 12 is proved. O

Lemma 13 (Sum of sub-gaussian variables, Proposi-
tion 5.10in [27]): Given X1, --- , X, i.i.d. from a distribution
with zero mean and sub-gaussian norm defined by || X ||y, =

n

sup,>; p~/*(E|X|P)!/P, then
X
T

1 t?
Pr( Zt)gexp(—%—l—l)
i=1 ” ”1.15‘2

Lemma 14 (Sum of sub-exponential variables, Corol-
lary 5.17 in [27]): Given X1, - , X, i.i.d. from a distribution
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with zero mean and sub-exponential norm defined by
1X Iy, = supy>1 p~" (E|X[7)!/7, then

n
_in

P ! >t <2 i £ L
T >t|<2exp|—cnmin | —=—, ——
n 1X0Z, 7 1 X [,

Lemma 15: X, X5, -- are i.i.d. Bernoulli variables with
expectation p, then for any § > 1,

Pr() X > (1+8)pm) < exp(—mdp/3).

i=1
Proof: 1t follows from [21, Theorem 4.4] and the obser-
vation that when & > 1, (1 + &) log(1 + &) > 34. O
Lemma 16: For v ~ CN(0,I), Pr(|Z|v[2—1] > t) <

2exp (—cm min (%2;, %

Proof: We remark that ||[v|2 —m = Y77, (R(vi)? —
1/2) + (3(v)2 — 1/2)), and both R(v;) and I(v;) are
i.i.d. sampled from N(0,%). Since sub-gaussian squared is
sub-exponential [27, Lemma 5.14] with mean 1/2m, and
after centering, a sub-exponential distribution is still sub-
exponential [27, Remark 5.18], R(v;)?> — 3 and S(v;)? — 3
are i.i.d. sampled from a sub-exponential distribution with
sub-exponential norm smaller than a constant C. Applying
Lemma 14, Lemma 16 is proved. O

Lemma 17: For any x ~ CN(0,Lpxm), Pr(||x| > t) <
2m exp(—t2/m).

Proof: It follows from the classic tail bound:
Pr(|[N(0,1)] > t) < exp(—t%/2) and the fact that
Re(z;),Im(xz;) ~ N(0,1/2) for all 1 < i < m, we have

Pr(|Re(z;)| > t/v2m) = Pr(|Im(z;)| > t/v2m)
=Pr(|N(0,1)| > t/v/m) < exp(—t*/m).

Applying a union bound of all real components of imaginary
components of each element of x (there are 2m of them),
Lemma 17 is proved:

Pr(||x|| > t)
<>~ (Pr(IRe(x:)| > t/vV2m) + Pr(|m(z)| > t/v2m))
i=1

<2m exp(—t2/m).

O

III. DISCUSSION

The current paper justifies the convergence of the alternating
minimization algorithm with random initialization for phase
retrieval. Specifically, we demonstrate that it succeeds with
m > Mn!'5log®® n for some M > 0. A future direction is
to improve the sample complexity, possibly via more sophisti-
cated arguments, so that it matches the empirical observation
that the algorithm succeeds with m > O(n). It would also be
interesting to compare the decoupling approach in this work
and the leave-one-out approach in [10], both in phase retrieval
and in other problems.
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