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Phase Retrieval by Alternating Minimization
With Random Initialization

Teng Zhang

Abstract— We consider the phase retrieval problem, where the
goal is to reconstruct ann-dimensional complex vector from its
phaseless scalar products withm sensing vectors, independently
sampled from complex normal distributions. We show that,
ifm ≥ Mn3/2log7/2nfor someM > 0, then the classical
algorithm of alternating minimization with random initialization
succeeds with high probability asn, m→ ∞.Thisisastep
toward proving the conjecture in, which conjectures that the
algorithm succeeds whenm = O(n). The analysis depends
on an approach that enables the decoupling of the dependency
between the algorithmic iterates and the sensing vectors.

Index Terms— Iterative algorithms, convergence of numerical
methods.

I. INTRODUCTION

THIS article concerns the phase retrieval problem as
follows: letz∈Cn be an unknown vector, and given

m known sensing vectors{ai}
m
i=1 ∈ Cn, wehavethe

observations
yi=|a

∗
iz|,i=1,2,···,m.

Then can we reconstructzfrom the observations{yi}
m
i=1?

In this work, we assume that the sensing vectors{ai}
m
i=1

are sampled from a complex normal distributionCN(0,I).
That is, their real component and imaginary components are
independent and follow a real Gaussian distributionN(0,I/2).
This problem is motivated by the applications in imaging

science, and we refer interested readers to [6], [12], [24] for
more detailed discussions on the background in engineering
and additional applications in other areas of sciences and
engineering.
Because of the practical ubiquity of the phase retrieval

problem, many algorithms and theoretical analyses have been
developed for this problem. For example, an interesting recent
approach is based on convex relaxation [7], [8], [29], that
replaces the non-convex measurements by convex measure-
ments through relaxation. Since the associated optimization
problem is convex, it is possible to solve it in polynomial time,
and it has been shown that under some assumptions on the
sensing vectors, this method recovers the correctz[5], [17].
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However, since these algorithms involve semidefinite program-
ming forn×npositive semidefinite matrices, the computa-
tional cost is prohibitive whennis large. Recently, several
works [1], [16], [18], [19], [23] proposed and analyzed an
alternate convex method that uses linear programming instead
of semidefinite programming, which is more computationally
efficient, but the program itself requires an “anchor vector”,
which needs to be a good approximate estimation ofz.
Another line of works are based on Wirtinger flows,

i.e., gradient flow in the complex setting [4], [6], [9],
[10], [25], [30]–[32]. Some theoretical justifications are also
provided [6], [25], and in particular, the geometric analysis
in [26] allows random initialization to be used with this
method. However, this method requires choosing step sizes,
which makes the implementation slightly more complicated.
Most existing theoretical analyses assume sufficiently small
step sizes.
The most widely used method is perhaps the alter-

nate minimization (Gerchberg-Saxton) algorithm and its
variants [13]–[15], that is based on alternating projections onto
nonconvex sets [2]. As a result, in some literature, it is also
called the alternating projection method [28]. This method
is very simple to implement and is parameter-free. However,
since it is a nonconvex algorithm, its properties such as conver-
gence are only partially known. Netrapalliet al.[22] studied a
resampled version of this algorithm and established its conver-
gence as the number of measurementsmgoes to infinity when
the measurement vectors are independent standard complex
normal vectors. Marchesiniet al.[20] studied and demon-
strated the necessary and sufficient conditions for the local
convergence of this algorithm. Recently, Waldspurger [28]
showed that whenm≥Cnfor sufficiently largeC, the alter-
nating minimization algorithm succeeds with high probability,
provided that the algorithm is carefully initialized. This work
also conjectured that the alternate minimizations algorithm
with random initialization succeeds with m ≥ Cnfor
sufficiently largeC.
One particular difficulty in the analysis of the alternating

minimization algorithm is the stationary points. Currently,
most papers on nonconvex algorithms depend on the analysis
showing that all (attractive) stationary points of the algorithm
are well-behaved in the sense that it is the desired solution,
or close to the desired solution, for example, [26]. Then
standard algorithms such as gradient descent algorithm or
trust-region method can be applied to the problem to obtain
the stationary point. However, as pointed out in [28], in the
regimem=O(n), the alternating minimization algorithm has
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attractive stationary points that are not the desired solution.
While empirically these undesired stationary points are not
obstacles for the success of the algorithm since their attraction
basins seem small, it prevents us from applying the common
approach of analyzing stationary points.
Recently, [33] shows that the algorithm improves the

correlation between the estimator and the truth in each iteration
with high probability. Based on this observation, it shows that
a resampled version of the alternating minimization algorithm
converges to the solution with high probability whenm =
O(nlog5n). However, this approach can not be applied to
analyze the alternating minimization algorithm directly, since
the estimator at thek-th iteration is correlated with the sensing
vectors. As a result, to analyze the non-resampled version,
one needs to find a way to decouple the estimator at thek-th
iteration and the sensing vectors.
We remark that there are also algorithms based on

Douglas-Rachford splitting [12], which is popular in practice,
but we skip detailed introductions and comparisons as they
lack strong theoretical guarantees as the other works reviewed
here.
The contribution of this work is to show that the alternating

minimization algorithm withrandom initialization succeeds
with high probability whenm>Mn1.5log3.5n. While it does
not match the conjecture ofm=O(n), it is an improvement
over the result ofm>Cn2in [28]. Compared with [33],
which analyzes a resampled version of the alternating min-
imization algorithm, this work introduces an approach that
decouples of the sensing vectors and the estimator at the
k-th iteration, by fixing the firstk−1algorithmic iterates and
analyzing the conditional distribution of the sensing vectors.
This approach, inspired by the analysis of LASSO in [3],
is the main technical contribution of this work. In spirit, this
contribution is very similar to the leave-one-out approach that
also enables decoupling in [10], where the authors show that
an algorithm for the phase retrieval converges linearly based on
the leave-one-out approach. However, the analyzed algorithm
is very different and their work assumes that the sensing
vectors and the signalzare real-valued. Besides, it seems
more difficult to apply the leave-one-out approach for the
alternating minimization algorithm, as the update formula is
more complicated.
The paper is organized as follows. Section I-B presents the
algorithm and the main result of the paper, Theorem 1. The
proofs are given in Section II, where the proof of Theorem 1 is
given in Section II-B, the proof of the main lemmas are given
in Section II-C, and the auxiliary lemmas and their proofs are
given in Section II-D.

A. Notations

For anyz∈ C,|z|represents the modulus ofzand
phase(z) = z/|z|represents the phase ofz. Weuse
Sp(a1,···,am)to represent the subspace spanned by
a1,···,an,i.e.,theset{x ∈ C

n :x =
m
i=1ciai,

for somec1,···,cm ∈C}. Note that this subspace is slightly
different from the standard subspace inRn, by allowing the
coefficient of each vector to be a complex number. We use

PLto denote the projection onto the subspaceL:PL(z)is the
nearest point onLtoz.
For any vectorz=(z1,···,zm),phase(z)is the vector

whose coordinates are the phases of the coordinates ofz:

phase(z) = (phase(z1),···,phase(zm)).

We use to denote the pointwise product between the phase
of the first vector and the modulus of the second vector.
That is,

(w y)i=
wi
|wi|
|yi|.

For any vectorz∈Cm,z represents its Euclidean norm:
z=

m
i=1|zi|

2, and its1-norm and∞-norm are defined
by z1=

m
i=1|zi|andz∞ =max1≤i≤m|zi|.

B. Algorithm and Main Result

The alternating minimization method is one of the
earliest methods that was introduced for phase retrieval
problems [13]–[15], and it is based on alternating projections
onto nonconvex sets [2]. LetA ∈ Cm×n be a matrix
with columns given bya1,a2,···,am, then its goal is to
find a vector inCm such that it lies in both the subspace
L = range(A)∈ Cm and the set of correct amplitude
A = {w ∈Cm :|wi|= yi,fori=1,···,m}. For this
purpose, the algorithm picks an initial guessx(1)inCnand
alternatively projectsAx(1)to both sets. Define the projections
PL,PA :C

m →Cm by

PL(w)=A(A
∗A)−1A∗w,[PA(w)]i=yi

wi
|wi|
,

and the alternating minimization algorithm is given by
iteratively applying the operatorPLPA to the vector
w(1)=Ax(1), i.e.,

w(k+1)=PLPAw
(k). (1)

Then the estimator ofxat thek-th iteration is obtained by
solvingw(k)=Ax(k).
This algorithm has been studied in [28] and Theo-

rem 2 in [28] shows the convergence of the algorithm if
m > Mn and ifx(1) is a good initialization. Besides,
it conjectures that random initialization also succeeds in this
setting. In this article, we prove that this conjecture holds when
m>Mn1.5log3.5nfor someM>0. The rigorous statement
is as follows:

Theorem 1:Assuming that the sensing vectors{ai}
m
i=1 are

i.i.d. sampled from the complex normal distributionCN(0,I),
there existsM> 0such that ifm≥Mn3/2log7/2n,then
the alternating projection algorithm with random initialization
(obtained from a uniform distribution on the sphere ofCn)
succeeds almost surely in the sense that

Pr lim
k→∞

inf
ψ∈R

eiψx(k)−z=0 →1,asn, m→∞.

(2)

Specifically, there are two stages in the convergence ofx(k)

toz. In the first stage, the correlation betweenw(k)andAz
increases linearly: with probability goes to1asn, m→ ∞,
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there exist constantsC>1andCd>0such thatCdoes not
depend onn,Cddepends onn,Cd≤O(logn),and

Pr
|w(k+1)∗Az|

w(k+1) Az
≥C

|w(k)∗Az|

w(k) Az
,for all1≤k<Cd

→1,asn, m→∞. (3)

Note that w(k) = Ax(k), it implies that the correlation
betweenAx(k)andAzincreases in the firstCditerations.
In the second stage, the distance betweenx(k) andz
decreases linearly: there exists0<δ<1such that

Pr min
0≤ψ≤2π

eiψz−x(k+1) ≤δ min
0≤ψ≤2π

eiψz−x(k),

for allk≥Cd →1,asn, m→∞. (4)

In the proof, for simplicity when we talk about a “random
unit vector inCm/subspaceL”, we implicitly assume that it
is sampled from the uniform distribution on the unit sphere in
Cm or the unit sphere in subspaceL. The constantsc, Care
used to represent a constant that is independent ofmandn,
and it is used to represent different constants in different
equations. In addition, since the theorem focus on the setting
whennandmare both large, we sometimes apply inequalities
that hold only under this assumption. For example, we may
writelog3n<neven though it only holds for largen.

II. PROOF OFTHEOREM1

In the proof, we will first present a reduced form of the
statement of Theorem 1 in Section II-A, and then present
the proof of this reduced statement in Section II-B. The
proof of the main lemmas are given in Section II-C, and the
auxiliary lemmas (which are mostly generic results on measure
concentration) and their proofs are given in Section II-D.

A. An Equivalent Form of Theorem 1

In this section, we introduce some modifications to the algo-
rithm, which do not impact the performance of the algorithm
but will simplify the proof later.
First, we investigate the performance of the same algorithm

if the sensing matrixA, the underlying signalzand the
initializationx(1)are replaced byÃ = AD,̃z= D−1z,
andx̃(1) = D−1x(1)respectively, for someD ∈Cn×n.
Thenw(1)andyare unchanged, andrange(̃A)=range(A),
which means that the update in (1) is unchanged, and the
estimators between these two settings have the connection of
x̃(k)= D−1x(k). As a result,eiψ̃x(k)−z̃ → 0if and
only if eiψx(k)−z→0. For the rest of the proof, we will
analyze the equivalent problem whereD=(A∗A)−1/2and
Ais replaced with̃A=AD=A(A∗A)−1/2, an orthogonal
matrix with columns being an orthonormal basis ofL.
Second, WLOG we assume that z =1(which implies
thaty =1becauseA is an orthogonal matrix) and we
normalizewin the update formula (1):

w(k+1)=
PLPAw

(k)

PLPAw(k)
. (5)

Compared with the original form (1),w(k)is normalized
to a unit vector in each iteration. Since the operatorPA
is invariant to scaling (PA(cx) =PA(x)), the alternating
minimization algorithm with normalization (5) is equivalent
to the standard version (1) with a “correct” scaling, and it
is relatively straightforward to verify that Theorem 1 holds
for (5) if and only if it holds for (1).
Since{ai}

n
i=1 are i.i.d. sampled fromCN(0,Im×m),L

is a randomn-dimensional subspace inCm. Combining the
analysis above, to prove Theorem 1, we will address the
following equivalent problem:

• Choose a unit vectorz∈Cnand a randomn-dimensional
subspaceLinCm, and a random unit vector inL, denote
it byw(1).Lety=|Π∗Lz|,whereΠLrepresents a matrix
inCm×n, whose columns form an orthonormal basis of
L(there are many choices ofΠL: for any unitary matrix
U ∈Cn×n,ΠLU also satisfies this property, and we
randomly choose one).

• The iterative update formula is given by

w(k+1)=
PL[w

(k) y]

PL[w(k) y]
, (6)

andx(k)=Π∗Lw
(k).

• Goal: prove (2).

B. Main Proof

In the proof, we first define a set of orthogonal unit vectors
inCm:

u0=ΠLz,(note thatu0 =1sincez=1)

uk=
w(k)−

k−1
i=0 uiu

∗
iw
(k)

w(k)− k−1
i=0 uiu

∗
iw
(k)
,for all1≤k≤d,

whered= Cdlognwith constantCd =
1

2 log(
Cf+3

4 )
+1,

whereCfwill be defined later in (30) and does not depend
onnorm.
Sinced<m,{ui}

d
i=0 is a set ofd+1orthogonal vectors

inCm. By definition,w(k)∈Sp(u0,u1,···,uk)for any1≤
k≤dandw(k)can be written as

w(k)=
k

i=0

c
(k)
i ui.

By writingPL[w
(k) y]in the basis ofu0,···,uk+1 as

PL[w
(k) y]= (k+1)

i=0 c̃
(i)
k+1ui, the update formula (6) can

then be rewritten as the update of{c
(k)
i }

k
i=0 as follows: first,

c
(1)
0 =u∗0w

(1)andc
(1)
1 = 1−|c

(1)
0 |
2. Then, for1≤k≤

d−1, the update formula ofw(k)in (6) is equivalent to

c̃
(k+1)
i =u∗i

k

i=0

c
(k)
i ui u0 ,0≤i≤k, (7)

c̃
(k+1)
k+1 = PL

k

i=0

c
(k)
i ui u0−

k

i=0

c̃
(k+1)
i ui ,(8)

c
(k+1)
i =

c̃
(k+1)
i

k+1
i=0 |̃c

(k+1)
i |2

,0≤i≤k+1. (9)

Authorized licensed use limited to: University of Central Florida. Downloaded on August 03,2020 at 15:35:46 UTC from IEEE Xplore.  Restrictions apply. 



4566 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

While (8) seems complicated, this explicit formula will not be
used later in the proof. Instead, the estimations

0≤c̃
(k+1)
k+1 ≤ 1−

k

i=0

|̃c
(k+1)
i |2 (10)

and (13) (will be presented later) are sufficient, where
the second inequality of (10) follows from the fact

that
k+1
i=0 |̃c

(k+1)
i |2 = PL[w

(k) y]2 ≤ w(k)

y2= y2=1.
The outline of the proof is as follows: first, we show

thatuican be well approximated by random vectorsvi
fromCN(0,I/m)in Lemma 1. This step decouples the
dependency between the sensing vectors and the estimations
at thek-th iteration. Second, Lemma 3 and 4 investigate

the approximate dynamics of{c
(i)
k}

k
i=0 defined in (7) - (9),

by replacinguiwithvi. Third, we obtain the dynamics of

{c
(i)
k}

k
i=0 from applying a perturbation result in Lemma 2 to

the dynamics we obtained in the second step. The above steps
describe the first stage in Theorem 1. Finally, we prove that at
thed-th iteration, the estimation is already sufficiently good,
and Lemma 5, which is a direct corollary of [28, Theorem 2],
will be used to prove that the algorithm succeeds. This step
describes the second stage in Theorem 1.

Lemma 1:There exists{vi}
d
i=0 such thatviare i.i.d.

sampled fromCN(0,I/m),u0=v0/v0,and

Pr uk−vk >
logm
√
m

<Cexp(−Clog2m)fork=0,1

(11)

Pr uk−vk >2
n

m
<Cexp(−Cn)for2≤k≤d

(12)

Pr |̃c
(k)
k |>2

n

m
<Cexp(−Cn)for1≤k≤d. (13)

In addition, the properties

vi ≤2,vi∞ ≤
logm
√
m
,for all0≤i≤d

(14)

hold with probability1−2m(d+1)exp(−log2m)−2m
(d+1)exp(−log2m).

Lemma 2:Forx∈Cm sampled fromCN(0,Im×m/m),
with probability at least1−mexp(−n/6), the following
statement holds for ally∈Cm:

1

m
phase(x+y)−phase(x)1≤Clogmmax y,

n

m

Lemma 3:Definef, g:[−1,1]→Rby

f(c)=
1

c
Ex0,x1∼CN(0,1)

cx0+
√
1−c2x1

|cx0+
√
1−c2x1|

|x0|x
∗
0 (15)

and

g(c)=
1

√
1−c2

Ex0,x1∼CN(0,1)
cx0+

√
1−c2x1

|cx0+
√
1−c2x1|

|x0|x
∗
1.

(16)

Then for{vi}
d
i=0 i.i.d. sampled fromCN(0,I/m),anyfixed

{ci}
d
i=0 such that

d
i=0c

2
i=1,andx=

d
i=0civi,

Pr|v∗0[x v0]−f(|c0|)c0|<
log2m
√
m

>1−exp(−Clog4m),

(17)

and for any1≤j≤d,

Pr v∗j[x v0]−g(|c0|)cj <
n

m
>1−exp(−Cn).

(18)

Lemma 4:Given any0<C0<1,wehave

f(c)≥1,for all0<c<C0. (19)

In addition, there exists0<Cg,1<Cg,2<1depending on
C0such that

0<Cg,1<g(c)<Cg,2<1,for all0<c<C0. (20)

The following lemma follows from [28, Theorem 2]:

Lemma 5:There exists0<C0< 1,C1,C2>0such

that if|c
(k0)
0 |>C0for somek0>0, then the algorithm (6)

converges to the solution with probability1−exp(−n/2)−
C1exp(−C2m), in the sense that there existsδ∈(0,1)such
that

Pr min
0≤ψ≤2π

eiψz−x(k+1) ≤δ min
0≤ψ≤2π

eiψz−x(k),

for allk≥k0 → 1,asn, m→∞.

Lemma 6: With probability at least 1− 1/logn−

exp(−Cn),|c
(1)
0 |≥

1
2
√
nlogn

.

For the rest of the proof, we first assume that for all

1≤k≤d,|c
(k)
0 |<C0, since otherwise Lemma 5 already

implies Theorem 1. Then we will show that|c
(d+1)
0 |>C0

and Lemma 5 implies Theorem 1.
Letc={ci}

d
i=0∈C

d+1, we choose a set of covering balls
of radiusn/min the setS={c∈Cd+1 :c =1,|c0|≤
C0}. That is, we find a subsetS0⊂Ssuch that for anyc∈S,
there exists an element̄c={̄ci}

d
i=0∈S0such thatc−c̄ ≤

n/m. Following [27, Lemma 5.2],S0can be chosen such
that|S0|≤(1 +

2m
n)
2(d+1). We assume that for all̄c∈S0,

the property in Lemma 2 holds forx=
d
i=0c̄ivi,andthe

property in Lemma 3 also holds. Then for allj=0,1,···,d,
we have

u∗j

d

i=0

ciui u0 −v
∗
j

d

i=0

c̄ivi v0 (21)

=
1

v0
u∗j

d

i=0

ciui v0 −v
∗
j

d

i=0

c̄ivi v0

=
1

v0
u∗j−v

∗
j

d

i=0

ciui v0

−v∗j

d

i=0

ciui v0 −

d

i=0

c̄ivi v0
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≤
1

v0
u∗j−v

∗
j v0

+ vj∞ phase(

d

i=0

ciui)−phase(

d

i=0

c̄ivi)

1

v0 ∞

≤ uj−vj +|v0 −1|vj + vj∞ v0 ∞m

·max
d

i=0

|ci|ui−vi +|ci−c̄i|vi,
n

m

≤2
logm
√
m
+log2m 2

logm
√
m
+2dmax

2≤i≤d
|ci|

n

m
+
3n

m

+ uj−vj.

In the last line,|v0 −1|vj is bounded by2
logm√
m
(com-

bining Lemma 16 and (14)), vj∞ v0 ∞mis bounded by

log2m(applying (14)), andmax(
d
i=0|ci|ui−vi +|ci−

c̄i|vi,
n
m)is bounded by applying (11) and (12):

max
d

i=0

|ci|ui−vi +|ci−c̄i|vi,
n

m

≤
d

i=0

(|ci|ui−vi +|ci−c̄i|vi)+
n

m

≤

d

i=0

|ci|ui−vi + c−c̄max
i
vi +

n

m

≤

1

i=0

ui−vi +

d

i=2

|ci|ui−vi + c−c̄ max
0≤i≤d

vi+
n

m

≤2
logm
√
m
+dmax

2≤i≤d
2|ci|

n

m
+
3n

m
. (22)

By the definition ofS0, we have that for each1≤k≤d,

there exists̄c(k)=[̄c
(k)
0 ,···,̄c

(k)
d ]∈S0such that

k

i=0

|̄c
(k)
i −c

(k)
i |
2≤

n

m

2

,|̄c
(k)
0 |<C0.

Combining the analysis in (21) (with c,̄creplaced by
c(k),̄c(k)), and applying (7) and Lemma 3, we have that for
1≤j≤k,

c̃
(k+1)
j −g(|̄c

(k)
0 |)̄c

(k)
j (23)

≤4
n

m
+log2m 2dmax

2≤i≤k
|c
(k)
i |

n

m
+
3n

m
+2
logm
√
m

and forj=0,

c̃
(k+1)
0 −f(|̄c

(k)
0 |)̄c

(k)
0 (24)

≤3
log2m
√
m
+log2m 2dmax

2≤i≤k
|c
(k)
i |

n

m
+
3n

m
+2
logm
√
m

.

Combining (23), (24), (20), and (10),

k+1

i=0

|̃c
(k+1)
i |2≥

k

i=0

|̃c
(k+1)
i |2 (25)

≥ f2(|̄c
(k)
0 |)|̄c

(k)
0 |
2+g2(|̄c

(k)
0 |)(1−|̄c

(k)
0 |
2)

−4k
n

m
−3
log2m
√
m

−2d(k+1)log2m max
2≤i≤k

|c
(k)
i |

n

m
+
n

m
+
logm
√
m

≥Cg,1|̄c
(k)
0 |−4k

n

m
−3
log2m
√
m

−2d(k+1)log2m max
2≤i≤k

|c
(k)
i |

n

m
+
n

m
+
logm
√
m

,

Combining (23) and (25) with the update formula (9),
using induction we can verify that for sufficiently largen, m,
we have

max
2≤j≤k+1

|c
(k+1)
j |<

4

Cg,1

max(
√
n,log3m)
√
m

(26)

for all0≤k≤d−1. By the assumptionm≥Mn3/2log7/2n
and Lemma 6, we have that asn, m→∞,

|c
(1)
0 |≥

1

2
√
nlogn

>3
log2m
√
m
+ (27)

log2m2Cdlogn
4

Cg,1

max(
√
n,log3m)
√
m

n

m
+
3n

m
+2
logm
√
m
.

Similarly to (25), and applying the estimation (13), we have

k+1

i=0

|̃c
(k+1)
i |2≤

k

i=0

|̃c
(k+1)
i |2+|̃c

(k+1)
k+1 | (28)

≤ C20+C
2
g,2(1−C

2
0)+(4k+6)

n

m

+2d(k+1)log2m max
2≤i≤k

|c
(k)
i |

n

m
+
n

m
+
logm
√
m

.

Combining (27), (24), (26), and (10), it can be verified by
induction that whenM is sufficiently large, for all1≤k≤d
we have

|̃c
(k+1)
0 |≥|̄c

(k)
0 |−3

log2m
√
m

−log2m 2dmax
2≤i≤k

|c
(k)
i |

n

m
+
3n

m
+2
logm
√
m

,

k+1

i=0

|̃c
(k+1)
i |2≤ C20+C

2
g,2(1−C

2
0)+(4k+6)

n

m

+2d(k+1)log2m max
2≤i≤k

|c
(k)
i |

n

m
+
n

m
+
logm
√
m

,
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and

|c
(k+1)
0 |=

|̃c
(k+1)
0 |

k+1
i=0 |̃c

(k+1)
i |2

≥
Cf+1

2
|̄c
(k)
0 |≥

Cf+1

2
(|c
(k)
0 |−

n

m
)≥
Cf+3

4
|c
(k)
0 |,

(29)

where

Cf=
1

C20+C
2
g,2(1−C

2
0)

(30)

and it can be verified fromCg,2 < 1thatCf > 1.

Combining (29) with the definition ofc
(0)
k , we obtain (3),

the convergence in the first stage.
Combining (29) with Lemma 6 we have

|c
(d+1)
0 |≥

Cf+3

4

Cdlogn 1

2
√
nlogn

>C0 (31)

In fact, the second inequality requires

Cd>
log(2C0)+

1
2logn+

1
2log logn

log(
Cf+3
4 )logn

,

and for largen, our choice ofCd=
1

2log(
Cf+3

4 )
+1suffices.

With (31), Lemma 5 implied (4), the convergence of the sec-
ond stage. Then (2) is proved.
In the end, we summarize the probability that the above

analysis holds: the proof requires the events in all lemmas,
and in addition, the events in Lemma 2 and Lemma 3 should
hold for allx= d

i=0c̄ivi,wherēc=[̄c0,̄c1,···,̄cd]is an
element inS0. As a result, the probability is at least

1−2Cmdexp(−log2m)−exp(−n/2)−C1exp(−C2m)

−
1

logn
−exp(Cn)− 1+

2m

n

2d+2

·mexp(−n/6)−exp(−Clog4m)−dexp(−Cn),

which can be verified to converge to1asn, m→∞.

C. Proof of the Main Lemmas

Proof of Lemma 1:SinceLis a randomn-dimensional
subspace inCm,andΠLis a random projection matrix toL,
u0is a random unit vector inC

m that is uniformly sampled
from the sphere inCm. Therefore, it can be obtained through
v0∼CN(0,I/m)by

u0=
v0
v0
.

Applying Lemma 16 (with a scaling of
√
m)andu0−v0 =

|v0 −1|, we proved (11) fork=0.
Under theσ-algebra generated byu0, the conditional dis-
tribution ofLis a random subspace generated by

Sp(u0)⊕L0,

whereL0is a randomn−1-dimensional subspace in the
m−1-dimensional hyperplaneSp(u0)

⊥ (here⊕represents
the direct sum of two subspaces). Sincew(1)is a random

initialization onLandu(1)is the projection ofw(1)onto
Sp(u0)

⊥,u1is a random unit vector onL0. Combining it
with the conditional distribution ofL0,u1is a random unit
vector that is orthogonal tou0. As a result, it can be generated
fromv1∼CN(0,I/m)as follows:

u1=
v1−u0u

∗
0v1

v1−u0u∗0v1
.

Applying Lemma 16, we have

Pr(|1− v1|>
logm

3
√
m
)<exp(−Clog2m). (32)

In addition, sinceu∗0v1 ∼ CN(0,1/m), Lemma 17 with
m=1implies that

Pr |u∗0v1|>
logm

3
√
m

<exp(−Clog2m). (33)

Applying Lemma 12, under the events of (32) and (33),

u1−v1 ≤ u1v1 −u1 + v1 u1−
v1
v1

=|v1 −1|+ v1
v1−u0u

∗
0v1

v1−u0u∗0v1
−
v1
v1

≤|v1 −1|+ v1 ·2
u0u

∗
0v1
v1

=|v1 −1|+2|u
∗
0v1|

≤
logm
√
m
,

which implies (11) withk=1.
To prove (12), we first investigate the conditional distrib-
ution ofLunder theσ-algebra generated by the algorithm
so far, that is, generated by{ui}

k−1
i=0 and{wi}

k−1
i=0.That

is, what is the conditional distribution ofLwhen{ui}
k−1
i=0

and{wi}
k−1
i=0 are fixed? Under thisσ-algebra,Lsatisfies the

following properties:

ui∈L, 0≤i≤k−1

[w(i) y]−w(i+1)w(i+1)∗[w(i) y]⊥L,1≤i≤k−2.

The second property above holds sincew(i+1) is the nor-
malization projection ofw(i) yontoL, and as a result,
w(i+1)w(i+1)∗[w(i) y]=PL[w

(i) y]. Recall thatLis a
randomn-dimensional subspace inCm, with thisσ-algebra,
its conditional distribution then can be written as

L=Sp{ui}
k−1
i=0 ⊕Lk,

whereLk is a randomn−k-dimensional subspace in the
m−2k+2-spaceRkthat is orthogonal toui,0≤i≤k−1
and[w(i) y]−w(i+1)w(i+1)∗[w(i) y],1≤i≤k−2.
Sincew(k)is the projection ofw(k−1) yonto the subspace

Landukis the unit vector of the projection ofw
(k)to the

subspace orthogonal toSp{ui}
k−1
i=0, in conclusion,u

(k)is the
unit vector that corresponds to the projection ofPRk[w

(k−1)

y]ontoLk, a randomn−k-dimensional subspace inRk.
Applying Lemma 7 (withm, n,Cm replaced bym−2k+2,
n−k,Rk),ukcan be written as

uk= 1−a2vk+a
PRk[w

(k−1) y]

PRk[w
(k−1) y]

, (34)
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wherevkis a unit vector onRk,them−2k+1-dimensional
subspace insideRk and orthogonal toPRk[w

(k−1) y],
andais the length of the projection ofPRk[w

(k−1)

y]/PRk[w
(k−1) y]ontoLk.

SinceLkis a random subspace inRk,vkis a random unit
vector onRkand can be derived throughvk∼CN(0,I/m)
by

vk=
PR

k
vk

PRkvk
.

Again use the fact that

Pr |1− vk |>
1

6

n

m
<exp(−Cn)

and Lemma 17 implies

Pr vk−PR
k
vk >

1

6

n

m
<2(2k−1) exp(−Cn/(2k−1)),

and Lemma 8 implies

Pr a2>2·
n−k

m−2k+2
<4exp(−C(n−k)). (35)

Combining all estimations above with (34) and
Lemma 12, (12) is proved as follows:

uk−vk ≤a+ 1−a2vk−vk

≤a+ 1−a2(|vk −1|+ vk−
vk
vk

)

≤a+(|vk −1|+2PRkvk−vk /vk )

≤ 2·
n−k

m−2k+2
+
1

6

n

m
+2

1
6

n
m

1−16
n
m

≤2
n

m
.

Notec̃
(k)
k is the length of projection ofPRk[w

(k−1) y]
ontoLk,and PRk[w

(k−1) y] ≤ [w(k−1) y] =

y =1, by the definition ofawe havec̃
(k)
k ≤a. Then (35)

implies (13).
At last, (14) is obtained by applying Lemma 17 (with union

bound andm=1for the ·∞ norm).
Proof of Lemma 2:It is based on a combination of
Lemma 10, 11, and 12. In particular,t=max(y,n/m)in
Lemma 10 (remark: there is a scaling factor of

√
mbetween

xin Lemma 2 and Lemma 10).
Proof of Lemma 3:The proof is based on two components:
first, we have

Ev∗0[x v0]=f(|c0|)c0, (36)

and for any1≤j≤d,

Ev∗j[x v0]=g(|c0|)cj. (37)

To prove (37), we writex= c0v0+ 1−|c0|2v with

v= 1√
d
i=1 |ci|

2

d
i=1civi,thenvandv0are independently

sampled fromCN(0,I/m). The definition ofgthen implies

Ev∗[x v0]= 1−|c0|2g(|c0|)

Noting that the correlation betweenvjandvis
cj√
1−|c0|2

and

both are sampled from∼CN(0,I/m), using the properties
of Gaussian distributions,ṽ =vj−

cj√
1−|c0|2

v follows a

Gaussian distribution and is independent ofv.Sincev0is
independent ofv,̃v is also independent ofx= c0v0+
1−|c0|2v. As a result,Eṽ

∗[x v0] =0and (37) is
proved as follows:

Ev∗j[x v0]=
cj

1−|c0|2
Ev∗[x v0]+Eṽ

∗[x v0]

=
cj

1−|c0|2
Ev∗[x v0]=g(|c0|)cj.

Since each element ofv0is sampled fromCN(0,1/m),
it can be verified that the real component and the imaginary
component of each entry ofx v0is sub-Gaussian, with
sub-Gaussian parameter bounded above byC/

√
m. Applying

Lemma 13, (18) is proved.
The proof of (17) is based on the proof of (36), which is
similar to the proof of (37).
Proof of Lemma 4:The proof addresses (19), the upper

bound in (20), and the lower bound in (20) separately.
We start with the proof of (19). Applying the property of
Gaussian distribution,x0andx1are independently sampled
fromCN(0,1)if and only ifz0=cx0+

√
1−c2x1andz1=√

1−c2x0−cx1are independently sampled fromCN(0,1).
As a result,

f(c)=
1

c
Ez0,z1∼CN(0,1)

cz0+
√
1−c2z1

|cz0+
√
1−c2z1|

|z0|z
∗
0

=
1

c
Ex0,x1∼CN(0,1)

|cx0+
√
1−c2x1|

|x0|
x0(cx0+ 1−c2x1)

∗

=
1

c
Ex0,x1

|cx0+
√
1−c2x1|

|x0|
Re(x0(cx0+ 1−c2x1)

∗),

where the last step follows from the fact that f(c)is
real-valued (because of symmetry). Combining it with the
original definition off(c)in (15), we have

2f(c) (38)

=
1

c
Ex0,x1

|cx0+
√
1−c2x1|

|x0|
Rex0(cx0+ 1−c2x1)

∗

+
1

c
Ex0,x1

|x0|

|cx0+
√
1−c2x1|

Re(cx0+ 1−c2x1)x
∗
0

≥
2

c
Ex0,x1Recx0+ 1−c2x1)x

∗
0

=
2

c
cEx0,x1|x0|

2+ 1−c2Re(Ex0,x1x1x
∗
0)

=
2

c
c+0 =2,

where the last equality applies Ex0,x1x1x
∗
0 =

Ex0,x1x1 Ex0,x1x
∗
0 =0·0=0, and (19) is proved.

To prove the upper bound in (20), we first prove that for
0≤c<1

Ez0,z1
|cz0+

√
1−c2z1|

|z0|
Re(z0z

∗
1)>0. (39)

In fact, if we fixz0and WLOG assume that it is real-valued
and positive, and letz̃1=−Re(z1)+iIm(z1), then when
Re(z1)>0,

Re(z0̃z
∗
1)<0,|cz0+ 1−c2̃z1|−|cz0+ 1−c2z1|<0,
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and whenRe(z1)<0,

Re(z0̃z
∗
1)>0,|cz0+ 1−c2̃z1|−|cz0+ 1−c2z1|>0.

Combining these two cases, we have

|cz0+
√
1−c2̃z1|

|z0|
Re(z0̃z

∗
1)−

|cz0+
√
1−c2z1|

|z0|
Re(z0̃z

∗
1)

=
|cz0+

√
1−c2̃z1|−|cz0+

√
1−c2z1|

|z0|
Re(z0̃z

∗
1)≥0.

(40)

As a result, for anyz0,wehave

2Ez1
|cz0+

√
1−c2z1|

|z0|
Re(z0z

∗
1) (41)

=E
|cz0+

√
1−c2z1|

|z0|
Re(z0z

∗
1)+
|cz0+

√
1−c2̃z1|

|z0|
Re(z0̃z

∗
1)

=E−
|cz0+

√
1−c2z1|

|z0|
Re(z0̃z

∗
1)+
|cz0+

√
1−c2̃z1|

|z0|
Re(z0̃z

∗
1)

≥0.

Here the first equality follows from the fact that z̃1 and
z1have the same distribution, the second equality follows
fromRe(z0z

∗
1)=−Re(z0̃z

∗
1), and the first inequality follows

from (40). Then, (39) is proved by taking the expectation
of (41) toz0.
Applying (39), the upper bound ofg(c)can be estimated as
follows:

g(c)=
1

√
1−c2

Ex0,x1
cx0+

√
1−c2x1

|cx0+
√
1−c2x1|

|x0|x
∗
1

=
1

√
1−c2

Ex0,x1
z0
|z0|
|x0|( 1−c2z0−cz1)

∗

=Ex0,x1|z0||x0|−
c

√
1−c2

|x0|

|z0|
Re(z0z

∗
1)

≤E
|z0|

2+|x0|
2

2
−E

c
√
1−c2

|cz0+
√
1−c2z1|

|z0|
Re(z0z

∗
1)<1,

where the last inequality follows from (39). With the conti-
nuity ofg(c),itmeansthatthereexistsCg,2<1such that
g(c)<Cg,2for all0≤c≤C0, and the upper bound in (20)
is proved.
To prove the lower bound in (20), we defineh:[0,∞)→R
as follows:

h(c)=Ex∈µ
1+cx

|1+cx|
,

whereµis the uniform distribution on the unit circle inC.
SinceRe(1+cx

|1+cx|)>Re(
cx
|cx|)=Re(

x
|x|)andERe(

x
|x|)=0,

we haveE1+cx
|1+cx|=ERe(

1+cx
|1+cx|)>0(the equality applies

the symmetry of the distributionµ), and

g(c)=
1

√
1−c2

Ex0,x1∼CN(0,1)
cx1+

√
1−c2x0

|cx1+
√
1−c2x0|

|x1|x
∗
0

=
1

√
1−c2

Ex0,x1h
c|x1|√
1−c2|x0|

|x0||x1|>0.

Sinceg(c)is strictly positive for any0 ≤ c ≤ C0
and is continuous, there existsCg,1 such thatmin0<c<C0
g(c)>Cg,1. This proves the lower bound in (20).

Fig. 1. The empirical values off,g,andf/g.

We include the numerical values of f(c)andg(c)
in Figure 1, to show that the inequalities (19) and (20) hold
empirically.
Proof of Lemma 5:For convenience, we first write down
[28, Theorem 2] explicitly:

Theorem 2 ( [28], Theorem 2): There exists
C0,C1,C2,M >0such that whenm > Mn,then
with probability at least1−C1exp(−C2m),foranyx∈C

n

such that

inf
ψ∈R

eiψz−x ≤C0z,

then

inf
ψ∈R

eiψz−x+ ≤δinf
ψ∈R

eiψz−x,

wherex+ is the vector obtained by applying one iteration
of the standard alternating projection algorithm (without nor-
malization) (1) tox, and with{ai}

m
i=1 i.i.d. sampled from

CN(0,I).

By the analysis in Section II-A, (1) is equivalent to the
algorithm that we are analyzing in (6) in terms ofw(k)

as inCm. Therefore, [28, Theorem 2] implies that for
A+=A∗(A∗A)−1,if

inf
ψ∈R

A+(eiψu0−w
(k0))≤C0A

+u0,

then for anyk≥k0,

inf
ψ∈R

A+(eiψu0−w
(k+1))≤δinf

ψ∈R
A+(eiψu0−w

(k)).

SinceAis a complex Gaussian, [11, Theorem 2.13] implies
that the condition number ofA is bounded with high
probability:

Pr
σmax(A)

σmin(A)
≤

√
m+

√
n+t

√
m−

√
n−t

≤1−2exp(−t2/2).
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Combining it (uset=
√
n) with

inf
ψ∈R

eiψu0−w
(k) = (1−|c

(k)
0 |)

2+

k

i=1

|c
(k)
i |
2

= (1−|c
(k)
0 |)

2+1−|c
(k)
0 |
2,

there exists0< C0 < 1such that when|c
(k)
0 |> C0,

infψ∈R A
+(eiψu0−w

(k))<C0A
+u0 (note thatAand

A+ have the same condition numbers), and then [28, Theo-
rem 2] implieslimk→∞ infψ∈R A

+(eiψu0−w
(k)) =0.

Applying the fact that the condition number ofA+is bounded
again, we havelimk→∞ infψ∈R e

iψu0−w
(k) =0.

Proof of Lemma 6:WLOG we may assume that L =
Sp(e1,···,en)andu0=e1,andw

(1)∼CN(0,PL)(since
w(1)is a random vector onL). Then

|c
(1)
0 |=

|w
(1)
1 |

w(1)
.

Applying Lemma 16 and note that w(1)2is the sum of
nunit complex gaussian squared,Pr(w(1) > 2

√
n)<

2exp(−Cn); and Lemma 9 implies thatPr(w(1) <
1/
√
logn)<logn.

D. Auxillary Lemmas

Lemma 7:Assuming that the projection of a unit vector
x∈Cm to a randomn-dimensional subspaceLhas lengtha,
i.e.,PLx =a,then

PLx

PLx
=ax+ 1−a2v,

wherevis a unit vector perpendicular tox,thatis,v∗x=1.

Proof:Since PLx
PLx

is a unit vector, we may assume that

PLx

PLx
=bx+ 1−b2v, (42)

where v =1andv∗x=0. It remains to provea=b.
By the definition of projection, we have(x−PLx)⊥PLx,

i.e.,PLx
∗(x−PLx)=0. Applying the assumption (42) and

PLx =awe have

bx+ 1−b2v
∗

(1−ab)x−a 1−b2v =0.

With v∗x=0and x = v =1, it impliesb(1−ab)=
a(1−b2)anda=b.

Lemma 8:Given a vectorx∈ Rm and a randomn-
dimensional subspaceL,then

Pr
1−

1+
≤
m PLx

2

nx2
≤
1+

1−

≥1−4exp −cnmin
2

C2
,
C

,

Proof: WLOG we may assume that x ∼ CN(0,I)
andL is the subspace spanned by the firstnstandard

basise1,···,en.Thenx
2=

m
i=1|xi|

2and PLx
2=

n
i=1|xi|

2. Applying Lemma 16, we have

Pr (1− )m≤

m

i=1

|xi|
2≤(1 +)m

≥1−2exp −cmmin
2

C2
,
C

Pr (1− )n≤

n

i=1

|xi|
2≤(1 +)n

≥1−2exp −cnmin
2

C2
,
C

Combining these two inequalities andm≥n, the lemma is
proved.

Lemma 9: For x ∼ CN(0,1)and anyr > 0,
Pr(|x|≤r)<r2.

Proof: By the definition ofCN(0,1),Pr(|x| ≤r)is
the equivalent toPr(y ≤ r)fory∈R2and sampled
fromN(0,I2×2/2), which has a probability density function
of1πexp(−y

2). This function is maximized aty=0with a
value of1/π, and as a result,Pr(y ≤r)<πr2·1π=r

2.

Lemma 10:Given a vector x ∈ Rm sampled from
CN(0,Im×m),forally∈R

m satisfies1m
m
i=1|yi|

2≤t2

andt≥n/m, with probability at least1−mexp(−n/6),
we have

1

m

m

i=1

max
|yi|

|xi|
,1 ≤(4 +

√
2l)t

forl=max(0,−log2t).

Proof:WLOG we may rearrange the indices and assume
that|x1|≤|x2| ≤ ··· ≤ |xm|. Then Lemma 11 implies that

Pr(|xj|> j/2m)≥1−exp(−j/6). (43)

Applying a union bound,

Pr |xj|> j/2mfor allj≥n ≥1−mexp(−n/6).

(44)

Denote the set of natural numbers byN, and when the event
in (44) holds, for allj≥nwe have

i∈N:j≤i<2j

|yi|

|xi|
≤
1

|xj|
i∈N:j≤i<2j

|yi| (45)

≤
1

|xj|
j
i∈N:j≤i<2j

|yi|2≤mt
√
2.

Combining (45) forj= tm,2tm,4tm,···,2ltm(lis the
largest integer such that2lt<1)andj=m/2,wehave

i∈N:tm≤i≤m

|yi|

|xi|
≤(2 +l)mt

√
2. (46)

In addition, it is clear that

i∈N:1≤i<tm

max
|yi|

|xi|
,1 ≤tm. (47)

Combining (46) and (47), the lemma is proved.
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Fig. 2. Visualization of the proof of Lemma 12 whenr<1.

Lemma 11:For a random vectorx∈Cm sampled from
CN(0,Im×m),wehave

Pr
m

i=1

I(|xi|≤r)<2r
2m >1−exp(−r2m/3)

for allr>0.

Proof: We apply Lemma 15 with p=Pr(|x1|≤r)and
δ=2r2/p−1. Applying Lemma 9,

δp=2r2−Pr(|x1|≤r)>r
2,

which implies Lemma 11.

Lemma 12:For any complex numbersx, y∈C,|phase

(x+y)−phase(x)|≤min(2|y||x|,2). Similarly, for any vector

u,v∈Cm, u+v
u+v −

v
v ≤min(2 u

v ,2).

Proof: WLOG we only need to prove the first sentence
and we may assume thatx=1and|y|=r.Thenphase(x)=
ei0=1, and on the complex plane,x+ylies on a circle center
at1with radiusr.
When r≥ 1,|phase(x+y)−phase(x)|is maximized
wheny=−randphase(x+y)=−1,thenwehave|phase
(x+y)−phase(x)|=2.
When r<1, we would like to find a point on the circle
such that its direction is as far from the direction of x-axis as
possible. As visualized in Figure 2,|phase(x+y)−phase(x)|
is achieved when the line connectingx+yand the origin
is tangent to the circle. It implies that the maximal value is
|eiθ−1|,whereθ=sin−1r. Then we have the estimation
|eiθ−1|=2sin(θ/2) = sin(θ)/cos(θ/2)≤

√
2sin(θ)=

√
2r

(the inequality uses the fact thatθ≤π/2).
Combining these two cases, Lemma 12 is proved.

Lemma 13 (Sum of sub-gaussian variables, Proposi-
tion 5.10 in [27]):GivenX1,···,Xni.i.d. from a distribution
with zero mean and sub-gaussian norm defined by X ψ2=
supp≥1p

−1/2(E|X|p)1/p,then

Pr
1

n

n

i=1

Xi≥t ≤exp −
cnt2

X 2
ψ2

+1

Lemma 14 (Sum of sub-exponential variables, Corol-
lary 5.17 in [27]):GivenX1,···,Xni.i.d. from a distribution

with zero mean and sub-exponential norm defined by
X ψ1=supp≥1p

−1(E|X|p)1/p,then

Pr
1

n

n

i=1

Xi≥t≤2exp−cnmin
t2

X 2
ψ1

,
t

X ψ1

Lemma 15:X1,X2,···are i.i.d. Bernoulli variables with
expectationp, then for anyδ>1,

Pr(
m

i=1

Xi>(1 +δ)pm)≤exp(−mδp/3).

Proof: It follows from [21, Theorem 4.4] and the obser-
vation that whenδ>1,(1 +δ)log(1+δ)>4

3δ.

Lemma 16:Forv∼CN(0,I),Pr(|1m v
2−1|>t)<

2exp−cmmin t2

C2,
t
C

Proof: We remark that v2−m =
m
i=1(((vi)

2−
1/2) + ((vi)

2−1/2)), and both (vi)and (vi)are
i.i.d. sampled fromN(0,12). Since sub-gaussian squared is
sub-exponential [27, Lemma 5.14] with mean1/2m,and
after centering, a sub-exponential distribution is still sub-
exponential [27, Remark 5.18], (vi)

2−1
2and (vi)

2−1
2

are i.i.d. sampled from a sub-exponential distribution with
sub-exponential norm smaller than a constantC. Applying
Lemma 14, Lemma 16 is proved.

Lemma 17:For anyx∼CN(0,Im×m),Pr(x >t)≤
2mexp(−t2/m).

Proof: It follows from the classic tail bound:
Pr(|N(0,1)| > t) ≤ exp(−t2/2)and the fact that
Re(xi),Im(xi)∼N(0,1/2)for all1≤i≤m,wehave

Pr(|Re(xi)|>t/
√
2m)=Pr(|Im(xi)|>t/

√
2m)

=Pr(|N(0,1)|>t/
√
m)≤exp(−t2/m).

Applying a union bound of all real components of imaginary
components of each element ofx(there are2m of them),
Lemma 17 is proved:

Pr(x >t)

≤

m

i=1

Pr(|Re(xi)|>t/
√
2m)+Pr(|Im(xi)|>t/

√
2m)

≤2mexp(−t2/m).

III. DISCUSSION

The current paper justifies the convergence of the alternating
minimization algorithm with random initialization for phase
retrieval. Specifically, we demonstrate that it succeeds with
m> Mn1.5log3.5nfor someM> 0. A future direction is
to improve the sample complexity, possibly via more sophisti-
cated arguments, so that it matches the empirical observation
that the algorithm succeeds withm>O(n). It would also be
interesting to compare the decoupling approach in this work
and the leave-one-out approach in [10], both in phase retrieval
and in other problems.
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