
Mathematical Programming
https://doi.org/10.1007/s10107-020-01469-2

FULL LENGTH PAPER

Series B

A general framework for handling commitment in online
throughput maximization

Lin Chen1 · Franziska Eberle2 · Nicole Megow2 · Kevin Schewior3 ·
Cliff Stein4

Received: 29 May 2019 / Accepted: 13 January 2020
© The Author(s) 2020

Abstract
We study a fundamental online job admission problem where jobs with deadlines
arrive online over time at their release dates, and the task is to determine a preemptive
single-server schedule which maximizes the number of jobs that complete on time. To
circumvent known impossibility results, we make a standard slackness assumption by
which the feasible timewindow for scheduling a job is at least 1+ε times its processing
time, for some ε > 0. We quantify the impact that different provider commitment
requirements have on the performance of online algorithms. Our main contribution is
one universal algorithmic framework for online job admission both with and without
commitments.Without commitment, our algorithmwith a competitive ratio ofO(1/ε)
is the best possible (deterministic) for this problem. For commitment models, we give
the first non-trivial performance bounds. If the commitment decisions must be made
before a job’s slack becomes less than a δ-fraction of its size, we prove a competitive
ratio of O(ε/((ε − δ)δ2)), for 0 < δ < ε. When a provider must commit upon
starting a job, our bound is O(1/ε2). Finally, we observe that for scheduling with
commitment the restriction to the “unweighted” throughput model is essential; if jobs
have individual weights, we rule out competitive deterministic algorithms.

Mathematics Subject Classification 90B35 · 68M20 · 68W25 · 68W40

1 Introduction

Manymodern computing environments involve a centralized system for managing the
resource allocation for processing many different jobs. Such environments are varied,

An extended abstract of this paper was published at the Conference on Integer Programming and
Combinatorial Optimization (IPCO) 2019 [8].

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10107-
020-01469-2) contains supplementary material, which is available to authorized users.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01469-2&domain=pdf
http://orcid.org/0000-0003-3909-4916
http://orcid.org/0000-0001-8636-9711
http://orcid.org/0000-0002-3531-7644
http://orcid.org/0000-0003-2236-0210
http://orcid.org/0000-0002-0614-6620
https://doi.org/10.1007/s10107-020-01469-2
https://doi.org/10.1007/s10107-020-01469-2

L. Chen et al.

including, for example, internal clusters and public clouds. These systems typically
handle a diverse workload [22] with a mixture of jobs including short time-sensitive
jobs, longer batch jobs, and everything in between. By centralizing computing and
scheduling decisions, one can potentially better utilize resources.

The challenge for a system designer is to implement scheduling policies that trade
off between these different types of jobs and obtain good performance. There aremany
ways to define good performance and in this paper, we will focus on the commonly
used notion of throughput which is the number of jobs completed, or if jobs have
weights, the total weight of jobs completed.

In general, throughput is a “social welfare” objective that tries to maximize total
utility. To this end, a solution may abort jobs close to their deadlines in favor of many
shorter and more urgent tasks [12]. As companies start to outsource mission critical
processes to external clouds, they may require a certain provider-side guarantee, i.e.,
service providers have to commit to complete admitted jobs before they cannot be
moved to other computing clusters anymore. Moreover, companies tend to rely on
business analytics to support decision making. Analytical tools, that usually work
with copies of databases, depend on faultless data. This means, once such a copy
process started, its completion must be guaranteed.

Formally, we consider a model in which jobs arrive online over time at their release
date r j . Each job has a processing time p j ≥ 0, a deadline d j , and possibly a weight
w j > 0. In order to complete, a jobmust receive a total of p j units of processing time in
the interval [r j , d j). We allow preemption, that is, the processing time does not need to
be contiguous. If a schedule completes a set S of jobs, then the throughput is |S|, while
the weighted throughput is

∑
j∈S w j .We analyze the performance of algorithms using

standard competitive analysis in which the performance of an algorithm is compared to
that of an optimal offline algorithm with full knowledge of the future. More precisely,
an online algorithm Alg is called c-competitive if it achieves for any input instance I
a total value of Alg(I) ≥ 1

cOpt(I), where Opt is the value of an optimal offline
algorithm.

Deadline-based objectives are typicallymuch harder to optimize than otherQuality-
of-Service metrics such as makespan or total completion time. Indeed, the problem
becomes hopeless when preemption is not allowed: whenever an algorithm starts a job
j without being able to preempt it, it may miss the deadlines of an arbitrary number of
jobs that would have been schedulable if j had not been started. For scheduling with
commitment, we provide a similarly strong lower bound for the preemptive version of
the problem in the presence of weights. Therefore, we focus on unweighted preemptive
online throughput maximization.

Hard examples for online algorithms tend to involve jobs that arrive and then must
immediately be processed since d j − r j ≈ p j . It is entirely reasonable to bar such
jobs from a system, requiring that any submitted job contains some slack, that is,
we must have some separation between p j and d j − r j . To that end we say that an
instance has ε-slack if every job satisfies d j − r j ≥ (1+ ε)p j . We develop algorithms
whose competitive ratio depends on ε; the greater the slack, the better we expect
the performance of our algorithm to be. This slackness parameter captures certain
aspects of Quality-of-Service provisioning and admission control, see e.g. [14,20],
and it has been considered in previous work, e.g., in [2,4,13,15,22,24]. Other results

123

Handling commitment in online throughput maximization

for scheduling with deadlines use speed scaling, which can be viewed as another way
to add slack to the schedule, e.g. [1,3,16,23]. In this paper we quantify the impact that
different job commitment requirements have on the performance of online algorithms.
We parameterize our performance guarantees by the slackness of jobs.

1.1 Our results and techniques

Ourmain contribution is a general algorithmic framework, called region algorithm, for
online scheduling with and without commitments. We prove performance guarantees
which are either tight or constitute the first non-trivial results. We also answer open
questions in previous work. We show strong lower bounds for the weighted case and
therefore our algorithms are all for the unweighted case, w j ≡ 1.

Optimal algorithm for schedulingwithout commitmentWegive an implementation
of the region algorithm that achieves a competitive ratio ofO(1

ε
). We prove that this is

optimal by giving a matching lower bound (ignoring constants) for any deterministic
online algorithm.

Impossibility results for commitment upon job arrival In this most restrictive
model, an algorithm must decide immediately at a job’s release date if the job will be
completed or not. We show that no (randomized) online algorithm admits a bounded
competitive ratio. Such a lower bound has only been shown by exploiting arbitrary job
weights [22,26]. Given our strong negative result, we do not consider this commitment
model any further.

Scheduling with commitment We distinguish two different models: (i) commitment
upon job admission and (ii) δ-commitment. In the firstmodel, an algorithmmay discard
a job any time before its start, its admission. This reflects the situation when the start
of a process is the critical time point after which the successful execution is essential
(e.g., faultless copy of a database). In the second model, δ-commitment, an online
algorithmmust commit to complete a job when its slack has reduced from the original
slack requirement of at least an ε-fraction of the job size to a δ-fraction for 0 < δ < ε.
Then, the latest time for committing to job j is d j − (1 + δ)p j . This models an early
enough commitment (parameterized by δ) for mission critical jobs.

For both models, we show that implementations of the region algorithm allow
for the first non-trivial performance guarantees. We prove an upper bound on the
competitive ratio ofO(1/ε2) for commitment upon admission and a competitive ratio
of O(ε/((ε − δ)δ2)), for 0 < δ < ε, in the δ-commitment model. These are the first
rigorous non-trivial upper bounds in any commitment model (excluding the special
weighted setting with w j = p j that has been resolved; see related work).

Instances with arbitrary weights are hopeless without further restrictions. We show
that there is no deterministic online algorithm with bounded competitive ratio, neither
for commitment upon admission (also shown in [2]) nor for δ-commitment. Informally,
our construction implies that there is no deterministic online algorithm with bounded
competitive ratio in any commitment model in which a scheduler may have to commit
to a job before it has completed. (This is hard to formalize but may give guidance for

123

L. Chen et al.

Table 1 Summary of the state-of-the-art

No commitment Time point of commitment

at admission δ-laxity at arrival

w j ≡ 1 Θ(1ε) Ω(1ε),O(1
ε2

) Ω(1ε),O(ε

(ε−δ)δ2
) No f (ε)

Theorems 1 and 5 Theorems 2 and 5 Theorems 2 and 5 Theorem 6

w j = p j O(1) Θ(1ε) Θ(1ε) Θ(1ε)

[19] [11,13] Theorem 8, [11,13] [11,13]

General w j Ω(1ε),O(1
ε2

) No f (ε) No f (ε) No f (ε)

Theorem 5, [22] [2] Theorem 7 [22]

the design of alternative commitment models.) Our lower bound for δ-commitment is
actually more fine-grained: for any δ > 0 and any ε with δ ≤ ε < 1 + δ, no deter-
ministic online algorithm has a bounded competitive ratio for weighted throughput. In
particular, this rules out bounded performance guarantees for ε ∈ (0, 1). We remark
that for sufficiently large slackness (ε > 3), Azar et al. [2] provide an online algorithm
that has bounded competitive ratio. Our new lower bound answers affirmatively the
open question if high slackness is indeed required.

Finally, our impossibility result for weighted jobs and the positive result for
instances without weights clearly separate the weighted from the unweighted set-
ting. Hence, we do not consider weights in this paper. We summarize in Table 1 the
state of the art regarding competitive analysis for online throughput maximization
with and without commitment.

Our techniques Once a job j is admitted to the system, its slack becomes a scarce
resource: to complete the job before its deadline (which may be mandatory depending
on the commitment model, but is at least desirable), one needs to carefully “spend” the
slack on admitting jobs to be processed before the deadline of j . Our general frame-
work for admission control, the region algorithm, addresses this issue by the concept of
“responsibility”: whenever a job j ′ is admitted while j could be processed, j ′ becomes
responsible for not admitting similar-length jobs for a certain period, its region. The
intention is that j ′ reserves time for j to complete. To balance between reservation
(commitment to complete j) and performance (loss of other jobs), the algorithm
uses the parameters α and β, which specify the length of a region and similarity
of job lengths.

A major difficulty in the analysis of the region algorithm is understanding the com-
plex interval structure formed by feasible time windows, regions, and time intervals
during which jobs are processed. Here, we rely on a key design principle of our algo-
rithm: regions are defined independently of the actual execution of jobs. Thus, the
analysis can be naturally split into two parts.

In the first part, we argue that the scheduling routine can handle the admitted jobs
sufficientlywell for suitably chosen parametersα andβ. Thatmeans that the respective
commitment model is obeyed and, if not implied by that, an adequate number of the
admitted jobs is completed.

123

Handling commitment in online throughput maximization

In the second part, we can disregard how jobs are actually scheduled by the schedul-
ing routine and argue that the region algorithm admits sufficiently many jobs to be
competitive with an optimum solution. The above notion of “responsibility” suggests
a proof strategy mapping jobs that are completed in the optimum to the corresponding
job that was “responsible” due to its region. Transforming this idea into a charging
scheme is, however, a non-trivial task: There might be many (� O(1

ε2
)) jobs released

within the region of a single job j and completed by the optimum, but not admitted
by the region algorithm due to many consecutive regions of varying size. It is unclear
where to charge these jobs—clearly not all of them to j .

We develop a careful charging scheme that avoids such overcharging. We handle
the complex interval structure byworking on a natural tree structure (interruption tree)
related to the region construction and independent of the actual schedule. Our charging
scheme comprises two central routines for distributing charge: moving charge along
a sequence of consecutive jobs (Push Forward) or to children (Push Down).

We show that our analysis of the region algorithm is tight up to a constant factor.

1.2 Previous results

Preemptive online scheduling and admission control have been studied rigorously.
There are several results regarding the impact of deadlines on online scheduling; see,
e.g., [5,13,15] and references therein. Impossibility results for jobswith hard deadlines
and without slack have been known for decades [6,7,18,19,21].

Scheduling without commitment Most research on online scheduling does not
address commitment. The only results independent of slack (or other job-dependent
parameters) concern the machine utilization, i.e., weighted throughput for the special
case w j = p j , where a constant competitive ratio is possible [6,18,19,25]. In the
unweighted setting, a randomized O(1)-competitive algorithm is known [17]. For
instances with ε-slack, Lucier et al. [22] give an O(1

ε2
)-competitive algorithm in the

most general weighted setting. To the best of our knowledge, no lower bound was
known to date.

Scheduling with commitment Much less is known for scheduling with commit-
ment. In themost restrictivemodel, commitment upon job arrival, Lucier et al. [22] rule
out competitive online algorithms for any slack parameter ε when jobs have arbitrary
weights. For commitment upon job admission, they give a heuristic that empirically
performs very well but for which they cannot show a rigorous worst-case bound.
In fact, later Azar et al. [2] show that no bounded competitive ratio is possible for
weighted throughput maximization for small ε. For the δ-commitment model, Azar
et al. [2] design (in the context of truthful mechanisms) an online algorithm that is
O(1

ε2
)-competitive if the slack ε is sufficiently large. They call an algorithm in this

model β-responsive algorithm. They left open if this latter condition is an inherent
property of any committed scheduler in this model and we answer this affirmatively.

Again, the machine utilization variant (w j = p j) is much more tractable than
weighted or unweighted throughput maximization. Simple greedy algorithms achieve
the best possible competitive ratio Θ(1

ε
) [11,13] in all aforementioned commitment

models, even commitment upon arrival.

123

L. Chen et al.

2 Our general framework

2.1 The region algorithm

In this section we present our general algorithmic framework which we apply to
scheduling with and without commitment. We assume that an online algorithm is
given the slackness constant ε > 0 and, in the δ-commitment model, 0 < δ < ε.

To gain some intuition for our algorithm, we first describe informally the three
underlying design principles. The third principle is crucial to improve on existing
results that only use the first two [22].

1. A running job can be preempted only by significantly smaller jobs (parameter β).
2. A job cannot start for the first timewhen its remaining slack is too small (constant δ

which is part of the input in the δ-commitment model and otherwise set to δ = ε
2).

3. If a job preempts other jobs, then it has to take “responsibility” for a certain time
interval (parameterα) withwhich it assures that the jobs it preempted can complete
on time.

We implement it in the following way. The region algorithm has two parameters,
α ≥ 1 and 0 < β < 1. A region is a union of time intervals associated with a job,
and the size of the region is the sum of sizes of the intervals. We denote the region of
job j by R(j). Region R(j) will always have size α p j , although the particular time
intervals composing the region may change over time. Regions are always disjoint,
i.e., for any i 	= j , R(i) ∩ R(j) = ∅. Informally, whenever our algorithm starts a
job i (we say i is admitted) that arrives during the region of an already admitted job
j , then the current interval of j is split into two intervals and the region R(j) as well
as all later regions are delayed.

Formally speaking, at any time t , the region algorithm maintains two sets of jobs:
admitted jobs, which have been started before or at time t , and available jobs. A
job j is available if it is released before or at time t , is not yet admitted, and it is
not too close to its deadline, i.e., r j ≤ t and d j − t ≥ (1 + δ)p j . The intelligence
of the region algorithm lies in admitting jobs and (re)allocating regions. The actual
scheduling decision then is simple and independent of the regions: at any point in time,
schedule the shortest admitted job that has not completed its processing time, i.e., we
schedule admitted jobs in Shortest Processing Time (SPT) order. The region algorithm
never explicitly considers deadlines except when deciding whether to admit jobs.

The region algorithm starts by admitting job 1 at its release date and creates the
region R(1) := [r1, r1 + α p1). There are two events that trigger a decision of the
region algorithm: the release of a job and the end of a region. If one of these events
occurs at time t , the region algorithm invokes the region preemption subroutine.
This routine compares the processing time of the smallest available job i with the
processing time of the admitted job k whose region contains t . If pi < β pk , job i is
admitted and the region algorithm reserves the interval [t, t + α pi) for processing i .
Since regionsmust be disjoint, the algorithm thenmodifies all other remaining regions,
i.e., the parts of regions that belong to [t,∞) of other jobs j . We refer to the set of
such jobs j whose regions have not yet completed by time t as J (t). Intuitively, we
preempt the interval of the region containing t and delay its remaining part as well

123

Handling commitment in online throughput maximization

Algorithm 1 Region algorithm

Scheduling routine: At any time t , run an admitted and not yet completed job with shortest processing
time.

Event: Upon release of a new job at time t :
Call region preemption routine.

Event: Upon ending of a region at time t :
Call region preemption routine.

Region preemption routine:
k ← the job whose region contains t
i ← a shortest available job at t , i.e., i = argmin{p j | r j ≤ t and d j − t ≥ (1 + δ)p j }
If pi < β pk , then
admit job i and reserve region R(i) = [t, t + α pi),
update all remaining regions R(j) with R(j) ∩ [t,∞) 	= ∅ as described below.

as the remaining regions of all other jobs. Formally, this update of all remaining
regions is defined as follows. Let k be the one job whose region is interrupted at
time t , and let [a′

k, b
′
k) be the interval of R(k) containing t . Interval [a′

k, b
′
k) is replaced

by [a′
k, t)∪ [t +α pi , b′

k +α pi). For all other jobs j ∈ J (t)\{k}, the remaining region
[a′

j , b
′
j) of j is replaced by [a′

j + α pi , b′
j + α pi). Observe that, although the region

of a job may change throughout the algorithm, the starting point of a region for a job
will never be changed. We summarize the region algorithm in Algorithm 1.

We apply the algorithm in different commitment models with different choices of
parameters α and β, which we derive in the following sections. In the δ-commitment
model, δ is given as part of the input. In the other models, i.e., without commitment
or with commitment upon admission, we simply set δ = ε

2 .
Commitment The region algorithm always commits upon admission of a job, i.e.,
at its first start. This is possibly earlier than required in the δ-commitment model.
The parameter δ determines the latest possible start time of a job, which is then for
our algorithm also the latest time the job can be admitted. Thus, for the analysis, the
algorithm execution for commitment upon admission (with δ = ε

2) is a special case
of δ-commitment. This is true only for our algorithm, not in general.

2.2 Main results on the region algorithm

In the analysis we focus on instances with small slack as they constitute the hard
case. Notice that instances with large slack clearly satisfy a small slack assumption.
In such a case, we simply run our algorithm by setting ε = 1 and obtain constant
competitive ratios. Therefore, we assume for the remainder that 0 < ε ≤ 1.

Our main results are as follows.Without commitment, we present an optimal online
algorithm.

Theorem 1 (Scheduling without commitment) Let 0 < ε ≤ 1. With the choice of
α = 1, β = ε

4 , and δ = ε
2 , the region algorithm is Θ(1

ε
)-competitive for scheduling

without commitment.

123

L. Chen et al.

t

Fig. 1 Gantt chart of the regions (left) and the interruption tree (right) generated by the region algorithm
(color figure online)

This is an exponential improvement upon the previously best known upper bound [22]
(given for weighted throughput). For scheduling with commitment, we give the first
rigorous upper bound.

Theorem 2 (Scheduling with commitment) Let 0 < δ < ε ≤ 1. Choosing α = 8
δ
, β =

δ
4 , the region algorithm is O(ε

(ε−δ)δ2
)-competitive in the δ-commitment model. When

the scheduler has to commit upon admission, the region algorithm has a competitive
ratio O(1

ε2
) for α = 4

ε
and β = ε

8 .

In Sect. 5, we show that the analysis of our framework is tight up to constants.

2.3 Interruption trees

To analyze the performance of the region algorithm on a given instance, we consider
the final schedule and the final regions and investigate them retrospectively. Let a j

be the admission date of job j which remained fixed throughout the execution of the
algorithm. Let b j denote the final end point of j’s region. Then, the convex hull of R(j)
is given by conv(R(j)) = [a j , b j).

Our analysis crucially relies on understanding the interleaving structure of the
regions that the algorithmconstructs. This structure is due to the interruption by smaller
jobs and can be captured well by a tree or forest in which each job is represented by
one vertex. A job vertex is the child of another vertex if and only if the region of the
latter is interrupted by the first one. The leaves correspond to jobs with non-interrupted
regions. By adding a machine job M with pM := ∞ and aM = −∞, we can assume
that the instance is represented by a tree which we call interruption tree. This idea is
visualized in Fig. 1, where the vertical arrows indicate the interruption of a region by
another job and intervals of the same color belong to one job.

Let π(j) denote the parent of j . Further, let Tj be the subtree of the interruption
tree rooted in job j and let the forest T− j be Tj without its root j . By slightly abusing
notation, we denote the tree/forest as well as its job vertices by T∗.

A key property of this tree is that the processing times on a path are geometrically
decreasing.

Lemma 1 Let j1, . . . , j	 be 	 jobs on a path in the interruption (sub)tree Tj rooted in
j such that π(ji+1) = ji . Then, p j	 ≤ β p j	−1 · · · ≤ β	−1 p j1 ≤ β	 p j and the total
processing volume is

123

Handling commitment in online throughput maximization

	∑

i=1

p ji ≤
	∑

i=1

β i p j ≤ β

1 − β
· p j .

Proof Let the jobs j1, . . . , j	 be indexed in decreasing order of processing times,
i.e., p j	 ≤ p j	−1 ≤ · · · ≤ p j1 .

Observe that p j1 < β p j as otherwise the region of j shall not be preempted by j1.
Furthermore, for any 2 ≤ i ≤ 	, we claim that job ji is released after ji−1. Suppose
the claim is not true, then for some i job ji is released before ji−1. Consider the
point in time t when job ji−1 is admitted. The time t either belongs to the region
of ji , or belongs to the region of some job j ′ which interrupts the region of ji , and
consequently p j ′ < β p ji . In both cases the algorithmwill not admit ji−1, and therefore
the claim is true. At any point in time when the algorithm admits a job ji , then it
interrupts the region of ji−1 and p ji < β p ji−1 . Thus, we have

p j	 < β p j	−1 < β2 p j	−2 < · · · < β	−1 p j1 < β	 p j .

We conclude by observing that the total processing volume of the jobs j1, . . . , j	 is

	∑

i=1

p ji <

	∑

i=1

β i p j = β(1 − β)

1 − β
· p j ≤ β

1 − β
· p j .

��

3 Successfully completing sufficiently many admitted jobs

We show that the region algorithm completes sufficiently many jobs among the admit-
ted jobs before their deadline. For scheduling without commitment, we show how to
choose α, β, and δ to ensure that at least half of all admitted jobs are completed on
time. For scheduling with commitment, we provide a choice of α, β, and δ such that
every admitted job is guaranteed to complete on time.

Recall that the region algorithm schedules admitted and yet not completed jobs
independently of the regions in SPT order. This guarantees the following.

Observation 1 For α ≥ 1, the region algorithm always prioritizes a job within its own
region.

3.1 Scheduling without commitment

In this section we fix δ = ε
2 for 0 < ε ≤ 1. We show the following result.

Theorem 3 Let α = 1 and β = ε
4 . Then the region algorithm completes at least half

of all admitted jobs before their deadline.

The intuition for setting α = 1 and thus reserving regions of minimum size |R(j)| =
p j , for any j , is that in the model without commitment, we do not need to block

123

L. Chen et al.

extra time in the future to ensure the completion of earlier admitted jobs. Because of
Observation 1, for α = 1, every job j completes at the end of the region at b j . Thus, j
completes on time if and only if the region R(j) ends before d j , i.e., b j ≤ d j . We
prove Theorem 3 by showing that at least half of all regions end before the deadline
of their respective jobs. Formally, we prove the following lemma.

Lemma 2 For any instance I and some job j , for which the region algorithm gener-
ates an interruption tree Tj with regions in [a j , b j), there is an instance I ′ with at
most |Tj | + 1 jobs such that the regions in [a j , b j) and the tree Tj are identical.

Proof Consider an instance I of the non-committed scheduling problem, and let Tj

be the interruption tree constructed by the region algorithm with its root in j . Let the
interval [a j , b j) be the convex hull of the subintervals belonging to the region of j . Our
goal is to modify the instance I such that we can remove jobs outside of Tj without
changing the interruption tree of the algorithm. We do so by setting I ′ to contain the
set of jobs in Tj and changing only parameters of job j (and possibly adding one
auxiliary job). Note that j is, by definition, the largest job in I ′.

If d j − a j ≥ (1+ ε)p j then we set r ′
j := a j . Otherwise, we add an auxiliary job 0

to I ′ that is tight and blocks the machine until a j . This means r0 = d j − (1 + ε)p j ,
p0 = (1 + ε)p j − (d j − a j), and d0 = r0 + (1 + ε)p0. Moreover, we modify the
release date of j to r ′

j := r0. Since the auxiliary job is the smallest job in instance I ′
at time r0, the region algorithm admits this job and delays job j . LetR andR′ be the
schedule of regions in [a j , b j) generated by the region algorithm when applied to I
and I ′, respectively. We show that R and R′ are identical in [a j , b j).

Consider the time t = a j . Clearly, j’s region starts in R by assumption. If no
auxiliary job was used, job j is the only available job in I ′. Thus, the region algorithm
admits j . In contrast, if 0 ∈ I ′, it finishes at a j by definition. Since j is admitted inR,
it must hold that d j − a j ≥ (1 + δ)p j . Thus, its regions also begins in R′ at a j .

Let a j < t < b j be the first time when the two region schedules R and R′ are
different. Since both schedules are generated by the region algorithm, any change in
the structure of the regions is due to one of the two decision events of the region
algorithm. Recall that these events where the end of a job’s region and the release of a
new job. We distinguish two cases based on the job k that caused the difference in R
and R′: k ∈ Tj or k /∈ Tj .

By definition, the region of any job outside of Tj has empty intersection
with [a j , b j). Thus, the release of such a job can neither changeR norR′. Of course,
the region of such job cannot end within [a j , b j). Thus, a job k ∈ Tj is the reason for
the difference inR andR′. Let k be the job that owns time t inR. If the processor is
idle in R after t let k be the job that owns t in R′. As the two schedules are identical
in [a j , t), let i ∈ Tj be the unique job that owns the time right before t .

Consider the event that the region of i ended at t . If k is an ancestor of i , then
there is no sufficiently small job available in I that prevents k from being restarted
at t . Additionally, the amount of time that belongs to R(k) in [a j , t) is identical in R
andR′. Thus, k also resumes processing inR′. If k is admitted at t inR, it is sufficiently
small to (further) preempt the ancestor of i and it is available for admission. Hence,
these two properties are also satisfied in I ′ and k is admitted at t in R′ as well.

123

Handling commitment in online throughput maximization

Therefore R contains idle time at t while the region of k is scheduled in R′. Since
the jobs in I ′ are a subset of the jobs in I (except for 0), job k is also admitted and
unfinished or available at t in I. This is a contradiction. ��

We show that the existence of a late job j implies that the subtree Tj rooted in j
contains more finished than unfinished jobs. We fix a job j ∈ J that was admitted by
the region algorithm at time a j and whose region completes at time b j . We want to
analyze the structure of all regionsR in [a j , b j), i.e., the regions of all jobs in Tj . Let Fj

denote the set of jobs in Tj that finish on time. Similarly, we denote the set of jobs in Tj

that complete after their deadlines, i.e., that are unfinished at their deadline, by Uj .

Lemma 3 Let α = 1 and β = ε
4 , with ε > 0. If b j − a j ≥ (+ 1)p j for 	 > 0,

then |Fj | − |Uj | ≥ � 4	
ε

�.

As this proof is rather technical without new insights, we give only the proof sketch
here and refer to the Appendix for the full details.

Proof (Proof sketch) Assume for the sake of contradiction that there is an instance
such that the interruption tree generated by the region algorithm contains a subtree Tj

with b j −a j ≥ (+1)p j and |Fj |− |Uj | < � 4	
ε

�. Let I be such an instance that uses
a minimal number of jobs in total. The goal is to construct an instance I ′ that satisfies
b j − a j ≥ (+ 1)p j and |Fj | − |Uj | < � 4	

ε
� although it uses less jobs than I.

To this end, we modify I in several steps such that we can merge three jobs to one
larger job without violating b j − a j ≥ (+ 1)p j , changing |Fj | or |Uj |, or making
the instance infeasible. The three jobs will be leaves with the same parent i in Tj .
If i is an unfinished job that has children which are all leaves, then there have to be
at least three jobs that interrupt i . After merging the three jobs, we adapt the release
date and deadline of i to guarantee that the modified instance remains feasible. For all
these modification steps, it is crucial that we can restrict to instances in which all jobs
appear in the interruption tree (Lemma 2).

However, this modification might lead to bi ≤ d ′
i which implies that i finishes on

time. This changes the values of |Fj | and |Uj |. Clearly, in this case, |U ′
j | = |Uj | − 1.

By a careful analysis, we see that the number of finished jobs decreases by one as
well because the three children of i are replaced by only one finished job. Hence,
|F ′

j |−|U ′
j | = |Fj |−|Uj |. If i does not finish by d ′

i , then |F ′
j |−|U ′

j | = (|Fj |−2)−|Uj |.
Thus, the modified instance I ′ also violates |F ′

j | − |U ′
j | ≥ � 4	

ε
� but uses less jobs

than I does; a contradiction. ��

Proof (Theorem 3) Let U be the set of jobs that are unfinished by their deadline
but whose ancestors (except machine job M) have all completed on time. Every job
j ∈ U was admitted by the algorithm at some time a j with d j − a j ≥ (1 + δ)p j .
With δ = ε

2 this implies b j − a j > d j − a j ≥ (1 + ε
2)p j . By Lemma 3, it follows

that |Fj | − |Uj | ≥ � 4·ε/2
ε

� = 2. Then, |Tj | = |Fj | + |Uj | ≤ 2|Fj | − 2 < 2|Fj |. This
completes the proof. ��

123

L. Chen et al.

3.2 Scheduling with commitment

We analyze the region algorithm for scheduling with commitment. For both models,
commitment at admission and δ-commitment, we show that there is a choice ofα andβ

such that every job that has started processing will be completed before its deadline.
Recall that we can restrict to analyzing the algorithm in the δ-commitment model since
it runs with δ = ε

2 for commitment at admission.

Lemma 4 Let ε, δ > 0 be fixed with δ < ε. If α ≥ 1 and 0 < β < 1 satisfy the
condition that

α − 1

α
·
(

1 + δ − β

1 − β

)

≥ 1, (1)

then any job j that is admitted by the algorithm at time a j ≤ d j − (1 + δ)p j will be
finished by d j .

Proof Consider a job j that is admitted (and simultaneously accepted for completion)
by time a j . It holds that d j − a j ≥ (1 + δ)p j . We show that j receives at least p j

units of time within [a j , d j). Let |R(k)| denote the total length of intervals in R(k),
the region of job k.

Let Dj ⊆ T− j be the set of jobs whose region delays the region of job j , and has
nonempty intersection with [a j , d j). Notice that a job k ∈ Dj can only be released
after time a j . Let D′

j ⊆ Dj be the subset of jobs whose region is completely contained
in [a j , d j) and D′′

j = Dj\D′
j .

Consider D′
j . Notice that

∣
∣⋃

k∈D′
j
R(k)

∣
∣ = α

∑
k∈D′

j
pk .Thus, within regions R(k)

of jobs k ∈ D′
j , an

α−1
α

-fraction of the total time is available for processing job j .
Consider D′′

j = { j1, j2, . . . , j	} and assume that p j1 ≥ p j2 ≥ · · · ≥ p j	 . Any
interval [a ji , b ji) of such a job ji in D′′

j contains d j . This implies that π(ji+1) = ji
for 0 ≤ i < 	 where j0 := j for simplicity. Applying Lemma 1 gives an upper bound
on the total processing volume of jobs in D′′

j , i.e.,
∑	

i=1 p ji ≤ β
1−β

· p j .

To determine the amount of time for processing j within [a j , d j), we first subtract
the total processing time for jobs in D′′

j . The remaining interval may be covered with

regions of D′
j within which we can use an α−1

α
-fraction as shown above. Recall that

d j −a j ≥ (1+δ)p j . Thus, the amount of time that we can process job j within [a j , d j)

is at least

α − 1

α
·
(

(
d j − a j

) −
∑

ji∈D′′
j

p ji

)

≥ α − 1

α
·
(

1 + δ − β

1 − β

)

· p j .

This bound is now independent of the actual schedule. We can conclude, if α and β

satisfy Condition (1), then job j can process for p j units of time within [a j , d j) and
completes before its deadline. ��

123

Handling commitment in online throughput maximization

4 Competitiveness: admission of sufficiently many jobs

We show that the region algorithm admits sufficiently many jobs, independently of
the commitment model.

Theorem 4 The number of jobs that an optimal (offline) algorithm can complete on
time is at most a factor λ + 1 larger than the number of jobs admitted by the region
algorithm, where λ := ε

ε−δ
α
β
, for 0 < δ < ε ≤ 1.

To prove the theorem, we fix an instance and an optimal offline algorithm Opt. Let
X be the set of jobs that Opt scheduled and the region algorithm did not admit. We
can assume that Opt completes all jobs in X on time. Let J denote the jobs that the
region algorithm admitted. Then, X ∪ J is a superset of the jobs scheduled by Opt.
Thus, showing |X | ≤ λ|J | implies Theorem 4.

To this end, we develop a charging procedure that assigns each job in X to a unique
job in J such that each job j ∈ J is assigned at most λ = ε

ε−δ
α
β
jobs. For a job j ∈ J

admitted by the region algorithm we define the subset X j ⊂ X based on release dates.
Then, we inductively transform the laminar family (X j) j∈J into a partition (Y j) j∈J

of X with |Y j | ≤ λ for all j ∈ J in the proof of Lemma 5, starting with the leaves
in the interruption tree as base case (Lemma 7). For the construction of (Y j) j∈J , we
heavily rely on the key property (Volume Lemma 6) and Corollary 1.

More precisely, for a job j ∈ J let X j be the set of jobs x ∈ X that were released
in the interval [a j , b j) and satisfy px < β pπ(j). Let XS

j := {x ∈ X j : px < β p j }
and XB

j := X j\XS
j denote the small and the big jobs, respectively, in X j . Recall that

[a j , b j) is the convex hull of the region R(j) of job j and that it includes the convex
hulls of the regions of all descendants of j in the interruption tree, i.e., jobs in Tj . In
particular, Xk ⊂ X j if k ∈ Tj .

Observation 2 1. Any job that is scheduled by Opt and not admitted by the region
algorithm is released within the region of some job j ∈ J , i.e.,

⋃
j∈J X j = X.

2. As the region algorithm admits any job that is small w.r.t. j and released in R(j),
it holds that X S

j = ⋃
k:π(k)= j Xk .

Recall that M denotes the machine job. By Observation 2, X = XS
M and, thus, it

suffices to show that |XS
M | ≤ λ|J |. In fact, we show a stronger statement for each

job j ∈ J : the number of small jobs in X j is bounded by λτ j where τ j is the number
of descendants of j in the interruption tree, i.e., τ j := |T− j |.
Lemma 5 For all j ∈ J ∪ {M}, |XS

j | ≤ λτ j .

Before proving the lemma, we will highlight the main steps in the following. The
fine-grained definition of the sets X j in terms of the release dates and the processing
times allows us to show that any job j with |X j | > (τ j + 1)λ has siblings j1, . . . , jk
such that |X j |+∑k

i=1 |X ji | ≤ λ(τ j+1+∑k
i=1(τ ji +1)).We call i and j siblings if they

have the same parent in the interruption tree. Simultaneously applying this charging
idea to all descendants of a job h already proves |XS

h | ≤ λτh as XS
h = ⋃

j :π(j)=h X j

by Observation 2.

123

L. Chen et al.

We prove that this “balancing” of X j between jobs only happens between siblings
j1, . . . , jk with the property that b ji = a ji+1 for 1 ≤ i < k. We call such a set of jobs
a string of jobs. The ellipses in Fig. 1 visualize the maximal strings of jobs. A job j
is called isolated if bi 	= a j and b j 	= ai for all children i 	= j of π(j).

The next (technical) lemma is a key ingredient for the “balancing” of X j between a
string of jobs. For any subset of J , we index the jobs in order of increasing admission
points a j . Conversely, for a subset of X , we order the jobs in increasing order of
completion times, C∗

x , in the optimal schedule.

Lemma 6 (Volume Lemma) Let f , . . . , g ∈ J be jobs with a common parent in the
interruption tree. Let x ∈ ⋃g

j= f X j such that

g∑

j= f

∑

y∈X j :C∗
y≤C∗

x

py ≥ ε

ε − δ
(bg − a f) + px . (V)

Then, px ≥ β p j∗ , where j∗ ∈ J ∪ {M} is the job whose region contains bg, i.e.,
bg ∈ R(j∗).

Proof Let f , . . . , g, x , and j∗ as in the lemma. Since x ∈ X , the region algorithm
did not accept x at time bg . There are two possible reasons for this behavior: either
px ≥ β p j∗ or x was not available for admission at time bg anymore.

Assume for the sake of contradiction that px < β p j∗ and, thus, dx−bg < (1+δ)px .
By assumption, rx ≥ a f and dx − rx ≥ (1 + ε)px . Hence,

bg − a f ≥ bg − dx + dx − rx > −(1 + δ)px + (1 + ε)px = (ε − δ)px .

By (V), the volumeOpt processes between bg andC∗
x is at least

δ
ε−δ

(bg−a f)+ px .
By applying the above calculated lower bound, we get that

δ

ε − δ
(bg − a f) + px > δ px + px = (1 + δ)px

and, hence, that C∗
x ≥ bg + (1 + δ)px > dx , which contradicts that Opt is a feasible

schedule. ��
The next corollary follows directly from the Volume Lemma applied to a string of

jobs or to a single job j ∈ J (let f = j = g). To see this, recall that X j contains only
jobs that are small w.r.t. π(j), i.e., all x ∈ X j satisfy px < β pπ(j).

Corollary 1 Let { f , . . . , g} ⊂ J be a string of jobs and let x ∈ ⋃g
j= f X j satisfy (V).

Then, the interruption tree contains a sibling j∗ of g with bg = a j∗ .

The main part of the proof of Lemma 5 is to show (V) for a string of jobs only
relying on

∑g
j= f |X j | > λ

∑g
j= f (τ j + 1). Then, Corollary 1 allows us to charge the

“excess” jobs to a subsequent sibling g + 1. The relation between processing volume
and size of job sets is possible due to the definition of X j based on Tj .

123

Handling commitment in online throughput maximization

We inductively prove Lemma 5 where the induction is on the distance ϕ(j) of a
job j from the machine job M , i.e., ϕ(M) := 0 and ϕ(j) := ϕ(π(j)) + 1 for j ∈ J .
Moreover, let ϕmax := max{ϕ(j) : j ∈ J } be the maximal distance or, equivalently,
the height of the interruption tree. Any job j at maximal distance from the machine
job is a leaf in the interruption tree. The following lemma serves as base case in the
proof of Lemma 5.

Lemma 7 Let { f , . . . , g} ⊂ J be jobs at maximal distance from M such that∑i
j= f |X j | > λ(i + 1 − f) holds for all f ≤ i ≤ g. If g is the last such job,

there is a sibling j∗ of g with bg = a j∗ and
∑ j∗

j= f |X j | ≤ λ(j∗ + 1 − f).

Proof Observe that [a f , bg) = ⋃k
j=1 R(j) because the leaves f , . . . , g form a string

of jobs. Thus, by showing that there is a job x ∈ Xg
f := ⋃g

j= f X j that satisfies (V),
we prove the statement with the Volume Lemma. To this end, we show that for every
job f ≤ j ≤ g there exists a set Y j such that the processing volume within Y j is
sufficient to cover the interval [a j , b j) at least ε

ε−δ
times. More precisely, Y f , . . . ,Yg

will satisfy

(i)
⋃g

j= f Y j ⊂ Xg
f ,

(ii) |Y j | = λ, and
(iii) Y j ⊂ {x ∈ Xg

f : px ≥ β p j } for every f ≤ j ≤ g.

Then, (ii) and (iii) imply
∑

y∈Y j
py ≥ λβ p j = ε

ε−δ
(b j −a j). Thus, if we choose x

among those jobs in Xg
f that Opt completes last and guarantee that x /∈ ⋃g

j= f Y j , the
volume condition (V) is satisfied. We first describe how to find Y f , . . . ,Yg before we
show that these sets satisfy (i) to (iii).

By assumption, |X f | > λ. Let X f = {x1, . . . , xλ, xλ+1, . . .} be indexed in increas-
ing completion times C∗

x . Define Y f := {x1, . . . , xλ} and L f := {xλ+1, . . .} =
X f \Y f , i.e., Y f contains the λ jobs in X f that Opt completes first and L f con-
tains the last jobs. For f < j + 1 ≤ g, let Y f , . . . , Y j and L j be defined. By
assumption, |X j+1 ∪ L j | > λ since |Yi | = λ for 1 ≤ i ≤ j . The jobs in
X j+1 ∪ L j = {x1, . . . , xλ, xλ+1, . . .} are again indexed in increasing order of optimal
completion times. Then, Y j+1 := {x1, . . . , xλ} and L j+1 := {xλ+1, . . .}. Since we
move jobs only horizontally to later siblings, we call this procedure Push Forward.

By definition, (i) and (ii) are satisfied. Since f , . . . , g are leaves, the jobs in Y j ∩X j

are big w.r.t. j . Thus, it remains to show that the jobs in L j are big w.r.t. the next job
j + 1.
To this end, we observe the following. Assume that the jobs in Y f , . . . ,Y j are big

w.r.t. f , . . . , j , respectively. If we find an index f ≤ i(x) ≤ j such that x as well as
the jobs in

⋃ j
i=i(x) Yi are released after ai(x), i.e.,

ai(x) ≤ ry for y = x or y ∈
j⋃

i=i(x)

Yi , (2)

and x completes after every y ∈ ⋃ j
i=i(x) Yi , i.e.,

123

L. Chen et al.

C∗
y ≤ C∗

x for y ∈
j⋃

i=i(x)

Yi , (3)

then we can apply the Volume Lemma to show that x ∈ L j is big w.r.t. j + 1. Indeed,
then

j∑

i=i(x)

∑

y∈Xi :C∗
y≤C∗

x

py ≥ px +
j∑

i=i(x)

∑

y∈Yi
py ≥ px +

j∑

i=i(x)

ε

ε − δ
(bi − ai)

= ε

ε − δ
(b j − ai(x)) + px .

We show by induction that such an index i(x) exists for every x ∈ L j .
Since Y f ⊂ X f , we set i(x) := f for x ∈ L f . By definition of L f , C∗

y ≤ C∗
x for

y ∈ Y f and x ∈ L f . Hence, applying the Volume Lemma as explained above shows
px ≥ β p f+1.

Let f < j < g. Assume that Y f , . . . ,Y j and L j are defined as described above.
For jobs x ∈ L j\X j ⊂ L j−1, we have i(x) with the Properties (ii) and (iii) by
induction. For x ∈ L j ∩ X j , we temporarily set i(x) := j for simplification. We have
to distinguish two cases: i(x) also satisfies (ii) and (iii) for j or we have to adjust i(x).
Fix x ∈ L j .

– Li ∩ Y j = ∅ for every f ≤ i < i(x). Since only jobs in Li are shifted to some

later job j , this implies
⋃i(x)−1

i= f Xi ∩ Y j = ∅. Thus, the jobs in Y j are released
after ai(x) and by definition, C∗

y ≤ C∗
x for y ∈ Y j . By induction, x and the jobs in

Yi(x) ∪ · · · ∪Y j−1 satisfy (ii) and (iii). Hence, i(x) is a suitable choice for x and j .
– Li ∩ Y j 	= ∅ for some f ≤ i < i(x). Choose the job y ∈ L j−1 ∩ Y j with the

smallest i(y). By a similar argumentation as before,
⋃i(y)−1

i= f Xi ∩ Y j = ∅, which
implies (ii) for z ∈ Y j . Again by induction, y and the jobs in Yi(y) ∪ · · · ∪ Y j−1
satisfy (ii) and (iii). Since x ∈ L j , C∗

x ≥ C∗
z for all z ∈ Y j . This implies C∗

x ≥ C∗
z

for z ∈ ⋃ j−1
i=i(y) Yi because y ∈ L j−1 ∩ Y j . Set i(x) := i(y).

As explained above, the Volume Lemma implies px ≥ β p j+1.
The same argumentation holds for j = g although in this special case, Corollary 1

implies the statement. ��
We can now generalize the above described procedure to arbitrary strings of jobs

in the interruption tree and, thus, prove Lemma 5.

Proof (Lemma5)We show that for every j ∈ J∪{M}, there exists a partition (Yk)k∈T− j

with

(i)
⋃

k∈T− j
Yk = XS

j ,
(ii) Yk ⊂ {x ∈ X j : px ≥ β pk}, and
(iii) |Yk | ≤ λ for every k ∈ T− j .

Then, it holds that |XS
j | = | ⋃k∈T− j

Yk | = ∑
k∈T− j

|Yk | ≤ λτ j and, thus, the lemma
follows.

123

Handling commitment in online throughput maximization

The proof consists of an outer and an inner induction. The outer induction is on the
distanceϕ(j) of a job j frommachine jobM , i.e.,ϕ(M) := 0 andϕ(j) := ϕ(π(j))+1
for j ∈ J . The inner induction uses the idea about pushing jobs x ∈ X j to some later
sibling of j in the same string of jobs (see proof of Lemma 7).

Let j ∈ J with ϕ(j) = ϕmax − 1 := max{ϕ(i) : i ∈ J } − 1. By Observation 2,
XS

j = ⋃
k:π(k)= j Xk , where all k ∈ T− j are leaves at maximal distance from M . We

distinguish three cases for k ∈ T− j :
Case I If k ∈ T− j is isolated, |Xk | ≤ λ follows directly from the Volume Lemma

as otherwise
∑

x∈Xk
px ≥ λβ pk + px = ε

ε−δ
(bk − ak) + px contradicts Corollary 1,

where x ∈ Xk is the last job that Opt completes from the set Xk . Since all jobs in Xk

are big w.r.t. k, we set Yk := Xk .
Case II If k ∈ T− j with |Xk | > λ is part of a string, let f , . . . , g be the maximal

string satisfying Lemma 7 with k ∈ { f , . . . , g}. With this lemma, we find Y f , . . . ,Yg
and set Yg+1 := Xg+1 ∪ Lg .

Case III We have not yet considered jobs k in a string with |Xk | ≤ λ that do not
have siblings f , . . . , g in the same string with bg = ak and

∑g
i= f |X j | > (g − f)λ.

This means that such jobs do not receive jobs x ∈ Xi for i 	= k by the Push Forward
procedure in Case II. For such k ∈ T− j we define Yk := Xk .

Then, XS
j = ⋃

k:π(k)= j Xk = ⋃
k∈T− j

Xk = ⋃
k∈T− j

Yk and, thus, (i) to (iii) are
satisfied.

Let ϕ < ϕmax such that (Yk)k∈T− j satisfying (i) to (iii) exists for all j ∈ J with
ϕ(j) ≥ ϕ. Fix j ∈ J with ϕ(j) = ϕ − 1. By induction and Observation 2, it holds

that XS
j = ⋃

k:π(k)= j

(
XB
k ∪ ⋃

i∈T−k
Yi

)
. Now, we use the partitions (Yi)i∈T−k for k

with π(k) = j as starting point to find the partition (Yk)k∈T− j . Fix k with π(k) = j
and distinguish again the same three cases as before.

Case I If k is isolated, we show that |Xk | ≤ λ(τk + 1) and develop a pro-
cedure to find (Yi)i∈Tk . Assume for sake of contradiction that |Xk | > λ(τk + 1)
and index the jobs in Xk in increasing order of completion times, i.e., Xk =
{x1, . . . , xλ(τk+1), xλ(τk+1)+1, . . .}, and set L := {xλ(τk+1)+1, . . .}. Then,

|XB
k \L| = |Xk\L| − |XS

k \L| = (τk + 1)λ −
∑

i∈T−k

|Yi\L| = λ +
∑

i∈T−k

(λ − |Yi\L|).

By induction hypothesis, λ − |Yi\L| ≥ 0 for i ∈ T−k . Let Yk contain λ arbitrary big
jobs in XB

k \L and assign each Yi for i ∈ T−k exactly λ − |Yi\L| of the remaining
(big) jobs in XB

k \L . This is possible because the jobs in XB
k are big for any descendant

of k, i.e., they satisfy (ii). By choice of λ, each of the just obtained sets covers the
region of the corresponding job at least ε

ε−δ
times. Thus, the jobs in Xk\L have a total

processing volume of at least ε
ε−δ

(bk − ak). Therefore, any job x ∈ L satisfies (V)
which contradicts the fact that k is isolated by Corollary 1. Thus, |Xk | ≤ λ(τk + 1).

To construct (Yi)i∈Tk , we assign min{λ, |XB
k |} jobs from XB

k to Yk . If |XB
k | > λ,

distribute the remaining jobs according to λ− |Yi | among the descendants of k. Then,
Xk = ⋃

i∈Tk Yi . Because a job that is big w.r.t job k is also big w.r.t. all descendants of
k, every (new) set Yi satisfies (ii) and (iii). We refer to this procedure as Push Down
since jobs are shifted vertically to descendants.

123

L. Chen et al.

Case II If |Xk | > λ(τk + 1), k must belong to a string with similar properties as
described in Lemma 7, i.e., there are jobs f , . . . , g containing k such that

1.
∑i

j= f |X j | > λ
∑i

j= f τ j for all f ≤ i ≤ g and
2. b j = a j+1 for all f ≤ j < g.

Choose { f , . . . , g} maximal with those two properties. We show that the Vol-
ume Lemma implies the existence of another sibling g + 1 that balances the sets
X f , . . . , Xg, Xg+1. This is done by using the Push Down procedure within a gener-
alization of the Push Forward procedure.

As the jobs f , . . . , g may have descendants, we use Push Forward to construct
the sets Z f , . . . , Zg and L f , . . . , Lg with |Zk | = λ(τk + 1). Then, we show that we
can apply Push Down to Zk and (Yi)i∈T−k in order to obtain (Yi)i∈Tk . This means the
newly obtained partition satisfies

(iv) Yk ∪ ⋃
i∈T−k

Yi = Zk ,
(v) Yi ⊂ {x ∈ X j : px ≥ β pi } and
(vi) |Yi | = λ for every i ∈ Tk .

This implies that the set Zk covers [ak, bk) at least ε
ε−δ

times. Thus, the sets Xk

with f ≤ k ≤ g satisfy (V) and we can apply Corollary 1.
To define Z f , . . . , Zg , we index the jobs in X f = {x1, . . . , xλ f , xλ(τ f +1)+1, . . .}

in increasing order of optimal completion times and set Z f := {x1, . . . , xλ(τ f +1)} and
L f = X f \Z f . Assume that Z f , . . . , Zk and L f , . . . , Lk are defined. Index the jobs in
Xk+1∪ Lk = {x1, . . . , xλ(τk+1+1), xλ(τk+1+1)+1, . . .} in increasing order of completion
times and set Zk+1 := {x1, . . . , xλ(τk+1+1)} and Lk+1 = (Xk+1 ∪ Lk)\Zk+1. Use the
Push Down procedure to obtain the partition (Yi)i∈Tk .

If we can show that any job x ∈ Lk is big w.r.t. k + 1, we have that Zk+1\XS
k+1

only contains big jobs w.r.t. k + 1, which are also big w.r.t. every i ∈ T−(k+1). As in
Case I,

|Zk+1\XS
k+1| = |Zk+1| − |XS

k+1\Lk+1| = λ +
∑

i∈T−(k+1)

(λ − |Yi\Lk+1|).

Hence, the just defined partition (Yi)i∈Tk satisfies (iv) to (vi).
As in the proof for Lemma 7, we show by induction that every x ∈ Lk exhibits an

index i(x) with

ai(x) ≤ ry (4)

C∗
y ≤ C∗

x (5)

for y = x or y ∈ ⋃ j
i=i(x) Zi . Then, the Volume Lemma implies that px ≥ β pk+1.

For x ∈ L f , set i(x) = f . Thus, Eqs. (4) and (5) are trivially satisfied. Since
Z f ⊂ X f , we have that Z f \XS

f only contains big jobs w.r.t. f .
Let f < k < g. Assume that Z f , . . . , Zk and Lk are defined as described above.

For jobs x ∈ Lk\Xk , we have i(x) with the Properties (iv) and (v) by induction. For
x ∈ Lk ∩ Xk , we temporarily set i(x) := k for simplification. We have to distinguish
two cases: i(x) also satisfies (iv) and (v) for k or we have to adjust i(x). Fix x ∈ Lk .

123

Handling commitment in online throughput maximization

– Li ∩ Zk = ∅ for every f ≤ i < i(x). Since only jobs in Li are shifted to some
later job k, this implies

⋃i(x)−1
i= f Xi ∩ Zk = ∅. Thus, the jobs in Zk are released

after ai(x) and by definition, C∗
y ≤ C∗

x for y ∈ Zk . By induction, x and the jobs in
Zi(x) ∪ · · · ∪ Zk−1 satisfy (iv) and (v). Hence, i(x) is a suitable choice for x and k.

– Li ∩ Zk 	= ∅ for f ≤ i < i(x). Choose the job y ∈ Lk−1 ∩ Zk with the smallest
i(y). By a similar argumentation as before,

⋃i(y)−1
i= f Xi ∩ Zk = ∅, which implies

(iv) for z ∈ Zk . Again by induction, y and the jobs in Zi(y) ∪ · · · ∪ Zk−1 satisfy
(iv) and (v). Since x ∈ Lk , C∗

x ≥ C∗
z for all z ∈ Zk . This implies C∗

x ≥ C∗
z for

z ∈ ⋃k−1
i=i(y) Zi because y ∈ Lk−1 ∩ Yk . Set i(x) := i(y).

As explained above, the Volume Lemma implies px ≥ β pk+1.
For k+1 = g, the above argumentation can be combined with Corollary 1 to prove

that the sibling g + 1 indeed exists. Set Zg+1 := Xg+1 ∪ Lg and use Push Down to
construct (Yi)i∈T(g+1) .

Case IIIAny job k with π(k) = j that is part of a string and was not yet considered
must satisfy |Xk | ≤ (τk + 1)λ. We use the Push Down procedure for isolated jobs to
get the partition (Yi)i∈Tk .

Hence, we have found (Yk)k∈T− j with the properties (iv) to (vi). ��
We can now prove the main result of this section.

Proof (Theorem 4) As explained before, the job set scheduled by Opt clearly is a
subset of X ∪ J , the union of jobs only scheduled by Opt and the jobs admitted by
the region algorithm. Thus, it suffices to prove that |X | ≤ λ|J |. By Observation 2,
X = XS

M and, hence, |XS
M | ≤ λ|J | implies |X | ≤ λ|J |. This is true as Lemma 5 also

holds for the machine job M . ��
Finalizing the proofs of Theorems 1 and 2

Proof (Theorem 1) Set α = 1 and β = ε
4 . Theorem 3 shows that our algorithm

completes at least half of all admitted jobs on time. Theorem 4 implies that the region
algorithm is 16

ε
-competitive. ��

Proof (Theorem 2) By Lemma 4, the choice α = 8
δ
and β = δ

4 implies that the
region algorithm completes all admitted jobs. Theorem 4 implies that our algorithm
is (32ε

(ε−δ)δ2
+ 1)-competitive. ��

5 Tightness of the region algorithm

In this section, we consider scheduling with commitment. We show that the analysis
of the region algorithm is tight in the sense that the competitive ratio of the region
algorithm isΩ(α/β). Moreover, we give examples that show that for the commitment
upon admission model the choice α ∈ Ω(1/ε) and β ∈ O(1/ε) is best possible.

In Sect. 6.1 we show that the region algorithm is best possible (up to constants) for
scheduling without commitment.

Lemma 8 Let 0 < ε ≤ 1, α ≥ 1, and 0 < β < 1. Then, the competitive ratio of the
region algorithm is bounded from below by α/β.

123

L. Chen et al.

Proof We consider an instance where a job 0 with processing time p0 = 1 and a huge
scheduling interval [r0, r0 +α +2) is released first. Then, the region algorithm blocks
the region [r0, r0 + α] for this job. During this interval, �α/β� jobs of size p j = β

arrive. They all fit into R(0) but the jobs are to big relative to 0 to be admitted. Then, an
offline optimumwould process all small jobs until r0 +α before starting job 0. Hence,
the region algorithm completes one job while it is optimal to complete �α/β�+1 jobs.

More formally, let r0 = 0, p0 = 1 and d0 = α + 1. Fix 0 < ϕ < β < 1. For
1 ≤ j ≤ �α/β� let r j = (j − 1)β + ϕ, p j = β and d j = r j + (1+ ε)p j . The region
algorithm admits job 0 at time 0 and blocks the interval [0, α) for 0. Thus, the region
algorithm cannot admit any of the small jobs and completes only job 0. This behavior
does not depend on the commitment model.

An optimal offline algorithm processes the jobs 1, . . . , �α/β� one after the other
in the interval [ϕ, �α/β�β + ϕ) ⊂ [0, α + 1). At the latest at time α + 1 job 0 starts
processing and finishes on time.

Thus, the competitive ratio of the algorithm is bounded from below by �α/β�+1 ≥
α/β. ��
Lemma 9 The competitive ratio of the region algorithm in the scheduling with com-
mitment model is bounded from below by Ω(1/ε2).

Proof The proof consists of two parts. First we show an upper bound on the choice of β
in terms of δ. Then, we use this observation to show an upper bound on β depending
on α.

It is obvious thatβ ≤ δmust hold as otherwise a job that is admitted at d j−(1+δ)p j

and interrupted by another job i with pi = β p j cannot finish on time. Hence, β ≤
δ ≤ 1 must hold.

Wedefine a family of instancesIm(c) that depends on twonatural numbersm, c ∈ N

where c is chosen such that

1

β(c + 1)
< α ≤ 1

βc
. (6)

Each instance consists of four types of jobs, a job 0 that cannot be finished unless α

and β satisfy certain bounds, an auxiliary job−1 that guarantees that 0 is not admitted
before d0 − (1 + δ)p0 and two sets of jobs, B(c) and G(m), that block as much time
in [a0, d0) as possible. A visualization of the instance can be seen in Fig. 2.

More precisely, at time t = 0, an auxiliary job −1 is released with p−1 = 1
and d−1 = (1 + ε)p−1. The region algorithm admits this job and assigns it the
region R(−1) = [0, α). At time α − (ε − δ) job 0 is released with p0 = 1 and
d0 = α + 1 + δ. Obviously, this job is admitted at time α as it is still available.
Fix ϕ > 0 sufficiently small.

At time α + ϕ the sequence B(c) of c identical jobs is released one after the other
such that the release date of one job coincides with the end of the region of the previous
job. For 0 ≤ i ≤ c − 1, a tight job is released at ri := α + i/c + ϕ with processing
time pi = β − ϕ and deadline di = ri + (1 + ε)pi . Since

123

Handling commitment in online throughput maximization

tα
d0 − β

1−β

= (1 + δ)p0

· · · · · ·

r1 r2 r3 r4 r5 r0 r1r2

· · ·

d0

Fig. 2 The structure of the regions and the schedule generated by the region algorithm when faced with
the instance Im (c). The darkest shades of a color mean that jobs are scheduled there. The light yellow and
blue parts show that the region is currently interrupted. The only time slots where 0 can be processed are
the lighter parts of the green regions, i.e., the regions belonging to B(c) (color figure online)

ri + α pi ≤ α + i/c + ϕ + β/(βc) − αϕ < α + (i + 1)/c + ϕ = ri+1

each of these jobs is admitted by the region algorithm at their release date. The last of
these regions ends at α + (c−1)/c+ϕ +α(β −ϕ) = α + c−1

c +ϕ + 1
c −αϕ ≤ α +1.

Thus, in the limit ϕ → 0, they block cβ units of time in [a j , a j + d j).
At time d0− β

1−β
, a sequence ofm geometrically decreasing jobs G(m) is released.

For 1 ≤ j ≤ m, job j is released at r j = d0 − β
1−β

+ ∑ j
i=1 β i with processing

time p j = (β−ϕ) j anddeadlined j = r j+(1+ε)p j . Then, p j+1 = (β−ϕ)p j < β p j .
Thus, the region algorithm admits each of them jobs. Again, in the limitm → ∞ and
ϕ → 0, the processing volume of G(m) sums up to β

1−β
.

Putting the two observations together, we obtain

β

1 − β
+ cβ ≤ δ

as otherwise job 0 cannot finish on time. Hence, 0 ≤ cβ2 − (1+ c+ δ)β + δ. Solving
for the two roots, β+ and β−, we obtain

β+ = 1 + c + δ + √
(1 + c + δ)2 − 4cδ

2c
≥ 1 + c + δ + √

c2 + δ2 − 2cδ

2c
> 1.

As we have seen by the first example, β ≤ 1 must hold. Thus, we conclude that the
only valid choice for β is in the interval (0, β−). By a similar calculation, it follows
that β− ≤ δ

c . As we know by Lemma 8, the competitive ratio is bounded from below
by α/β. Combined with the two bounds on α, 1

β(c+1) < α ≤ 1
βc , we obtain

α

β
≥ 1

β(c + 1)

1

β
= c2

δ2(c + 1)
.

123

L. Chen et al.

Since the right hand side is increasing in c for positive c, the expression is minimized
for c = 1. This implies that β ∈ O(ε) and therefore α ∈ Ω(1/ε). ��

6 Lower bounds on the competitive ratio

In this section we give a collection of lower bounds on the competitive ratio in the
different commitment models and for different problem settings. To simplify notation,
we formally introduce the notion of laxity. Let j be a job with processing time p j ,
deadline d j , and r j . The laxity 	 j is defined as d j − r j − p j .

6.1 Scheduling without commitment

We give a lower bound matching our upper bound in Theorem 2. This shows that the
region algorithm is best possible for scheduling without commitment.

Theorem 5 Every deterministic online algorithm has a competitive ratio Ω(1
ε
).

Proof The proof idea is as follows: we release Ω(1
ε
) levels of jobs. In each level, the

release date of any but the first job is the deadline of the previous job. Whenever an
online algorithm decides to complete a job from level i (provided no further jobs are
released), then the release of jobs in level i stops and a sequence of O(1

ε
) jobs in

level i + 1 is released. Jobs in level i + 1 have processing time that is too large to
fit in the slack of a job of level i . Thus, an algorithm has to discard the job started at
level i to run a job of level i + 1. This implies that it can only finish one job, while the
optimum can finish a job from every other level.

Formally, let ε < 1
10 such that 1

8ε ∈ N and suppose there is an online algorithm
with competitive ratio c < 1

8ε , from which it is sufficient to deduce a contradiction.
We construct an adversarial instance in which each job j belongs to one of 2 · �c+ 1�
levels and fulfills d j = r j + (1+ ε) · p j . The processing time for any job j in level i
are p j = p(i) = (2ε)i .

This (alongwith the interval structure)makes sure that no two jobs fromconsecutive
levels can both be completed by a single schedule, which we will use to show that
the online algorithm can only complete a single job throughout the entire instance.
The decrease in processing times between levels, however, also makes sure that the
optimum can finish a job from every other level, resulting in an objective value of
�c + 1�, which is a contradiction to the algorithm being c-competitive.

The sequence starts in level 0 at time 0 with the release of one job j with processing
time p(0) = 1 and, thus, deadline d j = 1+ ε. We will show inductively that, for each
level i , there is a time ti when there is only a single job ji left that the algorithm can
still finish, and this job is from the current level i (and, thus, p ji = p(i) = (2ε)i).
We will also make sure that at ti at most a (23)-fraction of the time window of ji has
passed. From ti on, no further jobs from level i are released, and jobs from level i + 1
start being released (or, if i = 2 · �c + 1� − 1, we stop releasing jobs altogether). It is
clear that t0 exists.

123

Handling commitment in online throughput maximization

Consider some time ti , and we will release jobs from level i + 1 so as to create
time ti+1. The first job j from level i + 1 has release date ti and, by the above
constraints, d j = ti + (1 + ε) · p j where p j = p(i+1) = (2ε)i+1. As long as no
situation occurs that fits the above description of ti+1, we release an additional job
of level i + 1 at the deadline of the previous job from this level (with identical time-
window length and processing time). We show that we can find time ti+1 before 1

8ε
jobs from level i + 1 have been released. Note that the deadline of the 1

8ε th job from
level i + 1 is ti + 1

8ε · (1+ ε) · 2ε · p(i), which is smaller than the deadline of d ji since
by induction d ji − ti ≥ 2

3 · p(i) and ε < 1
10 . This shows that, unless more than 1

8ε
jobs from level i + 1 are released (which will not happen as we will show), all time
windows of jobs from layer i + 1 are contained in that of ji .

Note that there must be a job j
 among the 1
8ε first ones in level i + 1 that the

algorithm completes if no further jobs are released within the time window of j
: by
induction, the algorithm can only hope to finish a single job released before time ti
and the optimum could complete 1

8ε jobs from level i + 1, so j
 must exist for the
algorithm to be c-competitive. Now we can define ji+1 to be the first such job j

and find ti+1 within its time window: at the release date of j
, the algorithm could
only complete ji . However, since the algorithm finishes ji+1 if there are no further

jobs released, and ε < 1
10 , it must have worked on ji+1 for more than p(i+1)

2 units of
time until ri+1 + 2

3 · p(i+1) =: ti+1. This quantity, however, exceeds the laxity of ji ,
meaning that the algorithm cannot finish ji any more. (Recall that the laxity of ji is
εp(i) = 2iεi+1.) So ti+1 has the desired properties.

This defines t2·�c+1�, and indeed the algorithmwill only finish a single job.Weverify
that an optimal algorithm can schedule a job from every other level. Note that, among
levels of either parity, processing times are decreasing by a factor of 4ε2 between
consecutive levels. So, for any job j , the total processing time of jobs other than j that
need to be processed within the time window of j adds up to less than

∞∑

i=1

(4ε2)i · p j = 4ε2 ·
∞∑

i=0

(4ε2)i · p j

= 4ε2 · 1

1 − 4ε2
· p j ≤ ε · 4

10
· 1

1 − 4
100

· p j < ε · p j = 	 j .

This completes the proof. ��

6.2 Scheduling with commitment

6.2.1 Commitment upon arrival

We strengthen earlier results for weighted jobs [22,26] and show that the model is
hopeless even in the unweighted setting and even for randomized algorithms.

Theorem 6 No randomized online algorithm has a bounded competitive ratio for com-
mitment upon arrival.

123

L. Chen et al.

In the proof of the theorem, we use the following algebraic fact.

Lemma 10 Consider positive numbers n1, . . . , nk, c ∈ R+ with the following prop-
erties:

(i)
∑k

i=1 ni ≤ 1,

(ii)
∑ j

i=1 ni · 2i−1 ≥ 2 j−1

c for all j = 1, . . . , k.

Then it holds that c ≥ k+1
2 .

Proof We take a weighted sum over all inequalities in (ii), where the weight of the
inequality corresponding to j < k is 2k− j−1 and the weight of the inequality corre-
sponding to j = k is 1. The result is

k∑

i=1

ni · 2k−1 ≥ (k + 1) · 2k−2

c
⇔

k∑

i=1

ni ≥ (k + 1)

2c
.

If c < k+1
2 , this contradicts (i). ��

We proceed to the proof of the theorem.

Proof (Theorem 6) Consider any ε > 0 and arbitrary γ ∈ (0, 1). Suppose there is a
(possibly randomized) c-competitive algorithm, where c may depend on ε.

We will choose some k ∈ N later. The adversary releases at most k waves of jobs,
but the instance may end after any wave. Wave i has 2i jobs. Each job from the i th
wave has release date i

k · γ , deadline 1, and processing time 1
2i

· 1−γ
1+ε

. Note that

choosing p j ≤ 1−γ
1+ε

for all jobs j makes sure that indeed 	 j ≥ ε · p j , and observe that
the total volume of jobs in wave i adds up to no more than 1 − γ .

Define ni to be the expected total processing time of jobs that the algorithm accepts
from wave i . We observe:

(i) Since all accepted jobs have to be scheduled within the interval [0, 1], we must
have

∑k
i=1 ni ≤ 1.

(ii) For each i , possibly no further jobs are released after wave i . Since, in this case, the
optimum schedules all jobs from wave i and the jobs’ processing times decrease

by a factor of 2 from wave to wave, it must hold that
∑ j

i=1 ni · 2i−1 ≥ 2 j−1

c .

This establishes the conditions necessary to apply Lemma 10 to n1, . . . , nk , which
shows that choosing k ≥ 2c yields a contradiction. ��

6.2.2 Commitment on job admission and ı-commitment

Since these models are more restrictive than scheduling without commitment, the
lower bound Ω(1

ε
) from Theorem 5 holds. In the present setting we can provide a

much simpler (but asymptotically equally strong) lower bound.

123

Handling commitment in online throughput maximization

Commitment upon admission For scheduling with arbitrary weights, Azar et al. [2]
rule out any bounded competitive ratio for deterministic algorithms. Thus, our bounded
competitive ratio for the unweighted setting (Theorem 2) gives a clear separation
between the weighted and the unweighted setting.

Scheduling with δ-commitment We give a lower bound depending on parameters ε

and δ.

Theorem 7 Consider scheduling weighted jobs in the δ-commitment model. For any
δ > 0 and any ε with δ ≤ ε < 1+ δ, no deterministic online algorithm has a bounded
competitive ratio.

Proof We reuse the idea of [2] to release the next job upon admission of the previous
one while heavily increasing the weights of subsequent jobs. However, the scheduling
models differ in the fact that the δ-commitment model allows for processing before
commitment which is not allowed in the commitment-upon-admission model.

Assume for the sake of contradiction, that there is a c-competitive algorithm. We
consider the following instance that consists of n tight jobswith the same deadline d :=
1 + ε. Job j has a weight of w j := (c + 1) j which implies that any c-competitive
algorithm has to admit job j at some point even if all jobs 1, . . . , j − 1 are admitted.
In the δ-commitment model, the admission cannot happen later than d − (1 + δ)p j

which is the point in time when job j + 1 is released.
More precisely, the first job is released at r1 = 0 with processing time p1 = 1. If

jobs 1, . . . , j have been released, job j + 1 is released at r j+1 = d − (1 + δ)p j and
has processing time

d − r j+1

1 + ε
= d − (d − (1 + δ)p j)

1 + ε
= 1 + δ

1 + ε
p j = · · · =

(
1 + δ

1 + ε

) j−1

.

An instance with n such jobs has a total processing volume of

n∑

j=1

p j =
n−1∑

j=0

(
1 + δ

1 + ε

) j

=
1 −

(
1+δ
1+ε

)n

1 − 1+δ
1+ε

.

Any c-competitive algorithm has to complete the n jobs before d = 1 + ε. This also
holds for n → ∞ and, thus, 1+ε

ε−δ
≤ 1 + ε is implied. This is equivalent to ε ≥ 1 + δ.

In other words, if ε < 1+ δ, there is no deterministic c-competitive online algorithm.
��

In particular, there is no bounded competitive ratio possible for ε ∈ (0, 1). A restric-
tion for ε appears to be necessary as Azar et al. [2] provide such a bound when the
slackness is sufficiently large, i.e, ε > 3. In fact, our bound answers affirmatively the
open question in [2] if high slackness is indeed required. Again, this strong impossibil-
ity result gives a clear separation between the weighted and the unweighted problem
as we show in the unweighted setting a bounded competitive ratio for any ε > 0
(Theorem 2).

123

L. Chen et al.

Proportional weights (w j = p j) For scheduling with commitment, it is known that
simple greedy algorithms achieve the best possible competitive ratio Θ(1/ε) [11,13].
In this section, we show a weaker lower bound for randomized algorithms.

Theorem 8 Consider proportional weights (w j = p j). For commitment on job admis-
sion and the δ-commitment model, the competitive ratio of any randomized algorithm
is Ω(log 1

ε
).

Proof Let k = �log(1
8ε)�, and consider a c-competitive algorithm. The adversary

releases at most k jobs, where job j = 1, . . . , k arrives at r j = 2ε
∑ j−1

i=1 2i−1, has
processing time 2 j−1 and slack ε2 j−1.

Denote by ni the probability that the algorithm commits to job i . We make the
following observations:

(i) The release date of job j is

2ε
j−1∑

i=1

2i−1 < 2ε · 2log(1
8ε) ≤ 1

4
,

at which time any job j ′ < j that the algorithm has committed to has at least
p1 − 1/4 = 3/4 processing left. The slack of j is however only at most

ε · 2 j−1 ≤ ε · 2�log(1
8ε)�−1 ≤ 1

16
.

This implies that no two jobs can both be committed to at the same time. Hence,∑k
i=1 ni ≤ 1.

(ii) The algorithm has to commit to j < k at the latest at

r j + ε2 j−1 = 2ε
j−1∑

i=1

2i−1 + ε2 j−1 < 2ε
j∑

i=1

2i−1 = r j+1,

that is, unknowinglywhether j+1will be released or not, so it has to be competitive

with the optimum that only schedules j . Hence, we have
∑ j

i=1 ni · 2i−1 ≥ 2 j−1

c .

This allows us to apply Lemma 10 to n1, . . . , nk , showing c ≥ k+1
2 Ω(log 1

ε
). ��

7 Concluding remarks

We provide a general framework for online deadline-sensitive scheduling with and
without commitment. This is the first unifying approach and we believe that it captures
well (using parameters) the key design principles needed when scheduling online,
deadline-sensitive and with commitment.

We give the first rigorous bounds on the competitive ratio for maximizing through-
put in different commitment models. Some gaps between upper and lower bounds

123

Handling commitment in online throughput maximization

remain and, clearly, it would be interesting to close them. In fact, the lower bound
comes from scheduling without commitment and it is unclear whether scheduling
with commitment is truly harder than without. It is somewhat surprising that essen-
tially the same algorithm (with the same parameters and commitment upon admission)
performs well for both, commitment upon admission and δ-commitment, whereas a
close relation between the models does not seem immediate. It remains open, if an
algorithm can exploit the seemingly greater flexibility of δ-commitment.

We restrict our investigations to unit-weight jobs which is justified by strong impos-
sibility results (Theorems 6, 7, [2,22,26]). Thus, for weighted throughput a rethinking
of the model is needed. Amajor difficulty is the interleaving structure of time intervals
which makes the problem intractable in combination with weights. However, practi-
cally relevant restrictions to special structures such as laminar or agreeable intervals
have been proven to be substantially better tractable in related online deadline schedul-
ing research [9,10].

Furthermore, we close the problem of scheduling unweighted jobs without commit-
ment with a best-achievable competitive ratio Θ(1

ε
). It remains open if the weighted

setting is indeed harder than the unweighted setting or if the upper bound O(1
ε2

) in
[22] can be improved. Future research on generalizations to multi-processors seems
highly relevant. We believe that our general framework is a promising starting point.

Acknowledgements Open access funding provided by Projekt DEAL. Research of the first author was
partly supported by NSF Grant 1756014. Research of the second and third author was partly supported by
the German Science Foundation (DFG) under contract ME 3825/1. Research of the fourth author was partly
supported by CONICYT Grant PII 20150140 and the DAAD PRIME program. Research of the fifth author
was partly supported by NSF Grants CCF-1714818 and CCF-1822809.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

In this section we give the technical details of the modifications used in the proof of
Lemma 3.

Lemma 3 Let α = 1 and β = ε
4 , with ε > 0. If b j − a j ≥ (+ 1)p j for 	 > 0,

then |Fj | − |Uj | ≥ � 4	
ε

�.
Proof Assume for the sake of contradiction that there is an instance such that the
interruption tree generated by the region algorithmcontains a subtree Tj with b j−a j ≥
(+ 1)p j and |Fj | − |Uj | < � 4	

ε
�. Let I be such an instance with minimal number

of jobs in total. By Lemma 2, we restrict to the jobs contained in Tj . The goal is to
construct an instance I ′ that satisfies b j − a j ≥ (+ 1)p j and |Fj | − |Uj | < � 4	

ε
�

123

http://creativecommons.org/licenses/by/4.0/

L. Chen et al.

although it uses less jobs than I. To this end, we modify I in several steps such that
we can merge three jobs to one larger job without violating b j − a j ≥ (+ 1)p j ,
changing |Fj | or |Uj |, or making the instance infeasible. The three jobs will be leaves
with the same parent i in Tj . In fact, if i is an unfinished job, then bi −ai ≥ (1+ ε

2)pi .
Any job k that may postpone i satisfies pk < β pi = ε

4 pi . Hence, if the children of i
are all leaves, there have to be at least three jobs that interrupt i .

In the following argumentation we use the position of jobs in the interruption tree.
To that end, we define the height of an interruption tree to be the length of a longest
path from root to leaf and the height of the node j in the tree to be the height of Tj .

The roadmap of the proof is as follows: first, we show that there is an instance I ′
with an unfinished job of height one by proving the following facts.

1. The height of the interruption tree Tj is at least two.
2. Any finished job of height one can be replaced by a leaf.

Let i be an unfinished job of height one. We show that three of its children can be
merged and become a sibling of their former ancestor. To this end, we prove that we
can assume w.l.o.g. the following two properties of the children of i .

3. No job is completely scheduled in [di , bi).
4. The children of i form a string of jobs.

Ad 1. We show that the height of Tj is at least two. Assume for the sake of contradic-
tion that Tj is a star centered at j . Since any leaf finishes by definition of the
region algorithm, the root j is the only job that could possibly be unfinished.
As |Fj |−|Uj | ≤ � 4	

ε
�−1, this implies that there are at most � 4	

ε
� leaves in Tj .

Then,

b j − a j =
∑

i∈Tj

pi < p j +
⌊
4	

ε

⌋

· ε

4
p j ≤ p j + 	p j ,

where we used pi < β p j for each leaf i ∈ Tj . This contradicts the assump-
tion b j − a j ≥ (+ 1)p j .

Ad 2. We show that w.l.o.g. any region of height one ends after the corresponding
deadline. Let i be a finished job of height one, i.e., bi ≤ di , let l be the last
completing child of i , and let π(i) denote the parent of i . This job π(i) ∈ Tj

must exist because the height of Tj is at least two by 1.We create a new instance
by replacing l by a new job l ′ that is released at rl ′ := bi − pl and that has the
same processing time as l, i.e., pl ′ := pl . The deadline is dl ′ := rl ′ +(1+ε)pl ′ .
We argue that i finishes at rl ′ in the new instance and that l ′ finishes at bi .
As l is not interrupted, rl ′ −al = bi − pl −al = bi −bl , which is the remaining
processing time of i at al . If we can show that i is not preempted in [al , rl ′) in
the new instance, i completes at al +bi −bl = rl ′ . Since l is the last child of i ,
any job k released within [al , bi) is scheduled later than bi . (Recall that we
restrict to jobs in the interruption tree Tj by Lemma 2.) Thus, pk ≥ β pi > pl .
Hence, i is not interrupted in [al , rl ′) and completes at rl ′ < bi ≤ di . At time rl ′ ,
job l ′ is the smallest available job and satisfies pl ′ < (ε

4)pi < (ε
4)

2 pπ(i).
Thus, l ′ is admitted at rl ′ and is not interrupted until rl ′ + pl = bi by the

123

Handling commitment in online throughput maximization

same argumentation about the jobs k that are released in [al , bi). Hence, its
region ends at rl ′ + pl ′ < dl ′ . Moreover, outside the interval [al , bi) neither the
instance nor the schedule of the regions are changed. Since l ′ is now released
outside of the region of i , l ′ becomes a child of π(i), i.e., l ′ is directly appended
to π(i). This modification does not alter the length of [a j , b j) or the number
of finished and unfinished jobs. Inductively applying this modification to any
finished job of height one proves the claim.

Next, we prove the simplifying assumptions on jobs of height one. Because of the
just proven statements, Tj must contain at least one unfinished job of height one.
Let i be such a job. Since i is unfinished, it must hold that di < bi . For simplicity,
let T := T−i denote the set of children of i and let τ := |T |.
Ad 3. We start by showing that no region of child of i is completely contained

in [di , bi). If there is a child c with di ≤ ac < bc < bi , it does not pre-
vent the algorithm from finishing i . Hence, it could be appended to π(i) in
the same way as we appended the last child of an finished job in the previous
claim. That is, we can create a new instance in which c is appended to π(i)
and i is still unfinished.

Ad 4. We show that the regions of the children of i form an interval with end-
point max{di , bmax} where bmax := maxc∈T bc. We further prove that they
are released and admitted in increasing order of their processing times. More
formally, we index the children in increasing order of their processing times,
i.e, pc1 ≤ pc2 ≤ · · · ≤ pcτ . Then, we create a new instance with modified
release dates such that one child is released upon completion of the previ-
ous child. This means rc′

τ
:= max{di , bmax} − pcτ and rc′

h−1
:= rc′

h
− pc′

h−1
for 1 < h ≤ τ where the processing times are not changed, i.e., pc′

h
= pch .

In order to ensure that the modified instance is still feasible, we adapt the
deadlines dc′

h
:= rc′

h
+ (1 + ε)pc′

h
.

It is left to show that the modifications did not affect the number of finished or
unfinished jobs. Obviously, the region algorithm still admits every job in T ′. A
job k /∈ T ′ released in [ai , bi) satisfies pk ≥ β pi > pc > β pc for all c ∈ T .
Hence, these jobs do not interrupt either i or any of the children. They are
still scheduled after bi and every child c ∈ T completes before its deadline.
We also need to prove that i still cannot finish on time. If bmax ≤ di , the
region of every child is completely contained in [ai , di). Hence, job i is still
interrupted for the same amount of time before di in I ′ as it is in I. Thus,
b′
i = ai + pi +∑τ

h=1 pc′
h

= ai + pi +∑
c∈T pc = bi > di . If bmax > di , let l

denote the child in I with bl = bmax. Then, rc′
τ

= bmax − pc′
τ

≤ bl − pl < di ,
where we used that no child is completely processed in [di , bi) and that c′

τ is
the child of i with the largest processing time. Thus, the delay of i in [ai , di)
is identical to

∑
c∈T pc − (bl − di). Hence, i still cannot finish on time. In this

case, b′
i = bi holds as well. Hence, the modified jobs in I ′ still cover the same

interval [ai , bi).
So far we have modified I such that it remains an instance which achieves |Fj | −

|Uj | < � 4	
ε

� with a minimum total number of jobs. In the following, we show that

123

L. Chen et al.

the considered instance does not use a minimal number of jobs in total which implies
a contradiction and thus the lemma is proved. We do so by modifying the instance in
three steps. In the first step, we merge three jobs in T−i where i ∈ Tj is an unfinished
job of height one such that its children satisfy the Assumptions 3 and 4. In the second
step, we replace i by a similar job i ′ to ensure that the instance is still feasible. In the
third step, we adapt jobs k /∈ T−i to guarantee that i ′ is admitted at the right point in
time. Then, we we show that the resulting instance covers the same interval [ai , bi)

Since i is admitted at ai ≤ di−(1+ ε
2)pi and not finished by the region algorithm on

time, bi −ai ≥ (1+ ε
2)pi . As any job that may postpone the region of i satisfies pk <

β pi = ε/4pi , there have to be at least three jobs that interrupt i . Among these, consider
the first three jobs c1, c2, and c3 (when ordered in increasing release dates).We create a
new instance by deleting c1, c2, and c3 and adding a new job c′ such that c′ is released
at the admission date of i in I and it merges c1, c2 and c3, i.e., rc′ := ai , pc′ :=
pc1 + pc2 + pc3 , and dc′ := rc′ + (1+ ε)pc′ . In exchange, we remove the jobs c1, c2,
and c3 from the instance. This completes our first step of modification.

Second, we replace i by a new job i ′ that is released at ri ′ := ai + pc′ , has the same
processing time, i.e., pi ′ = pi , and has a deadline di ′ := max{di , ri ′ + (1 + ε)pi ′ }.

In the third step of our modification, we replace every job k with rk ∈ [ai , ri]
and pk ≤ pi by a new job k′ that is released slightly after i ′, i.e., rk′ := ri ′ +� for � > 0
sufficiently small. It is important to note that we do not change the processing time or
the deadline of k′, i.e., pk′ = pk and dk′ = dk . This ensures that k′ finishes on time if
and only if k finishes on time. This modification is feasible, i.e., dk′ −rk′ ≥ (1+ε)pk′ ,
because of two reasons. First,

bi − ri ′ = bi − (ai + pc′) = bi − ai − (pc1 + pc2 + pc3) ≥ pi

as c1, c2, and c3 postponed the region of i by their processing times in I. Second, dk −
bi ≥ (1+ ε

2)pk because we only consider jobs that were admitted at some point later
than bi by the region algorithm. Then,

dk′ − rk′ = dk − bi + bi − ri ′ − � ≥
(
1 + ε

2

)
pk + pi − �

≥
(
2 + ε

2

)
pk − � ≥ (1 + ε)pk′ ,

where the last but one inequality follows from the fact that only jobs with pk ≤ pi
were affected by the modification and the last inequality is due to the sufficiently small
choice of �.

So far, we have already seen that the resulting instance is still feasible. It is left to
show that c′ completes at rc′ + pc′ as well as that i ′ is admitted at ri ′ and its region
ends at bi .

Since it holds that pc′ < 3ε
4 pi < pi , at ai = rc′ the new job c′ is the smallest

available job and any job that was interrupted by i is preempted by c′ as well. The jobs
in T−i are released one after the other by Assumption 4 and rc1 > ai . Thus, if i ′ has at
least one child left after the modification, it holds that rc4 = rc1 + pc1 + pc2 + pc3 =
ai + pc′ + (rc1 − ai) > ri ′ . Hence, no remaining child is released in [rc′, ri ′] in the

123

Handling commitment in online throughput maximization

modified instance. Any other job k ∈ Tj released in [rc′, ri ′] satisfies pk ≥ ε
4 pi as

k /∈ T−i . Because pc′ < pi , this implies that pk ≥ ε
4 pc′ holds as well, i.e., no such

job k interrupts c′. Therefore, c′ completes at r ′
i .

Job i ′ is admitted at ri ′ if it is the smallest available job at that time. We have
already proven that none of the remaining children of i is released in [ai , ri ′] that
might prevent the region algorithm from admitting i at ri ′ . Furthermore, the third
step of our modification guarantees that any job k ∈ Tj\Ti that is smaller than pi is
released after ri ′ . Therefore, i ′ is the smallest available job at time ri ′ by construction,
and it is admitted. As argued above, the modified instance is still feasible and the
interval [aπ(i), bπ(i)) is still completely covered by regions of jobs in Tπ(i).

However, the second step of our modification might lead to bi ′ ≤ di ′ which implies
that i ′ finishes on time while i does not finish on time. This changes the values of |Fj |
and |Uj |. Clearly, in the case that i ′ completes before di ′ , |U ′

j | = |Uj | − 1. By a
careful analysis, we see that in this case the number of finished jobs decreases by
one as well because the three (on time) jobs c1, c2 and c3 are replaced by only one
job that finishes before its deadline. Formally, we charge the completion of c′ to c1,
and the completion of i ′ to c2 which leaves c3 to account for the decreasing number
of finished jobs. Hence, |F ′

j | − |U ′
j | = |Fj | − |Uj |. If i ′ does not finish by di ′ ,

then |F ′
j | − |U ′

j | = (|Fj | − 2) − |Uj |. Thus, the modified instance I ′ also satisfies

|F ′
j | − |U ′

j | < � 4	
ε

� but uses less jobs than I does. This is a contradiction. ��

References

1. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallelizable jobs online to maximize throughput.
In: Proceedings of the Latin American Theoretical Informatics Symposium (LATIN), pp. 755–776
(2018)

2. Azar, Y., Kalp-Shaltiel, I., Lucier, B., Menache, I., Naor, J., Yaniv, J.: Truthful online scheduling with
commitments. In: Proceedings of the ACM Symposium on Economics and Computations (EC), pp.
715–732 (2015)

3. Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date scheduling. In: Proceedings of
the International Colloquium on Automata, Languages and Programming (ICALP), pp. 28–39 (2007)

4. Baruah, S.K., Haritsa, J.R.: Scheduling for overload in real-time systems. IEEE Trans. Comput. 46(9),
1034–1039 (1997)

5. Baruah, S.K., Haritsa, J.R., Sharma, N.: On-line scheduling to maximize task completions. In: Pro-
ceedings of the IEEE Real-Time Systems Symposium (RTSS), pp. 228–236 (1994)

6. Baruah, S.K., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L.E., Shasha, D.E., Wang, F.:
On the competitiveness of on-line real-time task scheduling. Real-Time Syst. 4(2), 125–144 (1992)

7. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling. SIAM J. Comput.
27(4), 993–1015 (1998)

8. Chen, L., Eberle, F.,Megow,N., Schewior,K., Stein,C.:Ageneral framework for handling commitment
in online throughput maximization. In: Proceedings of the Conference on Integer Programming and
Combinatorial Optimization (IPCO), pp. 141–154 (2019)

9. Chen, L., Megow, N., Schewior, K.: AnO(logm)-competitive algorithm for onlinemachineminimiza-
tion. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 155–163
(2016)

10. Chen, L., Megow, N., Schewior, K.: The power of migration in online machine minimization. In:
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp.
175–184 (2016)

123

L. Chen et al.

11. DasGupta, B., Palis,M.A.: Online real-time preemptive scheduling of jobs with deadlines. In:Proceed-
ings of the International Conference on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), pp. 96–107 (2000)

12. Ferguson, A.D., Bodík, P., Kandula, S., Boutin, E., Fonseca, R.: Jockey: guaranteed job latency in data
parallel clusters. In: Proceedings of the European Conference on Computer Systems (EuroSys), pp.
99–112 (2012)

13. Garay, J.A., Naor, J., Yener, B., Zhao, P.: On-line admission control and packet scheduling with
interleaving. In: Proceedings of the IEEE International Conference on Computer Communications
(INFOCOM), pp. 94–103 (2002)

14. Georgiadis, L., Guérin, R., Parekh, A.K.: Optimal multiplexing on a single link: delay and buffer
requirements. IEEE Trans. Inf. Theory 43(5), 1518–1535 (1997)

15. Goldwasser, M.H.: Patience is a virtue: the effect of slack on competitiveness for admission control.
In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 396–405 (1999)

16. Im, S., Moseley, B.: General profit scheduling and the power of migration on heterogeneous machines.
In: Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp.
165–173 (2016)

17. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. J. Algorithms 49(1), 63–85
(2003)

18. Koren, G., Shasha, D.E.: MOCA: a multiprocessor on-line competitive algorithm for real-time system
scheduling. Theor. Comput. Sci. 128(1–2), 75–97 (1994)

19. Koren, G., Shasha, D.E.: Dover: an optimal on-line scheduling algorithm for overloaded uniprocessor
real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

20. Liebeherr, J., Wrege, D.E., Ferrari, D.: Exact admission control for networks with a bounded delay
service. IEEE/ACM Trans. Netw. 4(6), 885–901 (1996)

21. Lipton, R.: Online interval scheduling. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 302–311 (1994)

22. Lucier, B., Menache, I., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-sensitive jobs:
extended abstract. In: Proceedings of the ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pp. 305–314 (2013)

23. Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Proceedings of the
International Conference on Approximation Algorithms for Combinatorial Optimization Problems
(APROX), pp. 352–365 (2010)

24. Schwiegelshohn, C., Schwiegelshohn, U.: The power of migration for online slack scheduling. In:
Proceedings of the European Symposium of Algorithms (ESA), Vol. 57, pp. 75:1–75:17 (2016)

25. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor. Comput. Sci. 130(1),
5–16 (1994)

26. Yaniv, J.: Job scheduling mechanisms for cloud computing. Ph.D. thesis, Technion, Israel (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Lin Chen1 · Franziska Eberle2 · Nicole Megow2 · Kevin Schewior3 ·
Cliff Stein4

B Franziska Eberle
feberle@uni-bremen.de

Lin Chen
chenlin198662@gmail.com

Nicole Megow
nicole.megow@uni-bremen.de

123

http://orcid.org/0000-0003-3909-4916
http://orcid.org/0000-0001-8636-9711
http://orcid.org/0000-0002-3531-7644
http://orcid.org/0000-0003-2236-0210
http://orcid.org/0000-0002-0614-6620

Handling commitment in online throughput maximization

Kevin Schewior
kschewior@gmail.com

Cliff Stein
cliff@ieor.columbia.edu

1 Department of Computer Science, Texas Tech University, Lubbock, TX, USA

2 Department for Mathematics and Computer Science, University of Bremen, Bremen, Germany

3 Department of Mathematics and Computer Science, Universität zu Köln, Cologne, Germany

4 Department of Industrial Engineering and Operations Research, Columbia University,
New York, USA

123

	A general framework for handling commitment in online throughput maximization
	Abstract
	1 Introduction
	1.1 Our results and techniques
	1.2 Previous results

	2 Our general framework
	2.1 The region algorithm
	2.2 Main results on the region algorithm
	2.3 Interruption trees

	3 Successfully completing sufficiently many admitted jobs
	3.1 Scheduling without commitment
	3.2 Scheduling with commitment

	4 Competitiveness: admission of sufficiently many jobs
	5 Tightness of the region algorithm
	6 Lower bounds on the competitive ratio
	6.1 Scheduling without commitment
	6.2 Scheduling with commitment
	6.2.1 Commitment upon arrival
	6.2.2 Commitment on job admission and δ-commitment

	7 Concluding remarks
	Acknowledgements
	Appendix
	References

