
PrivateEx: Privacy Preserving Exchange of Crypto-assets on
Blockchain

Lei Xu
University of Texas Rio Grande Valley

xuleimath@gmail.com

Lin Chen
Texas Tech University

chenlin198662@gmail.com

Zhimin Gao
Auburn University at Montgomery

mtion@msn.com

Keshav Kasichainula
University of Houston

kkasicha@central.uh.edu

Miguel Fernandez
University of Texas Rio Grande Valley

miguel.fernandez02@utrgv.edu

Bogdan Carbunar
Florida International University

carbunar@cs.fiu.edu

Weidong Shi
University of Houston
wshi3@central.uh.edu

ABSTRACT
Bitcoin introduces a new type of cryptocurrency that does not rely
on a central system to maintain transactions. Inspired by the suc-
cess of Bitcoin, all types of alt cryptocurrencies were invented in
recent years. Some of the new cryptocurrencies focus on privacy
enhancement, where transaction information such as value and
sender/receiver identity can be hidden, such as Zcash and Monero.
However, there are few schemes to support multiple types of cryp-
tocurrencies/assets and offer privacy enhancement at the same time.
The major challenge for a multiple asset system is that it needs to
support two-way assets exchange between participants besides one-
way asset transfer. Thus, we propose a privacy-preserving exchange
scheme, PrivateEx, which preserves the privacy of the exchange
of different assets. PrivateEx utilizes zero-knowledge proof and a
novel way to “lock” assets involved in the exchange to guarantee
the correctness, fairness, and privacy of exchange of assets in the
system. We also implement a prototype of PrivateEx and evaluate
its performance to show that it is practical with modern computers.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols;Domain-
specific security and privacy architectures;

KEYWORDS
Crypto assets, exchange, privacy
ACM Reference Format:
Lei Xu, Lin Chen, Zhimin Gao, Keshav Kasichainula, Miguel Fernandez,
Bogdan Carbunar, and Weidong Shi. 2020. PrivateEx: Privacy Preserving Ex-
change of Crypto-assets on Blockchain. In The 35th ACM/SIGAPP Symposium
on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3341105.3373901

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/10.1145/3341105.3373901

1 INTRODUCTION
Since the invention of Bitcoin [11], a variety of blockchain based
cryptocurrency systems have been developed. By requiring each
participant to keep a local copy of the transactions history, which
are organized as blocks and linked one by one, such a system can
prevent double-spending without relying on a centralized party.
Although these schemes usually allow a user to create multiple
pseudonyms by him/herself, existing works have demonstrated
that one can establish the relationships between the pseudonyms
and even identify the user behind a pseudonym [14]. Several efforts
have been made to enhance the privacy of blockchain based cryp-
tocurrency system, such as Zerocash [16], Monero [12], Dash [7]
and ValueShuffle on Bitcoin [15]. These schemes utilize different
cryptography tools to prevent a node disclosing payment related
information, e.g., recipient/sender identities and amount of cryp-
tocurrency transferred. These blockchain based cryptocurrency
systems only support one type of asset, and it is a natural idea to
extend the concept to build multi-asset systems. A multi-asset sys-
tem has two basic transaction types: one-way transfer and two-way
exchange. While the one-way transfer is the same as those classical
cryptocurrency systems, the two-way exchange is more interesting
and plays an important role to help thrive the whole cryptocur-
rency ecosystem: (i) It helps to break down the silos and enable
more convenient value flow; and (ii) It facilitates the creation of new
cryptocurrency systems as investigators can easily convert existing
cryptocurrencies to the new one. Currently, two-way exchange is
mainly done through following ways: centralized exchange plat-
forms and decentralized platforms. Centralized platforms such as
Coinbase requires the users to fully trust the platforms and disclose
all exchange information to the centralized platforms. A decen-
tralized platform can utilize smart contract to support two-way
exchange. Although the users don’t need to fully trust any single
node, they still need to expose all information about an exchange
to the public for them to verify and to guarantee the correctness
and fairness of the operation. For both cases, existing privacy en-
hancement mechanisms for one-way transfer cannot be applied
directly.

To mitigate the privacy concern and fully unleash the poten-
tial of blockchain based cryptocurrencies, we propose a privacy-
preserving exchange scheme, PrivateEx. The proposed scheme

316

https://doi.org/10.1145/3341105.3373901
https://doi.org/10.1145/3341105.3373901

would support privacy protection for exchange operations in a
multi-asset system. Under the PrivateEx framework, different types
of assets are first converted to notes for exchange operations. Con-
version to note would guarantee the fairness of exchange, PrivateEx
introduces a locking structure on notes to be exchanged. The lock-
ing mechanism allows any participant to take correct actions to
move forward and does not have the problem of deadlock. PrivateEx
also leverages zero-knowledge proof to allow the blockchain partic-
ipants to verify the correctness of transactions without disclosing
information about the exchange. In summary, our contributions of
the paper include: (i) We formalize the privacy-preserving exchange
and describe the requirements of such a scheme; (ii) We develop
a concrete privacy-preserving exchange scheme for blockchain
based multi-asset schemes and demonstrate that it meets all the
requirements given in the formal framework; (iii) We discuss imple-
mentation details of the designed scheme and conduct experiments
to show its practicability.

2 MODEL AND REQUIREMENTS
Let Alice and Bob be two blockchain users who own different types
of assets, and want to exchange the ownership of their assets. We
define the security model as follows: (i) The exchange participants
do not trust each other. We assume that each of them can attempt
to take advantage of other or the system, to maximize their ben-
efit, e.g., receive the other’s asset without giving their own asset.
(ii) The blockchain used for exchange is trusted. We assume the
underlying blockchain as a whole is trusted, i.e., it will follow the
predefined protocols and guarantee the computation correctness
of all accepted transactions. Depending on the consensus protocol
used by the blockchain, this assumption has different requirements
on the blockchain maintainers. For example, when PoW and longest
chain principle is used to determine the legitimate blockchain, we
require more than half of the miners to be honest. The blockchain
can be either a dedicated system for the exchange or an existing
blockchain with multiple types of assets and supports smart con-
tract such as Ethereum.

Under the security model, an adversary can: (i) Observe the
blockchain. An adversary is able to access all transactions stored on
the blockchain to review and analyze the contents of these transac-
tions. (ii) Interact with the blockchain. An adversary can actively
interact with the blockchain by submitting new transactions as
long as the transactions themselves are valid. This also includes
cases where one party of an exchange operation tries to cheat,
e.g., stopping in the middle of an exchange process, submitting a
transaction that does not match with the initial exchange purpose,
and conducting exchange operations with multiple parties at the
same time. (iii) Control some blockchain maintainers. An adversary
can take over a certain percentage of blockchain maintainers and
control their behaviors in block construction, e.g., selecting transac-
tions that are included in a block and ignoring received blocks. An
adversary can also combine above activities. For example, Alice as
an adversary can also try to take advantage of Bob by manipulating
some blockchain maintainers, or try to find out whether Bob is
doing exchange with others.

original

asset 1
Alice

note of asset 1

for swapping

original

asset 2
note of asset 2Bob note of asset 1

note of asset 2

Bob claims Alice’s note Alice claims Bob’s note Note type transformation

Figure 1: Workflow of the privacy-preserving asset ex-
change. Alice initiates the exchange. After Bob claims Al-
ice’s note, Alice can claim Bob’s note to complete the ex-
change from her side. If Bob does not respond, Alice can
cancel the exchange and get her note back. The exchanged
notes can be converted to other forms and the owners can
use them for another round of exchange with others.

We now define the objectives of the privacy-preserving exchange
on multi-asset blockchain under the given security model: (i) Cor-
rectness. The exchange operation should only allow participants to
exchange their own existing assets, and will not create new assets. It
also requires that one cannot cheat in an exchange using assets that
are different from promised. (ii) Fairness. The exchange operation
can only have one of two outcomes: either the exchange succeeds
and both participants receive the other’s asset, or the exchange fails
and both participants receive their asset back. (iii) Privacy. One
can only learn information of exchanges that he/she is involved,
but cannot cannot figure out who and what are involved in other
exchange operations.

When privacy is not a concern, one can easily implement the
exchange operation using a smart contract, where the blockchain
guarantees the fairness feature of the operation, i.e., either the ex-
change succeeds that Alice and Bob get each other’s asset, or the
exchange fails that each one still keeps his/her own assets. How-
ever, this approach does not provide any privacy protection. Every
node in the blockchain network can see the exchange information
including the owner identities and the type and value of exchanged
assets.

3 OVERVIEW OF PRIVATEEX
We now provide an overview of PrivateEx, the proposed privacy-
preserving exchange of crypto assets on the blockchain. PrivateEx
implements the following steps to preserve the privacy of an ex-
change operation: (i) Alice and Bob communicate off-chain and
agree to exchange their assets with each other. Without loss of gen-
erality, we assume Alice initiates the exchange operation. (ii) Alice
first converts her asset into a note. This note has two parts: one
part stands for her asset with a positive value, the other part stands
for Bob’s asset which she wants to receive. Alice also creates a
secret value that one can use to spend her newly created note. All
blockchain nodes verify the new note and store it on the blockchain.
(iii) Bob also converts his asset into a note, which only includes
the value and type information of his own asset. (iv) Alice and
Bob check that both notes are correctly created and accepted by
the blockchain. (v) Alice shares the claiming secret of the note she
created with Bob, so Bob can claim the ownership of Alice’s asset.
This operation also freezes his own note, which is guaranteed by

317

the blockchain. (vi) After Bob claims Alice’s asset, Alice can claim
the ownership of Bob’s note.

For each of the above steps, Alice and Bob utilize publicly verifi-
able zero-knowledge proofs to allow the public to verify the validity
of the corresponding transaction submitted to the blockchain. Fig-
ure 1 demonstrates the sequence of steps of exchange operation.

4 THE DETAILED DESIGN OF PRIVATEEX
In this section, we provide the details of the construction of Pri-
vateEx. Without loss of generality, we assume that each asset has
a unique type identifier and a value, which are positive integers.
Therefore, an asset is represented as a pair (𝑡, 𝑣), where 𝑡, 𝑣 ∈ Z+.
In the following, we first consider the case where both Alice and
Bob cooperate to finish the swap operation. We then separately
consider other special cases, e.g., where Alice and/or Bob may want
to terminate the operation.

4.1 System Setup
To setup PrivateEx, several algorithms and corresponding param-
eters are determined: (i) Consensus protocol, such as PoW and
PoS. The consensus protocol does not affect the design of Priva-
teEx. (ii) Original asset creation. The asset can be created on the
blockchain itself or ported from an external blockchain. This does
not affect the operation of PrivateEx. (iii) Cryptography algorithms.
PrivateEx utilizes several cryptography primitives, including colli-
sion resistant hash function CRH(), commitment scheme COMMIT(),
a non-interactive zero-knowledge proof system, and a one-time
signature scheme. Parameters of these primitives are also initialized
in this step.

This information is embedded into the genesis block so every
participant of the system uses the same algorithms and parameters
for operations. The setup process also initializes two empty Merkle
trees 𝑇1 and 𝑇2 with a fixed height, which determines how many
transactions PrivateEx can handle. To prevent an adversary from
tampering the two Merkle trees, the roots of the trees are included
in the blockchain when there is an update of the tree.

PrivateEx can also be integrated with existing blockchain based
multi-asset system by creating a specific block that includes all
PrivateEx specific information.

4.2 Notes Initialization

Initialization actions of Alice. Before Alice can exchange her
asset (𝑡1, 𝑣1) with Bob for (𝑡2, 𝑣2) in a privacy-preserving way, she
needs to initialize the exchange by converting the asset to a note,
the structure of which is discussed below. Alice does the following
steps for the initial conversion:

(1) Serial numbers generation. Alice selects random numbers
𝑠𝑛1 and 𝑟0, and calculates 𝑠𝑛2 ← COMMIT(𝑠𝑛1, 𝑟0). The con-
structed note has (𝑠𝑛1, 𝑠𝑛2) as its serial numbers. The serial
numbers are used to prevent double spending, and we ex-
plain in more details the use of these two-serial-number
structure later.

(2) Quid pro quo determination. Alice specifies the asset she
wants to get from Bob, which is also identified as a pair
(𝑡2, 𝑣2). Note that the pair just indicates the type and value

of the asset Alice is interested and does not need to be bound
with anything specific that Bob has.

(3) Note construction. Alice selects four random numbers 𝑟1, 𝑟2,
𝑟3, 𝑟4, and calculates a sequence of commitments:

𝑐𝑡1 ← COMMIT(𝑠𝑛1, 𝑟1), 𝑐𝑡2 ← COMMIT(𝑠𝑛2 | |𝑐𝑡1, 𝑟2)
𝑐𝑡3 ← COMMIT(𝑡2 | |𝑣2 | |𝑐𝑡2, 𝑟3), 𝑐𝑡4 ← COMMIT(𝑡1 | |𝑣1 | |𝑐𝑡3, 𝑟4)

The final note created by Alice is in the form

𝑛𝑡01 ← (𝑡1, 𝑣1, 𝑡2, 𝑣2, 𝑠𝑛1, 𝑠𝑛2, 𝑟1, 𝑟2, 𝑟3, 𝑟4) .
(4) Transaction construction. Alice submits the transaction

𝑡𝑥01 ← (𝑡1, 𝑣1, 𝑟4, 𝑐𝑡3, 𝑐𝑡4)
to the blockchain, which stands for the note 𝑛𝑡01.

The purpose of this transaction is to convert Alice’s asset to a
note, so the public only needs to verify whether Alice owns the
asset to create such a note, and do not need to check what Alice asks
for exchange. Specifically, each peer of the blockchain processes
the received transaction 𝑡𝑥01 as follows:

(1) The peer checks whether the transaction is well formed by
checking

𝑐𝑡4
?
= COMMIT(𝑡1 | |𝑣1 | |𝑐𝑡3, 𝑟4) .

(2) The peer checks whether Alice has enough balance in her
account and reduces the balance of type 𝑡1 asset by 𝑣1.

(3) The peer then works with other blockchain peers to include
𝑡𝑥01 in the blockchain using the consensus protocol.

(4) The peer also adds 𝑐𝑡4 as a new leaf of the Merkle tree 𝑇1,
and updates the value of the root 𝑟𝑡1.

Alice also shares the information of 𝑛𝑡01 with Bob except the values
𝑠𝑛1 and 𝑟1 to allow Bob to claim the ownership of note 𝑛𝑡01 for
exchange.
Initialization actions of Bob. Bob also needs to convert his asset
to a note for the exchange operation. Bob constructs a note for his
asset (𝑡2, 𝑣2) as follows:

(1) Note construction. Bob selects a random serial number 𝑠𝑛3,
random numbers 𝑟5, 𝑟6, and calculates two commitments:

𝑐𝑡5 ← COMMIT(𝑠𝑛3, 𝑟5), 𝑐𝑡6 ← COMMIT(𝑡2 | |𝑣2 | |𝑐𝑡5, 𝑟6)
The final note is in the form

𝑛𝑡02 ← (𝑡2, 𝑣2, 𝑠𝑛3, 𝑟5, 𝑟6).
(2) Transaction construction. Bob submits the transaction

𝑡𝑥02 ← (𝑡2, 𝑣2, 𝑟6, 𝑐𝑡5, 𝑐𝑡6)
to the blockchain, which stands for the note 𝑛𝑡02.

Similar to the situation of initialization actions of Alice, each
peer of the blockchain processes the received transaction 𝑡𝑥02 as
follows:

(1) The peer checks whether the transaction is well formed by
checking

𝑐𝑡6
?
= COMMIT(𝑡2 | |𝑣2 | |𝑐𝑡5, 𝑟6) .

(2) The peer checks whether Bob has enough balance in his
account and reduces the balance of type 𝑡2 asset by 𝑣2.

(3) The peer includes 𝑡𝑥02 in the blockchain.
(4) The peer also adds 𝑐𝑡6 as a new leaf of the Merkle tree 𝑇1,

and updates the value of the root 𝑟𝑡1.

318

Bob does not need to share any information of this note with Alice.
Information exchange between Alice and Bob. After Alice fin-
ishes her initialization operation, she needs to send part of infor-
mation of 𝑛𝑡01 to Bob. The sent information will allow bob to carry
forward the exchange operation. This activity cannot be disclosed
to the public, otherwise they will learn that Alice and Bob are trying
to exchange their assets. To protect this information, there are two
ways for Alice to send information to Bob and vice versa: (i) Using
off-chain channel. Alice can share information with Bob directly
without using the blockchain. (ii) Using key privacy encryption [2].
Alice can encrypt the message she wants to share using key pri-
vacy encryption with Bob’s public key. The key privacy feature
guarantees that an adversary cannot link the cipher-text to Bob.

4.3 First Claim Operation
After Alice initializes the exchange and Bob creates his own note,
Bob can carry forward the exchange by consuming his own note
(which allows Alice to claim the ownership later) and transferring
Alice’s note to his account in a single transaction.

Recall that Bob has information of the note𝑛𝑡01 that Alice created
except serial number 𝑠𝑛1 and corresponding commitment random
number 𝑟1, i.e., Bob knows

(𝑡1, 𝑣1, 𝑡2, 𝑣2, 𝑠𝑛2, 𝑟2, 𝑟3, 𝑟4, 𝑐𝑡1).

To transfer Alice’s asset to himself, Bob creates a new note in
the form of

𝑛𝑡1 ← (𝑠𝑛4, 𝑡1, 𝑣1),
where 𝑠𝑛4 is a newly selected random serial number. The corre-
sponding transaction is

𝑡𝑥1 ← (𝑠𝑛2, 𝑠𝑛3, 𝑐𝑡8),

where 𝑐𝑡8 is created through two steps:

𝑐𝑡7 ← COMMIT(𝑠𝑛4, 𝑟7), 𝑐𝑡8 ← COMMIT(𝑡1 | |𝑣1 | |𝑐𝑡7, 𝑟8) .

Here 𝑟7, 𝑟8 are two random values selected by Bob. This transaction
means two old notes with serial numbers 𝑠𝑛2 and 𝑠𝑛3 are consumed,
and a new commitment value 𝑐𝑡8 is created, which represents the
note 𝑛𝑡1.

To prove to the public that 𝑡𝑥1 is valid, Bob constructs a zero-
knowledge proof 𝜋1 on the following statement:
Given the Merkle tree 𝑇1’s root 𝑟𝑡1, serial number 𝑠𝑛2 (representing
Alice’s note for exchange) and serial number 𝑠𝑛3 (representing Bob’s
note for exchange), and commitment 𝑐𝑡8 (representing the new note
Bob wants to create), I know existing notes 𝑛𝑡01 and 𝑛𝑡02 in the system
such that: (i) The notes 𝑛𝑡01, 𝑛𝑡02, and 𝑛𝑡1 are well formed. (ii) The
serial numbers 𝑠𝑛2 and 𝑠𝑛3 are computed correctly. (iii) The note
commitments for 𝑛𝑡01 and 𝑛𝑡02 appear in the Merkel tree𝑇1 with root
𝑟𝑡1. (iv) The value and type of these three notes match.

For each peer of the blockchain receiving the transaction 𝑡𝑥1 and
corresponding zero knowledge proof 𝜋1, he/she does the following
steps to process:

(1) The peer checks that the two serial numbers 𝑠𝑛2 and 𝑠𝑛3
have not been used in the system before so it is not double
spending.

(2) The peer verifies the zero-knowledge proof 𝜋1 to accept the
new transaction 𝑡𝑥1 to the blockchain.

(3) The peer adds commitment 𝑐𝑡8 as a new leaf to the Merkle
tree 𝑇1, and updates the root 𝑟𝑡1.

(4) The peer adds the two disclosed serial numbers 𝑠𝑛2, 𝑠𝑛3 as
new leaves to the Merkle tree 𝑇2 and updates the root 𝑟𝑡2.

4.4 Second Claim Operation
After Bob finishes the first claim operation, i.e., he has consumed
the notes that two parties generated in the initialization phase,
Alice can start to claim the ownership of the note Bob created in
the initialization phase.

Alice creates a new note in the form of

𝑛𝑡2 ← (𝑠𝑛5, 𝑡2, 𝑣2),
where 𝑠𝑛5 is a new random serial number selected by Alice. The
corresponding transaction is

𝑡𝑥2 ← (𝑠𝑛1, 𝑐𝑡10),
where 𝑠𝑛1 is the other secret serial number Alice created for note
𝑛𝑡01, and 𝑐𝑡10 is created through two steps:

𝑐𝑡9 ← COMMIT(𝑠𝑛5, 𝑟9), 𝑐𝑡10 ← COMMIT(𝑡2 | |𝑣2 | |𝑐𝑡9, 𝑟10) .
Here 𝑟9, 𝑟10 are two random values selected by Alice.

To prove to the peers of the blockchain that 𝑡𝑥2 is valid, Alice
constructs a zero-knowledge proof 𝜋2 on the following statement:
Given the Merkle tree 𝑇1’s root 𝑟𝑡1 and 𝑇2’s root 𝑟𝑡2, serial number
𝑠𝑛1, and the commitment value 𝑐𝑡10, I know the existing note 𝑛𝑡01
and random value 𝑟0 such that: (i) Note 𝑛𝑡01 is well formed. (ii) The
serial number 𝑠𝑛1 is computed correctly. (iii) The commitment for note
𝑛𝑡01 appears in the Merkle tree 𝑇1 with root 𝑟𝑡1. (iv) The other serial
number of note 𝑛𝑡01, 𝑠𝑛2, appears in the Merkle tree 𝑇2 with root 𝑟𝑡2,
and 𝑠𝑛2 is derived from 𝑠𝑛1 correctly with 𝑟0. (v) The exchange target
value and type of note 𝑛𝑡01 match the new note 𝑛𝑡2 with commitment
value 𝑐𝑡10.

For each peer of the blockchain receiving the transaction 𝑡𝑥2 and
corresponding zero-knowledge proof 𝜋2, he/she does the following
steps to process:

(1) The peer checks that the serial number 𝑠𝑛1 has not been
used in the system before so it is not double spending.

(2) The peer verifies the proof 𝜋2 to accept the new transaction
𝑡𝑥2 to the blockchain.

(3) The peer adds commitment 𝑐𝑡10 as a new leaf to the Merkle
tree 𝑇1, and updates the root 𝑟𝑡1.

After this step is finished, both serial numbers 𝑠𝑛1 and 𝑠𝑛2 of
note 𝑛𝑡01 are disclosed to the public. But since a random value 𝑟0 is
involved to the derivation of 𝑠𝑛2 from 𝑠𝑛1, the public cannot link
these two values as long as there are multiple exchanges in the
system.

4.5 Use of Notes
After Alice and Bob finish the exchange operation, they can convert
their new notes back to assets, or use them for another round of
exchange with others.
Converting notes back to assets. If Bob wants to convert back
the note 𝑛𝑡1 that he gets from the exchange with Alice to a normal
asset, he creates a transaction in the form of

𝑡𝑥4 ← (𝑠𝑛4, 𝑡1, 𝑣1, Bob),

319

and generates a zero-knowledge proof 𝜋3 on the following state-
ment:
Given the Merkle tree 𝑇1’s root 𝑟𝑡1, serial number 𝑠𝑛4, and the type/-
value information (𝑡1, 𝑣1), I know the commitment value 𝑐𝑡8 is a leaf
of the tree 𝑇1 and two random values 𝑟7, 𝑟8 such that the following
equations hold:

𝑐𝑡7 ← COMMIT(𝑠𝑛4, 𝑟7), 𝑐𝑡8 ← COMMIT(𝑡1 | |𝑣1 | |𝑐𝑡7, 𝑟8) .

Here 𝑠𝑛4 is the serial number of note 𝑛𝑡1 is associated with Bob
in the system. Each peer of the blockchain checks that 𝑠𝑛4 never
appears in the system before and verifies the proof 𝜋3. Then 𝑠𝑛4 is
added to the blockchain, and (𝑡1, 𝑣1) is deposited to Bob’s account.

The note 𝑛𝑡2 that Alice gets from the exchange operation has the
same structure as 𝑛𝑡1, and Alice can use the same way to convert
the note to an asset in plaintext that belongs to her.
Converting notes for another exchange operation. Bob can
also start another exchange operation using the note 𝑛𝑡1 directly.
This is further divided into two cases: (i) preparing to spend first
(Bob needs to specifywhat asset hewants to exchange); and (ii) prepar-
ing to spend secondly (Bob does not need to specify what assets he
wants to exchange).
Converting 𝑛𝑡1 for spending first. Note that in the transaction
𝑡𝑥01, 𝑡1, 𝑣1 appear in plain text only because the system needs to
make sure the creator has enough balance in his/her account. Once
the balance verification is done and the note is created the values
are no longer in plain text. Therefore, Bob can consume 𝑛𝑡1 and
generates a transaction 𝑡𝑥 ′01 for a new note 𝑛𝑡 ′01 in the same way as
described in Section 4.2 except that the newly created transaction
𝑡𝑥 ′01 is in the form

𝑡𝑥 ′01 ← (𝑠𝑛4, 𝑐𝑡
′
4).

To convince the peers of blockchain that 𝑐𝑡 ′4 is a valid note, Bob dis-
closes the serial number 𝑠𝑛4 of note𝑛𝑡1 and builds a zero-knowledge
proof 𝜋4 on the following statement:
Given the Merkle tree 𝑇1’s root 𝑟𝑡1, the serial number 𝑠𝑛4, and the
commitment 𝑐𝑡 ′4, I know existing note 𝑛𝑡1 in the system such that:
(i) The note 𝑛𝑡1 and 𝑛𝑡 ′01 are well formed. (ii) The serial number 𝑠𝑛4 is
computed correctly. (iii) The note commitment for 𝑛𝑡1 appears in the
Merkle tree𝑇1 with root 𝑟𝑡1. (iv) The note commitment 𝑐𝑡 ′4 is computed
correctly. (v) Value and type information of 𝑛𝑡1 and 𝑛𝑡 ′01 match.

A blockchain peer who receives the transaction (𝑠𝑛4, 𝑐𝑡 ′4) and
corresponding zero-knowledge proof 𝜋4 do the following steps to
process:

(1) The peer checks whether the serial number 𝑠𝑛4 has been
disclosed in the system before to prevent double spending.

(2) The peer verifies the proof 𝜋4 to accept the new transaction
𝑡𝑥 ′01 to the blockchain.

(3) The peer adds the commitment 𝑐𝑡 ′4 as a new leaf of theMerkle
tree 𝑇1, and updates the root 𝑟𝑡1.

Converting 𝑛𝑡1 for spending second. Transaction 𝑡𝑥02 has the
same structure of 𝑡𝑥01, and Bob can convert his note 𝑛𝑡1 to 𝑡𝑥 ′02 in
the same way as 𝑡𝑥 ′01, except that the zero-knowledge proof proves
that the commitment 𝑐𝑡 ′6 is constructed in a different way. Alice can
convert the note 𝑛𝑡2 that she owns for another exchange directly
in a similar way.

4.6 Termination of Exchange Operation
It is possible that Alice and/or Bob want to stop at a certain point
before the exchange operation succeeds. There are two possibilities
that the exchange operation terminates in the middle of the process:
• Case 1: Alice wants to terminate the process after she ini-
tializes the exchange operation and before Bob claims the
ownership of her note; and
• Case 2: Bob wants to terminate the process after he finishes
the preparation of his note for the exchange operation and
before he consumes it for Alice’s note.

Alice has multiple choices when she terminates the exchange:
(i) Converting the note𝑛𝑡01 back to the asset in her account; (ii) Con-
verting the note 𝑛𝑡01 for another note for exchange operation with
the specified target; and (iii) Converting the note 𝑛𝑡01 for another
note for exchange operation without a specified target. Since Alice
knows how the note 𝑛𝑡01 is constructed and the corresponding
commitment 𝑐𝑡4 in Merkle tree𝑇1, she can create a new note in the
desired format and a zero-knowledge proof of the ownership of the
old note and the correctness of the new note.

The situation for Bob is similar, and he can convert the note 𝑛𝑡02
to a selected form (asset, note for exchange with the specified target,
or note for exchange without specified target) using corresponding
zero-knowledge proof.

4.7 One-way Transfer
PrivateEx can support one-way transfer using a special type of ex-
change: Alice sets the target note she wants to receive for exchange
as 0, and Bob can create a null note to claim Alice’s note without
paying anything. Compared with existing transfer-only privacy
cryptocurrency systems like Zerocash, the major disadvantage of
transfer in PrivateEx is that the sender knows when the receiver
claims the note, and the sender can cancel the transfer before the
receiver claims the new ownership. The benefit of this transfer
method is that it is consistent with exchange operation, and the
adversary cannot distinguish a one-way transfer and a two-way
exchange.

4.8 Non-malleability
Different types of transactions described in this section have multi-
ple parts, and it is necessary to prevent an adversary from taking
parts from different transactions to build a new one. PrivateEx uti-
lizes one-time signature [10] to prevent such attacks. Specifically,
the creator of a transaction does the following steps:

(1) The creator randomly selects a key pair (𝑝𝑘𝑠 , 𝑠𝑘𝑠) for the
selected one-time signature scheme.

(2) The creator binds the public key 𝑝𝑘𝑠 with the transaction.
• If the transaction creates a new note with one serial num-
ber 𝑠𝑛 (1) , the creator uses this serial number to generate
a tag for the public key using a pseudo-random function
as 𝑡 ← PRF(𝑝𝑘𝑠 , 𝑠𝑛 (1)), and modifies corresponding zero-
knowledge proof to demonstrate 𝑡 and 𝑝𝑘𝑠 are connected.
Since the serial number is selected by the creator him/her-
self, an adversary cannot produce a valid proof.

320

Type 1

Type 2

Type 3

Type 4

Asset

Asset

Figure 2: Conversions between different types of notes. An
asset is first converted to Type 1 or Type 2 note to enter Priva-
teEx, and then it can convert to another type of note. A note
of any type can also be converted back to an asset. While
transactions that only involve notes do not leak type/val-
ue/ownership information, converting to/from assets will
disclose certain information to the public.

• If the transaction creates a note with two serial numbers
(e.g., note 𝑛𝑡01 created by Alice in initialization), the cre-
ator uses the second serial number that is not shared with
the other party in the exchange to bind the public key.

The creator also adds a corresponding statement to the zero-
knowledge proof accompanied the transaction:
Given the tag 𝑡 and the public key 𝑝𝑘𝑠 , I know a secret value
𝑠𝑛 (1) such that 𝑡 = PRF(𝑝𝑘𝑠 , 𝑠𝑛 (1)).

(3) The creator generates a signature on the transaction using
𝑠𝑘𝑠 , and attaches the signature with the transaction.

Correspondingly, a peer of the blockchain receiving a transac-
tion uses the public key to verify the signature on the received
transaction besides all the verifications described before, which
guarantees non-malleability feature.

5 SECURITY ANALYSIS OF PRIVATEEX
In this section, we analyze the key features of the proposed Priva-
teEx scheme and demonstrate that it satisfies all the objectives. For
all the analysis, we assume the blockchain as a whole is trusted.
Quick review of the design of PrivateEx. In PrivateEx, all assets
are created in plaintext and stored on the blockchain. If the owner
wants to protect his/her privacy, he/she needs to convert the asset
to a note. The PrivateEx scheme involves four types of notes, which
we summarize as follows: (i) Type 1. This type of notes are generated
for exchange operation and includes type/value information of the
target note. (ii) Type 2. This type of notes are generated for exchange
operation without information of the target note. (iii) Type 3. This
type of notes are generated by first spending operation in exchange.
(iv) Type 4. This type of notes are generated by second spending
operation in exchange.

Assets are first converted to Type 1 or Type 2 notes, and further
conversions between different types of notes are summarized in
Figure 2. Converting from one note to another note is similar to
a shield-to-shield transaction in Zcash that does not disclose the
owner’s information. However, if one converts a note back to an
asset, it is like a shield-to-non-shield transaction, and the type,
value, and owner information is disclosed to the public.
Correctness of PrivateEx. The correctness of PrivateEx is fur-
ther divided into three requirements and we demonstrate that the
proposed design meets all of them: (i) New assets cannot be created

through exchange operations. The conversion from an asset to note
is done without hiding any information except the serial number,
so the public can verify that no new assets is created from scratch.
For following steps in the exchange, a zero knowledge proof is
always required for a transaction, which allows the public to verify
the consistency of the consumed note and the newly created note,
and new asset cannot be created either. (ii) Only matched exchange
requests can be accepted. The matching condition is embedded in
every Type 1 note. If one wants to spend a Type 1 note, he/she must
freeze his/her own note that matches the condition, otherwise it
is impossible to build a corresponding zero-knowledge proof that
can be verified by the public. (iii) Double spending can be detected
and prevented. Double spending in conversion from an asset to
note is prevented by checking the balance information stored on
the blockchain. For most note types, each note has a unique serial
number and double spending is avoided by checking whether a
serial number has been disclosed in the past. For a Type 1 note with
two serial numbers, only one of them can be used to create a new
note and double spending does not exist.

Fairness of PrivateEx. Intuitively, fairness means that a partici-
pant of the exchange cannot take advantage of the other one. This
is equivalent to that the exchange ends up in two and only two
cases: (i) Case 1. The exchange succeeds and both parties get the
asset of the other party; or (ii) Case 2. The exchange terminates in
the middle and each party gets his/her asset back. Here we use the
term asset but it can be in the form a note in the system.

The system fails to meet this feature only if one party can get
the assets of both sides. If Alice achieves this goal, she needs to
produce a valid zero-knowledge proof shows that she knows the
corresponding serial number of the note Bob created, which contra-
dicts with the assumption that Bob keeps this serial number secret
until he spends his note by himself. If Bob achieves this goal, he
needs to produce a valid zero-knowledge proof on the second serial
number of the note Alice created, which Alice keeps as a secret.
Therefore, PrivateEx guarantees the feature of fairness.

Privacy of PrivateEx Privacy is the core feature of PrivateEx. In
general, privacy means that by observing the blockchain transac-
tions and interacting with the blockchain, an adversary cannot
figure out who are involved in an exchange and the type/value in-
formation of the assets that are exchanged. This feature is captured
by blockchain indistinguishability, which was first proposed in Ze-
rocash [16]. The idea of blockchain indistinguishability is that given
two blockchain based multi-assets system running PrivateEx 𝐵𝐶0
and 𝐵𝐶1, even if an adversary can control a pair of honest users to
submit transactions to these two blockchains (under certain restric-
tions), he/she cannot distinguish 𝐵𝐶0 and 𝐵𝐶1. Since the adversary
cannot distinguish these two blockchains, we can draw the conclu-
sion that transactions stored on the blockchain do not disclose any
information. More concretely, the blockchain indistinguishability
is defined as a game in the following way: (i) A challenger C sets
up two PrivateEx instances 𝐵𝐶0 and 𝐵𝐶1, and randomly selects a
bit 𝑏. (ii) C also initializes two oracles O0 and O1, through which
the adversary A can control the two blockchain instances. C gives
A the view of 𝐵𝐶𝐿 and 𝐵𝐶𝑅 , where 𝐵𝐶𝐿 = 𝐵𝐶𝑏 and 𝐵𝐶𝑅 = 𝐵𝐶1−𝑏 .
(iii) At each time, A generates a pair of instructions to generate

321

SHA256Merkle

Main
In

Out

Figure 3: SHA256 gadget is for cryptography-related valida-
tion, e.g. commitment. Merkle tree gadget verifies whether
the giving note is a leaf in a Merkle tree with root rt.

transactions 𝑄 and 𝑄 ′, which are forwarded to 𝐵𝐶0 and 𝐵𝐶1 re-
spectively, and processed by corresponding oracles. (iv) Besides
submitting transactions through oracles, A is also allowed to set
up his/her own accounts and submit transactions. In this case, 𝑄
and𝑄 ′ are submitted to 𝐵𝐶𝐿 and 𝐵𝐶𝑅 respectively. (v) At the end of
the game,A outputs a guess 𝑏 ′ and wins if 𝑏 = 𝑏 ′. If the probability
that A wins is at most negligible greater than 1/2. To avoid the
trivial cases, there are several restrictions on the queries 𝑄 and 𝑄 ′:
(i) 𝑄 and 𝑄 ′ must have the same type; (ii) 𝑄 and 𝑄 must include
the same public information. For example, if they are converting a
note back to plaintext assets, these assets must have the same type
and value; (iii) 𝑄 and 𝑄 ′ must be valid and consistent with existing
transactions on the blockchains.

The proof of blockchain indistinguishability feature for PrivateEx
follows the proof given in Appendix D of [16] and is done through
a sequence of simulation experiments.

6 IMPLEMENTATION AND EVALUATION
In this section, we discuss the implementation of PrivateEx and
evaluate its performance and cost.

6.1 Circuit Design
We implement PrivateEx using the libsnark library [17], which is a
C++ based library for zk-SNARK proof system [3].
Protoboard. A zk-SNARK proof system requires a circuit which
takes both public and auxiliary inputs and produces an output. The
output is a boolean value and shows whether the inputs satisfy the
preset constraints (in the form of the circuit) or not. A virtual pro-
toboard is used to attach the circuit and its necessary components.
In the libsnark toolset, a Rank One Constraint System (R1CS) is the
basic component to verify satisfactory [4].
Gadget. When we design a complex zk-SNARK proof system, it
is not efficient to build it from R1CSes directly. libsnark provides
several common gadgets to build a customized protoboard. In the
PrivateEX proof system, two major gadgets are applied to the pro-
toboard.

Figure 3 indicates that our proof system is verified if and only
if the input satisfies all gadgets on the protoboard. PrivateEX uses
SHA256 to compute note commitment. Thus, the note commitment
related verification should be performed by the SHA256 gadget. A
SHA256 gadget checks whether the given input can reproduce a

public known output hash. For instance, in the case of “Initializa-
tion actions of Alice”, the SHA256 gadget verifies whether input
𝑡1 | |𝑣1 | |𝑐𝑡3 and 𝑟4 can reproduce 𝑐𝑡4. The Merkle tree gadget checks
the commitment for a note appears in the Merkle tree with the
given root. We define both gadgets as follows.

sha256_two_to_one_hash_gadget <FieldT > f;

/*HashT is the C++ template of hash algorithm */

merkle_tree_check_read_gadget <FieldT , HashT > ml;

And, generate the constraints.

f->generate_r1cs_constraints ();

ml->generate_r1cs_constraints ();

Finally, the system takes inputs and produces a witness.

left ->generate_r1cs_witness(left_bv);

right ->generate_r1cs_witness(right_bv);

output ->generate_r1cs_witness(hash_bv);

f->generate_r1cs_witness ();

leaf_digest ->generate_r1cs_witness(leaf);

root_digest ->generate_r1cs_witness(root);

ml->generate_r1cs_witness ();

Variables like left, right and output are the inputs for SHA256
gadget f. Typically, left is concatenation of several parameters, e.g.
𝑡1, 𝑣1 and 𝑐𝑡3. Input right is a random number. Variable 𝑜𝑢𝑡𝑝𝑢𝑡 is the
given commitment value for validator to check whether it matches
the result from SHA256 gadget. On the other side, leaf and root are
mandatory inputs for the Merkle tree gadget ml.

Other constraints are checked by the main gadget. For instance,
to check whether input note and output note have the same type
of assets, we can add a basic R1CS constraint to the main gadget as
follow.
//t1 is the type of old note asset

//t2 is the type of new note asset

this ->pb.add_r1cs_constraint(

r1cs_constraint <FieldT >(

1, t1, t2

));

//R1CS : 1*t1=t2

Proof-key and Verification-key. Before generating proof, zk-
SNARK requires a security setup to produce a pair of proof-key
(𝑃𝐾) and verification-key (𝑉𝐾). Users use 𝑃𝐾 and necessary trans-
action information to generate proofs, and validators use 𝑉𝐾 and
auxiliary inputs/witness to verify the transaction without knowing
the details.

6.2 Circuit Evaluation
In this section, we evaluate our zk-SNARK circuit. We measure
the number of R1CS constraints, size of PK and VK, and the time
consumption to generate a proof. The benchmark is performed on
an Amazon Web Service (AWS) Elastic Computing Cloud (EC2)
instance t2.large. This type of instance involves 2 vCPUs and 8 GB
memory.

Table 1 illustrates the comparison between different circuit de-
signs. Usually, a circuit with more R1CS constraints may require
more time to generate a proof. The verification time is constant

322

Table 1: Circuit Evaluation Results

Circuit Constraints PK VK Time
Commitment 27,280 6.14 MB 511.8 B 10 sec
Merkle tree∗ 448,774 99.2 MB 511.8 B 106 sec
First Claim∗ 476,571 103.66 MB 511.8 B 131 sec
Second Claim∗ 476,571 115.84 MB 511.8 B 130 sec
Merkle tree† 1,822,358 447.39 MB 511.8 B 464 sec
First Claim† 1,822,875 447.48 MB 511.8 B 466 sec
Second Claim† 1,822,875 447.48 MB 511.8 B 484 sec
∗Merkle tree depth = 16. †Merkle tree depth = 64.

regardless of the number of constraints. We observe that the Merkle
tree gadget takes more time to execute. The overall transaction time
for a integrated circuit is 497 seconds approximately, which include
the time for proof-generation and transaction verification (Merkle
tree depth = 64). Note that the integrated circuit is directly pro-
duced from libsnark. This can be further optimized by improving
the underlying elliptic curve algorithms [1].

7 RELATED WORKS
In this section, we briefly review works related to the exchange of
cryptocurrencies/assets.
Privacy protection for one-way transfer. Several approaches
have been developed to protect the privacy of one-way transfer in a
single-asset blockchain system, including zero-knowledge [16], ring
signature [12], and mixnet [7, 15]. Most of these techniques cannot
be extended directly to protect two-way exchange as they cannot
guarantee the fairness feature. While it is possible for one to build
a mixnet structure to achieve both fairness and privacy protection,
the effectiveness of this approach relies on the trustworthy of the
mixing nodes, which is not desirable.
Fair information exchange. Fair information exchange is the
process for two parties to exchange their own secrets. At the end
of the process, they either learn each other’s secret at the same
time, or nothing is leaked to the other party. It has been proved that
it is impossible to guarantee the fairness without a trusted third
party [13], but several approaches are developed to achieve the goal
with the help of a blockchain, such as FairSwap [8]. Two-way asset
exchange is more than fair information exchange as exchanging
the secrets does not guarantee the change of ownership.
Multi-asset exchange. There are a large number of centralized
exchange platforms for crypto asset exchange, e.g., Coinbase, Bit-
buy, and Coinsquqre. These platforms require participants’ fully
trust and work as proxies for exchange operations. From another
point of view, these centralized platforms can also be treated as a
mixing service provider. Multi-asset exchange on blockchain has
also been studied. Bentov et.al. proposed a real-time cryptocurrency
exchange protocol using trusted hardware [5]. 0x is built on top
of Ethereum and supports exchange of ERC2.0 tokens [18]. TEX
is another decentralized exchange scheme that operates in two
layers [9]. However, these schemes only focus on the exchange
operation itself but do not provide any protection on the privacy
of exchange.

8 CONCLUSION
Exchange of different types of blockchain based crypto-assets has
become a significant business, and it is a natural extension of
privacy-preserving cryptocurrency systems to build a privacy-
preserving, decentralized exchange system. In response to this
demand, we develop PrivateEx, a novel multi-asset exchange plat-
form on blockchain, and applies zero-knowledge proof to protect
the exchange information and a two-serial-number structure to
guarantee the fairness of the exchange operation. Also, we discuss
the implementation of the zero-knowledge proof system used in
PrivateEx and formalize the security requirements. We implement
the key sub-circuits for different types of operations in PrivateEx.
Though the cost is not cheap, it is acceptable for modern computers.
The performance can be further improved using other ZK-SNARK
primitives such as Bulletproof [6].

ACKNOWLEDGMENTS
The research was supported in part by NSF 1756014.

REFERENCES
[1] Stephanie Bayer and Jens Groth. 2012. Efficient zero-knowledge argument for

correctness of a shuffle. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 263–280.

[2] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. 2001.
Key-privacy in public-key encryption. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 566–582.

[3] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In Advances in Cryptology–CRYPTO 2013. Springer, 90–108.

[4] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P Ward. 2019. Aurora: Transparent succinct arguments
for R1CS. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 103–128.

[5] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz Breidenbach,
Philip Daian, and Ari Juels. 2017. Tesseract: Real-Time Cryptocurrency Exchange
using Trusted Hardware. IACR Cryptology ePrint Archive 2017 (2017), 1153.

[6] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 315–334.

[7] Evan Duffield and Daniel Diaz. 2015. Dash: A privacy centric cryptocurrency.
(2015). https://www.dash.org

[8] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. Fairswap: How to
fairly exchange digital goods. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 967–984.

[9] Rami Khalil, Arthur Gervais, andGuillaume Felley. 2019. TEX–A Securely Scalable
Trustless Exchange. IACR Cryptology ePrint Archive (2019).

[10] Leslie Lamport. 1979. Constructing digital signatures from a one-way function.
Technical Report. Technical Report CSL-98, SRI International Palo Alto.

[11] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
[12] Shen Noether. 2015. Ring Signature Confidential Transactions for Monero. IACR

Cryptology ePrint Archive 2015 (2015), 1098.
[13] Henning Pagnia and Felix C Gärtner. 1999. On the impossibility of fair exchange

without a trusted third party. Technical Report. Technical Report TUD-BS-1999-02,
Darmstadt University of Technology

[14] Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the full bitcoin trans-
action graph. In International Conference on Financial Cryptography and Data
Security. Springer, 6–24.

[15] Tim Ruffing and Pedro Moreno-Sanchez. 2017. ValueShuffle: Mixing confidential
transactions for comprehensive transaction privacy in bitcoin. In International
Conference on Financial Cryptography and Data Security. Springer, 133–154.

[16] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE,
459–474.

[17] SCIPR-Lab. 2017. libsnark: a C++ library for zkSNARK proofs. https://github.
com/scipr-lab/libsnark

[18] Will Warren and Amir Bandeali. 2017. 0x: An open protocol for decentralized ex-
change on the Ethereum blockchain. URl: https://github. com/0xProject/whitepaper
(2017).

323

https://www.dash.org
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

