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Radiative transfer through particle-laden media such as clouds can be impacted by variations in parti-
cle spatial distributions. Due to mixing and inertial effects of droplets suspended in the almost always
turbulent atmosphere, cloud particles are often spatially-correlated. The correlations result in clusters
and voids within the droplet field that, even when smaller than the photon mean free path, can lead
to deviations from the exponential extinction law. Prior work has numerically investigated these depar-
tures from exponential attenuation in absorptive media; this work extends those results for a scattering
medium. The problem is explored with a Monte Carlo Ray Tracing (MCRT) program capable of track-
ing light attenuation through both perfectly random (uncorrelated) and spatially correlated collections
of scatterers and/or absorbers. The MCRT program is favorably compared to two-stream flux equations,
and numerical exploration of the pure-absorption case is used to determine the sampling statistics nec-
essary to characterize radiative transmission within the numerical simulation. Light transmission through
fields of spatially-correlated, non-absorbing, scattering particles is explored. Particles are distributed fol-
lowing a Matérn Point Process, which allows cluster strength and size, as well as the usual variables of
particle scattering cross section and number density to be varied. The results show that the degree of
non-exponential attenuation is determined by the magnitude and shape of the radial distribution func-
tion, which describes correlations in discrete (non-continuous) particle distributions. Parametric studies
revealed that the number of clusters and cluster radius, factors in the Matérn radial distribution function,
impact direct, diffuse and backward radiative transfer. The Matérn RDF is shown to be consistent with a
previous “cloudlet” approach, providing a bridge between the analytical cloudlet model and continuous
correlation function approaches.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

or sub-exponential, depending on the nature of the spatial corre-
lations [44]. Spatial correlations between particles within a turbu-

Radiative transfer through a spatially correlated medium results
in a distinct behavior, essentially because photons propagate fur-
ther in void regions, and experience stronger extinction in dense
regions, relative to a homogeneous medium [30]|. The problem
has a multitude of applications, ranging from the cloudy atmo-
sphere to biological and energy-generation systems [13,22,51]. In
this work, we consider distributions of discrete particles, with the
atmospheric context as our motivating problem.

When spatial correlations are present in the positions of per-
fectly absorbing particles, deviations from the usual exponential
extinction emerge [15,20,23]; these deviations can be both super-
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lent flow can be created by several mechanisms, including iner-
tial clustering [41] and turbulent mixing [48]. For example, mixing
and entrainment in atmospheric cloud boundaries leads to pockets
of cloudy and clear air on spatial scales ranging from km to mm
[14,43]. Recent work has suggested that, at least in the absorbing-
particle problem, the relevant clustering metric is the radial distri-
bution function [15,44].

How does the situation change when we consider diffuse ra-
diation in a scattering medium? Previous results were for absorb-
ing particles or, equivalently, extinction of a direct beam, and we
might expect that the situation with scattering is more complex.
Nevertheless, the key geometrical argument that suggests a mecha-
nism for the non-exponential behavior should be general (see, e.g.,
[19,20]), and a natural follow-on question to the previous numer-
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ical work on absorbing clouds is to determine whether the radial
distribution function can also capture the essential physics at play
in a medium containing purely scattering particles.

We address the problem using the ray tracing Monte Carlo ra-
diative transfer approach that has been shown to be consistent
with standard radiative transfer (e.g., [3]). This should be consis-
tent with the findings of Mishchenko [35,36] that even in a cor-
related medium the classical radiative transfer equation holds, as
long as high-order scattering paths can be neglected and assump-
tions of ergodicity and spatial uniformity are valid. To limit the
scope of the work, we take as context the transport of visible
light in a cloud of water droplets as found in atmospheric appli-
cations (e.g., wavelength ~550nm and droplet radius ~14pm). In
this regime, absorption is extremely weak and therefore in the re-
mainder of this work we take the single scatter albedo to be ex-
actly unity. Furthermore, we consider the regime in which multiple
scattering does not become dominant (e.g., optical thickness of or-
der unity).

There are several reasons motivating the use of Monte Carlo
Ray Tracing (MCRT) within a field of discrete particles rather than
the more standard (and computationally efficient) photon-path-
distribution function. At a fundamental level, we are exploring ra-
diative transfer at scales on which the notion of a continuously-
distributed system becomes ill-defined, and where discreteness ef-
fects such as sampling or ‘shot’ noise are relevant. We therefore
take the direct approach of explicit representation of each parti-
cle. Another primary motivation is generality and flexibility when
it comes to representing radiative transfer in a real system, such as
the Pi Cloud Chamber [6]. In that case, we must consider sampling
of a dilute medium within a confined geometry. We find the pos-
sibility of future comparison between numerical computations of
direct and diffuse radiation and measurements of these fields in a
laboratory cloud chamber appealing; in particular, we have in mind
the Pi Cloud Chamber, which is able to produce optical thicknesses
of order unity [6]. For example, the assumptions drawn into focus
by Mishchenko merit direct experimental assessment, especially
the insight that averaging scales play a central role [36]. Besides
the finite-sample effects, the explicit, discrete-particle approach al-
lows for simpler implementation of boundary conditions. The gen-
erality of this approach will also allow the method to be applied
to conditions in which clustering may not be isotropic, such as in
turbulent Rayleigh-Bénard convection. Eventually, it would be of
interest to compare the discrete approach to the path-distribution
approach for dilute, finite-size systems.

In this work, perfectly random and correlated spatial particle
distributions (generated using a Matérn Point Process model, hav-
ing a known closed-form radial distribution function) are gen-
erated within a simulation volume. Then, a Monte Carlo Ray
Tracing code - capable of simulating scattering events either
through full Mie computation or more approximately through the
Henyey-Greenstein phase function - propagates individual pho-
tons through the simulation volume, tracking direct, diffuse for-
ward, and diffuse backward radiative fluxes from an initially colli-
mated beam of photons entering the simulation volume at normal
incidence.

The paper proceeds as follows: In Section 2 we define the radial
distribution function (RDF) and introduce the Matérn process as an
analytic model for introducing particle spatial correlations via the
RDF. In Section 3 we describe the Monte Carlo Ray Tracing (MCRT)
code that is used to simulate light propagation through a medium
containing discrete particles. In Section 4 we present results of
the simulations, showing departure from propagation through a
uniformly random particle field, and we interpret the results in
the context of the RDF. In the concluding section we discuss the
results and their possible implications for atmospheric radiative
transfer.

2. Exploring the Matérn cluster process

2.1. The influence of particle clustering on transmission through a
scattering medium

As noted above, deviations from exponential attenuation in tra-
ditional radiative transfer theory are expected when the particles
in the medium are spatially correlated [20]. Inertial particles in
a turbulent fluid (e.g., cloud droplets in the atmosphere) provide
one physical scenario where these spatial correlations are known
to exist [26,42]. Previous work [15,23,44] suggests that the devia-
tion from exponential behavior in such media may depend on the
radial distribution function describing that statistical structure of
particulate clustering.

The radial distribution function g(r) of a particle-laden medium
quantifies the scale-localized clustering of the particles in the
medium [21,25,26,41,42,44]. It can be readily understood through
its relation to the joint probability of finding a particle in volumes
dV; and dV,, both separated by distance r, in a system with global
particle number density n:

Pa.2)(r) = (ndVy)(ndVy) g(r) (1)

Algorithmically, g(r) can be understood as the observed number
of particle pairs separated by distance r + 4r relative to the num-
ber of particle pairs expected at the same distance for a perfectly
random population (Poisson distributed at all scales).

Testing the radial distribution function dependence on radiative
transmission through a purely scattering medium will be facilitated
by generating scatterer positions within the simulation volume via
a method that produces a known, closed-form radial distribution
function. Particle positions in a turbulent flow-field in steady-state
are often modelled with a decaying power-law RDF that is depen-
dent on the Stokes number [8]. The construction of a simulation
volume of scatterers with a power-law radial distribution function
presents at least two challenges; (i) g(r — 0)= oo, which is phys-
ically impossible, and (ii) the lack of a simple algorithm to place
particles in a way that replicates a power-law radial distribution.
Additionally, there are some physical mechanisms that cause clus-
tering that are not expected to have a power-law form like parti-
cle charging [28] or convective organization [2]. For this study, in
lieu of generating clustered particle spatial locations for a specific
physical mechanism (e.g., running turbulence simulations), we in-
stead take a more general approach. We have opted to utilize the
Matérn cluster process to distribute scattering particles through-
out the simulation volume, which has the advantage of providing
an analytical form for the RDF that can be explicitly adjusted to
change the scale and magnitude of clustering.

The Matérn cluster process [31-33] is a Neyman-Scott point
process model that has several advantageous features for this
work: (i) it has an analytically straightforward closed-form expres-
sion for its radial distribution function, (ii) it has a fundamental
characteristic length-scale R, and (iii) it is numerically easy to sim-
ulate. For spatial scales larger than 2R, the Matérn cluster process
radial distribution function is the same as that for a perfectly ran-
dom distribution. Additionally, like power-law RDFs, the RDF of the
Matérn cluster process has a monotonic decrease with increasing
spatial scale (but does not diverge at small distances like power-
law RDFs).

2.2. Construction and properties of a Matérn cluster process

All Neyman-Scott point process models are constructed in the
same way; (i) some number of “parent” particles Ny, are dis-
tributed in a perfectly random manner throughout the cloud vol-
ume V with spatial density Np/V, (ii) some discrete probability dis-
tribution function with a specified mean Ap is sampled to assign
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Fig. 1. Dependence of theoretical Matérn radial distribution function (RDF) on number of clusters, Np, and cluster radius, R, given the 0.08 m? cloud volume used in our
simulations. Note that at distances r greater than 2R the RDF illustrates statistical structure equivalent to an uncorrelated distribution (g3p = 1 for r > 2R).

how many “daughter” particles will be associated with each par-
ent particle, and (iii) some continuous probability density function
is sampled to determine how far each daughter particle is placed
from its associated parent particle. The final collection of particles
will be the ensemble of daughter particles generated through this
process. For the Matérn cluster process, the discrete probability
distribution in step (ii) is a Poisson distribution and the contin-
uous probability distribution in step (iii) is designed to place the
daughter with uniform probability anywhere within a sphere of
radius R around the associated parent particle. Ultimately, a statis-
tically homogeneous but clustered distribution with approximately
(Np * Ap) total particles is generated. More detail including a figure
demonstrating this construction process in two-dimensions can be
found in Larsen et al. [24]. For this system, the resulting radial dis-
tribution function gsp(r) for a 3-dimensional Matérn cluster pro-
cess can be written [7,24]

3v 2 r
&3p(r) = &TT%(R_Q) <2R+§>+1 (r<2R) o)
1 (r>2R)

It is important to note here that with a constant cloud volume,
the Matérn radial distribution function (RDF) given by Eq. (2) is
dependent only on the number of parent clusters and the cluster
radius (Np and R, respectively), and does not vary with the average
number of particles per cluster, Ap. The dependence of the Matérn
RDF, g(r), on N, and R is illustrated in Fig. 1.

3. Description and validation of Monte Carlo Ray Tracing code
3.1. Overview of the MCRT code (‘mcScatter’)

A Monte Carlo scattering simulation code, ‘mcScatter’, was cre-
ated to explore the role that spatial correlations play in radiative
transfer through a light-scattering medium such as an atmospheric
cloud. The general structure of our MCRT code was motivated in
part by a desire to eventually validate the numerical results with
experiments in a cloud chamber facility [6]. The virtual laboratory
of a computer simulation allows for the relaxation of the physical
constraints of an actual cloud chamber (such as particle clustering
limits and experimental setup restrictions) to predict experimen-

tal results and develop an effective methodology for measuring pa-
rameters of interest.

To match experimental conditions potentially realizable in the
chamber, the numerical work that follows is limited to a spatial
domain of 2m x 0.2m x 0.2m (inspired by a realistic optical path
through the chamber) and total optical thickness of order t*~1.
Our MCRT code, described in greater detail in the supplemental
material, allows for the specification of optical wavelength, par-
ticle size, complex index of refraction and many other boundary
conditions. In this paper we focus our analysis in the visible spec-
trum with an optical wavelength of 550nm, and examine rela-
tively large but realistic cloud droplet sizes (e.g., radius ~14 um)
based on previous cloud chamber measurements [6,38]. The result-
ing size parameter focuses our analysis on the forward-scattering
regime with a single scatter albedo of 1 and a scattering efficiency
of Qscg ~ Qext ~ 2.

Approaches exist for addressing this problem directly from
Maxwell’s equations [35,37]; however, direct use of methods like
the superposition T matrix method remain impractical for sys-
tems with large numbers of particles like clouds. Previous work
[5,12,39] has led to the development of heuristic models to quan-
tify the radiative transmission through inhomogeneous particle-
laden media via a variety of methods. In Section 5 we discuss the
ability of these heuristic techniques to predict results similar to
those found by our MCRT analysis.

Others have investigated such heterogeneous systems through
the development of numerical Monte-Carlo simulations [29,30]; a
clear discussion can be found in Bohren and Clothiaux [3] but
numerous relevant publications can be found on the subject
[10,11,40]. The Monte Carlo method [46] has often been applied to
investigate radiative transfer problems where closed form solutions
are challenging or impossible, and a detailed description of its ap-
plication to inhomogeneous media has been presented [9].

These numerical methods typically explore radiative transmis-
sion without assigning physical locations to particles by stochasti-
cally modeling the free-path distribution between successive scat-
tering interactions. In these simulations, the distances that photons
travel before redirection are obtained via random draws from an
analytic (usually exponential) free-path cumulative density func-
tion (CDF) based on the scatterer concentration of the medium.
Modifications to propagation directions are obtained via random



4 C.D. Packard, M.L. Larsen and W.H. Cantrell et al./Journal of Quantitative Spectroscopy & Radiative Transfer 236 (2019) 106601

draws from an appropriate scattering phase-function (e.g. Henyey-
Greenstein or Mie) describing the angular distribution of light in-
tensity scattered by a particle for a given wavelength. This process
of computing distance traveled prior to scattering, choosing a scat-
tering angle, and re-computing distance traveled is repeated un-
til all rays cast into the medium exit (based on specified “wall”
boundary conditions).

In a ballistic ‘photon’ simulation [23,44], particles are placed in
a volume at specified locations, and numerous rays are cast into
the scattering medium [1,16]. Each ray is traced until it either ex-
its the cloud on the other side unscattered (direct radiation) or its
path intersects a particle (i.e., a geometric “collision”). The path of
a scattered photon proceeds similar to those in the standard Monte
Carlo algorithm outlined above; the new propagation direction is
chosen from a phase function and subsequent scattering events can
occur until the particle leaves the computational volume. Details
associated with the computational implementation of this model
are presented in the supplemental material.

This type of ballistic photon simulation allows particles to be
placed anywhere in the volume to determine the impact of their
spatial correlations on radiative transfer, but this benefit comes
at the cost of recording and tracking a multitude of particle po-
sitions and collision locations. Though other approaches may re-
solve continuous media better [37], ballistic photon simulations
are especially well-suited for spatially-correlated media where an-
alytic extinction CDFs may not be known [44]. Our ballistic MCRT
simulation extends the related numerical approach presented in
Shaw et al. (2002) and Larsen and Clark [23] to a scattering do-
main. These simulations employ explicit positions for each individ-
ual particle within the medium, thus allowing for geometric ray-
tracing to explore an arbitrary inter-scatterer distribution, rather
than utilize a blind draw from a static (known) distribution func-
tion.

The simplest limiting case of this MCRT analysis occurs when
simulating a cloud of monodisperse particles identically and inde-
pendently distributed randomly within the simulation volume (see
top panel of Fig. 2). Such a homogeneous system can serve as a
control, where results can be validated against standard radiative
transfer theory and expected analytic results. After validation on
this simple (homogeneous) system, the MCRT code can be used to
analyze virtual clouds comprised of non-uniform particle locations
generated with the Matérn process described in the previous sec-
tion (with an example of such a clustered distribution shown in
the bottom panel of Fig. 2).

Rays (or ‘photons’) are initialized at uniformly-random (x, y,
z=0) positions and cast in a normally-incident collimated beam
through one side of the volume, which contains numerous par-
ticles at specified (stationary) spatial locations. Intersections be-
tween these rays and particles create scattering events that modify
the direction of each photon path; new ray directions are deter-
mined from the scattering phase function. Fig. S-3 in the supple-
mental material illustrates a subset of rays from a typical simu-
lation result. In the case of cloud droplets with typical diameters
larger than the wavelength of visible light, the resultant size pa-
rameter yields a scattering pattern that is forward-dominant.

The most rigorous way to calculate the scattering phase func-
tion is through Mie theory, where particles are considered as ho-
mogenous dielectric spheres interacting with an incident plane
wave of light. However, it is convenient to have an analytic for-
mula that approximates the actual scattering phase function shape,
especially at this initial stage where details of the scattering are
not expected to be as important for the scientific questions be-
ing explored. The Henyey-Greenstein phase function, essentially a
probability density function (PDF) of scattering angle, is a com-
mon surrogate for the actual phase function [17]. Its analytic form
allows it to be integrated to calculate a closed-form cumulative

density function (CDF). Its parametric nature allows it to be em-
ployed rather simply, with sufficient accuracy for many appli-
cations [3,18,47]. The mcScatter software introduced here makes
both Mie and HG (Henyey-Greenstein) phase functions available for
scattering simulations.

As numerous rays are traced through the scattering medium,
the locations of particle collisions and all individual ray segments
are recorded. Direct and diffuse flux is recorded at a high spatial
fidelity throughout the cloud depth, both backward and forward.
This allows for direct, diffuse and total forward irradiance as well
as backward irradiance to be calculated at many places within the
cloud volume. Further details regarding the implementation of our
scattering code beyond the basic phenomenological approach ex-
plained in this subsection can be found in the supplemental mate-
rial.

3.2. Validation of MCRT direct beam extinction through a
homogeneous uncorrelated medium

Before analyzing the impact of a spatially-correlated particle
field on light scattering, we first ensured the fidelity of our MCRT
code for non-scattering particles that are distributed with uniform
probability (no spatial correlations). Given initial downward irradi-
ance on a cloud top, Fy, the direct (unscattered) irradiance F dfrm
is an exponential function of optical depth into the medium. By
normalizing the direct, unscattered irradiance by the initial down-
welling irradiance (where t = 0) we get an expression for the nor-
malized direct flux [3] which can be written as

I

Ex
P =~ = eXP(-T) 3)

To calculate normalized direct flux with our MCRT code, we
uniformly divide the expected total optical thickness into numer-
ous “slabs”. We represent total optical thickness as (t*=coz),
where c is the (number) concentration of scatterers, o is the ef-
fective scattering cross section of each scatterer, and z is propaga-
tion depth through entire cloud. We then cast Nyqy rays into the
particle-laden medium and trace each ray to determine how may
slabs are traversed before an absorbing particle is encountered. The
number of rays passing each slab boundary is dependent on the
total number of rays initially cast, but by dividing the tabulations
by Nrqy we compute a normalized optical depth-dependent direct
flux. These direct beam extinction results were compared to the
expected exponential decay to validate that portion of our MCRT
code. One such comparison, performed for a monodisperse cloud
with 14pm radius particles and a total optical thickness (t*) of 1,
is shown in Fig. 3. The simulation results matched the theoretical
predictions exactly, with the expected exponential decay appearing
linear due to the logarithmic y-axis.

3.3. Comparison of MCRT results to two-stream theory

One commonly made simplification is the idealization of ra-
diative transfer into only two propagation directions, forward and
backward [3,47]. This two-stream approximation is most accurate
in the case of isotropic scattering where the phase function is uni-
form but can be used for anisotropic scattering as well with rea-
sonable accuracy [47]. Thomas and Stamnes [47] state that, when
Henyey-Greenstein phase function and two-stream approximations
have been combined and compared to other (more accurate) meth-
ods, the resulting deviations are typically less than 2.5%, especially
when the solar illumination is close to normally incident. For more
information on the compromises made when using the Henyey-
Greenstein phase function and multi-stream approximations the
reader is referred to other works [27]. In order to place our MCRT
results in a context that will be familiar to most readers, in this
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Fig. 2. Comparison between a homogeneous, uniform random particle distribution (top) and a Matérn-generated clustered distribution (bottom). Total cloud volume illus-
trated here and used for all scattering simulations in this works is 0.2m x 0.2m x 2.0m (0.08 m?3).

subsection we compare them to the two-stream theory and then
to Monte Carlo results presented in the textbook by Bohren and
Clothiaux [3].

Using the Henyey-Greenstein phase function and periodic
boundary conditions, each ray cast into the scattering medium
continues moving either forward or backward until it terminates
at the top or bottom of the simulated cloud. By normalizing the
number of rays that cross each layer boundary (in either direction)
by the total number of rays cast, the diffuse forward and back-
ward flux components were computed. These MCRT simulation re-
sults were then compared to corresponding expressions from two-
stream theory, such as the normalized diffuse forward flux given
as 3]

D, 1+ (" —1)(5%)

(pjiffuse = 1:_0 = 1+ ‘L’*(]Zi) —exp(-71) (4)

and the normalized diffuse backward flux, expressed as

D (rr—1)(52
P fuse = Tg = HT—((I%E)) (5)

In these normalized flux expressions, g refers to the asymmetry
parameter, a scalar characterization of the degree of anisotropy cal-
culated as the mean cosine of the scattering angle. Fig. 4 shows a
comparison between two-stream theory curves for normalized for-
ward and backward flux components and their Monte Carlo sim-
ulation counterparts. In this example, particles with a radius of
14 um and a number density (n) of 400 cm—3 were used to cre-
ate a homogeneous monodisperse random distribution with a to-
tal optical thickness (7*) of 1 with an asymmetry parameter (g) of
0.85.

The discrepancies evident in Fig. 4 between our MCRT results
and two-stream theory are consistent with those suggested in
Thomas and Stamnes [47] and shown in a similar comparison of
two-stream theory with Monte Carlo by Bohren and Clothiaux [3].
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3.4. Simulation design for correlated random media

We emphasize here that the cluster sizes used in our analy-
sis are smaller than the mean free path (as defined for a homo-
geneous medium), and therefore are not necessarily captured by
a macroscopic, spatially varying mean free path. The radial distri-
bution function depends on N, and R, while the expected cloud
optical thickness is NpApV~1Qscq7wa?L and thus depends on Np, Ap
and particle radius a. It is therefore possible to explore the scat-
tering problem under the constraint of fixed total optical thickness

t* for varying input parameters, including those that directly influ-
ence the radial distribution function and therefore the magnitude

and scale dependence of particle clustering.
Multiple particle cloud realizations were stochastically gener-

—— MCRT results
- -©-Exponential absorption

Normalized Direct Forward Flux

0.5
04t ated for each set of input parameters, and the results from each
. . ; s individual cloud scattering simulation were averaged together to
0 0.2 0.4 0.6 0.8 1 form the reported (mean) optical depth-dependent fluxes. Due to
Optical Depth, 7 the small cross sectional area being illuminated (0.2 m x 0.2 m), we
found it necessary to analyze ten [10) unique clouds to compile

trustworthy average flux results (see Fig. S-6 in the supplemental
material). Consequently, all results shown in this work are the re-
sult of averaging the depth-dependent flux curves of at least ten
unique cloud realizations, each of which was probed with 100,000

rays (see Fig. S-5 in the supplemental material).

Fig. 3. Normalized direct, unscattered flux comparison between theoretical (circles)
and Monte Carlo results (solid line) for a monodisperse cloud with 14 um radius
particles and t* of 1. Note that the vertical axis employs logarithmic spacing to

illustrate exponential absorption.

4. Results

These depth-dependent differences are due to the fact that two-

stream theory approximates radiative transfer by neglecting the 4.1. Impact of particle clustering on depth-dependent flux
details that a full angular scattering solution includes. For valida-
tion purposes, the Monte Carlo results from Bohren and Clothiaux
[3] are included in Fig. 4 for reference (circle and triangle symbols).
We hypothesize that the slight differences between the Bohren and
Clothiaux results and the MCRT results presented here are likely a

In this work we investigate both the direct and diffuse radia-
tive transfer (forward and backward) in a purely scattering but
correlated random medium to determine expected deviations from
commonly used radiative transfer predictions for a uniform, homo-
geneous medium. The problem depends on four parameters: Nj,
R, Ap and particle radius a. While the radial distribution function

result of details related to horizontal fluxes, such as the domain
geometry and side-wall boundary conditions. As a further test, we
used our MCRT code to simulate isotropic scattering (g=0.0) and

contains only N, and R, the expected cloud optical thickness de-
pends on Np, Ap and a. For our analysis we varied these four in-
put parameters while constraining the total optical thickness 7* to

found excellent agreement with the transmission and reflectivity

predictions of two-stream theory.
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Fig. 4. Flux comparison between two-stream theory and Monte Carlo (MCRT) results, both forward flux (rightmost black curves) and backward flux (leftmost red curves).
Note that at their most divergent, the two-stream and MCRT flux curves differ by 2-3%. Also shown for validation purposes are the Monte Carlo results (circle and triangle

symbols) given in Bohren and Clothiaux [3], see top panel of their Fig. 6.10.
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Fig. 5. Impact of particle clustering on depth-dependent flux curves as computed by our MCRT scattering simulation. Both homogeneous and Matérn correlated results were
obtained from monodisperse (14 um particle radius) cloud realizations with a total optical thickness, t*, of 1. Cluster radius, R, is 0.015m and the number of cluster parents
(Np) is 500. The average number of particle per parent cluster (Ap) is 64,000. Note that in this and subsequent figures, the independent variable optical depth (7) increases
downward on the reversed vertical axis, starting from the top of the cloud at 7 = 0 and finishing at the exit point at the bottom of the cloud (t = 1).

determine the influence of particle size, clustering and the radial
distribution function.

We performed numerous scattering simulations through both
uncorrelated and spatially-correlated monodisperse cloud distribu-
tions to explore the impact of spatial correlations on optical-depth-
dependent irradiance. Mean optical depth-dependent irradiances,
including direct and diffuse forward flux as well as backward flux,
were calculated as a function of distance through both homoge-
neous and spatially correlated clouds. An example illustrating these
various flux components is shown in Fig. 5, with the solid black
line indicating the homogeneous case and the red dotted line indi-
cating a Matérn-clustered scenario with (N, = 500, Ap = 64,000,
R=0.015m). We note that the corresponding RDF is included as
the dot-dashed red curve in Fig. 1.

When we consider the unscattered, direct flux traversing a sim-
ulated cloud, as shown in the top panel of Fig. 5 where t increases
downward on reversed vertical axis, we see that direct transmis-

sion is increased when spatial correlations exist in the particle-
laden medium. Previous publications have shown that propagation
through a spatially-correlated medium deviates from expectations
of Beer-Lambert-Bouguer exponential attenuation [15,20,23,34,44].
Our Monte Carlo simulations, operating on clouds generated using
a Matérn-process radial distribution function for particle positions,
show this expected increase in direct flux through a field of parti-
cles. For the example in Fig. 5, at optical depth T = 1, an increase
of direct transmission from 37% to more than 40% is observed in
the Matérn-clustered results.

Note that while panel (a) of Fig. 5 shows an increase in direct
transmission for the clustered compared to the unclustered dis-
tribution, panel (b) indicates a similar decrease in diffuse forward
flux. Panel (c) indicates that, for this case, the amount of backward
flux is slightly impacted by the existence of spatial correlation. To-
gether these results signify that the difference in total forward flux
(direct plus diffuse) due to spatial correlation, shown in panel (d)
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to be less than 0.5%, is only distinguishable when very tight nor-
malized flux axis limits are chosen. In other words, when compar-
ing only the mean normalized irradiances that would be detected
at the bottom of the cloud, little difference would be measured, al-
though presumably a radiance measurement separating direct from
diffuse would reveal the distinction. Decreased direct attenuation
is not totally compensated for by increased diffuse forward radia-
tion, though they counterbalance to dampen the effect of particle
clustering.

4.2. Impact of Matérn RDF parameters on depth-dependent flux

The Matérn RDF expression listed in Eq. (2) demonstrates de-
pendency on both the number of parent clusters (N,) and cluster
radius (R). To test the hypothesis that these two parameters are
the primary contributors to changes in depth-dependent flux for
Matérn spatially correlated particle distributions, we simulated ad-
ditional clustered clouds where these inputs were unchanged. The
number of Matérn clusters was held constant at N, = 500, and the
cluster radius was fixed at R=0.0075m. While keeping N, and R
constant, we varied the monodisperse particle radius (e.g., 9.9 um,
14pum and 19.9 um) and changed the mean number of particles
per cluster accordingly (e.g., Ap = 128,000, 64,000 and 32,000 re-
spectively) to maintain a total optical depth of t* = 1 for all simu-
lated clouds. To ensure that we limited our exploration to parame-
ters of interest, we enforced a constant asymmetry parameter and
scattering efficiency (e.g., g=0.85, and Qs = 2.0, respectively) in
spite of changing particle radius.

As can be seen in Fig. 6, the three Matérn curves appear to col-
lapse on each other. This supports the hypothesis that the N, and
R parameters, as with the underlying radial distribution function,
are the driving factors impacting deviations from scattering theory
for a homogeneous medium.

4.3. Variations in optical depth-dependent flux due to changes in
Matérn clustering parameters

The optical depth-dependent irradiance results previously
shown in Fig. 6 demonstrate a lack of dependence on changes to
the clustering parameters absent from the Matérn RDF (namely,
particle radius and mean number of particles per cluster, Ap). We
next investigate the impact of the parameters that are present in
the Matérn RDF, namely cluster radius (R) and number of clusters
(Np). To determine the sensitivity of depth-dependent irradiance
to cluster radius, we held all other quantities constant; 500 clus-
ter parents with an average of 64,000 daughter particles of radius
14 um were inserted using the Matérn process. Three cluster radii
were explored (R=0.03, 0.015 and 0.0075 m) and compared to the
homogeneous (spatially-uncorrelated) case; the results are shown
in Fig. 7. We see that as cluster radius decreases and the same
number of particles are packed more densely, direct transmission
is maximized and diffuse forward flux is minimized. Differentiation
between the three Matérn curves is evident in both panel (a) and
panel (b), illustrating the dependence on cluster radius R found in
the RDF. We also note that there is a significant deviation of the
backward diffuse flux for these Matérn cases as opposed to the ho-
mogeneous medium, as shown in panel (c); this ultimately results
in a change in the total forward flux shown in panel (d).

Similarly, we explore the relationship between the number of
cluster parents (Np) and depth-dependent irradiance by constrain-
ing R and a, and allowing the average number of daughter particles
per cluster, Ap, to increase as N, decreases to maintain constant
expected optical thickness. The results of this investigation of con-
stant cluster size R are shown in Fig. 8. We see that decreasing N,
increased the deviation from the spatially-uncorrelated case, sup-
porting the notion that the optical-depth-dependent irradiance is

impacted by a changing RDF. As can be seen from the dependence
of the RDF expression on number of parents Np and illustrated in
Fig. 1, decreasing N, with fixed R leads to an increase in the mag-
nitude of the radial distribution function for all r < 2R. Once again,
in Fig. 8 there is an observed departure of the backward flux from
the homogeneous expectation.

The family of RDF curves shown in Fig. 1 were created by vary-
ing Np and R, the two primary independent variables (beyond dis-
tance from cluster center, r); each of those nine RDF curves have
a different g(r=0) peak correlation value. To explore the relevance
of the shape of the Matérn RDF beyond just the peak correlation
value, we study the impact of various RDF curves with equivalent
g(r=0). Solving the Matérn RDF expression in Eq. (2) for the peak
correlation value for r=0 yields

3v

&0(0) = gy + ! (6)

This means that for a given set of (R, Np) input parameters, if
R is doubled (or halved) and N, is divided by (or multiplied by)
eight, the peak correlation value g(0) will be unchanged. We stud-
ied the impact of three Matérn RDFs with the same peak corre-
lation value with this method, and the recorded depth-dependent
flux curves are shown in Fig. 9. These results indicate that the im-
pact of RDF on the radiative transfer depends on more than simply
the peak correlation value, but also on the shape of the RDF itself.
This confirms that both correlation strength and correlation length
are relevant parameters.

5. Discussion and conclusions
5.1. Summary and interpretation of results

The presence of absorbing particles in a medium influences
the direct radiative transfer through the medium, and the result-
ing optical transmissivity is dependent on the size and number
of particles. However, if spatial correlations exist in particle loca-
tions, the resulting nonuniformities can lead to both clusters and
voids on scales of the same order as or smaller than the optical
mean free path (as defined for a uniform medium). In a purely
absorbing medium, the net effect of these voids and clusters is
to increase the direct radiative transfer through such a spatially-
correlated medium, leading to sub-exponential extinction that de-
viates from the prediction of Beer-Lambert-Bouguer attenuation
theory [20]. Conversely, negative spatial correlations (e.g., repelling
particles) can lead to super-exponential extinction [44].

In the scattering-dominated limit, for which absorption is es-
sentially non-existent, radiation is either transmitted directly (no
interaction with particles in the medium) or diffusely (once a par-
ticle is encountered, the direction of propagation changes but the
photon continues to traverse the medium). In this work, we have
investigated direct and diffuse radiative transfer in a medium with
spatially correlated scattering particles with a simplistic “ballistic
photon” model. Our simulations explored the forward-dominant
scattering regime that is typical of atmospheric clouds. The results
are framed in the context of forward and backward fluxes, moti-
vated by the commonly used two-stream flux equations.

Clustering was introduced using a Matérn clustering process
with an analytical RDF to rigorously study the impact of four inde-
pendent parameters, namely the number of clusters Np, the cluster
size R, the density of particles within a cluster Ap, and the particle
radius a. The parameter space was explored by constraining total
optical depth 7* to be 1 for all scattering simulations, and then
considering various combinations of N, Ap and a which together
comprise the inputs to cloud optical thickness. Optical depth does
not depend on cluster radius R, but the Matérn RDF depends on
both R and Nj.
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Fig. 6. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison.

Note that in all three Matérn scenarios, the density of clusters and cluster radius

are constant (e.g., N, = 500 and R=0.0075m, respectively). Changes in monodisperse

particle radius and number of mean particles per cluster (Ap) have almost no impact on depth-dependent flux curves when N, and R are held constant.

We found that particle clustering does indeed increase direct
transmission, but we also found that diffuse forward irradiance is
correspondingly reduced by a similar amount (Fig. 5). Additionally,
we found that varying only parameters absent from the Matérn
RDF (e.g., a and Ap) had no statistical impact on depth-dependent
flux recordings (Fig. 6). However, we determined that varying R
and N, (which are present in the RDF) did impact the irradiance
results calculated by the scattering simulations (Figs. 7 and 8, re-
spectively). Smaller clusters resulted in greater deviations from the
direct and diffuse forward homogeneous baseline results, as did
fewer but more densely packed parent clusters. Both of these con-
clusions are consistent with the hypothesis that these deviations
are caused by voids in the scattering medium, and the heuristic
prediction of the Beer-Lambert-Bouguer deviations developed by
Kostinski [19,20]. For a constant total number of particles in a vol-
ume, both smaller clusters (all else equal) and fewer clusters result
in larger voids and less (forward-dominant) scattering.

Lastly, we explored the relevance of the shape of the Matérn
RDF beyond the peak correlation value (i.e., r > 0) by changing
R and N, in tandem to study the impact of various RDF curves

with equivalent g(r=0) peak values. We found that in addition to
peak correlation value, the shape of the Matérn RDF is also sig-
nificant, as evidenced by the varying depth-dependent flux curves
in all four panels of Fig. 9. The Monte Carlo scattering simulations
confirm that both correlation strength and correlation length are
relevant parameters for predicting radiative transfer in a spatially
correlated particle-laden medium.

Some insight can be gained from considering the relevant
length scales in this radiative transfer problem. There are at least
four scales: particle radius a, cluster size R that can be referred
to as the correlation length scale, the photon mean free path de-
fined for the volume-average properties I ~ 1/(nQscq7a?), and the
box size L. In this work L has been fixed and constrained to be
equal to I, such that t*=1 for all cases. The clustering or corre-
lation length R in all cases explored here is smaller than I The
results show that both the correlation length and the strength of
correlation, expressed for example through g(r=0) (cf,, Eq. (6) for
the relationship with Nj), determine the extent to which optical
propagation and scattering deviate from the theoretical prediction
for domain-average properties.
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Fig. 7. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. All
virtual cloud distributions are monodisperse with 14 um particle radius. Note that in all three Matérn scenarios, the density of clusters and mean number of particles per

cluster are constant (e.g., N, = 500 and Ap = 64,000, respectively).

5.2. Results in context with prior work

Previous work [23,39] has gone into detail on trying to under-
stand the inter-relationships between length scales in this prob-
lem. For purely absorptive media, Larsen and Clark [23] used nu-
merical simulations to reveal that at least three different length-
scales will be relevant - particle size, correlation length-scale,
and optical mean-free-path between particles. The work of Petty
[39] also has similarities to the approach presented here, with the
“cloudlets” designed in that model similar in structure to the in-
dividual Matérn clusters in our simulation. Petty’s approach em-
ploys a non-dimensional parameter 7’ (referred to as the effective
mean optical thickness of a cloudlet) to attempt to capture all rele-
vant information about small scale variability necessary to resolve
the deviations from expected Beer-Lambert-Bouguer exponential
transmission. For our Matérn-clustered clouds, this 7/ parameter

can be expressed as

T = 3Qsca@®Ap 7)
2R?

In Petty’s notation the effective optical thickness, which ac-

counts for enhancement in transmission due to non-uniform dis-

tribution of liquid water, is expressed as t:ff = @(t")oW where

¢(t') is the optical depth reduction factor and W is the average
liquid water path. This can be written as re*ff = @ (t/)AQscama’L
where n is the domain-averaged number density. In terms of
Matérn parameters, the mean volumetric number density is 7 =
NpApV-1, allowing us to write the effective optical thickness as
re*ff=(p(t/)NpADV*1ana2L. Petty’s cloudlet optical thickness

can be expressed as T’ =3Qsqa’Ap(2R?)~1, but since we con-
strained the global optical thickness through constant 1 we can re-
write that as 7/ = 3Qscqa?iV (2R*Np)~!. This is an intriguing result
because we can now see that we have the same variable depen-
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Fig. 8. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. All
virtual cloud distributions are monodisperse with 14 um particle radius. Note that for both Matérn scenarios, cluster radius is constant (e.g., R=0.0075m).

dence, i.e. Np and R, as seen in our Matern RDF in Eq. (2). Given
this encouraging similarity, we computed ¢(t’) and Te*ff for the
conditions in all of our simulations to compare predictions of di-
rect, non-exponential transmission. The results of this comparison
(see Fig. 10) show reasonable agreement between our Monte Carlo
results and the cloudlet model, suggesting that the Matérn RDF
is consistent with the cloudlet approach. Because of the connec-
tion between the RDF and traditional, continuous correlation func-
tions [45], this RDF-based work can serve as a bridge between the
two approaches: radiative transfer calculations based on continu-
ous correlation functions [4,15] and those based on the analyti-
cal results from the clearly-visualized cloudlet model. The RDF has
the advantage that it has a direct link to discrete particle distri-
butions, and it is general in the sense that it can describe more
than Matérn or cloudlet models. For example, analytical expres-
sions exist for less defined forms of clustering, beyond the Matérn
notion of spherical particle clouds surrounded by voids (e.g., modi-
fied Thomas, Gibbs systems, excluded volume, etc.). The links iden-
tified here open the door for exploring to what extent other RDF
expressions are able to facilitate comparison of Monte Carlo re-

sults, and furthermore suggest that it should be possible to find
a quantitative link between ¢(t’) and the RDF.

A renormalization technique for predicting radiative transfer for
inhomogeneous clouds was proposed by Cairns et al. whereby sin-
gle scattering parameters are modified based on spatial variances
in scatterer concentration for use with plane-parallel calculations
[5]. They propose that for random, purely scattering media where
the correlation length is of the same order as the mean free path,
an augmented extinction cross section and asymmetry parameter
can be computed as
Oext (1+ Vrel)71

;o
Oext =

| ®8)
gJ :gll ‘i‘vrel(‘1 _g)]
where V,,; is the relative variance of scatterer concentration. When
spatially-varying scatterer concentration N(r) is comprised of a
mean concentration N and zero-mean fluctuating component 7(r),
as in

N(r) =N+n(r), (9)



12 C.D. Packard, M.L. Larsen and W.H. Cantrell et al./Journal of Quantitative Spectroscopy & Radiative Transfer 236 (2019) 106601

(a) Direct (Normalized) Forward Flux

0.4 0.5 0.6 0.7 0.9
0.00 —— —— — — r —
& ; Homogeneous (14 pxm)
EQ 0.25 ——— Matern (Np =4000, Ay = 8000, R = 0.00375 m)
o]
0 0.50 - = = .Matern (Np =500, A = 64000, R = 0.0075 m)
8 «Matern (N_=62.5 A =512000,R=0.015m)
= 075 P D
o
O e
1.00 "
(b) Diffuse (Normalized) Forward Flux
0 0.1 0.2 0.3 0.4 0.5 0.6
0.00 Y
& Homogeneous (14 ;m)
EQ_ 0.25 e Matern (Np = 4000, ’\D = 8000, R =0.00375m)
§ 0.50 = = = :Matern (N_ =500, A, = 64000, R = 0.0075 m)
a 1 1 e s e M. || s Matern (N_=62.5, A =512000, R =0.015m)
= 0.75 P N
o
O
1.00
(c) Backward (Normalized) Flux
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0.00 T T T T T T T T |
- Homogeneous (14 jm)
% 0.25 - Matern (Np = 4000, ’\D = 8000, R = 0.00375m)
§ 0.50 - = = .Matern (Np =500, Ay = 64000, R = 0.0075 m)
s s Matern (N_ = 62.5, A = 512000, R = 0.015 m)
= 0.75 P
o
O
1.00
(d) Total (Normalized) Forward Flux
0.950 0.955 0.960 0.965 0970 0.975 0.980 0.985 0.990 0.995 1.000
0.00 T T T T T T T T
b s Homogeneous (14 ;m)
EQ 0.25 ———— Matern (N'j = 4000, ’\D = 8000, R = 0.00375m)
§ 0.50 | - = = .Matern (Np = 500, ’\D = 64000, R = 0.0075 m)
a |0 e | e Matern (N_=62.5, A = 512000, R =0.015m)
5 0.75F p b
o]
1.00 -

Fig. 9. Matérn scattering results from three combinations of N, and R, both present in the RDF and varied together to achieve a constant RDF at g(r=0), are compared. Note

that Ap was changed in correspondence with N, to ensure a constant 7* of 1.
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Fig. 10. Comparison of direct, non-exponential transmission through spatially cor-
related particle distribution.

relative variance can be expressed as
Vit = (r)* N7 (10)

For our analysis, the average scatterer concentration is simply
the total number of scatterers divided by the simulation volume.
The variance calculations will depend on how the simulation vol-
ume is subdivided, i.e., it will be scale dependent. The number of
scatterers in each subvolume can be used to compute 7(r) and ul-
timately V,,;. For example, when 32 x 10% particles are grouped
into 500 parent clusters with an average of 64,000 particles per
cluster (of radius 7.5mm), dividing the 0.08 m3 volume into ten
subvolumes along the path of the direct beam yields a small rel-
ative variance of 1x 1072; division into 1000 cubic subvolumes
(e.g, 10 x 10 x 10) results in a larger relative variance of 1.3.
These values of V,, lead to modified asymmetry parameter g’ val-
ues of 0.849 and 0.711 (respectively) and modified scattering ef-
ficiency Q’scq values of 1.98 and 0.87 (respectively). In the former
case, where the scattering parameters are only slightly augmented,
the MCRT results match those of the homogeneous case (where
£=0.85 and Qs,q =2.0) and do not predict the direct and diffuse
forward flux deviations seen in the Matérn clustering simulation.
In the latter case, where the scattering parameters are heavily
modified by the calculated relative variance, total optical thickness
is greatly reduced (from 1.0 to 0.425, due to a reduced Qsc) and
none of the various flux components are predictive of the Matérn-
based MCRT results. This serves to illustrate the dependence of av-
eraging scale when considering a system of discrete particles. Here



C.D. Packard, M.L. Larsen and W.H. Cantrell et al./Journal of Quantitative Spectroscopy & Radiative Transfer 236 (2019) 106601 13

we have considered correlation lengths smaller than the mean free
path, and it should be noted again that this is outside the range
explored by Cairns et al. [5].

5.3. Concluding remarks and implications

It is reasonable to consider the implications of this work for ra-
diative transfer in the cloudy atmosphere, as a specific example of
a particulate system that possesses spatial correlations over a large
range of scales. The influence of spatial inhomogeneity on three-
dimensional radiative transfer has been considered in depth, for
the limit in which the scale of the inhomogeneity is larger than
the mean free path defined for the medium. The pioneering work
of Kostinski [20] makes clear, however, that fundamental assump-
tions of the continuum approach to radiative transfer are called
into question when correlations in a discrete-particulate medium
are considered. Indeed, in atmospheric clouds typical mean free
paths for regimes dominated by scattering (e.g., visible light) are
of order 100m, so essentially the entire turbulence inertial sub-
range lies at smaller scales. Therefore, entrainment and mixing
processes generate strong spatial correlations in droplet positions
from the ~100-m energy injection scale to the ~1-mm dissipation
scale, and inertial clustering generates spatial correlations from the
~1-cm scale down to the ~10um scale of a single particle diame-
ter [49,50]. The question of how these sub-free-path-scale correla-
tions might influence radiative transfer has been studied by several
groups for the absorbing-particle limit [15,20,23,44]. In this work
we have explored the regime in which light scattering is dominant,
and specifically for particles larger than the illuminating wave-
length for which forward scattering is pronounced; this is the rel-
evant regime for atmospheric clouds and visible/near-IR radiation.
The results of the study suggest that the degree to which there
is a deviation from standard radiative transfer using the medium-
averaged optical properties (e.g., mean free path) can be quantified
through the radial distribution function. This implies that knowl-
edge of the RDF resulting from inertial clustering and turbulent
mixing in atmospheric clouds would be valuable [26]. Treatment of
the RDF is a first step, as a two-particle correlation function, and
eventually it will be insightful to consider the possible relevance
of multi-particle correlations on light propagation.

This work has focused on the influence of clustering at scales
below the mean free path of the radiation, for optical depths up
to order unity. Implications for larger scales such as would be rel-
evant to cloud remote sensing or energy budgets will require con-
sideration of cloud organization at the full range of scales: for ex-
ample, it is already widely appreciated that clustering on spatial
scales large compared to the photon mean free path is of signifi-
cance in practical applications. It is known, however, that the tur-
bulent energy cascade stretches down to the 1 mm scale in the at-
mosphere, so clouds can be assumed to be non-uniform far be-
low the scale of a mean free path. The next stage of this work is
validation of the MCRT results directly with measurements in the
Pi cloud chamber. Characterization of actual clustering strength in
natural clouds will be required to put the chamber measurements
into atmospheric context. This kind of comparison will allow the
overall approach of MCRT methods to be assessed; although they
are widely used in applied radiative transfer, they are known to
neglect the detailed electromagnetic treatment that is potentially
necessary for full representation of propagation in a correlated
medium (e.g., [37]). Experimental results will be the ultimate ar-
biter.

In some cases presented here, the changes to direct and dif-
fuse radiation are nearly compensating; do such results suggest
that there is no significance to the clustering? That depends on
the problem under consideration: for any problem depending on
directional properties of the radiation field, the details of direct

versus diffuse will be of significance. It is a subject that will be
investigated in subsequent, combined computational and experi-
mental work. Indeed, the geometry chosen in this study was orig-
inally motivated by the desire to explore the extent to which op-
tical propagation through a turbulent cloud can be studied in the
laboratory. That has the advantage of allowing well-characterized
cloud and turbulence conditions, as well as statistically homoge-
neous and stationary conditions needed for spatial and temporal
averaging. The sensitivity actually required in a study of this phe-
nomenon, for realistic turbulence and clustering levels, will be the
subject of future work, but the results presented here suggest that
measurement of the cloud particle RDF will be a necessary step in
possible experiments.

Acknowledgments

We thank Benjamin Bandt-Horn, Eric Marttila and James Truax
of ThermoAnalytics, Inc. for their insightful suggestions regard-
ing the practical implementation of current computer graphics
methodologies for efficient ray tracing. We are grateful to Craig
Bohren, Eugene Clothiaux, and Peter Pilewskie for helpful conver-
sations about Monte Carlo versus 2-stream results. This material
is based on research sponsored by Air Force Research Laboratory
(AFRL) under agreement number FA9453-16-1-0083, as well as
National Science Foundation (NSF) grants AGS-1532977 and AGS-
1823334. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of Air Force Research Laboratory (AFRL)
or the U.S. Government.

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jqsrt.2019.106601.

References

[1] Banko AJ, Villafafie L, Kim JH, Esmaily M, Eaton JK. Stochastic modeling of di-
rect radiation transmission in particle-laden turbulent flow. ] Quant Spectrosc
Radiat Transf 2019;226:1-18. https://doi.org/10.1016/j.jgsrt.2019.01.005.

[2] Barker HW. Solar radiative transfer through clouds possessing isotropic vari-
able extinction coefficient. Q J R Meteorol Soc 1992;118:1145-62. https://doi.
org/10.1002/qj.49711850807.

[3] Bohren CF, Clothiaux EE. Fundamentals of atmospheric radiation: an introduc-
tion with 400 problems. Weinheim: Wiley-VCH; 2011.

[4] Borovoi AG. Radiative transfer in inhomogeneous media. Dokl Akad Nauk SSSR
1984;276:1374-8.

[5] Cairns B, Lacis AA, Carlson BE. Absorption within inhomogeneous clouds and
its parameterization in general circulation models. ] Atmos Sci 2000;57:700—
14. https://doi.org/10.1175/1520-0469(2000)057 (0700:AWICAI)2.0.CO;2.

[6] Chang K, Bench ], Brege M, Cantrell W, Chandrakar K, Ciochetto D, Maz-
zoleni C, Mazzoleni LR, Niedermeier D, Shaw RA. A laboratory facility to study
gas-aerosol-cloud interactions in a turbulent environment: the IT chamber.
Bull Am Meteorol Soc 2016 https://doi.org/10.1175/BAMS-D-15-00203.1.

[7] Chiu SN, Stoyan D, Kendall WS, Mecke ]. Stochastic geometry and its applica-
tions. 3rd ed. Chichester: Wiley; 2013.

[8] Chun ], Koch DL, Rani SL, Ahluwalia A, Collins LR. Clustering of aerosol parti-

cles in isotropic turbulence. ] Fluid Mech 2005;536:219-51. https://doi.org/10.

1017/S0022112005004568.

Cole JNS. Assessing the importance of unresolved cloud-radiation interactions

in atmospheric global climate models using the multiscale modelling frame-

work Doctoral Thesis. Department of meteorology, The Pennsylvania State Uni-

versity; 2005.

[10] Collins DG, Blittner WG, Wells MB, Horak HG. Backward monte carlo cal-
culations of the polarization characteristics of the radiation emerging from
spherical-shell atmospheres. Appl Opt 1972;11:2684-96. https://doi.org/10.
1364/A0.11.002684.

[11] Danielson RE, Moore DR, van de Hulst HC. The transfer of visible radia-
tion through clouds. ] Atmos Sci 1969;26:1078-87. https://doi.org/10.1175/
1520-0469(1969)026(1078:TTOVRT)2.0.CO;2.

[9


https://doi.org/10.13039/100006602
https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.jqsrt.2019.106601
https://doi.org/10.1016/j.jqsrt.2019.01.005
https://doi.org/10.1002/qj.49711850807
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0003
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0003
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0003
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0004
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0004
https://doi.org/10.1175/1520-0469(2000)057%3C0700:AWICAI%3E2.0.CO;2
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0006
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0007
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0007
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0007
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0007
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0007
https://doi.org/10.1017/S0022112005004568
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0009
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0009
https://doi.org/10.1364/AO.11.002684
https://doi.org/10.1175/1520-0469(1969)026%3C1078:TTOVRT%3E2.0.CO;2

14 C.D. Packard, M.L. Larsen and W.H. Cantrell et al./Journal of Quantitative Spectroscopy & Radiative Transfer 236 (2019) 106601

[12] Davis AB. Effective propagation kernels in structured media with broad spatial
correlations, illustration with large-scale transport of solar photons through
cloudy atmospheres. In: Graziani F, editor. Computational methods in trans-
port, lecture notes in computational science and engineering. Berlin Heidel-
berg: Springer; 2006. p. 85-140.

[13] Davis AB, Marshak A. Photon propagation in heterogeneous optical media with
spatial correlations: enhanced mean-free-paths and wider-than-exponential
free-path distributions. J Quant Spectrosc Radiat Transf 2004;84:3-34. https:
//doi.org/10.1016/S0022-4073(03)00114-6.

[14] Davis AB, Marshak A, Gerber H, Wiscombe W]J. Horizontal structure of marine
boundary layer clouds from centimeter to kilometer scales. ] Geophys Res At-
mos 1999;104:6123-44. https://doi.org/10.1029/1998]D200078.

[15] Frankel A, laccarino G, Mani A. Optical depth in particle-laden turbulent flows.
] Quant Spectrosc Radiat Transf 2017;201:10-16. https://doi.org/10.1016/j.jgsrt.
2017.06.029.

[16] Frankel A, laccarino G, Mani A. Convergence of the Bouguer-Beer law for
radiation extinction in particulate media. ] Quant Spectrosc Radiat Transf
2016;182:45-54. https://doi.org/10.1016/j.jqsrt.2016.05.009.

[17] Henyey LG, Greenstein JL. Diffuse radiation in the galaxy. Astrophys ]
1941;93:70-83. https://doi.org/10.1086/144246.

[18] Ishimaru A. Wave propagation and scattering in random media. New York; Ox-
ford; New York: IEEE Press; Oxford University Press; 1997.

[19] Kostinski AB. On the extinction of radiation by a homogeneous but spatially
correlated random medium: reply to comment. JOSA A 2002;19:2521-5. https:
//doi.org/10.1364/J0SAA.19.002521.

[20] Kostinski AB. On the extinction of radiation by a homogeneous but spatially
correlated random medium. JOSA A 2001;18:1929-33. https://doi.org/10.1364/
JOSAA.18.001929.

[21] Landau LD, Lifshitz EM. Statistical physics. Oxford, UK: Butterworth-Heine-
mann; 1980.

[22] Larsen EW, Vasques R. A generalized linear boltzmann equation for non-
classical particle transport. ] Quant Spectrosc Radiat Transf 2011;112:619-31.
2009 International Conference on Mathematics and Computational Methods
(M&C 2009) https://doi.org/10.1016/j.jqsrt.2010.07.003 .

[23] Larsen M, Clark A. On the link between particle size and deviations from the
Beer-Lambert-Bouguer law for direct transmission. ] Quant Spectrosc Radiat
Transf 2014;133:646-51. https://doi.org/10.1016/j.jqsrt.2013.10.001.

[24] Larsen ML, Briner CA, Boehner P. On the recovery of 3D spatial statis-
tics of particles from 1D Measurements: implications for airborne in-
struments. ] Atmos Ocean Technol 2014;31:2078-87 https://doi.org/10.1175/
JTECH-D-14-00004.1.

[25] Larsen ML, Shaw RA. A method for computing the three-dimensional radial
distribution function of cloud particles from holographic images. Atmos Meas
Technol 2018;11:4261-72. https://doi.org/10.5194/amt-11-4261-2018.

[26] Larsen ML, Shaw RA, Kostinski AB, Glienke S. Fine-Scale droplet cluster-
ing in atmospheric Clouds: 3D radial distribution function from airborne
digital holography. Phys Rev Lett 2018;121:204501. https://doi.org/10.1103/
PhysRevLett.121.204501.

[27] Li ], Barker H, Yang P, Yi B. On the aerosol and cloud phase function expansion
moments for radiative transfer simulations. ] Geophys Res Atmos 2015;12:142.
120128-12 https://doi.org/10.1002/2015JD023632 .

[28] Lu J, Nordsiek H, Saw EW, Shaw RA. Clustering of charged inertial parti-
cles in turbulence. Phys Rev Lett 2010;104:184505. https://doi.org/10.1103/
PhysRevLett.104.184505.

[29] Marchuk GI, Mikhailov GA, Nazaraliev MA, Darbinjan RA, Kargin BA, Elepov BS.
The Monte Carlo methods in atmospheric optics. Springer; 1980 https://doi.
0rg/10.1007/978-3-540-35237-2.

[30] Marshak A, Davis AB. 3D radiative transfer in cloudy atmospheres. Berlin:
Springer; 2005.

[31] Martinez V], Saar E. Statistics of the galaxy distribution. CRC Press; 2002.

[32] Matérn B. Spatial variation. Lecture notes in statistics. 2nd ed. New York:
Springer-Verlag; 1986.

[33] Matérn B. Poisson processes in the plane and related models for clumping and
heterogeneity, NATO Advanced Study Institute on Statistical Ecology. Pennsyl-
vania State University; 1972.

[34] Matsuda K, Onishi R, Kurose R, Komori S. Turbulence effect on cloud radia-
tion. Phys Rev Lett 2012;108:224502. https://doi.org/10.1103/PhysRevLett.108.
224502.

[35] Mishchenko MI. Multiple scattering, radiative transfer, and weak localization in
discrete random media: unified microphysical approach. Rev Geophys 2008:46.
https://doi.org/10.1029/2007RG000230.

[36] Mishchenko MI. Radiative transfer in clouds with small-scale inhomogeneities:
microphysical approach. Geophys Res Lett 2006:33. https://doi.org/10.1029/
2006GL026312.

[37] Mishchenko MI, Dlugach JM, Yurkin MA, Bi L, Cairns B, Liu L, Panetta RL,
Travis LD, Yang P, Zakharova NT. First-principles modeling of electromagnetic
scattering by discrete and discretely heterogeneous random media. Phys. Rep.
2016;632:1-75. First-principles modeling of electromagnetic scattering by dis-
crete and discretely heterogeneous random media https://doi.org/10.1016/j.
physrep.2016.04.002 .

[38] Packard CD, Shaw RA, Cantrell WH, Kinney GM, Roggemann MC, Valenzuela JR.
Measuring the detector-observed impact of optical blurring due to aerosols in
a laboratory cloud chamber. J Appl Remote Sens 2018;12:042404. https://doi.
org/10.1117/1JRS.12.042404.

[39] Petty GW. Area-Average solar radiative transfer in three-dimensionally in-
homogeneous clouds: the independently scattering cloudlet model. ] At-
mos Sci 2002;59:2910-29. https://doi.org/10.1175/1520-0469(2002)059(2910:
AASRTI)2.0.CO;2.

[40] Plass GN, Kattawar GW. Monte carlo calculations of light scattering from
clouds. Appl Opt 1968;7:415-19. https://doi.org/10.1364/A0.7.000415.

[41] Reade WC, Collins LR. Effect of preferential concentration on turbulent colli-
sion rates. Phys Fluids 2000;12:2530-40. https://doi.org/10.1063/1.1288515.

[42] Saw E-W, Shaw RA, Salazar JPLC, Collins LR. Spatial clustering of polydisperse
inertial particles in turbulence: II. Comparing simulation with experiment.
New ] Phys 2012;14:105031. https://doi.org/10.1088/1367-2630/14/10/105031.

[43] Shaw RA. Particle-turbulence interactions in atmospheric clouds. Annu Rev
Fluid Mech 2003;35:183-227. https://doi.org/10.1146/annurev.fluid.35.101101.
161125.

[44] Shaw RA, Kostinski AB, Lanterman DD. Super-exponential extinction of radi-
ation in a negatively correlated random medium. ] Quant Spectrosc Radiat
Transf 2002;75:13-20. https://doi.org/10.1016/S0022-4073(01)00287-4.

[45] Shaw RA, Kostinski AB, Larsen ML. Towards quantifying droplet clustering
in clouds. Q J R Meteorol Soc 2002;128:1043-57. https://doi.org/10.1256/
003590002320373193.

[46] Sobol’ IM, Chicago Univ Il. Department of mathematics. The Monte Carlo
method. Popular lectures in mathematics. The University of Chicago Press;
1974.

[47] Thomas GE, Stamnes K. Radiative transfer in the atmosphere and ocean. Cam-
bridge; New York: Cambridge University Press; 1996.

[48] Warhaft Z. Passive scalars in turbulent flows. Annu Rev Fluid Mech
2000;32:203-40. https://doi.org/10.1146/annurev.fluid.32.1.203.

[49] Wyngaard ]JC. Turbulence in the atmosphere. Cambridge, UK; New York: Cam-
bridge University Press; 2010.

[50] Wyngaard ]JC. Atmospheric turbulence. Annu Rev Fluid Mech 1992;24:205-34.
https://doi.org/10.1146/annurev.fl.24.010192.001225.

[51] Zoller CJ, Hohmann A, Foschum F, Geiger S, Geiger M, Ertl TP, Kienle A.
Parallelized monte carlo software to efficiently simulate the light propaga-
tion in arbitrarily shaped objects and aligned scattering media. ] Biomed Opt
2018;23:1-12. https://doi.org/10.1117/1.JB0.23.6.065004.


http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0012
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0012
https://doi.org/10.1016/S0022-4073(03)00114-6
https://doi.org/10.1029/1998JD200078
https://doi.org/10.1016/j.jqsrt.2017.06.029
https://doi.org/10.1016/j.jqsrt.2016.05.009
https://doi.org/10.1086/144246
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0018
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0018
https://doi.org/10.1364/JOSAA.19.002521
https://doi.org/10.1364/JOSAA.18.001929
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0021
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0021
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0021
https://doi.org/10.1016/j.jqsrt.2010.07.003
https://doi.org/10.1016/j.jqsrt.2013.10.001
https://doi.org/10.1175/JTECH-D-14-00004.1
https://doi.org/10.5194/amt-11-4261-2018
https://doi.org/10.1103/PhysRevLett.121.204501
https://doi.org/10.1002/2015JD023632
https://doi.org/10.1103/PhysRevLett.104.184505
https://doi.org/10.1007/978-3-540-35237-2
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0030
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0030
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0030
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0031
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0031
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0031
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0032
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0032
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0033
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0033
https://doi.org/10.1103/PhysRevLett.108.224502
https://doi.org/10.1029/2007RG000230
https://doi.org/10.1029/2006GL026312
https://doi.org/10.1016/j.physrep.2016.04.002
https://doi.org/10.1117/1.JRS.12.042404
https://doi.org/10.1175/1520-0469(2002)059%3C2910:AASRTI%3E2.0.CO;2
https://doi.org/10.1364/AO.7.000415
https://doi.org/10.1063/1.1288515
https://doi.org/10.1088/1367-2630/14/10/105031
https://doi.org/10.1146/annurev.fluid.35.101101.161125
https://doi.org/10.1016/S0022-4073(01)00287-4
https://doi.org/10.1256/003590002320373193
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0046
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0046
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0046
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0047
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0047
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0047
https://doi.org/10.1146/annurev.fluid.32.1.203
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0049
http://refhub.elsevier.com/S0022-4073(19)30198-0/sbref0049
https://doi.org/10.1146/annurev.fl.24.010192.001225
https://doi.org/10.1117/1.JBO.23.6.065004

	Light scattering in a spatially-correlated particle field: Role of the radial distribution function
	1 Introduction
	2 Exploring the Matérn cluster process
	2.1 The influence of particle clustering on transmission through a scattering medium
	2.2 Construction and properties of a Matérn cluster process

	3 Description and validation of Monte Carlo Ray Tracing code
	3.1 Overview of the MCRT code (‘mcScatter’)
	3.2 Validation of MCRT direct beam extinction through a homogeneous uncorrelated medium
	3.3 Comparison of MCRT results to two-stream theory
	3.4 Simulation design for correlated random media

	4 Results
	4.1 Impact of particle clustering on depth-dependent flux
	4.2 Impact of Matérn RDF parameters on depth-dependent flux
	4.3 Variations in optical depth-dependent flux due to changes in Matérn clustering parameters

	5 Discussion and conclusions
	5.1 Summary and interpretation of results
	5.2 Results in context with prior work
	5.3 Concluding remarks and implications

	Acknowledgments
	Supplementary materials
	References


