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a b s t r a c t 

Radiative transfer through particle-laden media such as clouds can be impacted by variations in parti- 

cle spatial distributions. Due to mixing and inertial effects of droplets suspended in the almost always

turbulent atmosphere, cloud particles are often spatially-correlated. The correlations result in clusters

and voids within the droplet field that, even when smaller than the photon mean free path, can lead

to deviations from the exponential extinction law. Prior work has numerically investigated these depar- 

tures from exponential attenuation in absorptive media; this work extends those results for a scattering

medium. The problem is explored with a Monte Carlo Ray Tracing (MCRT) program capable of track- 

ing light attenuation through both perfectly random (uncorrelated) and spatially correlated collections

of scatterers and/or absorbers. The MCRT program is favorably compared to two-stream flux equations,

and numerical exploration of the pure-absorption case is used to determine the sampling statistics nec- 

essary to characterize radiative transmission within the numerical simulation. Light transmission through

fields of spatially-correlated, non-absorbing, scattering particles is explored. Particles are distributed fol- 

lowing a Matérn Point Process, which allows cluster strength and size, as well as the usual variables of

particle scattering cross section and number density to be varied. The results show that the degree of

non-exponential attenuation is determined by the magnitude and shape of the radial distribution func- 

tion, which describes correlations in discrete (non-continuous) particle distributions. Parametric studies

revealed that the number of clusters and cluster radius, factors in the Matérn radial distribution function,

impact direct, diffuse and backward radiative transfer. The Matérn RDF is shown to be consistent with a

previous “cloudlet” approach, providing a bridge between the analytical cloudlet model and continuous

correlation function approaches.

© 2019 Elsevier Ltd. All rights reserved.
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. Introduction

Radiative transfer through a spatially correlated medium results

n a distinct behavior, essentially because photons propagate fur-

her in void regions, and experience stronger extinction in dense

egions, relative to a homogeneous medium [30] . The problem

as a multitude of applications, ranging from the cloudy atmo-

phere to biological and energy-generation systems [13,22,51] . In

his work, we consider distributions of discrete particles, with the

tmospheric context as our motivating problem. 

When spatial correlations are present in the positions of per-

ectly absorbing particles, deviations from the usual exponential

xtinction emerge [15,20,23] ; these deviations can be both super-
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r sub-exponential, depending on the nature of the spatial corre-

ations [44] . Spatial correlations between particles within a turbu-

ent flow can be created by several mechanisms, including iner-

ial clustering [41] and turbulent mixing [48] . For example, mixing

nd entrainment in atmospheric cloud boundaries leads to pockets

f cloudy and clear air on spatial scales ranging from km to mm

14,43] . Recent work has suggested that, at least in the absorbing-

article problem, the relevant clustering metric is the radial distri-

ution function [15,44] . 

How does the situation change when we consider diffuse ra-

iation in a scattering medium? Previous results were for absorb-

ng particles or, equivalently, extinction of a direct beam, and we

ight expect that the situation with scattering is more complex.

evertheless, the key geometrical argument that suggests a mecha-

ism for the non-exponential behavior should be general (see, e.g.,

19,20] ), and a natural follow-on question to the previous numer-
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ical work on absorbing clouds is to determine whether the radial

distribution function can also capture the essential physics at play

in a medium containing purely scattering particles. 

We address the problem using the ray tracing Monte Carlo ra-

diative transfer approach that has been shown to be consistent

with standard radiative transfer (e.g., [3] ). This should be consis-

tent with the findings of Mishchenko [35,36] that even in a cor-

related medium the classical radiative transfer equation holds, as

long as high-order scattering paths can be neglected and assump-

tions of ergodicity and spatial uniformity are valid. To limit the

scope of the work, we take as context the transport of visible

light in a cloud of water droplets as found in atmospheric appli-

cations (e.g., wavelength ∼550 nm and droplet radius ∼14 μm). In

this regime, absorption is extremely weak and therefore in the re-

mainder of this work we take the single scatter albedo to be ex-

actly unity. Furthermore, we consider the regime in which multiple

scattering does not become dominant (e.g., optical thickness of or-

der unity). 

There are several reasons motivating the use of Monte Carlo

Ray Tracing (MCRT) within a field of discrete particles rather than

the more standard (and computationally efficient) photon-path-

distribution function. At a fundamental level, we are exploring ra-

diative transfer at scales on which the notion of a continuously-

distributed system becomes ill-defined, and where discreteness ef-

fects such as sampling or ‘shot’ noise are relevant. We therefore

take the direct approach of explicit representation of each parti-

cle. Another primary motivation is generality and flexibility when

it comes to representing radiative transfer in a real system, such as

the Pi Cloud Chamber [6] . In that case, we must consider sampling

of a dilute medium within a confined geometry. We find the pos-

sibility of future comparison between numerical computations of

direct and diffuse radiation and measurements of these fields in a

laboratory cloud chamber appealing; in particular, we have in mind

the Pi Cloud Chamber, which is able to produce optical thicknesses

of order unity [6] . For example, the assumptions drawn into focus

by Mishchenko merit direct experimental assessment, especially

the insight that averaging scales play a central role [36] . Besides

the finite-sample effects, the explicit, discrete-particle approach al-

lows for simpler implementation of boundary conditions. The gen-

erality of this approach will also allow the method to be applied

to conditions in which clustering may not be isotropic, such as in

turbulent Rayleigh-Bénard convection. Eventually, it would be of

interest to compare the discrete approach to the path-distribution

approach for dilute, finite-size systems. 

In this work, perfectly random and correlated spatial particle

distributions (generated using a Matérn Point Process model, hav-

ing a known closed-form radial distribution function) are gen-

erated within a simulation volume. Then, a Monte Carlo Ray

Tracing code – capable of simulating scattering events either

through full Mie computation or more approximately through the

Henyey-Greenstein phase function – propagates individual pho-

tons through the simulation volume, tracking direct, diffuse for-

ward, and diffuse backward radiative fluxes from an initially colli-

mated beam of photons entering the simulation volume at normal

incidence. 

The paper proceeds as follows: In Section 2 we define the radial

distribution function (RDF) and introduce the Matérn process as an

analytic model for introducing particle spatial correlations via the

RDF. In Section 3 we describe the Monte Carlo Ray Tracing (MCRT)

code that is used to simulate light propagation through a medium

containing discrete particles. In Section 4 we present results of

the simulations, showing departure from propagation through a

uniformly random particle field, and we interpret the results in

the context of the RDF. In the concluding section we discuss the

results and their possible implications for atmospheric radiative

transfer. 
t  
. Exploring the Matérn cluster process 

.1. The influence of particle clustering on transmission through a 

cattering medium 

As noted above, deviations from exponential attenuation in tra-

itional radiative transfer theory are expected when the particles

n the medium are spatially correlated [20] . Inertial particles in

 turbulent fluid (e.g., cloud droplets in the atmosphere) provide

ne physical scenario where these spatial correlations are known

o exist [26,42] . Previous work [15,23,44] suggests that the devia-

ion from exponential behavior in such media may depend on the

adial distribution function describing that statistical structure of

articulate clustering. 

The radial distribution function g ( r ) of a particle-laden medium

uantifies the scale-localized clustering of the particles in the

edium [21,25,26,41,42,44] . It can be readily understood through

ts relation to the joint probability of finding a particle in volumes

V 1 and dV 2 , both separated by distance r , in a system with global

article number density n : 

p ( 1 , 2 ) ( r ) = ( nd V 1 ) ( nd V 2 ) g ( r ) (1)

Algorithmically, g ( r ) can be understood as the observed number

f particle pairs separated by distance r ± δr relative to the num-

er of particle pairs expected at the same distance for a perfectly

andom population (Poisson distributed at all scales). 

Testing the radial distribution function dependence on radiative

ransmission through a purely scattering medium will be facilitated

y generating scatterer positions within the simulation volume via

 method that produces a known, closed-form radial distribution

unction. Particle positions in a turbulent flow-field in steady-state

re often modelled with a decaying power-law RDF that is depen-

ent on the Stokes number [8] . The construction of a simulation

olume of scatterers with a power-law radial distribution function

resents at least two challenges; (i) g ( r → 0) = ∞ , which is phys-

cally impossible, and (ii) the lack of a simple algorithm to place

articles in a way that replicates a power-law radial distribution.

dditionally, there are some physical mechanisms that cause clus-

ering that are not expected to have a power-law form like parti-

le charging [28] or convective organization [2] . For this study, in

ieu of generating clustered particle spatial locations for a specific

hysical mechanism (e.g., running turbulence simulations), we in-

tead take a more general approach. We have opted to utilize the

atérn cluster process to distribute scattering particles through-

ut the simulation volume, which has the advantage of providing

n analytical form for the RDF that can be explicitly adjusted to

hange the scale and magnitude of clustering. 

The Matérn cluster process [31–33] is a Neyman–Scott point

rocess model that has several advantageous features for this

ork: (i) it has an analytically straightforward closed-form expres-

ion for its radial distribution function, (ii) it has a fundamental

haracteristic length-scale R , and (iii) it is numerically easy to sim-

late. For spatial scales larger than 2R, the Matérn cluster process

adial distribution function is the same as that for a perfectly ran-

om distribution. Additionally, like power-law RDFs, the RDF of the

atérn cluster process has a monotonic decrease with increasing

patial scale (but does not diverge at small distances like power-

aw RDFs). 

.2. Construction and properties of a Matérn cluster process 

All Neyman–Scott point process models are constructed in the

ame way; (i) some number of “parent” particles N p , are dis-

ributed in a perfectly random manner throughout the cloud vol-

me V with spatial density N p / V , (ii) some discrete probability dis-

ribution function with a specified mean λ is sampled to assign
D 
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Fig. 1. Dependence of theoretical Matérn radial distribution function (RDF) on number of clusters, N p , and cluster radius, R, given the 0.08 m 
3 cloud volume used in our 

simulations. Note that at distances r greater than 2R the RDF illustrates statistical structure equivalent to an uncorrelated distribution ( g 3D = 1 for r > 2 R ). 
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ow many “daughter” particles will be associated with each par-

nt particle, and (iii) some continuous probability density function

s sampled to determine how far each daughter particle is placed

rom its associated parent particle. The final collection of particles

ill be the ensemble of daughter particles generated through this

rocess. For the Matérn cluster process, the discrete probability

istribution in step (ii) is a Poisson distribution and the contin-

ous probability distribution in step (iii) is designed to place the

aughter with uniform probability anywhere within a sphere of

adius R around the associated parent particle. Ultimately, a statis-

ically homogeneous but clustered distribution with approximately

 N p • λD ) total particles is generated. More detail including a figure

emonstrating this construction process in two-dimensions can be

ound in Larsen et al. [24] . For this system, the resulting radial dis-

ribution function g 3 D ( r ) for a 3-dimensional Matérn cluster pro-

ess can be written [7,24] 

 3 D ( r ) = 

⎧ ⎨ 

⎩ 

3 V 

8 πR 6 N p 

(
R − r 

2 

)2 (
2 R + 

r 

2 

)
+ 1 (r < 2 R ) 

1 ( r ≥ 2 R ) 

(2) 

It is important to note here that with a constant cloud volume,

he Matérn radial distribution function (RDF) given by Eq. (2) is

ependent only on the number of parent clusters and the cluster

adius ( N p and R , respectively), and does not vary with the average

umber of particles per cluster, λD . The dependence of the Matérn

DF, g(r) , on N p and R is illustrated in Fig. 1 . 

. Description and validation of Monte Carlo Ray Tracing code 

.1. Overview of the MCRT code (‘mcScatter’) 

A Monte Carlo scattering simulation code, ‘mcScatter’, was cre-

ted to explore the role that spatial correlations play in radiative

ransfer through a light-scattering medium such as an atmospheric

loud. The general structure of our MCRT code was motivated in

art by a desire to eventually validate the numerical results with

xperiments in a cloud chamber facility [6] . The virtual laboratory

f a computer simulation allows for the relaxation of the physical

onstraints of an actual cloud chamber (such as particle clustering

imits and experimental setup restrictions) to predict experimen-
al results and develop an effective methodology for measuring pa-

ameters of interest. 

To match experimental conditions potentially realizable in the

hamber, the numerical work that follows is limited to a spatial

omain of 2 m x 0.2 m x 0.2 m (inspired by a realistic optical path

hrough the chamber) and total optical thickness of order τ ∗∼1.

ur MCRT code, described in greater detail in the supplemental

aterial, allows for the specification of optical wavelength, par-

icle size, complex index of refraction and many other boundary

onditions. In this paper we focus our analysis in the visible spec-

rum with an optical wavelength of 550 nm, and examine rela-

ively large but realistic cloud droplet sizes (e.g., radius ∼14 μm)

ased on previous cloud chamber measurements [6,38] . The result-

ng size parameter focuses our analysis on the forward-scattering

egime with a single scatter albedo of 1 and a scattering efficiency

f Q sca ≈ Q ext ≈ 2. 

Approaches exist for addressing this problem directly from

axwell’s equations [35,37] ; however, direct use of methods like

he superposition T matrix method remain impractical for sys-

ems with large numbers of particles like clouds. Previous work

5,12,39] has led to the development of heuristic models to quan-

ify the radiative transmission through inhomogeneous particle-

aden media via a variety of methods. In Section 5 we discuss the

bility of these heuristic techniques to predict results similar to

hose found by our MCRT analysis. 

Others have investigated such heterogeneous systems through

he development of numerical Monte-Carlo simulations [29,30] ; a

lear discussion can be found in Bohren and Clothiaux [3] but

umerous relevant publications can be found on the subject

10,11,40] . The Monte Carlo method [46] has often been applied to

nvestigate radiative transfer problems where closed form solutions

re challenging or impossible, and a detailed description of its ap-

lication to inhomogeneous media has been presented [9] . 

These numerical methods typically explore radiative transmis-

ion without assigning physical locations to particles by stochasti-

ally modeling the free-path distribution between successive scat-

ering interactions. In these simulations, the distances that photons

ravel before redirection are obtained via random draws from an

nalytic (usually exponential) free-path cumulative density func-

ion (CDF) based on the scatterer concentration of the medium.

odifications to propagation directions are obtained via random
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draws from an appropriate scattering phase-function (e.g. Henyey-

Greenstein or Mie) describing the angular distribution of light in-

tensity scattered by a particle for a given wavelength. This process

of computing distance traveled prior to scattering, choosing a scat-

tering angle, and re-computing distance traveled is repeated un-

til all rays cast into the medium exit (based on specified “wall”

boundary conditions). 

In a ballistic ‘photon’ simulation [23,44] , particles are placed in

a volume at specified locations, and numerous rays are cast into

the scattering medium [1,16] . Each ray is traced until it either ex-

its the cloud on the other side unscattered (direct radiation) or its

path intersects a particle (i.e., a geometric “collision”). The path of

a scattered photon proceeds similar to those in the standard Monte

Carlo algorithm outlined above; the new propagation direction is

chosen from a phase function and subsequent scattering events can

occur until the particle leaves the computational volume. Details

associated with the computational implementation of this model

are presented in the supplemental material. 

This type of ballistic photon simulation allows particles to be

placed anywhere in the volume to determine the impact of their

spatial correlations on radiative transfer, but this benefit comes

at the cost of recording and tracking a multitude of particle po-

sitions and collision locations. Though other approaches may re-

solve continuous media better [37] , ballistic photon simulations

are especially well-suited for spatially-correlated media where an-

alytic extinction CDFs may not be known [44] . Our ballistic MCRT

simulation extends the related numerical approach presented in

Shaw et al. (2002) and Larsen and Clark [23] to a scattering do-

main. These simulations employ explicit positions for each individ-

ual particle within the medium, thus allowing for geometric ray-

tracing to explore an arbitrary inter-scatterer distribution, rather

than utilize a blind draw from a static (known) distribution func-

tion. 

The simplest limiting case of this MCRT analysis occurs when

simulating a cloud of monodisperse particles identically and inde-

pendently distributed randomly within the simulation volume (see

top panel of Fig. 2 ). Such a homogeneous system can serve as a

control, where results can be validated against standard radiative

transfer theory and expected analytic results. After validation on

this simple (homogeneous) system, the MCRT code can be used to

analyze virtual clouds comprised of non-uniform particle locations

generated with the Matérn process described in the previous sec-

tion (with an example of such a clustered distribution shown in

the bottom panel of Fig. 2 ). 

Rays (or ‘photons’) are initialized at uniformly-random ( x, y,

z = 0 ) positions and cast in a normally-incident collimated beam

through one side of the volume, which contains numerous par-

ticles at specified (stationary) spatial locations. Intersections be-

tween these rays and particles create scattering events that modify

the direction of each photon path; new ray directions are deter-

mined from the scattering phase function. Fig. S-3 in the supple-

mental material illustrates a subset of rays from a typical simu-

lation result. In the case of cloud droplets with typical diameters

larger than the wavelength of visible light, the resultant size pa-

rameter yields a scattering pattern that is forward-dominant. 

The most rigorous way to calculate the scattering phase func-

tion is through Mie theory, where particles are considered as ho-

mogenous dielectric spheres interacting with an incident plane

wave of light. However, it is convenient to have an analytic for-

mula that approximates the actual scattering phase function shape,

especially at this initial stage where details of the scattering are

not expected to be as important for the scientific questions be-

ing explored. The Henyey-Greenstein phase function, essentially a

probability density function (PDF) of scattering angle, is a com-

mon surrogate for the actual phase function [17] . Its analytic form

allows it to be integrated to calculate a closed-form cumulative
ensity function (CDF). Its parametric nature allows it to be em-

loyed rather simply, with sufficient accuracy for many appli-

ations [3,18,47] . The mcScatter software introduced here makes

oth Mie and HG (Henyey-Greenstein) phase functions available for

cattering simulations. 

As numerous rays are traced through the scattering medium,

he locations of particle collisions and all individual ray segments

re recorded. Direct and diffuse flux is recorded at a high spatial

delity throughout the cloud depth, both backward and forward.

his allows for direct, diffuse and total forward irradiance as well

s backward irradiance to be calculated at many places within the

loud volume. Further details regarding the implementation of our

cattering code beyond the basic phenomenological approach ex-

lained in this subsection can be found in the supplemental mate-

ial. 

.2. Validation of MCRT direct beam extinction through a 

omogeneous uncorrelated medium 

Before analyzing the impact of a spatially-correlated particle

eld on light scattering, we first ensured the fidelity of our MCRT

ode for non-scattering particles that are distributed with uniform

robability (no spatial correlations). Given initial downward irradi-

nce on a cloud top, F 0 , the direct (unscattered) irradiance F 
↓ 
direct 

s an exponential function of optical depth into the medium. By

ormalizing the direct, unscattered irradiance by the initial down-

elling irradiance (where τ = 0) we get an expression for the nor-

alized direct flux [3] which can be written as 

 

↓ 
direct 

= 

F 
↓ 
direct 

F 0 
= exp ( −τ ) (3)

To calculate normalized direct flux with our MCRT code, we

niformly divide the expected total optical thickness into numer-

us “slabs”. We represent total optical thickness as ( τ ∗ = c σ z ),

here c is the (number) concentration of scatterers, σ is the ef-

ective scattering cross section of each scatterer, and z is propaga-

ion depth through entire cloud. We then cast N ray rays into the

article-laden medium and trace each ray to determine how may

labs are traversed before an absorbing particle is encountered. The

umber of rays passing each slab boundary is dependent on the

otal number of rays initially cast, but by dividing the tabulations

y N ray we compute a normalized optical depth-dependent direct

ux. These direct beam extinction results were compared to the

xpected exponential decay to validate that portion of our MCRT

ode. One such comparison, performed for a monodisperse cloud

ith 14 μm radius particles and a total optical thickness ( τ ∗) of 1,
s shown in Fig. 3 . The simulation results matched the theoretical

redictions exactly, with the expected exponential decay appearing

inear due to the logarithmic y -axis. 

.3. Comparison of MCRT results to two-stream theory 

One commonly made simplification is the idealization of ra-

iative transfer into only two propagation directions, forward and

ackward [3,47] . This two-stream approximation is most accurate

n the case of isotropic scattering where the phase function is uni-

orm but can be used for anisotropic scattering as well with rea-

onable accuracy [47] . Thomas and Stamnes [47] state that, when

enyey-Greenstein phase function and two-stream approximations

ave been combined and compared to other (more accurate) meth-

ds, the resulting deviations are typically less than 2.5%, especially

hen the solar illumination is close to normally incident. For more

nformation on the compromises made when using the Henyey-

reenstein phase function and multi-stream approximations the

eader is referred to other works [27] . In order to place our MCRT

esults in a context that will be familiar to most readers, in this
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Fig. 2. Comparison between a homogeneous, uniform random particle distribution (top) and a Matérn-generated clustered distribution (bottom). Total cloud volume illus- 

trated here and used for all scattering simulations in this works is 0.2 m x 0.2 m x 2.0 m (0.08 m 
3 ). 
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ubsection we compare them to the two-stream theory and then

o Monte Carlo results presented in the textbook by Bohren and

lothiaux [3] . 

Using the Henyey-Greenstein phase function and periodic

oundary conditions, each ray cast into the scattering medium

ontinues moving either forward or backward until it terminates

t the top or bottom of the simulated cloud. By normalizing the

umber of rays that cross each layer boundary (in either direction)

y the total number of rays cast, the diffuse forward and back-

ard flux components were computed. These MCRT simulation re-

ults were then compared to corresponding expressions from two-

tream theory, such as the normalized diffuse forward flux given

s [3] 

 

↓ 
di f f use 

= 

D ↓ 
F 0 

= 

1 + ( τ ∗ − τ ) 
(
1 −g 
2 

)
1 + τ ∗

(
1 −g 
2 

) − exp (−τ ) (4) 
t  
nd the normalized diffuse backward flux, expressed as 

 

↑ 
di f f use 

= 

D ↑ 
F 0 

= 

( τ ∗ − τ ) 
(
1 −g 
2 

)
1 + τ ∗

(
1 −g 
2 

) (5) 

In these normalized flux expressions, g refers to the asymmetry

arameter, a scalar characterization of the degree of anisotropy cal-

ulated as the mean cosine of the scattering angle. Fig. 4 shows a

omparison between two-stream theory curves for normalized for-

ard and backward flux components and their Monte Carlo sim-

lation counterparts. In this example, particles with a radius of

4 μm and a number density ( n ) of 400 cm 
−3 were used to cre-

te a homogeneous monodisperse random distribution with a to-

al optical thickness ( τ ∗) of 1 with an asymmetry parameter ( g ) of

.85. 

The discrepancies evident in Fig. 4 between our MCRT results

nd two-stream theory are consistent with those suggested in

homas and Stamnes [47] and shown in a similar comparison of

wo-stream theory with Monte Carlo by Bohren and Clothiaux [3] .
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Fig. 3. Normalized direct, unscattered flux comparison between theoretical (circles) 

and Monte Carlo results (solid line) for a monodisperse cloud with 14 μm radius 

particles and τ ∗ of 1. Note that the vertical axis employs logarithmic spacing to 

illustrate exponential absorption. 
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These depth-dependent differences are due to the fact that two-

stream theory approximates radiative transfer by neglecting the

details that a full angular scattering solution includes. For valida-

tion purposes, the Monte Carlo results from Bohren and Clothiaux

[3] are included in Fig. 4 for reference (circle and triangle symbols).

We hypothesize that the slight differences between the Bohren and

Clothiaux results and the MCRT results presented here are likely a

result of details related to horizontal fluxes, such as the domain

geometry and side-wall boundary conditions. As a further test, we

used our MCRT code to simulate isotropic scattering ( g = 0.0) and

found excellent agreement with the transmission and reflectivity

predictions of two-stream theory. 
Fig. 4. Flux comparison between two-stream theory and Monte Carlo (MCRT) results, bo

Note that at their most divergent, the two-stream and MCRT flux curves differ by 2–3%. 

symbols) given in Bohren and Clothiaux [3] , see top panel of their Fig. 6.10. 
.4. Simulation design for correlated random media 

We emphasize here that the cluster sizes used in our analy-

is are smaller than the mean free path (as defined for a homo-

eneous medium), and therefore are not necessarily captured by

 macroscopic, spatially varying mean free path. The radial distri-

ution function depends on N p and R , while the expected cloud

ptical thickness is N P λD V 
−1 Q sca πa 2 L and thus depends on N p , λD 

nd particle radius a . It is therefore possible to explore the scat-

ering problem under the constraint of fixed total optical thickness
∗ for varying input parameters, including those that directly influ-

nce the radial distribution function and therefore the magnitude

nd scale dependence of particle clustering. 

Multiple particle cloud realizations were stochastically gener-

ted for each set of input parameters, and the results from each

ndividual cloud scattering simulation were averaged together to

orm the reported (mean) optical depth-dependent fluxes. Due to

he small cross sectional area being illuminated (0.2 m x 0.2 m), we

ound it necessary to analyze ten [ 10 ) unique clouds to compile

rustworthy average flux results (see Fig. S-6 in the supplemental

aterial). Consequently, all results shown in this work are the re-

ult of averaging the depth-dependent flux curves of at least ten

nique cloud realizations, each of which was probed with 10 0,0 0 0

ays (see Fig. S-5 in the supplemental material). 

. Results 

.1. Impact of particle clustering on depth-dependent flux 

In this work we investigate both the direct and diffuse radia-

ive transfer (forward and backward) in a purely scattering but

orrelated random medium to determine expected deviations from

ommonly used radiative transfer predictions for a uniform, homo-

eneous medium. The problem depends on four parameters: N p ,

 , λD and particle radius a . While the radial distribution function

ontains only N p and R, the expected cloud optical thickness de-

ends on N p , λD and a . For our analysis we varied these four in-

ut parameters while constraining the total optical thickness τ ∗ to
th forward flux (rightmost black curves) and backward flux (leftmost red curves). 

Also shown for validation purposes are the Monte Carlo results (circle and triangle 
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Fig. 5. Impact of particle clustering on depth-dependent flux curves as computed by our MCRT scattering simulation. Both homogeneous and Matérn correlated results were 

obtained from monodisperse (14 μm particle radius) cloud realizations with a total optical thickness, τ ∗ , of 1. Cluster radius, R , is 0.015 m and the number of cluster parents 

( N p ) is 500. The average number of particle per parent cluster ( λD ) is 64,0 0 0. Note that in this and subsequent figures, the independent variable optical depth ( τ ) increases 

downward on the reversed vertical axis, starting from the top of the cloud at τ = 0 and finishing at the exit point at the bottom of the cloud ( τ = 1). 
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etermine the influence of particle size, clustering and the radial

istribution function. 

We performed numerous scattering simulations through both

ncorrelated and spatially-correlated monodisperse cloud distribu-

ions to explore the impact of spatial correlations on optical-depth-

ependent irradiance. Mean optical depth-dependent irradiances,

ncluding direct and diffuse forward flux as well as backward flux,

ere calculated as a function of distance through both homoge-

eous and spatially correlated clouds. An example illustrating these

arious flux components is shown in Fig. 5 , with the solid black

ine indicating the homogeneous case and the red dotted line indi-

ating a Matérn-clustered scenario with ( N p = 500, λD = 64,000,

 = 0.015 m). We note that the corresponding RDF is included as

he dot-dashed red curve in Fig. 1 . 

When we consider the unscattered, direct flux traversing a sim-

lated cloud, as shown in the top panel of Fig. 5 where τ increases

ownward on reversed vertical axis, we see that direct transmis-
ion is increased when spatial correlations exist in the particle-

aden medium. Previous publications have shown that propagation

hrough a spatially-correlated medium deviates from expectations

f Beer-Lambert–Bouguer exponential attenuation [15,20,23,34,44] .

ur Monte Carlo simulations, operating on clouds generated using

 Matérn-process radial distribution function for particle positions,

how this expected increase in direct flux through a field of parti-

les. For the example in Fig. 5 , at optical depth τ = 1, an increase

f direct transmission from 37% to more than 40% is observed in

he Matérn-clustered results. 

Note that while panel (a) of Fig. 5 shows an increase in direct

ransmission for the clustered compared to the unclustered dis-

ribution, panel (b) indicates a similar decrease in diffuse forward

ux. Panel (c) indicates that, for this case, the amount of backward

ux is slightly impacted by the existence of spatial correlation. To-

ether these results signify that the difference in total forward flux

direct plus diffuse) due to spatial correlation, shown in panel (d)
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to be less than 0.5%, is only distinguishable when very tight nor-

malized flux axis limits are chosen. In other words, when compar-

ing only the mean normalized irradiances that would be detected

at the bottom of the cloud, little difference would be measured, al-

though presumably a radiance measurement separating direct from

diffuse would reveal the distinction. Decreased direct attenuation

is not totally compensated for by increased diffuse forward radia-

tion, though they counterbalance to dampen the effect of particle

clustering. 

4.2. Impact of Matérn RDF parameters on depth-dependent flux 

The Matérn RDF expression listed in Eq. (2) demonstrates de-

pendency on both the number of parent clusters ( N p ) and cluster

radius ( R ). To test the hypothesis that these two parameters are

the primary contributors to changes in depth-dependent flux for

Matérn spatially correlated particle distributions, we simulated ad-

ditional clustered clouds where these inputs were unchanged. The

number of Matérn clusters was held constant at N p = 500, and the

cluster radius was fixed at R = 0.0075 m. While keeping N p and R

constant, we varied the monodisperse particle radius (e.g., 9.9 μm,

14 μm and 19.9 μm) and changed the mean number of particles

per cluster accordingly (e.g., λD = 128,0 0 0, 64,0 0 0 and 32,0 0 0 re-

spectively) to maintain a total optical depth of τ ∗ = 1 for all simu-

lated clouds. To ensure that we limited our exploration to parame-

ters of interest, we enforced a constant asymmetry parameter and

scattering efficiency (e.g., g = 0.85, and Q sca = 2.0, respectively) in

spite of changing particle radius. 

As can be seen in Fig. 6 , the three Matérn curves appear to col-

lapse on each other. This supports the hypothesis that the N p and

R parameters, as with the underlying radial distribution function,

are the driving factors impacting deviations from scattering theory

for a homogeneous medium. 

4.3. Variations in optical depth-dependent flux due to changes in 

Matérn clustering parameters 

The optical depth-dependent irradiance results previously

shown in Fig. 6 demonstrate a lack of dependence on changes to

the clustering parameters absent from the Matérn RDF (namely,

particle radius and mean number of particles per cluster, λD ). We

next investigate the impact of the parameters that are present in

the Matérn RDF, namely cluster radius ( R ) and number of clusters

( N p ). To determine the sensitivity of depth-dependent irradiance

to cluster radius, we held all other quantities constant; 500 clus-

ter parents with an average of 64,0 0 0 daughter particles of radius

14 μm were inserted using the Matérn process. Three cluster radii

were explored ( R = 0.03, 0.015 and 0.0075 m) and compared to the

homogeneous (spatially-uncorrelated) case; the results are shown

in Fig. 7 . We see that as cluster radius decreases and the same

number of particles are packed more densely, direct transmission

is maximized and diffuse forward flux is minimized. Differentiation

between the three Matérn curves is evident in both panel (a) and

panel (b), illustrating the dependence on cluster radius R found in

the RDF. We also note that there is a significant deviation of the

backward diffuse flux for these Matérn cases as opposed to the ho-

mogeneous medium, as shown in panel (c); this ultimately results

in a change in the total forward flux shown in panel (d). 

Similarly, we explore the relationship between the number of

cluster parents ( N p ) and depth-dependent irradiance by constrain-

ing R and a , and allowing the average number of daughter particles

per cluster, λD , to increase as N p decreases to maintain constant

expected optical thickness. The results of this investigation of con-

stant cluster size R are shown in Fig. 8 . We see that decreasing N p 

increased the deviation from the spatially-uncorrelated case, sup-

porting the notion that the optical-depth-dependent irradiance is
mpacted by a changing RDF. As can be seen from the dependence

f the RDF expression on number of parents N p and illustrated in

ig. 1 , decreasing N p with fixed R leads to an increase in the mag-

itude of the radial distribution function for all r < 2 R . Once again,

n Fig. 8 there is an observed departure of the backward flux from

he homogeneous expectation. 

The family of RDF curves shown in Fig. 1 were created by vary-

ng N p and R , the two primary independent variables (beyond dis-

ance from cluster center, r ); each of those nine RDF curves have

 different g ( r = 0) peak correlation value. To explore the relevance

f the shape of the Matérn RDF beyond just the peak correlation

alue, we study the impact of various RDF curves with equivalent

 ( r = 0). Solving the Matérn RDF expression in Eq. (2) for the peak

orrelation value for r = 0 yields 

 3 D ( 0 ) = 

3 V 

4 πR 3 N p 
+ 1 (6)

This means that for a given set of ( R, N p ) input parameters, if

 is doubled (or halved) and N p is divided by (or multiplied by)

ight, the peak correlation value g (0) will be unchanged. We stud-

ed the impact of three Matérn RDFs with the same peak corre-

ation value with this method, and the recorded depth-dependent

ux curves are shown in Fig. 9 . These results indicate that the im-

act of RDF on the radiative transfer depends on more than simply

he peak correlation value, but also on the shape of the RDF itself.

his confirms that both correlation strength and correlation length

re relevant parameters. 

. Discussion and conclusions 

.1. Summary and interpretation of results 

The presence of absorbing particles in a medium influences

he direct radiative transfer through the medium, and the result-

ng optical transmissivity is dependent on the size and number

f particles. However, if spatial correlations exist in particle loca-

ions, the resulting nonuniformities can lead to both clusters and

oids on scales of the same order as or smaller than the optical

ean free path (as defined for a uniform medium). In a purely

bsorbing medium, the net effect of these voids and clusters is

o increase the direct radiative transfer through such a spatially-

orrelated medium, leading to sub-exponential extinction that de-

iates from the prediction of Beer-Lambert–Bouguer attenuation

heory [20] . Conversely, negative spatial correlations (e.g., repelling

articles) can lead to super-exponential extinction [44] . 

In the scattering-dominated limit, for which absorption is es-

entially non-existent, radiation is either transmitted directly (no

nteraction with particles in the medium) or diffusely (once a par-

icle is encountered, the direction of propagation changes but the

hoton continues to traverse the medium). In this work, we have

nvestigated direct and diffuse radiative transfer in a medium with

patially correlated scattering particles with a simplistic “ballistic

hoton” model. Our simulations explored the forward-dominant

cattering regime that is typical of atmospheric clouds. The results

re framed in the context of forward and backward fluxes, moti-

ated by the commonly used two-stream flux equations. 

Clustering was introduced using a Matérn clustering process

ith an analytical RDF to rigorously study the impact of four inde-

endent parameters, namely the number of clusters N p , the cluster

ize R , the density of particles within a cluster λD , and the particle

adius a . The parameter space was explored by constraining total

ptical depth τ ∗ to be 1 for all scattering simulations, and then

onsidering various combinations of N p , λD and a which together

omprise the inputs to cloud optical thickness. Optical depth does

ot depend on cluster radius R , but the Matérn RDF depends on

oth R and N p . 
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Fig. 6. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. 

Note that in all three Matérn scenarios, the density of clusters and cluster radius are constant (e.g., N p = 500 and R = 0.0075 m, respectively). Changes in monodisperse 

particle radius and number of mean particles per cluster ( λD ) have almost no impact on depth-dependent flux curves when N p and R are held constant. 
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We found that particle clustering does indeed increase direct

ransmission, but we also found that diffuse forward irradiance is

orrespondingly reduced by a similar amount ( Fig. 5 ). Additionally,

e found that varying only parameters absent from the Matérn

DF (e.g., a and λD ) had no statistical impact on depth-dependent

ux recordings ( Fig. 6 ). However, we determined that varying R

nd N p (which are present in the RDF) did impact the irradiance

esults calculated by the scattering simulations ( Figs. 7 and 8 , re-

pectively). Smaller clusters resulted in greater deviations from the

irect and diffuse forward homogeneous baseline results, as did

ewer but more densely packed parent clusters. Both of these con-

lusions are consistent with the hypothesis that these deviations

re caused by voids in the scattering medium, and the heuristic

rediction of the Beer-Lambert–Bouguer deviations developed by

ostinski [19,20] . For a constant total number of particles in a vol-

me, both smaller clusters (all else equal) and fewer clusters result

n larger voids and less (forward-dominant) scattering. 

Lastly, we explored the relevance of the shape of the Matérn

DF beyond the peak correlation value (i.e., r > 0) by changing

 and N p in tandem to study the impact of various RDF curves
ith equivalent g ( r = 0) peak values. We found that in addition to

eak correlation value, the shape of the Matérn RDF is also sig-

ificant, as evidenced by the varying depth-dependent flux curves

n all four panels of Fig. 9 . The Monte Carlo scattering simulations

onfirm that both correlation strength and correlation length are

elevant parameters for predicting radiative transfer in a spatially

orrelated particle-laden medium. 

Some insight can be gained from considering the relevant

ength scales in this radiative transfer problem. There are at least

our scales: particle radius a , cluster size R that can be referred

o as the correlation length scale, the photon mean free path de-

ned for the volume-average properties l ≈ 1/( nQ sca πa 2 ), and the

ox size L . In this work L has been fixed and constrained to be

qual to l , such that τ � = 1 for all cases. The clustering or corre-

ation length R in all cases explored here is smaller than l . The

esults show that both the correlation length and the strength of

orrelation, expressed for example through g ( r = 0) (cf., Eq. (6) for

he relationship with N p ), determine the extent to which optical

ropagation and scattering deviate from the theoretical prediction

or domain-average properties. 
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Fig. 7. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. All 

virtual cloud distributions are monodisperse with 14 μm particle radius. Note that in all three Matérn scenarios, the density of clusters and mean number of particles per 

cluster are constant (e.g., N p = 500 and λD = 64,000, respectively). 
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5.2. Results in context with prior work 

Previous work [23,39] has gone into detail on trying to under-

stand the inter-relationships between length scales in this prob-

lem. For purely absorptive media, Larsen and Clark [23] used nu-

merical simulations to reveal that at least three different length-

scales will be relevant – particle size, correlation length-scale,

and optical mean-free-path between particles. The work of Petty

[39] also has similarities to the approach presented here, with the

“cloudlets” designed in that model similar in structure to the in-

dividual Matérn clusters in our simulation. Petty’s approach em-

ploys a non-dimensional parameter τ ′ (referred to as the effective
mean optical thickness of a cloudlet) to attempt to capture all rele-

vant information about small scale variability necessary to resolve

the deviations from expected Beer-Lambert–Bouguer exponential

transmission. For our Matérn-clustered clouds, this τ ′ parameter
 w  

b  
an be expressed as 

′ = 

3 Q sca a 
2 λD 

2 R 2 
(7)

In Petty’s notation the effective optical thickness, which ac-

ounts for enhancement in transmission due to non-uniform dis-

ribution of liquid water, is expressed as τ ∗
e f f 

= ϕ( τ ′ ) σW̄ where

( τ ′ ) is the optical depth reduction factor and W̄ is the average

iquid water path. This can be written as τ ∗
e f f 

= ϕ( τ ′ ) ̄n Q sca πa 2 L

here n̄ is the domain-averaged number density. In terms of

atérn parameters, the mean volumetric number density is n̄ =
 p λD V 

−1 , allowing us to write the effective optical thickness as
∗
e f f 

= ϕ( τ ′ ) N p λD V 
−1 Q sca πa 2 L . Petty’s cloudlet optical thickness

an be expressed as τ ′ = 3 Q sca a 
2 λD (2 R 

2 ) −1 , but since we con-

trained the global optical thickness through constant n̄ we can re-

rite that as τ ′ = 3 Q sca a 
2 n̄ V ( 2 R 2 N p ) 

−1 . This is an intriguing result

ecause we can now see that we have the same variable depen-



C.D. Packard, M.L. Larsen and W.H. Cantrell et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 236 (2019) 106601 11 

Fig. 8. Optical depth-dependent flux curves for a variety of Matérn-generated cloud distributions, with homogeneous particle distribution results shown for comparison. All 

virtual cloud distributions are monodisperse with 14 μm particle radius. Note that for both Matérn scenarios, cluster radius is constant (e.g., R = 0.0075 m). 
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ence, i.e. N p and R , as seen in our Matern RDF in Eq. (2) . Given

his encouraging similarity, we computed φ( τ ′ ) and τ ∗
e f f 

for the

onditions in all of our simulations to compare predictions of di-

ect, non-exponential transmission. The results of this comparison

see Fig. 10 ) show reasonable agreement between our Monte Carlo

esults and the cloudlet model, suggesting that the Matérn RDF

s consistent with the cloudlet approach. Because of the connec-

ion between the RDF and traditional, continuous correlation func-

ions [45] , this RDF-based work can serve as a bridge between the

wo approaches: radiative transfer calculations based on continu-

us correlation functions [4,15] and those based on the analyti-

al results from the clearly-visualized cloudlet model. The RDF has

he advantage that it has a direct link to discrete particle distri-

utions, and it is general in the sense that it can describe more

han Matérn or cloudlet models. For example, analytical expres-

ions exist for less defined forms of clustering, beyond the Matérn

otion of spherical particle clouds surrounded by voids (e.g., modi-

ed Thomas, Gibbs systems, excluded volume, etc.). The links iden-

ified here open the door for exploring to what extent other RDF

xpressions are able to facilitate comparison of Monte Carlo re-

N

ults, and furthermore suggest that it should be possible to find

 quantitative link between φ( τ ′ ) and the RDF. 
A renormalization technique for predicting radiative transfer for

nhomogeneous clouds was proposed by Cairns et al. whereby sin-

le scattering parameters are modified based on spatial variances

n scatterer concentration for use with plane-parallel calculations

5] . They propose that for random, purely scattering media where

he correlation length is of the same order as the mean free path,

n augmented extinction cross section and asymmetry parameter

an be computed as 

′ 
ext = σext ( 1 + V rel ) 

−1 

 
′ = g [ 1 + V rel ( 1 − g ) ] 

−1 
(8) 

here V rel is the relative variance of scatterer concentration. When

patially-varying scatterer concentration N(r) is comprised of a

ean concentration N̄ and zero-mean fluctuating component η(r) ,
s in 

 ( r ) = N̄ + η( r ) , (9) 
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Fig. 9. Matérn scattering results from three combinations of N p and R , both present in the RDF and varied together to achieve a constant RDF at g( r = 0), are compared. Note 

that λD was changed in correspondence with N p to ensure a constant τ ∗ of 1. 

Fig. 10. Comparison of direct, non-exponential transmission through spatially cor- 

related particle distribution. 
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elative variance can be expressed as 

 rel = η( r ) 
2 N̄ 

−2 (10)

For our analysis, the average scatterer concentration is simply

he total number of scatterers divided by the simulation volume.

he variance calculations will depend on how the simulation vol-

me is subdivided, i.e., it will be scale dependent. The number of

catterers in each subvolume can be used to compute η(r) and ul-
imately V rel . For example, when 32 × 10 6 particles are grouped

nto 500 parent clusters with an average of 64,0 0 0 particles per

luster (of radius 7.5 mm), dividing the 0.08 m 
3 volume into ten

ubvolumes along the path of the direct beam yields a small rel-

tive variance of 1 ×10 −2 ; division into 10 0 0 cubic subvolumes

e.g., 10 × 10 × 10) results in a larger relative variance of 1.3.

hese values of V rel lead to modified asymmetry parameter g ′ val-
es of 0.849 and 0.711 (respectively) and modified scattering ef-

ciency Q 
′ 
sca values of 1.98 and 0.87 (respectively). In the former

ase, where the scattering parameters are only slightly augmented,

he MCRT results match those of the homogeneous case (where

 = 0.85 and Q sca = 2.0) and do not predict the direct and diffuse

orward flux deviations seen in the Matérn clustering simulation.

n the latter case, where the scattering parameters are heavily

odified by the calculated relative variance, total optical thickness

s greatly reduced (from 1.0 to 0.425, due to a reduced Q sca ) and

one of the various flux components are predictive of the Matérn-

ased MCRT results. This serves to illustrate the dependence of av-

raging scale when considering a system of discrete particles. Here
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e have considered correlation lengths smaller than the mean free

ath, and it should be noted again that this is outside the range

xplored by Cairns et al. [5] . 

.3. Concluding remarks and implications 

It is reasonable to consider the implications of this work for ra-

iative transfer in the cloudy atmosphere, as a specific example of

 particulate system that possesses spatial correlations over a large

ange of scales. The influence of spatial inhomogeneity on three-

imensional radiative transfer has been considered in depth, for

he limit in which the scale of the inhomogeneity is larger than

he mean free path defined for the medium. The pioneering work

f Kostinski [20] makes clear, however, that fundamental assump-

ions of the continuum approach to radiative transfer are called

nto question when correlations in a discrete-particulate medium

re considered. Indeed, in atmospheric clouds typical mean free

aths for regimes dominated by scattering (e.g., visible light) are

f order 100 m, so essentially the entire turbulence inertial sub-

ange lies at smaller scales. Therefore, entrainment and mixing

rocesses generate strong spatial correlations in droplet positions

rom the ∼100-m energy injection scale to the ∼1-mm dissipation

cale, and inertial clustering generates spatial correlations from the

1-cm scale down to the ∼10 μm scale of a single particle diame-

er [49,50] . The question of how these sub-free-path-scale correla-

ions might influence radiative transfer has been studied by several

roups for the absorbing-particle limit [15,20,23,44] . In this work

e have explored the regime in which light scattering is dominant,

nd specifically for particles larger than the illuminating wave-

ength for which forward scattering is pronounced; this is the rel-

vant regime for atmospheric clouds and visible/near-IR radiation.

he results of the study suggest that the degree to which there

s a deviation from standard radiative transfer using the medium-

veraged optical properties (e.g., mean free path) can be quantified

hrough the radial distribution function. This implies that knowl-

dge of the RDF resulting from inertial clustering and turbulent

ixing in atmospheric clouds would be valuable [26] . Treatment of

he RDF is a first step, as a two-particle correlation function, and

ventually it will be insightful to consider the possible relevance

f multi-particle correlations on light propagation. 

This work has focused on the influence of clustering at scales

elow the mean free path of the radiation, for optical depths up

o order unity. Implications for larger scales such as would be rel-

vant to cloud remote sensing or energy budgets will require con-

ideration of cloud organization at the full range of scales: for ex-

mple, it is already widely appreciated that clustering on spatial

cales large compared to the photon mean free path is of signifi-

ance in practical applications. It is known, however, that the tur-

ulent energy cascade stretches down to the 1 mm scale in the at-

osphere, so clouds can be assumed to be non-uniform far be-

ow the scale of a mean free path. The next stage of this work is

alidation of the MCRT results directly with measurements in the

i cloud chamber. Characterization of actual clustering strength in

atural clouds will be required to put the chamber measurements

nto atmospheric context. This kind of comparison will allow the

verall approach of MCRT methods to be assessed; although they

re widely used in applied radiative transfer, they are known to

eglect the detailed electromagnetic treatment that is potentially

ecessary for full representation of propagation in a correlated

edium (e.g., [37] ). Experimental results will be the ultimate ar-

iter. 

In some cases presented here, the changes to direct and dif-

use radiation are nearly compensating; do such results suggest

hat there is no significance to the clustering? That depends on

he problem under consideration: for any problem depending on

irectional properties of the radiation field, the details of direct
ersus diffuse will be of significance. It is a subject that will be

nvestigated in subsequent, combined computational and experi-

ental work. Indeed, the geometry chosen in this study was orig-

nally motivated by the desire to explore the extent to which op-

ical propagation through a turbulent cloud can be studied in the

aboratory. That has the advantage of allowing well-characterized

loud and turbulence conditions, as well as statistically homoge-

eous and stationary conditions needed for spatial and temporal

veraging. The sensitivity actually required in a study of this phe-

omenon, for realistic turbulence and clustering levels, will be the

ubject of future work, but the results presented here suggest that

easurement of the cloud particle RDF will be a necessary step in

ossible experiments. 
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