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Abstract

Magnetic ionic liquids (MILs) with metal-containing cations are promising extraction solvents that provide fast and high
efficiency extraction of DNA. Hydrophobic MILs can be generated in situ in a methodology called in situ dispersive liquid-
liquid microextraction. To consolidate the sample preparation workflow, it is desirable to directly use the DNA-enriched MIL
microdroplet in the subsequent analytical detection technique. Fluorescence-based techniques employed for DNA detection often
utilize SYBR Green I, a DNA binding dye that exhibits optimal fluorescence when bound to double-stranded DNA. However,
the MIL may hinder the fluorescence signal of the SYBR Green I-dsDNA complex due to quenching. In this study, MILs with
metal-containing cations were selected and their fluorescence quenching effects evaluated using Forster Resonance Energy
Transfer and quantified using Stern-Volmer models. The MILs were based on N-substituted imidazole ligands (with butyl-
and benzyl- groups as substituents) coordinated to Ni** or Co?* metal centers as cations, and paired with chloride anions. The
effects of NiCl, and CoCl, salts and of the 1-butyl-3-methylimidazolium chloride ionic liquid on the fluorophore complex were
also studied to understand the components of the MIL structure that are responsible for quenching. The metal within the MIL
chemical structure was found to be the main component contributing to fluorescence quenching. Forster critical distances
between 11.9 and 18.8 A were obtained for the MILs, indicating that quenching is likely not due to non-radiative energy transfer
but rather to spin-orbit coupling or excited-state electron transfer. The MILs were able to be directly used in qPCR and
fluorescence emission measurements using a microplate reader for detection, demonstrating their applicability in fluorescence-
based detection methods.

Keywords DNA - In situ magnetic ionic liquids - Fluorescence spectroscopy - Fluorescence quenching - Fluorescence resonance
energy transfer - Stern-Volmer relationship

Introduction

DNA analysis is central to many applications in clinical diag-
nostics [1], personalized medicine [2], forensics [3], and ar-
chaeology [4]. The majority of DNA analysis methodologies
use polymerase chain reaction (PCR) [5] and fluorescence-
based assays [6]. In quantitative PCR (qPCR), the amplified
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DNA binds to a fluorescent dye, such as SYBR Green I, and
the amount of amplified DNA can be monitored in real-time
by the increase in the fluorescent signal of the dye-DNA
fluorophore complex [7].

In performing both PCR and fluorescence-based DNA
analysis, sample pretreatment steps are generally required to
extract and purify DNA from the biological matrix. Small
amounts of contaminating species (such as other nucleic acids,
proteins) and the quality of the DNA obtained can affect the
reliability of the results and DNA obtained for use in down-
stream applications [8, 9]. Traditional DNA extraction proto-
cols such as the phenol-chloroform liquid-liquid extraction
method use large amounts of toxic solvents, lack selectivity,
and involve numerous steps resulting in variable amounts of
recovered DNA [8, 10]. Many commercially available kits
that have been developed to circumvent these issues contain
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a solid-phase support such as silica, cellulose magnetic parti-
cles, or an anion-exchange resin [8]. These kits, however,
often have limited reusability, are expensive, and may require
specific equipment.

As an alternative to the aforementioned traditional DNA
extraction methods, ionic liquids (ILs) and, more recently,
magnetic ionic liquids (MILs) have been increasingly studied
for the extraction and preservation of nucleic acids [11-17].
ILs are molten salts composed solely of ions with melting
points below 100 °C [18]. ILs have tunable physical and
chemical properties [18]. MILs are a subclass of ILs that con-
tain a paramagnetic component in their cationic and/or anionic
moiety allowing MIL droplets to be collected with a strong
external magnet, replacing time-consuming centrifugation
steps [19-22]. MILs possess many of the same advantageous
properties of ILs such as low vapor pressure at room temper-
ature, variable viscosity, unique solvation capabilities for both
hydrophilic and hydrophobic compounds, and high electrical
conductivity [23]. The cation and anion of the IL and/or MIL
structure can be tuned for specific applications and interac-
tions with certain analytes. This has led to the design of IL
and MIL-based extraction methods that provide high extrac-
tion efficiencies for DNA [12, 13, 24].

The majority of the MILs employed in DNA extractions
have contained the paramagnetic component in the anion [13,
15]. However, in a recent report MILs possessing paramag-
netic cations were investigated for the extraction of DNA [24].
This class of MILs, initially soluble in aqueous solution, was
able to undergo a metathesis reaction during the extraction to
generate a hydrophobic MIL in situ, thereby facilitating the
rapid extraction of DNA. These MILs extracted 20 bp DNA,
~250-500 bp DNA, and ~ 20 kbp DNA with high extraction
efficiencies (>42%) using in situ dispersive liquid-liquid
microextraction in combination with indirect detection
methods [24].

When MIL-based DNA extractions are directly com-
bined with PCR, customized buffers are usually designed
to alleviate PCR inhibition caused by cationic and anionic
components of the MIL [15, 25]. Despite the use of these
buffers, quantitative PCR was not possible in the case of
MILs containing Fe(Ill)-anions due to quenching of the
fluorescence signal [26]. To understand more thoroughly
the role of chemical components that make up MILs in
fluorescence-based applications, fluorescence quenching
mechanisms can be examined using Forster Resonance
Energy Transfer (FRET) or quantified using Stern-
Volmer models [26]. FRET evaluates the non-radiative
energy transfer from a fluorescent donor to a ground-
state acceptor as defined by the overlap integral [26,
27]. Stern-Volmer plots represent the fluorescence signal
when increasing concentration of quencher is added and
constitute a method commonly used to determine the
magnitude and nature of fluorescence quenching [26, 28,
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29]. In a previously published study, both FRET and
Stern-Volmer models were applied to MILs containing
phosphonium cations and paramagnetic anion complexes
in which different metals were coordinated with
hexafluoroacetylacetonate (hfacac) ligands. Cyanine5 car-
boxylic acid (Cy5) was employed as the fluorophore in
this study, which is fluorescent in both its native form and
when tagged to DNA. The authors found that Fe(III)- and
Co(II)-based MILs strongly quenched the fluorescence
signal [26]. Quenching, however, was much less pro-
nounced with MILs containing Mn(II), and they were
deemed to be more compatible for direct use in
fluorescence-based assays [26]. Other paramagnetic metal
complexes have also been shown to quench fluorescence
signals in different studies [30, 31]. With regard to MILs
containing paramagnetic cations, no studies have yet ex-
plored fluorescence quenching in these systems.

In this study, fluorescence quenching of the SYBR
Green I-double-stranded DNA (dsDNA) complex by a
new generation of MILs containing paramagnetic cations
was investigated. The MILs studied contained four N-
substituted imidazole ligands (N-butylimidazole or N-
benzylimidazole) coordinated to Ni** or Co®* metal cen-
ters and chloride anions. The use of the selected
fluorophore complex (SYBR Green I-dsDNA) provided
an environment similar to fluorescence-based DNA detec-
tion methods. FRET and fluorescence quenching studies
using Stern-Volmer models were performed to evaluate
the quenching effects of the MILs in the system. NiCl,
and CoCl, salts as well as the 1-butyl-3-
methylimidazolium chloride ([BMIm*][C] ]) IL were
employed as controls to better understand the components
of the MIL structure that are responsible for quenching.

Experimental
Chemicals, reagents, and materials

Double-stranded DNA (dsDNA; ~20 kbp salmon testes
DNA) used in this study was purchased from Sigma-Aldrich
(St. Louis, MO, USA). SYBR Green I (10,000x) was pur-
chased from Life Technologies (Eugene, OR, USA).
Tris(hydroxymethyl)aminomethane (Tris base) was pur-
chased from Research Products International (Mount
Prospect, IL, USA). Ultrapure water (18.2 M{2-cm) was ob-
tained from a Milli-Q water purification system (Millipore,
Bedford, MA, USA). Disposable cuvettes made of
poly(methyl methacrylate) (PMMA) and hydrochloric acid
(ACS grade, 36.5-38.0%) were purchased from Fisher
Scientific (Fair Lawn, NJ, USA).

For the synthesis of the IL and MILs, the reagents
cobalt(Il) chloride (97%), 1-butylimidazole (98%), 1-



Fluorescence quenching of the SYBR Green |-dsDNA complex by in situ generated magnetic ionic liquids 2745

chlorobutane (99%), and 1-methylimidazole (99%) as
well as HPLC-grade ethyl acetate were purchased from
Sigma-Aldrich. Nickel(Il) chloride (98%) and
benzylimidazole (99%) were purchased from Acros
Organics (Morris Plains, NJ, USA). Anhydrous diethyl
ether (99.0%) was purchased from Avantor Performance
Materials Inc. (Center Valley, PA, USA). Deuterated di-
methyl sulfoxide-d6 (DMSO-d6, 99.9%) was purchased
from Cambridge Isotope Laboratories (Andover, MA,
USA).

Chemical structures of the IL, MILs, and SYBR Green I
dye used are shown in Fig. 1. Stock solutions of the MILs, IL,
and metal salts were prepared in 10 mM Tris-HCI buffer
(pH 8) at the following concentrations: 10 mM, 1 mM and
0.1 mM for NiCl,, CoCl,, tetra(benzylimidazole)nickel (II)
chloride ([Ni(BnIm)42+]2[C17]) and
tetra(butylimidazole)cobalt (II) chloride
([Co(BIm)42+]2[C17]), 16 mM, 1 mM and 0.1 mM for
tetra(butylimidazole)nickel (II) chloride
(INi(BIm)4**12[CI']) and 110 mM, 10 mM and 1 mM for
[BMIm™][CI"]. Stock solutions of the dsDNA and SYBR
Green [ were also prepared in Tris-HCI buffer at concentra-
tions of 154 nM and 98 uM, respectively.

/\N/\/\

M (N 2[C1]

M = Ni?* Co*"
a

Instrumentation and methods

Steady-state absorption and fluorescence spectra were obtain-
ed using an Agilent Technologies 8453 UV-visible spectro-
photometer and an Agilent Cary Eclipse fluorescence spectro-
photometer (Santa Clara, CA, USA), respectively. Emission
spectra were obtained with 1-nm resolution and corrected for
lamp spectral intensity and detector response. The excitation
and emission slit widths were 5 nm and the photomultiplier
(PMT) detector voltage was 550 V. The samples were excited
at 475 nm with the emission intensity recorded from 485 to
700 nm.

The [BMIm*][CI ] IL was synthesized and purified follow-
ing a previously reported procedure [32]. The final product
was characterized by 'H-NMR, with the spectrum recorded in
DMSO-d6 using a Bruker DRX 500 MHz nuclear magnetic
resonance (NMR) spectrometer (Billerica MA, USA) (see Fig.
S1 of the Electronic Supplementary Material, ESM). The
MILs were synthesized and purified using previously reported
methods [33].

One-centimeter path length PMMA cuvettes were used for
fluorescence quenching experiments. All samples were pre-
pared in 10 mM Tris-HCl buffer (pH 8) and the total volume,

Ni2+ N/\N

\—/

2[CI]

4

Fig. 1 Chemical structures of the MILs, IL, and fluorophore used in this study. a [Ni(BIm),**]2[C] ] and [Co(BIm),>*]2[CI ], b [Ni(BnIm),**]2[CI ], ¢

[BMIm*][CI ], and d SYBR Green I
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dsDNA concentration, and SYBR Green I concentration were
kept constant at 2 mL, 1 nM, and 1.96 uM, respectively. Stock
solutions referred to in the “Chemicals, reagents, and mate-
rials” section were used to prepare the samples and were pre-
pared in triplicate the same day as the experiment by mixing
for 15 s using a vortex (Fisher Scientific). The exception was
the dsDNA stock solution, which was stored in 10-mM Tris-
HCI buffer at 4 °C. The samples were prepared over a range of
increasing concentration of the quenchers. The concentration
of the NiCl, and CoCl, salts ranged from 0 to 0.5 mM. The
concentration of the [Ni(BIm),>*]2[CI ] and
[Ni(BnIm),**]2[CI ] MILs varied from 0 to 15 mM and 0 to
2 mM, respectively. The [Co(BIm),**]2[CI ] MIL concentra-
tion ranged from 0 to 0.5 mM and the concentration of the
[BMIm*][CI"] IL from 0 to 100 mM.

To investigate the applicability of the MILs in both gPCR
and fluorescence emission spectroscopy using a plate reader
for detection, aqueous solutions containing different concen-
trations of MIL (e.g., 0 to 15 mM of [Ni(BIm)4**]2[CI ], 0 to
2 mM [Ni(BnIm)4>*]2[C1 ], or 0 to 0.5 mM
[Co(BIm),**]2[CI]) were placed into a Bio-Rad CFX
Connect real-time thermocycler (Hercules, CA, USA) and a
BioTek Synergy H1 Multi-Mode microplate reader
(Winooski, VT, USA), respectively. Each sample also
contained 1-nM dsDNA and 1.96 uM of SYBR Green I. In
gPCR, the samples were incubated at 25 °C for 30 s before the
optical detection step. A 384-well, black, polystyrene, flat
bottom microplate (Corning, Corning, NY, USA) was used
for fluorescence emission measurements using a microplate
reader with an excitation wavelength of 475 nm. The emission
intensity was measured from 505 to 650 nm in top-read mode
with 1-nm resolution.

Results and discussion

Quantifying fluorescence quenching of the SYBR
Green I-DNA complex

Fluorescence quenching can be induced by a variety of mo-
lecular interactions such as excited-state reactions, complex
formation, energy transfer, and collisional quenching [28].
Collisional (or dynamic) quenching occurs as a result of col-
lisions between an excited-state fluorophore and quencher
molecules [34]. On the other hand, a reaction between the
quencher in the ground-state and the fluorophore resulting in
ground-state complex formation is defined as static quenching
[34]. These types of mechanisms are commonly quantified by
Stern- Volmer equations [28, 35-37]. Collisional quenching or
static quenching is described by Eq. (1):

B0 o1 4 kl0) (1)
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where F is the integrated fluorescence intensity of the
corrected spectra when the concentration of quencher is 0, F
is the integrated fluorescence intensity of the corrected spectra
when the concentration of the quencher is /O], and Ky is the
Stern-Volmer quenching constant. If the Stern-Volmer plot of
Fy/Fversus [Q] is linear, Kgy can be directly from the slope of
the plot, whose “y-intercept” is 1. In general, when Eq. (1) is
applicable, a single class of fluorophores displays a linear
Stern-Volmer plot, all of which have equal accessibility to
the quencher.

A deviation from linearity towards the “x-axis” for a plot of
Fy/F versus [Q] is observed when at two (or more) popula-
tions of fluorophores have different accessibility to the
quencher, e.g., one more accessible fraction, a, and another
less accessible (buried) fraction, b. The total fluorescence in
the absence of the quencher, F), is equal to that of the two
fractions, Eq. (2) [28, 35, 38]:

Fo = Fos+ Fop (2)

This type of quenching is described by a modified form of
the Stern-Volmer equation, Eq. (3) [28, 35, 38]:

Po 1 1 (3)
FoF~ f KO 7,
where F) and F are the integrated fluorescence intensities of
the corrected spectra when the concentration of the quencher
is 0 and /Q], respectively. K, is the Stern-Volmer quenching
constant of the accessible fraction, and f;, is the accessible
fraction of fluorescence available to the quencher. K, and f;
can be determined from a plot of Fy/(Fy-F) versus 1//Q],
which should be linear, with £,/ as the “y-intercept” and
(f.K,) ! as the slope.

For quantifying fluorescence quenching of the SYBR
Green [-dsDNA complex, Stern-Volmer plots were construct-
ed using NiCl, and CoCl,, as well as the
[Ni(BIm),**]2[C17], [Ni(BnIm),2*]2[CI ], and
[Co(BIm),**]2[CI] MILs. These are shown in Figs. 2,
3, and 4 and ESM Figs. S2-S3. They are fit to the
modified Stern-Volmer equation, Eq. (3), and the results
will be discussed in the following sections.

Evaluation of the contribution of Forster resonance
energy transfer (FRET) to fluorescence quenching

The rate of non-radiative energy transfer, k7, from a donor to
an acceptor was defined by Forster by means of Eq. (4) [26,
27, 39]:

1 (Ro\®
kr=—1|— 4
g ) ( R ) ( )
where R is the distance between the donor and acceptor mol-
ecules, 7p is the fluorescence lifetime of the donor, and R is
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Fig.2 Fluorescence quenching of the SYBR Green I-dsDNA complex as
a function of [Ni(BIm),>*]2[CI ] concentration. a Absorption spectra. b
Fluorescence emission spectra, A, =475 nm. Intensities were corrected
for the absorption at the wavelength of excitation. ¢ Steady-state Stern-

the Forster critical transfer distance, defined by Eq. (5):

g8 — 9000n(10)dp” 1o 0 (7)= (%)

O 1287%m*N, 34

v (5)

where ¢p is the quantum yield of donor fluorescence emis-
sion, k2 is the orientation factor and is equal to 2/3 for ran-
domly oriented molecules, # is the solvent refractive index, Ny
is Avogadro’s number, Fp(v) is the donor fluorescence emis-
sion intensity normalized to unit area on a wavenumber scale,
and g4 (V) is the molar decadic extinction coefficient at wave-
number, v. Non-radiative energy transfer can be determined
by the overlap integral of the fluorescence emission spectrum
of the donor and the absorbance spectrum of the acceptor,
which is evaluated using R,.

As representative examples, overlap of the fluorescence
emission spectrum of the SYBR Green [-dsDNA complex
and the absorbance spectrum of NiCl,, CoCl,,
[Ni(BIm)42*]2[C1 ], [Ni(BnIm)4>*]2[C1 ] and
[Co(BIm),**]2[CI ] are shown in Fig. S4 of the ESM, where-
as the obtained R, values are given in Table 1. The R, values
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for the metal salts and the MILs were between 9.00 and
18.8 A. When compared to the previous generation of MILs
containing phosphonium cations and metal chloride or metal
hfacac-based anions with Cy5 as the fluorescent donor, R,
values ranging from 14.2 to 58.1 A were obtained for the
metal salts and the MILs. Out of the studied quenchers, the
highest overlap integral was observed for the Co(Il) salt (with
Cl added to achieve a tetrahedral geometry around the metal),
indicating a significant contribution of fluorescence
quenching through non-radiative energy transfer was possible.
In the current study, R, values lower than 20 A were obtained
for all of the metal salts and MILs, which suggests that non-
radiative energy transfer is not an important process in the
fluorescence quenching of the SYBR Green I-dsDNA com-
plex. Therefore, the ability of the metal salts and this new
generation of MILs to quench the fluorescence of SYBR
Green [-dsDNA is most likely a result of either spin-orbit
coupling or excited-state electron transfer or both. It is beyond
the focus of the current investigation to attempt to distinguish
between the two mechanisms. The most important point is that
it was possible to demonstrate that we could evaluate the ef-
fect of the metal salts and the MILs on the SYBR Green I-
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Fig.3 Fluorescence quenching of the SYBR Green I-dsDNA complex as
a function of [Ni(BnIm),>*]2[CI ] concentration. a Absorption spectra. b
Fluorescence emission spectra, A, =475 nm. Intensities were corrected
for the absorption at the wavelength of excitation. ¢ Steady-state Stern-

dsDNA complex through fluorescence quenching studies, as
is demonstrated below in the “Fluorescence quenching of the
SYBR Green [-DNA complex by the MILs” and
“Fluorescence quenching of the SYBR Green [-DNA com-
plex by the metal salts” sections.

Fluorescence quenching of the SYBR Green I-DNA complex
by the MILs

In order to ensure that all of the SYBR Green I dye was
bound to dsDNA and that the two populations of
fluorophores observed were not from quencher molecules
interacting with excess of SYBR Green I, the fluorescence
intensity of 1.96 uM SYBR Green [ with 1 nM, 3.5 nM and
10 nM of dsDNA (in absence of any quencher) was record-
ed (Fig. S5 of the ESM). A Student’s t-test concluded that
the integrated fluorescence intensities of the corrected
spectra for 1.96 uM SYBR Green I with 1-nM dsDNA
compared to the 3.5 nM and 10 nM dsDNA were not sta-
tistically different (see Table S1 of the ESM). This result
indicates that all of the SYBR Green I dye in solution is
bound to the dsDNA, and that the two populations of
fluorophores observed in the quenching experiments were

@ Springer

Volmer plot of the integrate fluorescence intensity ratio (F/F) as a func-
tion of quencher concentration. d Steady-state modified Stern-Volmer
plot of the integrated fluorescence intensity ratio (Fy/(Fy-F)) and as a
function of 1//Q]

from two different populations of the SYBR Green I-
dsDNA complex accessible to the quencher molecules.
Thus, 1 nM dsDNA was used for all quenching
experiments.

As previously mentioned, Figs. 2, 3, and 4 show the
steady-state Stern-Volmer plots and modified Stern-
Volmer plots for the fluorescence quenching of the SYBR
Green I-dsDNA complex by the [Ni(BIm),**]2[CI ],
[Ni(BnIm),>*]2[CI ] and [Co(BIm)4>*]2[C1 ] MILs. The
modified Stern-Volmer plots were fit to Eq. (3) and the
quenching parameters are presented in Table 2. From the
intercept, values of 0.73+0.02 and 0.69 £0.02 were ob-
tained for f, for the [Ni(BIm)4>*]2[C1 ] and
[Ni(Bnlm),>*]2[CI ] MILs, respectively. This result indi-
cates that approximately 69—73% of the SYBR Green I-
dsDNA complex was accessible for quenching by the
Ni(II)-based MILs and the other 27-31% was not affected
by the MILs added at increasing concentrations (Figs. 2
and 3). On the other hand, the intercept of the modified
Stern-Volmer plot for the [Co(BIm),**]2[C]"] MIL yielded
a f, value of 0.97 £0.01, indicating that the majority of the
SYBR Green I-dsDNA complex was available to the
[Co(BIm)4**]2[CI ] MIL quencher over the concentration
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Fig.4 Fluorescence quenching of the SYBR Green [-dsDNA complex as
a function of [Co(BIm),>*]2[Cl ] concentration. a Absorption spectra. b
Fluorescence emission spectra, A, =475 nm. Intensities were corrected
for the absorption at the wavelength of excitation. ¢ Steady-state Stern-

range of 0 to 0.5 mM. As described in the “Quantifying
fluorescence quenching of the SYBR Green I-DNA com-
plex” section, the quenching constants of the accessible
fraction, K,, were 100+20, 120 +20, and 200 +20 mM !
for the [Ni(BIm),>*]2[CI ], [Ni(BnIm),**]2[Cl ], and
[Co(BIm),**]2[CI ] MILs, respectively (see Table 2).

With regard to the two studied Ni(II)-based MILs
(INi(BIm),**]2[CI ] and [Ni(BnIm),**]2[CI ]), the f, and K,
values can be considered equal within experimental error (see
Table 2). However, a change in the absorption spectrum of the
SYBR Green I-dsDNA complex at higher concentrations of
the [Ni(BnIm),**]2[C1 ] MIL was observed, as shown in
Fig. 3. This possibly indicates static quenching owing to com-
plex formation between the SYBR Green [-dsDNA and the
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Volmer plot of the integrate fluorescence intensity ratio (F/F) as a func-
tion of quencher concentration. d Steady-state modified Stern-Volmer
plot of the integrated fluorescence intensity ratio (Fy/(Fy-F)) and as a
function of 1//Q]

[Ni(BnIm),**]2[CI"] MIL. The BnIm ligand of the MIL can
interact with dsDNA through 7-7t stacking interactions,
forming a non-fluorescent ground-state complex, conducive
to static quenching [28, 40].

Fluorescence quenching of the SYBR Green I-DNA complex
by the metal salts

In an attempt to understand how the MILs quench the fluo-
rescence of SYBR Green [-dsDNA complex, their Stern-
Volmer plots were compared with those using the “bare”
ions obtained from the salts, NiCl, and CoCl, (ESM Figs.

Table2  The fraction of fluorescence accessible to the quencher (f,) and
the Stern-Volmer quenching constant of the accessible fraction (K,,) for
the metal salts and MILs obtained using Eq. (3)

Table 1 Forster critical

distances (Ry) of the Quencher R, (A) Quencher Ja K, (mM ")
metal salts and MILs
CoCl, 14.1 CoCl, 0.93 +£0.01 180 + 10
[Ni(BIm)4>*]2[CI ] 11.9 [Ni(BIm),>*]2[CI ] 0.73 +£0.02 100 + 20
[Ni(BnIm),**]2[CI ] 13.9 [Ni(BnIm),**12[C] ] 0.69 + 0.02 120 + 20
[Co(BIm),**12[CI ] 18.8 [Co(BIm)4**12[CI] 0.97 £ 0.01 200 + 20
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Fig.5 Fluorescence quenching of the SYBR Green I-dsDNA complex as
a function of [BMIm*][CI"] concentration. a Absorption spectra. b
Fluorescence emission spectra, A, =475 nm. Intensities were corrected

S2 and S3). These plots exhibited the same deviation from
linearity towards the “x-axis” as those of the MILs, and, therefore,
they were also fit using Eq. (3). Results are summarized in
Table 2. Within experimental error, Co** is a more efficient
quencher than Ni**: K, =180+ 10 mM ' as opposed to 160 +
10 mM . This difference may be attributed to the greater acces-
sibility of Co®* with respect to that of Ni**: 0.93 as opposed to
0.61.

NiCl, has an accessibility similar to those of the
[Ni(BIm),**]2[CI ] and [Ni(BnIm),**]2[C]"] MILs, within
experimental error: 061 +=0.01 as opposed to 0.73 £0.02 and
0.69 £0.69. On the other hand, its K, is larger: 160+ 10 mM !
for NiCl,; but 100420 mM " and 120 £20 mM " for the two
MILs, respectively. In contrast, CoCl, and
[Co(BIm),**]2[CI ] have similar £, and K, values within ex-
perimental error. It should be noted that the presence of the
ligands do not affect the £, and K, of Co®*, whereas they have
a significant on Ni**. This suggests that the coordination of the
ligands in the Co®* and Ni** MILs is different.

As noted in the “Evaluation of the contribution of
Forster resonance energy transfer (FRET) to fluorescence
quenching” section, the R, values of the metal salts and
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Volmer plot of the integrate fluorescence intensity ratio (F/F) as a func-
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MILs were all below 20 A. Therefore, FRET is likely not a
main contributor to the quenching effect and the mechanism
of quenching must either be through spin-orbit coupling or
excited-state electron transfer. There could be a difference in
quenching depending on the geometry of the MIL in solution
although this also lies beyond the scope of the current study
and was not investigated in further detail.

Effect of the IL (no metal) control on the fluorescence
of the SYBR Green I-DNA complex

To study the effect of a non-magnetic IL on the fluores-
cence of the SYBR Green I-dsDNA complex, Stern-
Volmer plots were obtained by adding 0 to 100 mM of
the [BMIm*][CI] IL to the SYBR Green I-dsDNA com-
plex. As shown in Fig. 5, the Stern-Volmer plot was linear
and fit to Eq. (3), yielding a Kgy of 1.2+£0.2 M L. This
indicates that the [BMIm*][C] ] IL has a negligible effect
on the fluorescence of the SYBR Green I-dsDNA com-
plex, and that the metal ions in the cation of the MIL
structure are mainly responsible for the fluorescence
quenching of the complex.
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Fig. 6 qPCR and fluorescence emission measurements of mixtures of
MIL and the SYBR Green I-dsDNA complex. The measurements were
recorded using the four highest MIL concentrations employed in con-
structing the Stern-Volmer plots. a 0, 1, 5, 10, and 15 mM
[Ni(BIm),>*]2[CI"] MIL using qPCR detection, b 0, 0.75, 1, 1.5, and
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Applicability of MiLs for direct use
in fluorescence-based assays

The final objective of this study is to determine if the MILs can
be directly applied to fluorescence-based bioanalytical techniques
such as gPCR and fluorescence emission measurements recorded
with a microplate reader. The four highest concentrations of each
MIL employed in the Stern-Volmer plots (1 to 15 mM for the
[Ni(BIm),2*]2[C1 ] MIL, 0.75 to 2 mM for the
[Ni(BnIm),**]2[C1"] MIL and 0.05 to 0.5 mM for the
[Co(BIm),**]2[CI ] MIL) were added to the SYBR Green I-
dsDNA complex. A fluorescence signal was able to be detected
in both qPCR and fluorescence emission measurements with a
microplate reader at the highest concentrations of each MIL, as
shown in Fig. 6. These results indicate that the MILs can be
directly used at these or lower concentrations in qPCR and fluo-
rescence emission measurements with microplate readers with
SYBR Green [-dsDNA as the fluorophore complex.

Conclusions

In this study, MILs containing the paramagnetic component in
the cation and chloride anions were used in absorption and
fluorescence emission spectroscopy to evaluate their suitabil-
ity for use in fluorescence-based DNA applications. The
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0.25, and 0.5 mM [Co(BIm)42+]2[Cl_] MIL using qPCR detection, d 0, 1,
5,10, and 15 mM [Ni(BIm),>*]2[CI"] MIL using fluorescence emission
detection, e 0, 0.75, 1, 1.5, and 2 mM [Ni(BnIm)42+]2[C17] MIL using
fluorescence emission detection, f 0, 0.05, 0.1, 0.25, and 0.5 mM
[Co(BIm),**]2[CI" ] MIL using fluorescence emission

SYBR Green I-dsDNA complex was used as the fluorophore
in the assessment of the fluorescence quenching effects of the
MILs themselves, as well as metal chloride salts and a non-
magnetic IL for comparison.

As predicted and confirmed through fluorescence quenching
experiments, the metal (Co™* or Ni**) of the MIL was the main
component in the structure responsible for quenching of the fluo-
rescence signal. As increasing concentration of quencher was
added, it was found that the SYBR Green I-dsDNA complex
provided an environment where two populations of fluorophores
were present, both with different accessibilities to the quencher.
This behavior was observed for all of the MILs and the metal
chloride salts. This new generation of MILs exhibited large
quenching constants, as observed by a significant reduction in
the fluorescent signal when increasing amounts were added to the
SYBR Green I-dsDNA complex. The results from this study
cannot distinguish between the two quenching mechanisms of
these MILs as being spin-orbit coupling or excited-state electron
transfer. Owing to the small overlap integral between the absorp-
tion spectrum of each MIL and the emission spectrum of the
SYBR Green [-dsDNA complex, it can be concluded that non-
radiative Forster resonance energy transfer is not significant.
Although large quenching constants were observed for the
MILs with SYBR Green [-dsDNA as the fluorescent probe, they
were still able to be used directly in qPCR and fluorescence
emission measurements using a microplate reader at the four

@ Springer
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highest concentrations found in each Stern-Volmer plot, indicat-
ing that these MILs can be used in fluorescence-based assays.

The [Ni(BIm)4**]2[C1 ] and [Ni(BnIm),**]2[C] ] MILs
quenched fluorescence identically within experimental error.
Careful observation, however, of the absorption spectra of the
SYBR Green I-dsDNA complex with the
[Ni(BnIm)4>*]2[CI"] MIL revealed a possible static
quenching component, thereby rendering the use of the
[Ni(BIm),**]2[Cl ] MIL in fluorescence-based assays as pos-
sibly more advantageous. In PCR experiments, customized
PCR buffers can be designed to alleviate inhibition caused
by the MILs if they are used in DNA extractions and directly
added to the PCR buffer. This is similar to what was per-
formed with previous generations of MILs which contained
the metal in the anion [15, 25].
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