
Automatically Translating Image Processing Libraries to Halide

MAAZ BIN SAFEER AHMAD, University of Washington, Seattle

JONATHAN RAGAN-KELLEY, University of California, Berkeley

ALVIN CHEUNG, University of California, Berkeley

SHOAIB KAMIL, Adobe

Fig. 1. Dexter parses the input C++ function (shown on the left) into a DAG of smaller stages, then uses our 3-step synthesis algorithm to infer the semantics

of each stage, expressed in a high-level IR (middle). Finally, code generation rules compile the IR specifications into executable Halide code (right).

This paper presents Dexter, a new tool that automatically translates im-

age processing functions from a low-level general-purpose language to a

high-level domain-specific language (DSL), allowing them to leverage cross-

platform optimizations enabled by DSLs. Rather than building a classical

syntax-driven compiler to do this translation, Dexter leverages recent ad-

vances in program synthesis and program verification, along with a new

domain-specific synthesis algorithm, to translate C++ image processing

code to the Halide DSL, while guaranteeing semantic equivalence. This new

synthesis algorithm scales and generalizes to much larger and more complex

functions than prior work, including the ability to handle tiling, conditionals,

and multi-stage pipelines in the original low-level code. To demonstrate the

effectiveness of our approach, we evaluate Dexter using real-world image

processing functions from Adobe Photoshop, a widely used multi-platform

image processing program. Our results show that Dexter can translate

264 out of 353 functions in our test set, with the original implementations

ranging from 20 to 150 lines of code. By leveraging Halide’s advanced auto-

scheduling capabilities, we get median speedups of 7.03× and 4.52× for

Dexter-translated functions as compared to the original implementations

on Intel and ARM architectures, respectively.

CCS Concepts: · Computing methodologies → Image processing; ·

Software and its engineering→ Search-based software engineering;

Automatic programming;

Authors’ addresses: Maaz Bin Safeer Ahmad, University of Washington, Seattle,
maazsaf@cs.washington.edu; Jonathan Ragan-Kelley, University of California, Berke-
ley, jrk@berkeley.edu; Alvin Cheung, University of California, Berkeley, akcheung@cs.
berkeley.edu; Shoaib Kamil, Adobe, kamil@adobe.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART204 $15.00
https://doi.org/10.1145/3355089.3356549

Additional Key Words and Phrases: Verified Lifting, Machine Programming,

Stencil Computation

ACM Reference Format:

Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib

Kamil. 2019. Automatically Translating Image Processing Libraries to Halide.

ACM Trans. Graph. 38, 6, Article 204 (November 2019), 13 pages. https:

//doi.org/10.1145/3355089.3356549

1 INTRODUCTION

Domain specific languages (DSLs) for image processing [Adobe

2010; Guenter and Nehab 2010; Ragan-Kelley et al. 2013] enable

high performance, portability, and maintainability, but extending

these benefits to existing low-level code is difficult. Rewriting entire

legacy applications in DSLs requires huge amounts of human effort

and risks adding bugs. Building compilers to automatically trans-

late low-level image processing code to high-performance DSLs

using traditional code rewriting techniques such as syntax-directed

translation [Aho et al. 2006] is fragile, since these methods are

prone to failure when code does not exactly match expected syntac-

tic patterns. These techniques also provide no guarantees that the

translated code is correct.

In this paper, we propose a different way to solve the translation

problem. Rather than constructing syntax matching rules, we con-

sider the translation problem as a search: given the input code, we

build and solve a search problem that helps us find a provably seman-

tically equivalent program in the target language, finding solutions

with the aid of recent advances in program synthesis [Bodík and

Jobstmann 2013; Gulwani 2010] and automatic formal verification

techniques. To validate this concept, in this paper we take image

processing operations and pipelines written in C++ and translate

them to Halide [Ragan-Kelley et al. 2012], a high-performance DSL

for image computation.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:2 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

While prior work has proposed similar approaches for differ-

ent application domains [Ahmad and Cheung 2018; Cheung et al.

2013; Kamil et al. 2016], translating image processing code presents

unique challenges. First, although Halide is not a Turing-complete

general purpose language, the number of programs expressible is

nevertheless huge. In addition, image processing works with arrays,

but the lack of first-class multidimensional arrays in languages like

C++ leads to low-level code including pointer arithmetic and using

single-dimensional arrays to represent multi-dimensional data. Prior

work in other domains has also not considered operations common

in low-level image processing code like bit-shifting, widening and

narrowing casts, and exact integer arithmetic over multiple data

types, each of which present challenges for program synthesis and

verification. Combined with various low-level optimizations com-

mon in C++ image processing code (e.g., loop tiling or vectorization),

these characteristics make reasoning about, and hence translating,

image processing code difficult.

We rely on two insights to make the problem tractable. First,

rather than searching directly over the textual representation of

Halide programs, we search over an intermediate representation

(IR) that closely resembles Halide, but without details such as type

annotations. Second, to make the search scalable, we decompose

the search problem into three parts: given an image processing

operation written in C++, we first reason about the number of

arrays modified by the computation, along with their dimensionality.

We analyze how the arrays are traversed to determine the region

of interest (ROI) of the operation. Next, we identify the inputs to

the operation: the input array reads and scalars used to compute

the output. Finally, we use the information inferred from the first

two steps to reason about the actual computation performed over

the input image to generate the output. Our algorithm infers full

specifications for image processing functions and pipelines, which

can then be straightforwardly used to generate executable Halide

code. We argue that our new search-based algorithm is both simpler

and more general than designing ad hoc syntax matching rules in a

traditional compiler.

To evaluate the effectiveness of our approach, we have imple-

mented our translation algorithm in Dexter, a translator for rewrit-

ing C++ image processing functions in Halide. Dexter performs

translation by first synthesizing a summary program written in

our IR that decomposes the image processing operation into the

three components described above. Then, it uses the synthesized

summary to generate executable Halide code. Finally, Dexter lever-

ages the Halide auto-scheduler [Adams et al. 2019] to generate

efficient schedules for the translated functions. We show that our

Dexter prototype can translate 264 image processing functions,

developed over decades, from Adobe Photoshop source code per-

forming various blend and filter operations. In addition, we show

that Dexter can also translate complex, difficult-to-understand op-

timized implementations containing vector intrinsics and loop tiling

optimizations, along with multi-stage image processing pipelines.

Overall, this paper presents the following contributions:

• We describe a three-stage search algorithm for specification

inference of image processing functions. Our algorithm is

much more scalable than existing techniques, both in terms

of the ability to infer specifications from complex code and

the time needed to infer them. Furthermore, the algorithm

expands the types of operations supported (e.g., bit-wise op-

erations, which are not supported in existing synthesizers).

• We describe how Dexter translates larger image-processing

functions, such as those implementing multi-stage pipelines,

by parsing the functions into a directed-acyclic graph (DAG),

where each node in the DAG corresponds to a loop-nest im-

plementing an individual operation in the pipeline.

• We implement a prototype called Dexter1 based on our al-

gorithm, and show that it can automatically translate 264

functions from a set of 353 functions from the source code

of Adobe Photoshop. These functions, implemented using

over 36k lines of C++ code, include complexities such as

vectorization, loop-tiling, type-casting, bitwise operations,

reductions and conditionals, all of which were beyond the

scope of prior work [Kamil et al. 2016]. By leveraging Halide

and its auto-scheduler, our translated functions are not only

more portable, but perform up to 73× faster than the original

implementations.

In the rest of the paper, we first discuss prior work and back-

ground in ğ2. Then in ğ3, we give an overview of Dexter using an

example, and discuss our three-stage algorithm in ğ4. We describe

the implementation of Dexter in ğ5, followed by experimental

results in ğ6.

2 RELATED WORK & BACKGROUND

2.1 Automatically Translating Image Processing Code

We discuss related techniques that optimize either image process-

ing or stencil code via automatic rewriting or compilation in three

categories: dynamic analyses that use runtime techniques for opti-

mization, hybrid analyses that use both compilation and runtime

mechanisms to optimize input code, and classical compilation (i.e.,

static analysis).

2.1.1 Dynamic Analysis. Dynamic analysis based techniques per-

form runtime profiling of existing code to derive equivalent trans-

lations. Helium [Mendis et al. 2015], an example of such a tool,

identifies and converts image processing kernels from stripped bina-

ries to Halide. Helium uses dynamically generated program traces

to learn the shapes and values of the input and output buffers, gen-

eralizing the computation into a symbolic expression tree that is

then used to generate Halide code. Such runtime techniques are fast

and can be used even if the code is available only in binary form.

However, the reconstructed kernels are merely an approximation

of the original code based on the observed set of traces and such

techniques do not offer any soundness guarantees. Furthermore,

if the traces only exercise a specific set of parameters (for exam-

ple, a single blur radius for a filter that supports user-definable blur

radii), the translated function will only support the specific observed

parameters, limiting the tool’s usefulness.

2.1.2 Static-Dynamic Hybrid Analysis. To compensate for the lack

of soundness guarantees in dynamic techniques, hybrid analysis

uses static compilation techniques in addition to runtime profiling.

1http://dexter.uwplse.org

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:3

For instance, STNG [Kamil et al. 2016] is a compiler for translating

FORTRAN stencils to Halide. It statically analyzes the input code to

ensure that the generated Halide implementations are semantically

equivalent to the original over all possible inputs.

LikeDexter, STNG uses program synthesis to find a valid transla-

tion given the input. In the absence of a scalable synthesis algorithm,

such as the one described in this paper, STNG restricts its search to

a space of candidate Halide programs defined by a template. STNG

constructs these templates through dynamic analysis of program

traces, similar to Helium. Therefore, STNG’s approach, although

sound, suffers frommany of the same limitations as Helium. The gen-

erated templates are often over-fitted to the set of traces observed

and can exclude valid translations from the search space. While any

translation found by STNG is guaranteed to be correct, STNG is

limited to translating only simple functions as each runtime trace

can capture only a single path through the complex control flow

in a program, and reconstructing the original control flow through

a small set of traces remains challenging. In addition, STNG can-

not handle many important operations found in image processing,

including casting and bitwise arithmetic.

Similar hybrid approaches are used by systems outside of im-

age processing that synthesize programs based on input-output

examples, such as Scythe [Wang et al. 2017], which synthesizes

database queries based on user-provided input-output pairs, and

FlashFill [Gulwani 2011], a feature in Microsoft Excel that uses

examples to guess user-intended transformations.

2.1.3 Syntax-Driven Compilation. Classical source-to-source trans-

formations have been utilized to generate optimized code from

higher-level descriptions, based on syntax-driven transformations,

which enable fast performance when input code matches expected

syntactic forms. As discussed in ğ1, such compilers are based on

syntax matching rules to translate input programs, and develop-

ing such rules requires major engineering effort. Such approaches

have been used to find optimal schedules for image processing op-

erations [Boechat et al. 2016; Mullapudi et al. 2016; Ragan-Kelley

et al. 2012], along with compiling image processing operations to

hardware [Hegarty et al. 2014, 2016].

[Yang et al. 2016] employs syntax-driven techniques to trans-

late image processing code in Python by transforming the Python

abstract syntax tree into lower-level Cython [Dalcin et al. 2010]

code, which is a mixture of Python and C, while performing several

program transformations. Similarly, SEJITS specializers [Catanzaro

et al. 2009; Kamil et al. 2012] use syntax-driven code generation

for translating subsets of Python code into various languages. Such

systems invariably handle only a subset of ways input programs can

encode their operations and do not provide the kinds of correctness

guarantees possible with program verification.

2.2 Program Synthesis and Verification

InDexter, we use program synthesis to infer a summary for each im-

age processing operation in the input library. Program synthesizers

take in two inputs: a search space of candidate program summaries

written in our IR, and a way to verify if a candidate is semantically

equivalent to the input code. The former is described using a gram-

mar over our IR, to be discussed in ğ4. For the latter, we leverage

Hoare-style verification conditions [Hoare 1969] that are readily

expressible in forms understood by solvers such as Z3 [De Moura

and Bjùrner 2008].

Dexter relies on the Sketch [Solar-Lezama 2019] program syn-

thesizer to generate and search through the candidate program

summaries, in conjunction with a solver for validation. There have

been a number of approaches to solve the synthesis problem [Bodík

and Jobstmann 2013; Gulwani 2010] using different algorithms, such

as constraint-based search [Solar-Lezama et al. 2007], enumerative

search [Phothilimthana et al. 2016], or stochastic search [Schkufza

et al. 2014]. Internally, Sketch solves the search problem by sampling

the search space, and using a SAT solver to check for the validity of

the sampled programs. If a sample is incorrect, the solver will return

a counterexample (i.e., an image that, when fed into the sample and

input program, returns different results). Sketch will then reduce

the space by sampling only from those programs that satisfy the set

of counterexamples found thus far. This proceeds iteratively until

either Sketch finds a correct program or the search times out.

Unfortunately, standard algorithms for synthesis fail to solve our

translation problem, as the number of candidate programs is simply

too large to be considered by an existing synthesizer. To make the

search efficient, specialized algorithms have been developed for

different application domains, and we discuss how we address the

issue for image processing operations in ğ4.

3 OVERVIEW

We now describe howDexter translates image processing functions

in C++ to Halide, using an example to illustrate the workflow.

3.1 Image Processing Functions

Dexter targets image processing functions written in standard C++.

Such functions are often expressed using a sequence of loop nests

that iterate over the input buffers to compute intermediate or output

buffers. Each loop nest iterates through a region of interest (ROI)

and, for each point i within the ROI, computes the corresponding

value in the output buffer using a neighborhood of values around i

and invoking different kinds of operators, such as arithmetic, bitwise,

and conditional expressions (i.e., Halide’s select operator); array

reads using i; and reductions. The input image can be stored using

arrays, vectors, or even user-defined types (UDTs).We outline the set

of C++ features supported by our implementation in ğ5.1. Dexter

only targets code that implements image processing logic, and does

not translate setup or logging code present in image processing

applications (e.g., memory allocation, I/O, etc), as such code does

not yield performance improvement even if expressed in Halide.

3.2 Translating Image Processing Functions to Halide

The input to Dexter is a library of image processing functions im-

plemented in C++. As output, Dexter generates a new, semantically

equivalent version of the input library implemented using Halide.

Dexter translates the input by parsing each function as a directed

acyclic graph (DAG), with each node in the DAG corresponding to

a loop nest in the input code, and synthesizing a semantically equiv-

alent Halide function for each node in the DAG. Each translated

function then becomes a stage in the overall Halide pipeline.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:5

ROI := [B0, B1, . . . , BD]

Bi := (IntExpr , IntExpr)

IntExpr := intvars | const | IntExpr Op IntExpr

Op := + | − | ×

(a) Grammar for synthesizing an operation’s region of interest.

Term := intvar | f loatvar | boolvar | const

| arrvar (Index , . . .)

Index := intvar | intvar ± const | const

| arrvar (Index , . . .)

(b) Grammar for synthesizing terminal mappings.

Expr := terms | iden | Expr BOp Expr | UOp Expr

| (Expr ? Expr : Expr) | f (Expr , . . .)

| cast<Type>(Expr)

Type := f loat | uint8_t | int8_t | uint16_t | . . .

BOps := + | − | ∗ | / | << | & | ! = | . . .

UOps := ∼ | − | !

(c) Grammar for synthesizing the computation performed in an operation.

Fig. 4. Search grammars used to synthesize summaries for image processing

operations. Each summary represents a possible Halide tranlsation for the

input operation.

Next, the summary generator synthesizes summaries expressed

using Dexter’s IR for each operation in the DAG. First, the ROI

generator synthesizes the dimensionality and ROI for each opera-

tion. Then, the terminals generator synthesizes a mapping for all

terminals (variables and array reads) found in the input code into a

normalized iteration space. Finally, the expression generator synthe-

sizes an expression that encodes the computation performed in each

operation using the previously synthesized terminals. To ensure se-

mantic equivalence to the input, any summary candidate identified

by the summary generator is passed to the verifier for validation.

We discuss the search and verification procedure in detail in ğ4.

Once a summary is inferred and verified, the code generator trans-

lates the summary from Dexter’s IR into executable Halide code.

The translation is straightforward given the resemblance between

the IR and Halide. The code generator traverses the summary and

generates equivalent Halide code for each expression, outputting

a compilable Halide generator that can be combined with an op-

timized schedule to produce high performance code. We provide

more details of the code generation process in ğ5.4.

4 FINDING SUMMARIES FOR IMAGE PROCESSING

OPERATIONS

Dexter uses program synthesis to find translations of image pro-

cessing operations. To search for translations, we define the search

space of Halide programs using a grammar, an excerpt of which is

shown in Figure 4. Given this grammar, the synthesizer will concep-

tually enumerate all programs that can be constructed using it by

randomly choosing a production rule up to a fixed number of times,

and check if any of the constructed Halide programs is semantically

equivalent to the input.

Unfortunately, this process is prohibitively expensive: even if we

limit the synthesizer to expand only up to 5 production rules, the

grammar shown in Figure 4 expands to tens of thousands different

Halide programs; such a search space is at least an order of magni-

tude larger than what any state-of-the-art synthesizer can handle,

making this approach infeasible without further optimizations.

Our key insight to make the search problem tractable in Dexter

is to exploit domain-specific knowledge about image processing

operations. In particular, we observe that we can decompose many

such operations into three components:

• A Region of Interest (ROI) that describes the dimensionality

of the operation and the bounds for each dimension within

which the output is realized.

• The set of terminals used to compute the value of each point

within the ROI. Such terminals can consist of numeric con-

stants, program variables, or array reads.

• The computation performed using the aforementioned set of

terminals to compute the values inside the ROI.

Dexter exploits this insight to decompose the overall summary

synthesis problem into three separate synthesis sub-problems, each

targeting one component above.

4.1 Synthesizing the Region of Interest

An image processing operation’s region of interest (ROI) describes

its dimensionality and bounds. In this section, we describe how

Dexter synthesizes the ROI for each image processing operation.

4.1.1 ROI Grammar. Like other synthesis problems, Dexter syn-

thesizes the ROI for each image processing operation by encoding

the search space of candidate ROIs using the grammar shown in

Figure 4a. In the grammar, each ROI consists of D bound expressions

(Bi . . . BD), one for each dimension. Each bound expression consists

of an upper and lower bound IntExpr that is made up of integer

constants (const), the set of integer variables and pointers read or

updated (intvars) extracted through static analysis of each input

function, and combinations of such expressions using arithmetic

operators.

For example, Figure 2b shows the ROI for each operation in the

box-blur function, shown in Figure 2a. It describes the 1x3 row-blur

as two-dimensional, with bounds 0 ≤ d1 < cols and 0 ≤ d2 < rows

for the first and second dimension, respectively. The synthesizer can

construct this ROI from the grammar by first setting D to be 2, and

then applying the appropriate production rules shown in Figure 4a

to construct the bound expressions for each dimension.

4.1.2 ROI Verification. To synthesize the ROI, we need a way to

check whether a candidate ROI is correct. Recall that we have not

yet synthesized the set of terminals used or the actual computation

performed by the input code. Hence, to verify a candidate ROI, we

create a łreducedž version of the input code fragment, where all

statements in the fragment’s body are removed, except for those (if

any) that update loop counters, array pointers, or array contents.

We replace all array updates with the special value ⊥ to indicate

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:6 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

1 RDom r(0, cols, 0, rows);

2 Func Var i, j;

3 dst(i, j) = undef<int>(); // ROI's contents undefined

4 dst(r.x, r.y) = ⊥; // except for locations within r

(a) A candidate ROI expressed in Halide.

1 for (int r = 0; r < rows; r++) {

2 for (int c = 0; c < cols; c++) {

3 dst[c] = ⊥;

4 }

5 dst += rowBytes;

6 tmp += rowBytes;

7 }

(b) A reduced version of the 3x1 column-blur used to synthesize the ROI.

Fig. 5. Dexter synthesizes the ROI of an image processing operation by

constructing a reduced version of the input code fragment.

that the array entry has been updated, but using an expression that

we do not yet know (to be synthesized in the last step).

Consider again the 3x3 blur function from Figure 2a. To synthesize

the ROI for the second operation in the pipeline (3x1 column-blur),

Dexter prepares a reduced version of the loop nest, shown in Fig-

ure 5b. Given this code, Dexter generates ROI candidates using the

grammar shown in Figure 4a. To check the validity of a candidate,

Dexter creates a skeletal Halide program; one that corresponds to

the ROI candidate [(0, cols), (0, rows)] is shown in Figure 5a, where

the special value ⊥ is written to the ROI defined by the reduction

domain (r) on Line 4. The validity of a candidate ROI is determined

by checking the equivalence of the candidate (Figure 5a) and the

reduced input code (Figure 5b) through program verifiers.

4.2 Synthesizing the Terminal Mappings

Once an operation’s ROI is synthesized, Dexter next infers the

computation performed by the code fragment for each location

within the ROI. As discussed earlier, Dexter partitions this problem

into two further steps. First,Dexter learns the terminals used in the

computation, such as variables, constants, and array reads. Recall

from ğ4.1 that we replaced the values of all array updates with the

special value ⊥. Conceptually, the goal of this step is to learn the

arguments that are needed to compute ⊥, as shown in Figure 6a.

4.2.1 Extracting Terminals. To extract the set of terminals, Dexter

statically analyzes the input code for each operation in the func-

tion. The analysis starts at each statement that updates the output

image (such as Line 18 in Figure 2a), and extracts all terminals in-

volved in these assignments, i.e., sum and 3. Then, it traverses the

code backwards to recursively extract all terminals used to compute

the extracted values. Since sum is in the extracted set, the termi-

nals src[c-rowBytes], src[c] and src[c+rowBytes] replace sum

in the extracted set after Line 16 in Figure 2a is analyzed. The fi-

nal set of terminals extracted for the 3x1 column-blur operation is

{src[c-rowBytes], src[c], src[c+rowBytes], 3}. These serve as

the inputs to ⊥ as shown in Figure 6c.

4.2.2 Mapping Terminals. The terminals extracted through static

analysis are defined in the context of loops found in the original

code, which can contain low-level optimizations (such as tiling and

array flattening) that use different indexing than the Halide code

to be synthesized. For example, the input code shown in Figure 2a

roi = [(0, cols), (0, rows)]

dst(x ,y) = ⊥(??)

(a) The goal is to synthesize the arguments required to compute ⊥.

1 RDom r(0, cols, 0, rows);

2 Var i, j;

3 dst(i,j) = undef<int>();

4 dst(r.x,r.y) = ⊥(src(x,y-1), src(x,y), src(x,y+1), 3);

(b) A candidate mapping expressed in Halide.

1 for (int r = 0; r < rows; r++) {

2 for (int c = 0; c < cols; c++) {

3 dst[c] = ⊥(src[c-rowBytes], src[c], src[c+rowBytes], 3);

4 }

5 dst += rowBytes;

6 src += rowBytes;

7 }

(c) A reduced version of the 3x1 column-blur used to synthesize terminal

mappings.

Fig. 6. Once the ROI has been determined, Dexter synthesizes a mapping

for terminals found in the input code.

stores the input image src as a 1-D array, while the translated

Halide code stores the input as a 2-D array as determined by the

ROI. Hence, the terminal src[c-rowBytes] in the input code can

be mapped to src(x ,y − 1) in the Halide summary, where x and y

are the loop induction variables bound to the two dimensions of the

ROI. Determining the mappings for constants is trivial: all constants

map to themselves. For all other terminals,Dexter synthesizes their

mappings through program synthesis.

4.2.3 Grammar for TerminalMapping. Figure 4b describes the gram-

mar used to synthesize terminal mappings. A terminal (Term) can

map to scalar values or array reads. While generating array in-

dexing expressions (Index), the grammar allows offsetting integer

variables, such as the induction variables, by a constant. This allows

the synthesizer to explore reads from neighboring indices. Finally,

the grammar can also express indirect array accesses to handle

code that use pre-computed lookup tables, for instance, the terminal

histogram[src[i]] that looks up from a pre-computed histogram

based on the current location’s pixel value.

4.2.4 Verifying Mappings. Dexter again constructs a reduced ver-

sion of the input to check the correctness of any synthesized map-

ping. Like ROI synthesis, Dexter removes all statements in the

input code fragment, except for loops and assignments to output ar-

rays. Rather than changing array assignments to ⊥, Dexter instead

changes array assignments to a special ⊥ function with parameters

being the extracted terminals.Dexter then generates a similar skele-

tal Halide program, an example of which is shown in Figure 6b, with

the special assignment shown on Line 4. Verification, like before, is

done by checking the equivalence of the two programs.

4.3 Synthesizing the Computation

The final step in synthesizing summaries is to infer how the termi-

nals combine to compute the values used to update the locations

within the ROI. To do so, Dexter replaces the special value ⊥ (as

shown in Figure 6a) with an actual Halide expression.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:7

4.3.1 Expressions Grammar. Figure 4c shows the grammar to used

to synthesize Halide expressions. Besides simple expressions such

as arithmetic expressions, Dexter also supports conditionals in the

form of ternary operations, as well as type-casting to different inte-

ger bit-widths, between integer and floating point representations,

along with signed and unsigned representations. The only terminals

available in the grammar (Terms) are the terminals synthesized in

the second stage and the special iden terminal which represents

no-op. The no-op operator is useful for describing operations such

as threshold blends, where the input data values control whether a

point in the ROI is modified or not.

4.3.2 Verifying the Summary. Replacing ⊥ with a candidate Halide

expression yields a candidate summary of the input code. Similar

to the previous stages, Dexter verifies a candidate by constructing

the corresponding Halide program and then testing the equivalence

of the generated candidate program with the original code fragment.

If verification succeeds, then we have found a valid translation of

the input code. If not, the synthesizer attempts to generate another

candidate, until it exhausts the search space (i.e., the search space

encoded by the grammar is not expressive enough), or it times out.

As explained in ğ2.2, Dexter uses the Sketch synthesizer to sam-

ple the search space for each of the three sub-problems created by

our algorithm. In Appendix A, we provide supplementary details on

the finer optimizations used by Dexter to optimize the search pro-

cess. Once synthesized, the summary is sent to the code generator

to produce executable Halide code. We discuss the details in ğ5.4.

5 IMPLEMENTATION

We implementedDexter’s program analyzer using the Clang [Lopes

and Auler 2014] compiler’s libTooling library to parse C++ code

into an abstract syntax tree (AST). The analyzer traverses the AST to

perform static analysis and DAG generation, and sends the results to

the summary generator.Dexter’s summary generator, implemented

in Java, uses an off-the-shelf synthesizer called Sketch [Solar-Lezama

2019], along with Z3 [De Moura and Bjùrner 2008] for verification.

The code generator for parsing the synthesizer’s output and gener-

ating the output Halide code is also implemented in Java.

In the remainder of this section, we first outline the subset of

C++ that Dexter supports. Then, we discuss how users can interact

with, extend, and fine-tune Dexter. Last, we provide details about

Halide code generation.

5.1 Supported C++ Constructs

To translate any input code fragment, Dexter must parse the in-

put and generate search grammars for the different components

(as described in ğ4). Dexter currently supports a core set of C++

constructs, such as basic assignment and declaration statements,

conditionals, loops, functions, and user-defined types.

5.1.1 Types Supported. Dexter supports all built-in primitive C++

data types and operators. It also processes reads and writes into

primitive arrays or std::vector types.Dexter only supports point-

ers that represent dynamically sized primitive arrays, and internally

models them as a data array and an integer offset that represents the

pointer’s location within the array. This enables supporting pointer

de-referencing and arithmetic when generating search grammars.

To support user-defined types, Dexter traverses the program

AST to find declarations of all user-defined structs used in the

code being translated. It then adds these types to the underlying

synthesizer’s and verifier’s type systems. This is useful especially

when planar image data is stored in a struct with arrays for each

channel. Dexter can also generate search grammars for code that

involves user-defined types, including the use of constructors and

methods.

5.1.2 Loops. Dexter can process different types of loops (for,

while, do), including those with loop-carried dependencies after

applying classical transformations [Aho et al. 2006] to convert them

into while(true){...} loops.

5.1.3 Functions. Dexter handles function calls by inlining the func-

tion bodies, except if the function being called is pure and computes

a scalar quantity from other scalar quantities. Dexter translates

such functions to equivalent pure functions in our IR and adds them

to the search space to keep the generated code clean and understand-

able. For example, in Figure 7, the output dst is computed using

the function Mul8x8Div255, which multiplies the two input 8-bit

values, divides by 255, and returns the result. Since Mul8x8Div255

is a pure function, Dexter will add it to the expressions grammar

in Figure 4c. Dexter currently does not support recursive functions

and functions with side-effects other than array writes, since neither

are expressible in Halide.2

5.1.4 External Library Functions. Users can provide semantic mod-

els of external library functions used in the input code by implement-

ing them using Dexter’s IR. Dexter already comes with built-in

support for a number of common functions from the C++ standard

library (e.g., min, max, abs etc).

5.2 DAG Construction

Image processing functions often implement a pipeline of operations

computing multiple intermediate and output values. Summaries

expressed in our IR that describe the output of an entire multi-stage

pipeline are not only difficult to synthesize (due to their potentially

large size), but they often do not exist as not all pipelines can be

inlined into a single operation. This is the case, for example, of a

pipeline where an earlier stage computes a histogram that a later

stage uses. To address this issue, Dexter parses the input functions

into a DAG, where each node in the graph represents a single loop-

nest found in the code and is treated as an operation in a larger

pipeline. This allows us to introduce ordering between different

fragments of computation within the function, all of which can

be expressed using our IR and therefore be translated to Halide to

produce a Halide pipeline.

Dexter generates the DAG through a forward traversal of the

function’s statements, assigning each statement to a stage in the

DAG. At the start, Dexter initializes the DAG with a single stage

that has no statements. It then adds all basic program statements,

such as variable assignments and declarations, to the current stage

2Functions with side effects can be called from Halide by using extern functions, but
such translations are beyond the scope of this paper.

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:8 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

1 void adjustOpacity(uint8_t* dst, int opacity, int rows,

2 int cols, int rowBytes) {

3 assert (cols <= rowBytes); // required user annotation

4 for (int r = 0; r < rows; r++) {

5 for (int c = 0; c < cols; c++) {

6 dst[c] = Mul8x8Div255(dst[c], opacity);

7 }

8 dst += rowBytes;

9 }

10 }

Fig. 7. User annotation helps Dexter determine that each index of the array

is updated only once.

of the DAG until it reaches a loop nest. Once a loop is encountered,

Dexter adds the loop nest to the current stage and creates a new

stage as a child of the previous stage. Dexter then resumes the pro-

cess until either another loop is encountered or all of the function

statements have been assigned. A special case is made for condi-

tional statements (e.g., if) that contain a loop in either branch of

the control flow path (or both). Each branch of the conditional is

recursively parsed into a DAG, with the heads of each sub-DAG

connected to the current graph as child nodes (representing a fork

in the DAG). The last stages in each of the sub-DAGs are merged

back together just as the original program control flow merges.

As an illustration, the blur function in Figure 2a is parsed by

Dexter into two consecutive stages, where stage 1 contains all

statements from Line 3 to 11, and stage 2 contains all statements

from Line 12 to Line 22. Dividing the input code this way replaces

one difficult synthesis problem (finding a summary that involves 10

terms) to two much simpler synthesis problems (finding summaries

involving only 4 terms).

5.3 User Interaction

In this section, we discuss the miscellaneous inputs a user may

provide to Dexter and how users may tune or extend the system

in the future.

5.3.1 Code Annotations. Occasionally the functions in a library

make assumptions about the input parameters that are not explicitly

expressed in the source code and yet are essential to its correctness.

For instance, the code shown in Figure 7 takes as input variables

cols and rowBytes representing the number of columns to compute

in each row and the width of the output buffer row in bytes, respec-

tively. The code implicitly assumes that the number of columns is

less than or equal to the row-width; otherwise, the assignment on

Line 6 would be executed multiple times for some locations in dst.

Because of this possibility, Dexter will fail to translate the code

fragment as there exist inputs where the fragment is not equivalent

to a two-dimensional Halide assignment. Users can help Dexter

translate such kernels by adding annotations, such as the assert

statement on Line 3, to clarify the intent of the code.

5.3.2 Tuning Search Grammar. The default grammar used by Dex-

ter represents a broad class of image processing operations. Users

may alternatively want to specialize the grammar to the library

they intend to translate. For instance, if the library only includes

point-wise operations, the grammar could be adjusted to not explore

neighboring points when synthesizing point mappings. Similarly,

1 for (int row = 0; row < rows; row++) {

2 for (int col = 0; col < cols; col++) {

3 int x = msk[row*cols + col];

4 x = 255 - x + noiseData[HashFunction(row,col)];

5 if (x < 256)

6 msk[row*cols + col] = 255;

7 else

8 msk[row*cols + col] = 0;

9 }

10 }

Fig. 8. Synthesizing the mapping for terminal noiseData requires synthe-

sizing the hash function.

users may want to compose Halide expressions from a set of custom

higher-level library-specific operations.Dexter is designed to make

such modifications easy: it allows users to express grammars by

writing them in a format similar to those shown in ğ4. Our default

grammar is expressed using fewer than 250 lines of code.

5.3.3 Extending Dexter. Dexter is designed to be highly extensible.

For instance, to support custom types or external library functions

in the input source code, users only need to provide models for

said types and functions using Dexter’s IR. To demonstrate the ease

of extending Dexter, we discuss two patches to the system that

enable the translation of benchmarks that Dexter failed to translate

during our evaluation: a dissolve blend and an addition blend.

The dissolve blend uses a specialized hash-function over the loop

counters to pseudo-randomly read noise data from a pre-computed

table, as shown in Figure 8. To find the mapping for terminal

noiseData[HashFunction(row,col)],Dexterwould have to syn-

thesize this hash function using our points grammar, which is very

challenging. A straightforward solution is to implement HashFunc-

tion inDexter using the IR and update the Index rule in the default

points grammar (Figure 4b) as follows:

Index := intvar | intvar ± const | const

| arrvar (HashFunction(Index , Index), . . .)

| arrvar (Index , . . .)

The addition blend fails since it calls the function UDIV255, to

perform an unsigned divide-by-255, that is implemented using hand-

written assembly, a feature currently not supported by Dexter.

Providing Dexter with a semantic model of the UDIV255 function

is sufficient to translate this benchmark:

uint_t UDIV255(uint_t x) { return x / 255; }

5.4 Code Generation

Since the synthesizer outputs code using a stylized subset of Halide,

code generation is straightforward and is done via a small set of

rules. The ROI described by the summary is used to declare the set of

induction variables, one for each dimension, as well as constructing

the reduction domain (Halide::RDom) to iterate over, which defines

the set of points over which the stencil executes. The expressions

synthesized in the final step describe how each location in the

output buffer is computed, and has a one-to-one correspondence

with Halide’s Func assignment statements.

Figure 9 lists a part of Dexter’s code generation function Gen(),

which takes in a Dexter IR construct and generates executable

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:9

Gen(roi = [(lb0, ub0), . . .]) = RDom(Gen(lb0), Gen(ub0), . . .)

Gen(e1 = e2) = Gen(e1) = Gen(e2)

Gen((e1 ? e2 : e3)) = select(Gen(e1), Gen(e2), Gen(e3))

Gen(cast<τ >(e)) = Halide :: cast <τ >(Gen(e))

Gen(e1 + e2) = Gen(e1) + Gen(e2)

Gen(var) = var

Fig. 9. A subset of Dexter’s code generation function Gen().

Halide code. Gen() is recursively called: for instance, calling Gen()

on e1 + e2 will recursively call Gen() to translate each operand. Ex-

pressions such as variables and constants represent the base cases,

as they trivially map to themselves. Translating the required decla-

rations works similarly; Line 1 in Figure 9 converts the synthesized

ROI description into an RDom declaration.

6 EVALUATION

In this section, we present a comprehensive evaluation of Dexter’s

ability to: (1) translate complex and diverse image processing code,

and (2) translate code efficiently. Furthermore, we investigate the

performance of the compiled Halide library against the original C++

implementation in various contexts.

All benchmarks in our evaluation were compiled on a high-

performance server with 4 Intel Xeon E7-4890v2 2.8 GHz 15-core

processors, 1 TB of memory, running Ubuntu OS 16.04. For synthesis,

Dexter utilized Sketch 1.7.5 with a parallelism factor of 100. Z3 ver-

sion 4.8.3 was used for verification. Runtime performance evaluation

for compiled code was performed using a 15-inch Apple Macbook

Pro (2018) with a 6-core 2.6 GHz Intel Core i7 processor and 16 GB of

memory, running macOS 10.14.2; and a 2018 12-inch iPad Pro with a

2.5 GHz Apple A12X processor3 (ARM64 architecture) running iOS

12.2. The Intel machine supports AVX2 vectorization, and the ARM

machine supports NEON vector instructions. We use Git commit

cf73bfe6 of Halide for all tests, using the default auto-scheduler

weights.

6.1 Code for Evaluation

We evaluate Dexter on 3 suites of image processing functions

from Photoshop by Adobe, containing a total of 353 performance

critical functions. These functions are called when performing a

variety of essential image processing operations, including com-

positing layers and basic transformations such as rotations and

blurs. Due to their importance, some essential functions have been

hand-optimized with vectorized x86 implementations; however, due

to the difficulty of hand-optimization, only a small subset has been

optimized, and these implementations do not take advantage of the

latest vectorization capabilities of x86 processors.

Blend Suite consists of 186 functions across approximately 13k

lines of C++ code, which perform point-wise image blending opera-

tions such as Normal, Multiply and Dissolve blends. For the most

basic operation, i.e. the Normal blend mode [Porter and Duff 1984],

two image layers A,B are combined based on a per-pixel weightW ,

such that the output pixel coutput is a linear combination of input

3Multithreaded performance is limited to 2.3 GHz.

pixels cA, cB :

coutput =W × ca + (1 −W) × cB

The set of functions supports a large number of blend modes, but

also includes a number of other operations. In addition, the suite

contains specialized implementations for specific bit-widths and

color formats, as well as specializations where weights are constant.

SSE Blend Suite is a set of hand-optimized blending operations,

containing 36 functions implemented in 4.5k lines of code, with a

mix of SSE2 intrinsics and hand-written assembly. These are highly

non-portable implementations, making it difficult to run Photoshop

efficiently on non-x86 hardware.

Filter Suite contains 131 functions implementing various image

filtering algorithms that convolve an image with a filter, written in

19k lines of code. These include filters with specific radii, filters for

which the radius is an input, as well as specializations for specific

image formats.

6.2 Feasibility Analysis

Dexter was able to automatically translate 264 out of 353 functions

to Halide, achieving a coverage of 88% for the Blend Suite, 100%

for the SSE Blend Suite and 50% for the Filter Suite. The total time

required by Dexter to compile all three suites was 182 hours, an

average of 47 minutes per function. The compilation time essentially

equals the synthesis time, since synthesis dominates the process.

Time spent in all other stages, such as parsing, DAG generation and

code generation is insignificant.

Of the 89 code fragments that Dexter failed to translate, 51

failed due to lack of front-end support of language constructs in our

current implementation, such as embedded assembly instructions,

recursive functions or switch statements. Another 38 benchmarks

took too long to synthesize and timed-out after 6 hours of search.

See ğ5.3.3 for examples of such failures, as well as a discussion on

how Dexter can be patched to translate them. The relatively lower

coverage of the Filter Suite is due to the increased complexity of

the input code. However, this complexity does not stem from the

convolutional nature of the functions but instead from how they

are implemented. For example, the Filter suite contains recursive

implementations and pointer type-casts, i.e., language features that

either our current prototype cannot reason about or are unsupported

by Halide.

Photoshop executes the code fragments in our test suite on indi-

vidual tiles of the image that fit into processor caches. As such, the

loops inside the operations do not benefit from tiling optimizations

common in image processing. To demonstrate that Dexter can also

translate tiled implementations, we manually modified one image

operation implementation to execute in tiles of 16×32, as shown

in Figure 10. Dexter successfully translated the loops to recover

the correct region of interest (ROI) and the untiled implementa-

tion. However, synthesizing the ROI for the tiled implementation

took approximately 6× longer since two additional invariants were

required due to the additional for loops.

Compared to Helium [Mendis et al. 2015], which uses dynamic

execution traces to perform translation, Dexter translates many

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:10 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

1 void Darken (uint8_t *dst, uint8_t *src, uint8_t *msk,

2 int rows, int cols, int rowBytes)

3 {

4 for (int rowOut=0; rowOut < rows; rowOut += 16){

5 for (int colOut=0; colOut < cols; colOut += 32){

6

7 for (row = rowOut; row < min(rows, rowOut+16); row++){

8 for (col = colOut; col < min(cols, colOut+32); col++){

9 uint16_t delta = (src[row * rowBytes + col])

10 - (dst[row * rowBytes + col]);

11 if (delta < 0)

12 (dst[row * rowBytes + col]) -=

13 Mul8x8Div255((msk[row * rowBytes + col]),

14 -delta);

15 }

16 }}}

17 }

Fig. 10. An example of a tiled implementation that Dexter can successfully

de-schedule to recover the program summary.

more operations. We ran Helium4 on Photoshop and were able to

fully-translate 7 operations; part of the difficulty in applying Helium

is that the operations must be triggered after starting tracing, which

is thenmanually stopped after the operation is complete. Attempting

to translate compositing operations fails under this scenario, because

the composite calls many different operations, causing Helium’s

heuristics to fail; thus, all of the successful translations are from the

Filter Suite. Of the 7 translated operations, one (boxBlur) cannot

be translated by Dexter due to its recursive nature; in addition,

Helium only translates the radius 1 specialization of this function.

The other 6 functions are also translated by Dexter successfully.

6.3 Translation Performance

In this section, we discuss two experiments to evaluate the effec-

tiveness of Dexter’s three-stage search algorithm. STNG, which

lifts Fortran code to Halide, uses monolithic search combined with

traces generated by symbolic execution to limit the search space.

Though not a direct comparison between the systems (sinceDexter

does not use execution traces, and since the systems target different

front-end languages), the experiments in this section compare the

monolithic search strategy of STNG against the modular search of

Dexter.

For our first experiment, we compare the performance of Dex-

ter’s modular search against naive monolithic search over a set of

5 library functions using the same synthesizer. We hand-picked the

simplest functions to give naive search the best chance of comple-

tion. Each of the five benchmarks were successfully translated in

less than 10 seconds by our three-stage algorithm, whereas mono-

lithic search timed out after 15 minutes for all five functions. This

demonstrates a speedup of roughly 100× in synthesis time.

Our second experiment aims to investigate how uniformly the

synthesis problem is partitioned. To do so, we reviewed the amount

of time spent in each of the three stages of synthesis. Across the 264

benchmarks that were successfully translated, Dexter spent 23% of

the translation time during the first stage, 34% of the time during the

second stage and the remaining 43% of the time was spent during

4Git commit id 139a4a95

the third stage, showing that dividing the original synthesis problem

into three parts improves overall search efficiency.

6.4 Runtime Performance

To demonstrate the possible benefits of applying Dexter to existing

image processing code, we compare the performance of the original

reference code to the generated Halide code. We apply the newest

Halide autoscheduler [Adams et al. 2019] to each translated pipeline;

this newest autoscheduler uses a combination of learned models

and auto-tuning to obtain the best performance. For our x86 testbed,

we allow the autoscheduler to explore 32 potential schedules and

utilize the best-performing one. Because the current tooling for

the autoscheduler does not support exploring GPU schedules or

executing on iPads 5, we allow the autoscheduler to use a model

augmented by obtained performance on the x86 candidates. We do

not argue that these are the best schedules, but they give a sense of

what kind of performance can be obtained fully automatically.

In Photoshop, low-level image operations are called on image tiles

of a fixed size, instead of on the entire image or layer. The default

tile size is 1024×1024, and, depending on the operation, tiles may be

interleaved or planar. In the actual application, a separate subsystem

subdivides tiles among different threads for parallel execution; for

these experiments, we run the original code in isolation, without

parallelism, since the operations themselves do not contain parallel

directives6. We measure performance when the tile is present in

cache, as this scenario is the most common in Photoshop.

Figure 11 shows the performance improvements from applying

Dexter to Photoshop image processing source code7. The median

performance improvement on our x86 test machine is 7.03×, with

70% of all benchmarks achieving a speedup of at least 2×. While

compilers are able to vectorize some of these functions automati-

cally, the use of Halide enables a much more efficient vectorized

and parallelized schedule with little effort, demonstrating the use-

fulness of Dexter in bringing the benefits of Halide to legacy image

processing code.

6.4.1 Porting to Different Architectures. Photoshop currently only

runs on Intel architectures, so for this experiment we demonstrate

the usefulness of porting legacy code to Halide automatically to en-

able cross-platform performance. For our ARM testbed, the median

speedup is 4.52×. In some cases, especially for interleaved bench-

marks, Figure 11 shows that the autoscheduler chooses a suboptimal

schedule; this could easily be fixed by changing just a line or two

in the generated schedule, unlike the case when hand-optimizing

C++ code. To test this, we explored why some of the benchmarks

are more than 10× slower, and discovered that the autoscheduler

attempted to parallelize over the channel dimension for the inter-

leaved benchmarks; in essence, this schedule forces fine-grained

synchronization between cores by sharing cache lines. By writing

5Apple requires code signing for execution, and the current tooling for the autosched-
uler does not implement this requirement.
6Thus, within Photoshop, the performance is often higher than shown here. However,
the purpose of this experiment is to show runtime performance of translated kernels,
not to compare against Photoshop performance.
7Because some translated functions are difficult to test in isolation (e.g. they are leaf
operations in a multi-step pipeline), we show performance results for only functions
with unit tests that execute them in isolation (88% of the test set).

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

204:12 • Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation

through grants IIS-1546083, IIS-1651489, and OAC-1739419; DARPA

award FA8750-16-2-0032; DOE award DE-SC0016260; the Intel-NSF

CAPA center, and gifts from Adobe, Amazon, Google, Huawei, and

NVIDIA.

REFERENCES
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël

Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and
Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree Search and
Random Programs. ACM Transactions on Graphics (TOG) 38, 4 (2019).

Adobe. 2010. Pixel Bender Language Reference. https://www.adobe.com/devnet/
archive/pixelbender.html

Maaz Bin Safeer Ahmad and Alvin Cheung. 2018. Automatically LeveragingMapReduce
Frameworks for Data-Intensive Applications. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). ACM, New York, NY, USA, 1205ś
1220. https://doi.org/10.1145/3183713.3196891

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:
Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Rastislav Bodík and Barbara Jobstmann. 2013. Algorithmic program synthesis: intro-
duction. International Journal on Software Tools for Technology Transfer 15 (2013),
397ś411.

Pedro Boechat, Mark Dokter, Michael Kenzel, Hans-Peter Seidel, Dieter Schmalstieg,
and Markus Steinberger. 2016. Representing and scheduling procedural generation
using operator graphs. ACM Trans. Graph. 35, 6 (2016), 183:1ś183:12.

Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanović, James Demmel, Kurt
Keutzer, John Shalf, Kathy Yelick, and Armando Fox. 2009. SEJITS: Getting Produc-
tivity and Performance With Selective Embedded JIT Specialization. In PMEA.

Alvin Cheung, Armando Solar-Lezama, and SamuelMadden. 2013. OptimizingDatabase-
backed Applications with Query Synthesis. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’13). ACM,
New York, NY, USA, 3ś14. https://doi.org/10.1145/2491956.2462180

L. Dalcin, R. Bradshaw, K. Smith, C. Citro, S. Behnel, and D. S. Seljebotn. 2010. Cython:
The Best of Both Worlds. Computing in Science & Engineering 13 (09 2010), 31ś39.
https://doi.org/10.1109/MCSE.2010.118

Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08).
Springer-Verlag, Berlin, Heidelberg, 337ś340. http://dl.acm.org/citation.cfm?id=
1792734.1792766

Brian Guenter and Diego Nehab. 2010. The Neon Image Processing Language. Tech-
nical Report. Microsoft Research. https://www.microsoft.com/en-us/research/
publication/the-neon-image-processing-language/

Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the 12th
International ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP ’10). ACM, New York, NY, USA, 13ś24.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. 317ś
330.

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen,
Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014. Darkroom:
compiling high-level image processing code into hardware pipelines. ACM Trans.
Graph. 33, 4 (2014), 144:1ś144:11.

James Hegarty, Ross G. Daly, Zachary DeVito, Mark Horowitz, Pat Hanrahan, and
Jonathan Ragan-Kelley. 2016. Rigel: flexible multi-rate image processing hardware.
ACM Trans. Graph. 35, 4 (2016), 85:1ś85:11.

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM
12, 10 (Oct. 1969), 576ś580.

Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016. Ver-
ified Lifting of Stencil Computations. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’16). ACM,
New York, NY, USA, 711ś726. https://doi.org/10.1145/2908080.2908117

Shoaib Kamil, Derrick Coetzee, Scott Beamer, Henry Cook, Ekaterina Gonina, Jonathan
Harper, Jeffrey Morlan, and Armando Fox. 2012. Portable Parallel Performance from
Sequential, Productive, Embedded Domain-specific Languages. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’12). ACM, New York, NY, USA, 303ś304. https://doi.org/10.1145/2145816.
2145865

Bruno Cardoso Lopes and Rafael Auler. 2014. Getting Started with LLVM Core Libraries.
Packt Publishing, Birmingham, UK.

Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan Ragan-Kelley,
Sylvain Paris, Qin Zhao, and Saman Amarasinghe. 2015. Helium: Lifting High-
performance Stencil Kernels from Stripped x86 Binaries to Halide DSL Code. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’15). ACM, New York, NY, USA, 391ś402. https://doi.org/
10.1145/2737924.2737974

Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. 2016. Automatically scheduling halide image processing
pipelines. ACM Trans. Graph. 35, 4 (2016), 83:1ś83:11.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhur-
jati. 2016. Scaling Up Superoptimization. In Proceedings of the Twenty-First In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 297ś310. https:
//doi.org/10.1145/2872362.2872387

Thomas Porter and Tom Duff. 1984. Compositing Digital Images. In Proceedings of the
11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’84). ACM, New York, NY, USA, 253ś259.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4, Article 32
(July 2012), 12 pages. https://doi.org/10.1145/2185520.2185528

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman P. Ama-
rasinghe, and Frédo Durand. 2012. Decoupling algorithms from schedules for
easy optimization of image processing pipelines. ACM Trans. Graph. 31, 4 (2012),
32:1ś32:12.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman P. Amarasinghe. 2013. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. In PLDI.
ACM, Seattle, WA, USA, 519ś530.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic Optimization of Floating-
point Programs with Tunable Precision. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’14). ACM,
New York, NY, USA, 53ś64.

Armando Solar-Lezama. 2019. Sketch Synthesizer. https://people.csail.mit.edu/asolar/.
Accessed on: 2019-01-11.

Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat,
and Sanjit Seshia. 2007. Sketching Stencils. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’07). ACM,
New York, NY, USA, 167ś178.

ChenglongWang, Alvin Cheung, and Rastislav Bodik. 2017. Interactive Query Synthesis
from Input-Output Examples. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD ’17). ACM, New York, NY, USA, 1631ś1634. https:
//doi.org/10.1145/3035918.3058738

Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and Sarfraz Khur-
shid. 2018. Systematic Generation of Non-equivalent Expressions for Relational
Algebra. In ABZ (Lecture Notes in Computer Science), Vol. 10817. Springer, 105ś120.

Yuting Yang, Sam Prestwood, and Connelly Barnes. 2016. VizGen: accelerating visual
computing prototypes in dynamic languages. ACM Trans. Graph. (TOG) 35, 6 (2016),
206:1ś206:13. http://dl.acm.org/citation.cfm?id=2982403

A SYNTHESIS OPTIMIZATIONS

A.1 Symmetry Elimination and Memoization

The space of possible expressions encoded by the grammar in Fig-

ure 4c contains a large amount of symmetry: it can generate syn-

tactically different expressions that are semantically equivalent due

to the presence of commutative and associative operations (for in-

stance, a ∗ (b + c) ≡ a ∗ b + a ∗ c). Furthermore, larger functions

frequently contain recurring sub-expressions, especially across dif-

ferent branches of control flow. A naive search over this grammar

would consider far too many redundant expressions with the same

semantics. Therefore, Dexter, inspired by prior work in relational

algebra [Wang et al. 2018], uses a bottom-up expression generator

that prunes away redundant expressions, while memoizing already

generated sub-expressions for reuse.

The expression generator maintains a list of expressions, initially

instantiated with the set of available terminals. To construct new

expressions, the generator first chooses an operator from the set of

operators available in the grammar. Next, it chooses operands for

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

Automatically Translating Image Processing Libraries to Halide • 204:13

 Input Terminals Step 1 Step 2 Step 3 Step 4 Step 5

Trace 1 msk(i) src1(i) src2(i) 1 1 == msk(i) src1(i) * src2(i) src1(i) * src2(i) * msk(i) (1==msk(i) ? src1(i) * src2(i) : src1(i) * src2(i) * msk(i)) -

Trace 2 msk(i) src1(i) src2(i) 1 msk(i) == 1 src1(i) * src2(i) src1(i) * src2(i) * msk(i) (msk(i)==1 ? src1(i) * src2(i) : src1(i) * src2(i) * msk(i)) -

Trace 3 msk(i) src1(i) src2(i) 1 msk(i) == 1 src1(i) * src2(i) msk(i) * src1(i) * src2(i) (msk(i)==1 ? src1(i) * src2(i) : msk(i) * src1(i) * src2(i)) -

Trace 4 msk(i) src1(i) src2(i) 1 msk(i) == 1 src1(i) * src2(i) src1(i) * src2(i) msk(i) * src1(i) * src2(i) (msk(i)==1 ? src1(i) * src2(i) : msk(i) * src1(i) * src2(i))

Fig. 12. Four possible traces of Dexter’s expression generation algorithm. The steps in green indicate successful termination of the algorithm, whereas the

steps in red indicate a pre-emptive rejection of the trace due to violation of symmetry breaking rules.

the operator from the list of expressions to construct a new expres-

sion. Finally, the generator checks whether this newly generated

expression is the correct expression for the summary by invoking

the solver. If so, the algorithm terminates and the expression is

returned. If it does not verify, the expression is memoized by ap-

pending it to the end of the list and the process is repeated until the

correct expression is found.

We illustrate our algorithm with an example. Suppose our goal

is to generate the following expression: (msk(i) == 1 ? src1(i) ∗

src2(i) : src1(i) ∗ src2(i) ∗msk(i)). In this expression, src1 and src2
represent two layers that we want to blend, andmsk is the blend

mask. Figure 12 shows four possible traces (decision paths) of our

algorithm for producing semantically equivalent expressions. Not

all traces are viable as they contain steps violating our symmetry

breaking rules (marked in red), which we explain later. To demon-

strate our algorithm, we walk through trace 3, which successfully

generates this expression in four steps. In step 1, the algorithm com-

bines terminalsmsk(i) and 1 using the equality operator to construct

a boolean expression, but finds that the generated expression is not

the desired expression. In step 2, it combines src1(i) and src2(i) us-

ing multiplication. In the third step, the expression generated in

step 2 (src1(i) ∗ src2(i)) is combined with the terminal msk(i) us-

ing multiplication to get the alternate expression. The fourth and

final step uses these three generated expressions as operands to the

ternary operator to construct the desired output expression.

There are several benefits of Dexter’s memoization approach.

First, it maintains a total ordering over the generated expressions,

based on the list index at which they are stored. This is useful for

eliminating symmetries in the search space: for commutative and

associative binary operators, the expression generator only allows

binary expressions e1 op e2 where e1 is stored at a lower index in

the expressions array than e2, and likewise for the test, consequent,

and alternate expressions used in a conditional. To see the benefit,

consider traces 1, 2, and 3 in Figure 12. All three traces generate

semantically equivalent expressions, yet since they are syntactically

different, the synthesizer would enumerate all three in its search.

With our order-based pruning constraints, however, both trace 1

and trace 2 would be rejected as they violate the constraints at

step 1 and step 3 respectively. Furthermore, since the generated

sub-expressions are stored in the list, they can be reused subse-

quently. This reduces the number of steps the synthesizer must take

to generate expressions that contain recurring sub-expressions. This

is illustrated in trace 4 in Figure 12. This trace also generates the

correct expression, but since it does not reuse the sub-expression

src1(i) ∗ src2(i), the algorithm requires an extra step to build the

expression compared to trace 3.

A.2 Analysis Based Suggestions

The optimizations discussed so far are not particular to a specific

input kernel. Dexter also analyzes the input code to populate the

starting list of expressions with input-specific recommendations to

the synthesizer. For example, in the blur kernel, static analysis can

extract that the value being written into the dst array is (tmp[c-

rowBytes] + tmp[c] + tmp[c+rowBytes]) / 3. By substituting

our synthesized terminal mappings, we can get the equivalent IR

expression: (tmp(x ,y − 1) + tmp(x ,y) + tmp(x ,y + 1)) / 3. Dexter

therefore adds this expression as one of the initial expressions to

consider during synthesis. If the suggestion is correct, or is a sub-

expression of the correct expression, the synthesizer can construct

the result in fewer steps. If the suggestion is incorrect, the synthe-

sizer can simply ignore it and construct the correct expression using

the set of terminals. The overhead of providing these recommenda-

tions is minimal and the benefits of a correct recommendation are

significant (over 100x faster synthesis).

ACM Trans. Graph., Vol. 38, No. 6, Article 204. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related Work & Background
	2.1 Automatically Translating Image Processing Code
	2.2 Program Synthesis and Verification

	3 Overview
	3.1 Image Processing Functions
	3.2 Translating Image Processing Functions to Halide
	3.3 System Architecture

	4 Finding Summaries For Image Processing Operations
	4.1 Synthesizing the Region of Interest
	4.2 Synthesizing the Terminal Mappings
	4.3 Synthesizing the Computation

	5 Implementation
	5.1 Supported C++ Constructs
	5.2 DAG Construction
	5.3 User Interaction
	5.4 Code Generation

	6 Evaluation
	6.1 Code for Evaluation
	6.2 Feasibility Analysis
	6.3 Translation Performance
	6.4 Runtime Performance
	6.5 Composing Translated Functions into Pipelines

	7 Conclusion
	Acknowledgments
	References
	A Synthesis Optimizations
	A.1 Symmetry Elimination and Memoization
	A.2 Analysis Based Suggestions

