Taichi: A Language for High-Performance Computation on Spatially

Sparse Data Structures

YUANMING HU, MIT CSAIL

TZU-MAO LI, MIT CSAIL and UC Berkeley
LUKE ANDERSON, MIT CSAIL
JONATHAN RAGAN-KELLEY, UC Berkeley
FREDO DURAND, MIT CSAIL

Computational Kernels

Kernel(laplace).def([&] () {
For(u, [&](Expr i, Expr j){
auto ¢ = 1.0f / (dx x dx);
uli, j1 = c * (4 * v[i, j] - v[i+1, j]
- vli-1, j1 - vli, j+1] - v[i, j-11);
N s

b; 2D Laplace operator

(Sparse) Data Structures

Global(u, f32); Global(v, f32);
layout([&] () {
auto ij = Indices(0, 1);

root.dense(ij, {128, 128}).pointer()
.dense(ij, {8, 8}).place(u, v);

10242 sparse grid with 82 blocks

High-Performance CPU/GPU Kernels
Ours v.s. State-of-the-art:

N Optimizing MLS-MPM 13x shorter code, 1.2x faster
Compiler FEM Kernel 13x shorter code, 14.5x faster
MGPCG 7x shorter code, 1.9x faster

Sparse CNN 9x shorter code, 13x faster

Fig. 1. (Top) We propose the Taichi programming language, which exposes a high-level interface for developing and processing spatially sparse multi-level
data structures, and an optimizing compiler that automatically reduces data structure overhead. Programmers write code as if they are accessing dense voxels,
while specifying the data arrangement independently. Our compiler automatically generates optimized, high-performance code tailored to the data structure.
This results in concise code and better performance than highly-optimized reference implementations for various tasks. (Bottom) A fluid simulation using
the material point method, where two liquid jets collide with each other, forming a thin sheet structure. We used a three-level sparse voxel grid with sizes
13, 43, 16°. Involved voxels are visualized in green. Both simulation and rendering are done using programs written in Taichi.

3D visual computing data are often spatially sparse. To exploit such sparsity,
people have developed hierarchical sparse data structures, such as multi-
level sparse voxel grids, particles, and 3D hash tables. However, developing
and using these high-performance sparse data structures is challenging,
due to their intrinsic complexity and overhead. We propose Taichi, a new
data-oriented programming language for efficiently authoring, accessing,
and maintaining such data structures. The language offers a high-level,
data structure-agnostic interface for writing computation code. The user
independently specifies the data structure. We provide several elementary
components with different sparsity properties that can be arbitrarily com-
posed to create a wide range of multi-level sparse data structures. This
decoupling of data structures from computation makes it easy to experiment

Authors’ addresses: Yuanming Hu, MIT CSAIL, yuanming@mit.edu; Tzu-Mao Li, MIT
CSAIL and UC Berkeley, tzumao@berkeley.edu; Luke Anderson, MIT CSAIL, lukea@
mit.edu; Jonathan Ragan-Kelley, UC Berkeley, jrk@berkeley.edu; Frédo Durand, MIT
CSAIL, fredo@mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

0730-0301/2019/11-ART201

https://doi.org/10.1145/3355089.3356506

with different data structures without changing computation code, and al-
lows users to write computation as if they are working with a dense array.
Our compiler then uses the semantics of the data structure and index analy-
sis to automatically optimize for locality, remove redundant operations for
coherent accesses, maintain sparsity and memory allocations, and generate
efficient parallel and vectorized instructions for CPUs and GPUs.

Our approach yields competitive performance on common computational
kernels such as stencil applications, neighbor lookups, and particle scatter-
ing. We demonstrate our language by implementing simulation, rendering,
and vision tasks including a material point method simulation, finite ele-
ment analysis, a multigrid Poisson solver for pressure projection, volumetric
path tracing, and 3D convolution on sparse grids. Our computation-data
structure decoupling allows us to quickly experiment with different data
arrangements, and to develop high-performance data structures tailored for
specific computational tasks. With %th as many lines of code, we achieve
4.55% higher performance on average, compared to hand-optimized refer-
ence implementations.

CCS Concepts: » Software and its engineering — Domain specific lan-
guages; « Computing methodologies — Parallel programming lan-
guages; Physical simulation.

Additional Key Words and Phrases: Sparse Data Structures, GPU Computing.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:2 « Huetal

ACM Reference Format:

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo
Durand. 2019. Taichi: A Language for High-Performance Computation on
Spatially Sparse Data Structures. ACM Trans. Graph. 38, 6, Article 201 (No-
vember 2019), 16 pages. https://doi.org/10.1145/3355089.3356506

1 INTRODUCTION

Large-scale 3D simulation, rendering, and vision tasks often involve
volumetric data that are spatially sparse. Hierarchical and sparse
data structures have been studied extensively to effectively exploit
such sparsity. For example, in fluid simulation (Fig. 1), a multi-level
grid is often used to represent the fluid field, where the fluid’s
spatial sparsity can be represented by nesting hash tables, bitmasks,
or pointer arrays at different levels of the grid.

Writing high-performance code for these data structures is a
daunting task due to their irregularity. Accessing their active ele-
ments in parallel imposes several engineering challenges (Fig. 2).
First, naively traversing the hierarchy can take one or two orders of
magnitude more clock cycles than the essential computation. This
is especially troublesome for spatially coherent accesses commonly
seen in, for example, stencil operations, since common access paths
in the hierarchical data structure are traversed redundantly. Second,
we need to ensure load-balancing for efficient parallelization. Third,
we need to allocate memory and maintain sparsity when accessing
inactive elements.

Data structure libraries do not guarantee high-performance code,
since performance is not easily composable. Multiple calls to the
library interface will result in redundant and costly traversals of the
hierarchy. Unfortunately, because of the code complexity of these
data structures, and potential race conditions and pointer aliasing,
current general-purpose compilers often fail to optimize between
library function calls. To achieve high performance, libraries usually
have to expose low-level interfaces to users, leading to a leaky
abstraction, making computation code highly coupled with data
structures. We propose a new programming model that decouples
data structures from computation, to achieve both high performance

For each 1i:

yl[il = x[i1-11 + x[il

Sparse Data Structure

inactive
naive

,,,,,,,,,,,,,,,, et Jy ~57 cyc

= |nacl.| ||nacl
7 cycles

Seeme (I OO0 O
array

hash table | inactive

47 cycles

bitmasked
array

inact |

N n12,|.
inact. 35y |inact.

[40,
48)

~1 cyc

Read Access

vectorized read

hape

Vector Register

and easy programming (Fig. 3). Users write computation code using
a high-level and data-structure-agnostic interface, as if they are
operating on a dense multi-dimensional array. The internal data
arrangement and the associated sparsity are specified independently
from the computation code by composing elementary components
such as dense arrays and hash tables to form a hierarchy.

Our compiler tailors optimizations for the specified data structure
components, and generates efficient sparsity and memory mainte-
nance code. We develop several domain-specific strategies for op-
timizing spatially-coherent accesses, using index analysis derived
from high-level information about the data layout and the access
patterns. Our compiler analyzes accesses to efficiently compute
memory addresses, uses a caching strategy for better locality, and
parallelizes/vectorizes loops from high-level instructions from the
programmer. This is enabled by our compact intermediate represen-
tation, specially designed for optimizing hierarchical sparse data
structures. Our compiler generates C++ code or CUDA code from the
intermediate representation, making switching backends effortless.

On many common computations such as stencils, neighbor lookups,
and particle splatting, our compiler generates code faster than
highly-optimized reference implementations. We implement several
popular simulation, graphics and vision algorithms in our language’s
embedded C++ frontend, including the material point method [Gao
et al. 2018; Hu et al. 2018; Stomakhin et al. 2013], finite element
kernel [Liu et al. 2018], multigrid Poisson solver [McAdams et al.
2010], sparse 3D convolution [Graham et al. 2018], and volumetric
path tracing. Compared with highly-optimized reference implemen-
tations, our code requires on average only l—loth the number of lines
of code, while being 4.55x% faster (geometric mean).

We can quickly explore different choices of data structures, while
our compiler generates high-performance code. For example, we
derived more efficient data structure designs for the material point
method that not only lead to performance improvements of up to
1.2x over previous, highly-optimized, state-of-the-art implementa-
tion [Gao et al. 2018], but also simplify the whole algorithm (Sec 6.1).

+ x[i1+1]
Write Access
DI Vector Register

active?
not at boundary?

allocated?
not at boundary?

active?
not at boundary?

allocated?
not at boundary?

vectorized write

Fig. 2. Accessing a multi-level sparse array is significantly more involved than accessing a dense array. The figure illustrates an example three-level sparse
array and the read and write access of a stencil y[i]=x[i-1]+x[i]+x[i+1]. Naive code is usually inefficient, since the hierarchy makes traversal costly, and
it is especially problematic for spatially coherent accesses, where the top of the traversal is often redundant. Optimized and vectorized code needs to leverage
access locality to amortize the access cost, check for sparsity, handle boundary cases, and allocate memory when necessary. Writing code for these accesses is
tedious and error-prone, and it often leads to code that is highly-coupled with the data structure. Our language decouples the data structure implementation
and the access, while our compiler automatically generates optimized code given the access pattern and the specific data structure. As a result, users write code
as if they are accessing dense arrays, while having the freedom to change the data layout and sparsity representation without affecting the computation code.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures « 201:3

>4
< Ours:
= . i . 10.0x shorter code
g abstraction-specific 4.55x higher performance
S compiler optimization
S — 5@ Aeoritm
a data structure
decouplin,
high-level P
interface

data structure
abstraction

data structure library +
general-purpose compiler

low-level
interface

Performance

Fig. 3. Traditionally, a user who writes data structure access code faces a
dilemma between easy programming and high performance. The goal of
our language is to achieve both the productivity of a high-level library and
the high performance of manually optimized code. Furthermore, since our
language makes it easy to experiment with different data structures, users
can often achieve even higher performance by exploring the data structure
design space and adopting the most efficient design for a given task.

Our model can express a wide variety of data structures used
in physical simulation and rendering. In particular, it can describe
different multi-level sparse grids (e.g. SPGrid [Setaluri et al. 2014],
OpenVDB [Museth 2013], and other novel data structures), particles,
and dense and sparse matrices. We assume the hierarchy is known
at compile-time to facilitate compiler optimization, therefore we do
not directly model structures with variable depth such as k-d trees.

Our language and compiler are open-source!. All performance
numbers from our system in this paper can be reproduced with the
provided commands. All visual results are simulated and rendered
using programs written in our language.

We summarize our contributions as follows:

e A programming language that decouples data structures from
computation (Sec. 3.1). We provide a unified abstraction to map
multi-dimensional indices to memory addresses. Such an abstrac-
tion allows programmers to define computation independently
of the internal arrangements of the involved data structures.

e A data structure description mini-language, which provides sev-
eral elementary data structure components that can be composed
to form a wide range of sparse arrays with static hierarchies
(Sec. 3.2).

e An optimizing compiler that uses index analysis and information
from the data structures to automatically optimize for locality,
minimize redundant operations for coherent accesses, manage
sparsity, and to generate parallelized and vectorized backend code
for x86_64 and CUDA (Sec. 4 and Sec. 5).

e A thorough evaluation of our system, and state-of-the-art im-
plementations of several graphics and vision algorithms as by-
products.

!https://github.com/yuanming-hu/taichi

2 GOALS AND DESIGN DECISIONS

Most sparsity patterns in 3D computing tasks exhibit spatial co-
herency (Figure 4). The sparsity may come from fluid simulation,
clouds in volume rendering, or point clouds of surfaces from LiDAR
and Kinect scans. To obtain high performance, we want to model the
spatial sparsity effectively so we can utilize the spatial coherency
while not wasting computational resources on empty space.

“General” Sparsity

Spatial Sparsity

Legend
B Active
B Inactive

Fig. 4. Left: We focus on spatial sparsity, where the data is globally sparse
yet locally dense; Right: General sparse problems with random patterns are
less suited to our language.

We aim to develop a high-performance programming language
to exploit spatial sparsity using dedicated data structures. The four
high-level goals are as follows:

Expressiveness. Our target applications often feature complex
computational kernels, such as stencils of different sizes, particle
splatting, and ray-voxel intersection. Therefore, the language should
be expressive enough to cover these numerical computation patterns.
Taichi allows users to read/write to arbitrary elements in the sparse
data structures, and provides constructs for branching and looping.
This distinguishes our languages from more domain-specific ones,
such as taco [Kjolstad et al. 2017] (linear algebra).

Performance. On modern computer architectures, achieving high
performance means good exploitation of locality and parallelism.
However, the desired memory-friendly and parallel data structure
is usually task- and hardware-dependent, so existing data structure
libraries that only provide a single data structure design do not
completely solve the performance issue.

Productivity. Traditionally, programming on sparse data struc-
tures requires manually handling memory allocation, parallelization,
exceptions and boundary conditions. Even with libraries, low-level
programming is still necessary to achieve high performance. Our
language allows programming on sparse data structures as if they
are dense, while the compiler automatically generates optimized
code. To our knowledge, Taichi is the first system that makes it
possible to write large-scale physical simulations on complex data
structures within only a few hundred lines of code.

Portability. The language should automatically generate opti-
mized code for different hardware environments. We do not of-
fer programmer access to low-level control over hardware when it
would sacrifice performance portability, like the prefetch intrinsics
on x86 CPUs or warp-level intrinsics on NVIDIA GPUs.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:4 + Huetal

2.1 Design Decisions

Our design decisions are made based on the aforementioned goals

and non-goals.

e Decouple data structures from computation. The user should
write high-level code for computation as if they are processing a
dense array, while also being able to explore different sparse data
structures without affecting the computation code. We achieve
this by abstracting data structure access with Cartesian index-
ing, while the actual data structures define the mapping from the
index to the actual memory address (Sec. 3.1).

e Regular grids as building blocks The basic data structure enti-
ties of our system are regular grids, which can be easily flattened
into 1D arrays that map closely to modern computer architecture
with linear memory addressing. We do not directly model more
irregular structures such as meshes or graphs?. Multiresolution
representations such as adaptive grids [Losasso et al. 2004] need
to be composed manually in our language (see Section 6.3, or
Setaluri et al.s multigrid preconditioner [2014]).

o Describe data structures through hierarchical composition.
To model spatial sparsity, and to express a wide variety of data
structures, we develop a data structure mini-language to compose
data structure hierarchies (Sec. 3.2). The mini-language is made
up of several elementary components, such as dense arrays and
hash tables, that are arbitrarily composable.

o Fixed data structure hierarchy. We facilitate compiler opti-
mizations and simplify memory allocation by assuming the hier-
archy to be fixed at compile time. We do not support octrees or
bounding volume hierarchies with dynamic depth. Many state-
of-the-art physical simulation systems use data structures with a
fixed hierarchy such as SPGrid [Setaluri et al. 2014] and VDB [Hoet-
zlein 2016; Museth 2013].

e Single-Program-Multiple-Data (SPMD) with sparse iterators.

We adopt an imperative SPMD model to harness the power of
modern hardware such as vectorized instructions on CPUs and
massively parallel GPUs. To exploit sparsity, we design compu-
tation kernels to be parallel for loops with sparse iterators on
active elements only. This provides programmers a simple yet
expressive interface to sparse computation.

¢ Generate optimized backend code automatically. Our com-
piler should generate high-performance backend code automati-
cally, while optimizing for locality (Sec. 4.1), minimizing redun-
dant accesses using access coherency (Sec. 4.2), automatically
parallelizing (Sec. 4.3) and allocating memory (Sec. 5.2). The user
should only need to provide the backend target architecture and
optionally some scheduling hints for the compiler to generate
better optimized code.

3 THE TAICHI PROGRAMMING LANGUAGE

We demonstrate our language using a 2D Laplace operator u =
V2v, which is frequently used in physical simulation and image
processing. After finite difference discretization, the operation is

21t is possible to use 1D arrays for storing vertices and edges in meshes/graphs.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

defined as:
1
uij = m(‘lvi,j = Vit1,j = Vi-1,j — Vi, j+1 = Vi, j-1)-

3.1 Defining Computation

To decouple data structures from computation, we abstract data
structures as mappings from multi-dimensional indices to the actual
value. For example, access to the 2D scalar field u is always done
through indexing, i.e. u[i, j], no matter what the internal data
structure is. This is similar to high-level interfaces of some data
structure libraries, yet our compiler analyzes these accesses and
produces code that minimizes redundancy across multiple accesses.

Our language’s frontend is embedded in C++. Computations in
our language are usually defined as kernels looping over active data
structure elements (e.g. non-zero pixels or voxels), to efficiently
exploit data sparsity. The kernel contains imperative code that op-
erates on the data structures.

We define the aforementioned Laplace operator as a kernel, using
a for loop over variable u, which iterates over all pairs (i, j) where
uli, j] is an active element:

Kernel(laplace) .def([&]() {
For(u, [&](Expr i, Expr j){
auto ¢ = 1.0f / (dx * dx);
uli, j1 = ¢ x (4 * v[i, j] - v[i+1, j]
- v[li-1, 31 - v[i, j+11 - v[i, j-11);
s
s

For loops over active elements are key to sparse computation
in Taichi. The compiler automatically maintains sparsity. When
reading from an inactive element of v, the compiler returns an
ambient value (e.g., 0). When writing to an inactive element of u, the
compiler automatically changes the internal data structure, allocates
memory, and marks the element as active (In this specific kernel, no
activation will occur, since we are only writing to active elements
of u, and interaction with v is read-only).

We adopt the Single-Program-Multiple-Data paradigm. Our lan-
guage is similar to other SPMD languages such as ispc and CUDA,
with three additional components: 1) parallel sparse For loops, 2)
multi-dimensional sparse array accessors, and 3) compiler hints for
optimizing program scheduling.

The For loop is automatically parallelized and vectorized. Our
language supports typical control flow statements, such as If-Then
-Else and While loops. We allow users to define mutable local vari-
ables (var). Our language can be used to write a full volumetric path
tracer with complex control flow (Sec. 6.5). The language constructs
supported inside computation kernels are listed below.

// Parallel loop over the sparse tensor "var"

For (Expr var, std::function)

// Loop over [begin, end)

For (Expr begin, Expr end, std::function)

// Access one element in "var" with index (i, ...)
operator[](Expr var, Expr i, ...)

While(Expr cond, std::function)

If(Expr cond)

If::Then(std::function)

If::Else(std::function)

Var (Expr) // Declare a mutable local variable
Atomic(A) += B // Atomic add to global element A

Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures « 201:5

Our language also offers compiler hints for scheduling:

// For CPU

Parallelize(int num_threads) // Multi-threading
Vectorize(int width) // Loop vectorization
// For GPU

BlockDim(int blockDim) // Specify GPU block size
// For scratchpad optimization

AssumeInRange (Expr base, int lower, int upper)
Cache(Expr)

// Cache data into GPU L1 cache

CacheL1(Expr)

More discussions on hints for scratchpad optimization (AssumeInRange
and Cache) and Cachel 1 are in Section 4.1.

3.2 Describing Internal Structures Hierarchically

After writing the computation code, the user needs to specify the in-
ternal data structure hierarchy. Specifying a data structure includes
choices at both the macro level, dictating how the data structure
components nest with each other and the way they represent spar-
sity, and the micro level, dictating how data are grouped together
(e.g. structure of arrays vs. array of structures).

Structural nodes and their decorators. Our language provides struc-
tural nodes to compose the hierarchy, and decorators to provide
structural nodes with particular properties. These constructs and
their semantics are listed below:

dense: A fixed-length contiguous array.

hash: Use a hash table to maintain the mapping from active coordi-
nates to data addresses in memory. Suitable for high sparsity.
dynamic: Variable-length array, with a predefined maximum length.
It serves the role of std: : vector, and can be used to maintain objects
(e.g. particles) contained in a block.

(a) structural nodes

morton: Reorder the data in memory using a Z-order curve (Morton
coding), for potentially higher spatial locality. For dense only.
bitmasked: Use a mask to maintain sparsity information, one bit per
child. For dense only.

pointer: Store pointers instead of the whole structure to save mem-
ory and maintain sparsity. For dense and dynamic.

(b) node decorators

These data structure components provide trade-offs regarding
access cost and space consumption. For example, a hash table has
relatively long access time (e.g. 50 CPU cycles), but it is very eco-
nomical in terms of memory space, especially in extremely sparse
cases (e.g. 0.1%). Therefore it is often suitable for the top layer, when
only a few hundred children are active out of, say, 128 x 128 x 128.
On the other hand, a dense array with a bitmask can be activated
and accessed quickly, but the bitmask will occupy space inefficiently
in highly sparse cases.

Defining the hierarchy. Users can compose the data structure
components arbitrarily to form desired hierarchies and to explore
different trade-offs. The compiler will then synthesize how compu-
tational kernels are executed on the specific sparse data structure
(Fig. 5).

root.hash

leaf (task) blocks

.dense.pointer e ——
.dense.place(a) @0 |eaf elements
i 2
<= e

Fig. 5. In our language, programmers define data structures by nesting
elementary components such as hash tables and dense arrays. Kernels are
defined as iterations over leaf elements (i.e., voxels or pixels), independent
of the internal data organization. Leaf blocks, immediate blocks of leaf
elements, are the smallest quantum of storage and computation tasks.

For example, the following code specifies two fixed-size 2D dense
arrays over u and v.
Global(u, f32); Global(v, f32);
layout([&] () {
auto ij = Indices(0, 1);
// Allocate a structure-of-arrays dense grid.
// Equivalent to:
// float u[256][256]; float v[256][256];
root.dense(ij, {256, 256}).place(u);
root.dense(ij, {256, 256}).place(v);
b

Global(u, type) declares an N-dimensional (sparse) tensor of
name u and type type. These tensors are accessible by all kernels,
so we call them global variables.

layout takes a C++ lambda function that describes the data struc-
ture hierarchy. Indices are used to specify sizes of structural nodes.

root denotes the root of the hierarchy. dense, a structural node
of the tree, creates a child node of the root. Calling dense on root
twice creates two children. Each structural node function call has
two arguments, the first specifies the dimensions of its children,
the second specifies the number of elements in the corresponding
dimension. Here, dense(ij, {256, 256}) means the 2D dense array
has 256 cells along index 1 (x-axis) and 256 cells along j (y-axis).

place(u) and place(v) assign the global variables u, v to the
corresponding data structure hierarchies. The equivalent C-style
data structure definition is provided in the comments.

The code above specifies a structure-of-arrays (SOA) layout. We
can easily switch to an array-of-structures (AOS) layout using the
following code:

// struct node {float u, v;};

// node data[256][256];

auto &node = root.dense(ij, {256, 256});
node.place(u); node.place(v);

// or equivalently
root.dense(ij, {256, 256}).place(u, v);

In this case, a single dense node contains both u and v, since
we called place twice on the same dense node. As syntactic sugar,

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:6 + Huetal

root.hash(ijk, 32).dense(ijk, 16).pointer()
.dense(ijk, 8).place(u, v, w);

(a) 3D VDB-style [Museth 2013] structure with configuration [5, 4, 3]. The
root-level hash table allows negative coordinates to be accessed, providing

the user with an unbounded domain.

root.dense(ijk, 512).morton().bitmasked()
.dense(ijk, {8, 4, 4}).place(flags, u, v, w);

(b) 3D SPGrids [Setaluri et al. 2014] occupying voxels in the bounding box
[0, 4096) x [0, 2048) X [0, 2048). The data structure is relatively shallow
(only two levels), so root-to-leaf accesses have relatively low cost.

// "Hierarchical Particle Buckets": each leaf block contains all indices of particles within its range
root.dynamic(l, 2048).place(particle_x, particle_y, particle_z, particle_mass);
root.hash(ijk, 512).dense(ijk, 32).pointer().dense(ijk, 8).pointer().dynamic(l, 2048).place(particle_index);

// "SPVDB": Unbounded shallow data structures with bitmasks and Morton coding. (VDB and SPGrid combined.)
root.hash(ijk, 512).dense(ijk, 512).morton().bitmasked().dense(ijk, {8, 4, 4}).place(flags, u, v, w);

// "Hybrid Eulerian- hashed dense({i,j}, {16, 8}) dense dynamic place
Lagrangian Grid" ({i,33,48,81) .bitmasked() ({i,3},14,8}) (k, 32
auto &block = root —
.hash(ij, 8) = .
.dense(ij, {16, 8}) [256,512) I;:l’ttl';'fx
.bitmasked () ; =[256,512) B
float32
// Child 1: grid nodes - part_icle
block.dense(ij, {4, 8}) =[256,512) position y
.place(grid_vx) =[0,256) float32
.place(grid_vy); particle
velocity x
// Child 2: particles
block.dynamic(i, 32) ;‘:;}3&
.place(part_x) .
RNERRRANRRNNR]
.place(part_vx .ee
-place(part_vy); IIIIIIIIIIIIIII

(c) “HPB”, “SPVDB", “HLEG”: We can easily design new data structures with customized features.

Fig. 6. The layout language allows users to define data structures using our building blocks. We can reproduce two popular multi-level sparse grid used
in simulation (a) (b). Furthermore, we can use our language to design new data structures (c) by chaining and forking elementary components. Hybrid
Eulerian-Lagrangian simulations (e.g. FLIP [Zhu and Bridson 2005] and MPM [Stomakhin et al. 2013]) often need to maintain both particles and grids, and the
required data structures are usually complicated. Using these building blocks, we easily found a data structure with a hierarchical pointer list of particles,
which we call Hierarchical Particle Buckets, that is especially useful for the material point method simulation (Sec.6.1).

place can also take more than one parameter. When materialized
in memory, in this AOS layout u; ; and v;, j are next to each other,
while in the previous SOA layout u;, ; is next to u;, j+1 and is far away
from v; ;. These two layouts have very different memory behaviors
(e.g. cacheline utilization) in different applications.

We can nest the structural nodes to specify the hierarchical tree
structure in a top-down order. For example, the following code
defines a three-level sparse grid, with the top-level being a hash
table, the second-level being a dense array of pointers, and the
third-level being a fixed-size dense array (Fig. 5):

root.hash(ij, {4, 4})
.dense(ij, {4, 4}).pointer()
.dense(ij, {16, 16}).place(u, v);

Apart from multiple global variables, structural nodes can also
have multiple structural nodes as children. For example, the fol-
lowing code defines a bitmasked sparse array, where each of its
elements is composed of a dense array and a dynamic array (similar
to std: :vector):

Global(u, f32); Global(v, f32); Global(p, f32);
auto k = Index(2);
auto &block = root.dense(ij, {16, 163});

// Child 1: dense array
block.dense(ij, {16, 16}).place(u, v);

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

// Child 2: dynamic array
block.dynamic(k, 256).place(p);

The equivalent C++ code is:

struct ChildlNode {
float uj;
float v;
}s
struct Block {
Child1Node child1[16][16];
std::vector<float> child2; // p
// Note: in Taichi the dynamic array has a
// pre-defined maximum size, unlike std::vector that
grows arbitrarily.
}5
struct Root {
Block blocks[16][16];
}s

The structural node types are concise, but they are capable of
expressing a large variety of data structures. Figure 6 illustrates a
few complex data structures represented with our language. A new
data structure can be designed with a few lines of code. Rapidly ex-
perimenting with these data structures allows us to find the optimal
one for a specific task and hardware architecture.

Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures « 201:7

4 DOMAIN-SPECIFIC OPTIMIZATIONS

Hierarchical data structures provide an efficient representation for
sparse fields but have high access costs due to their complexity,
especially when parallelism is desired. Our compiler reduces access
overhead from three typical sources:

Out-of-cache access. In modern architectures, loading data from
main memory is around one hundred times slower than an in-cache
access. Ensuring data locality is thus crucial for performance. This
is particularly important on GPU, and it means that we need to
efficiently utilize shared memory to cache data.

Data structure hierarchy traversal. Traversing hierarchical data
structures is expensive. For example, hash table queries may take
tens or hundreds of clock cycles. Fortunately, we can often amortize
the cost by leveraging spatial locality (Fig. 2).

Instance activation. For write access, we need to activate previ-
ously inactive nodes. This usually involves atomic operations or
spinlocks, which are not only intrinsically slow, but also serialized.

We present three types of optimizations that lead to higher per-
formance, through better cache locality, reduction of redundant
accesses, and automatic parallelization and vectorization.

4.1 Scratchpad Optimization through Boundary Inference

The “scratchpad” pattern is a common optimization to reduce load-
to-use latency and memory bandwidth consumption, when potential
data reuse exists. Scratchpads are small software-managed local data
arenas, typically stored in L1 cache (CPU) or shared memory (GPU),
and are intended for fast local computation. But programming with
scratchpads is error-prone, and the size of a scratchpad is coupled
with the leaf block size.

We provide a construct Cache(v) to enable the scratchpad opti-
mization, which can be specified in a kernel. For example, take the
discrete Laplace operator from Sec 3.1. Let us also assume that the
inputs are stored in dense arrays at the leaf level (dense(ij, {4,

4}) .place(v)). Our bound inference engine will infer that each
outputu[i, j] requires values from the 33 neighborhood of input
v, and then allocate a local scratchpad array with the necessary size
for this leaf block (Fig. 7, left and middle). We use interval analy-
sis for bounds inference as in Halide [Ragan-Kelley et al. 2012] to
determine a rectangular bound.

Our bounds inference requires the access offsets to be known at
compile time. However, in many cases this is too restrictive. Fortu-
nately, oftentimes it is possible to determine bounds using domain
knowledge from the data. Therefore we provide an AssumeInRange
construct for specifying the bounds of individual variables. The com-
piler then propagates these bounds to generate a scratchpad. For
example, in the semi-Lagrangian advection kernel below, the back-
trace distance is bounded by the Courant-Friedrichs-Lewy number
and supplied to the compiler:

Kernel(advect).def ([&] () {

For(m, [&](Expr i, Expr j){

auto u = velocity(0)[i, j1;
auto v = velocity(1)[i, j1;

auto backtrace_i = Var(i - cast<int32>(u * dt/dx));

auto backtrace_j = Var(j - cast<int32>(v * dt/dx));

backtrace_i = AssumeInRange(i, {-2,3});
// i1.e., 1 - 2 <= backtrace_i < 1 + 3;
backtrace_j = AssumeInRange(j, {-2,33});
// i1.e., j — 2 <= backtrace_j < j + 3;

m = m_input[backtrace_i, backtrace_j];
s

In our current implementation, the scratchpad optimization is
only applied for the GPU backend. The latency and bandwidth
difference between software managed shared memory and hardware
managed L2 cache makes such an optimization especially profitable
on GPU. We anticipate this optimization would also help for the
CPU backend, but since the CPU L1 cache already plays a similar
role, the improvement might be less significant.

Apart from the cache construct that provides shared memory
usage hints, the Cachel1 (V) construct for the GPU backend instructs
the compiler to issue __1dg intrinsics to force data loads from the
global variable v into GPU L1 cache. Unlike x86 CPUs, NVIDIA GPUs
cache data in L2 cache by default. Since L1 caches are maintained
by GPU hardware on the fly, no compile-time bound inference is
needed.

4.2 Removing Redundant Accesses

As illustrated in Fig. 2, the cost of an expensive hierarchical data
structure’s access can often be amortized. By considering multi-
ple accesses simultaneously, the compiler can leverage common
traversal paths. This is a form of constant propagation and com-
mon subexpression elimination. We develop a minimal intermediate
representation to represent data structure operations. The interme-
diate representation is specially designed for vectorized accesses
and contains explicit information about accesses and data structure
boundaries. This allows us to perform optimizations that a typical
compiler cannot conduct automatically. We detail the intermedi-
ate representation and the expression simplification algorithms in
Section 5 and Appendix A.

As an example, consider again the Laplace operator from Sec. 3.1.
This time we assume we are accessing a three-level data structure
like the one in Fig. 2. If index j is 4-wide loop vectorized, we know
that j must be a multiple of four and x[i, j+1] must share the

Kernel

A
uli, 3l
Data Structure

Fig. 7. Left and middle: Combining kernel and data structure information,
the compiler will infer the elements required by this compute block. In
this specific case, a 6 X 6 scratchpad will be generated, covering region
[-1, 5) X [-1, 5). Right: The v (yellow square with red border) element is
loaded into shared memory, and then reused by u five times (three shown
in green blocks with their stencil shown in semitransparent blue). By doing
this we reduce data load-to-use latency and main memory bandwidth
consumption significantly.

dense(ij, 4)

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:8 + Huetal.

same ancestor with x[i, j]. Therefore, it will be possible to tra-
verse the data structure just once for both i, j and i, j+1. Our
compiler detects this and handles boundary cases using the specific
offset information stored in the IR (Fig. 8), while traditional compil-
ers’ heuristics usually fail to optimize due to code complexity and
potential race conditions and pointer aliasing.

Unoptimized Accesses Optimized Accesses

(N

Fig. 8. Access optimization assuming the three accesses occur from left to
right. The common paths of the accesses are eliminated. The yellow access
is simplified to a compile-time known offset relative to the red access.

A similar optimization can also be applied for write operations. If
two write accesses happen in the same memory address in the same
kernel, the second write does not need to perform the expensive
sparsity check and allocation.

4.3 Automatic Parallelization and Task Management

Parallelization and Load Balancing. Evenly distributing work onto
processor cores is challenging on sparse data structures. Naively
splitting an irregular tree into pieces can lead to partitions with
drastically different numbers of leaf blocks (Fig.9).

Dense

Sparse

Core 2: load=4

Core 1: load=4

Core 1: load=4 Core 2: load=1
Fig. 9. Unlike the dense case (left), in sparse data structures, partitioning
leaf nodes at a certain level may lead to an unsatisfactory load imbalance
and therefore inefficient parallelism (right).

Our strategy is to generate a task list of leaf blocks, which flattens
the data structure into a 1D array, circumventing the irregularity of
incomplete trees. Importantly, we generate a task per block instead
of a task per element (Fig. 5), to amortize the generation cost.

On CPU, generating the task list can be done via a light-weight
traversal of the tree in serial. The task list is then queued into a
thread pool. We then process the task queue in parallel via OpenMP.

On GPU, generating the task list in serial is infeasible. Instead,
we maintain multiple task lists, one for each structural node on the
root-to-leaf path. The lists are generated in a layer-by-layer manner:
starting from the root node, the queue of active parent nodes is used
to generate the queue of active child nodes. A global atomic counter
is used to keep track of the current queue head.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

Kernel (Frontend IR) > Simplification |
\ 4 \ 4
AST Lowering & r»| Access Lowering
Type Checking '
: A 4
| Simplification 11
v X86_64 :
Loop Vectorize | |GPU ' A 4
E Backend Compiler
! clang-7/nvcc 10.0
\ 4 \ 4 :
Bound Inference | | E
& ' F""""""':
Scratch Pad Insertion [~~""~ i DataStructure
P L L |

Fig. 10. The compilation pipeline. The solid lines represent our computation
IR pipeline, while dotted lines indicate the use of data structure information.

Kernel launch management on GPU. Synchronizing GPU kernels
with the CPU host can be quite costly. In our system, CPU-GPU
synchronization (i.e., cudaDeviceSynchronize()) will only happen
when the user explicitly calls the synchronization function or tries
to read/write data from/to the data structure on GPU memory. This
design makes asynchronized execution on GPUs transparent to the
user.

5 COMPILER AND RUNTIME IMPLEMENTATION

The Taichi programming language is embedded in C++14, providing
easy interoperability with the host language. We plan to release a
Python 3 embedding to further lower the language learning bar-
rier and development cost. The compiler is implemented in C++17,
borrowing infrastructure from the Taichi library [Hu 2018]. The
frontend kernel code is lowered to an intermediate representation
before being compiled into standard C++ or CUDA code. Key com-
ponents of our compiler and runtime are a two-phase simplifier for
reducing instructions and removing redundant accesses, an access
lowering transform, a customized memory management system for
memory allocation and garbage collection, and a CPU loop vector-
izer. The compilation workflow is summarized in Fig. 10.

Our intermediate representation follows the static single assign-
ment design and is similar to LLVM [Lattner and Adve 2004]. Our
intermediate representation is more high-level, containing explicit
information about data structure accesses, such as the access index
bounds and the size of the data structure element. This, combined
with data structure composition information, makes it possible for
our compiler to perform automatic access optimizations. The full
list of intermediate representation nodes is described in Appendix A.
We also include a snippet of compiled code in the supplementary
material.

Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures « 201:9

5.1 Simplification

Apart from the dedicated optimization for the data structure access,
our simplification phase applies most common general-purpose
compiler optimizations, such as common subexpression elimination,
local variable store forwarding, dead instruction elimination, and
lowering “if”-statements into conditional moves.

We split the simplification into two phases. The first phase greatly
reduces and simplifies the number of instructions and makes it easier
for the second simplification phase. In practice we have observed
cases where disabling the first phase increases compilation time
from a few seconds to tens of minutes. Removing “if”-statements
yields bigger straightline code regions, enabling more potentially
helpful optimizations.

Central to data structure access simplification are what we call mi-
cro access instructions: 0ffsetAndExtractBit, SNodeLookup, GetCh,
and IntegerOffset. They are produced during the access lowering
phase, where a root-to-leaf access (e.g. x[i]) is broken down into
several stages for each level in the hierarchy. Since many different
accesses share a similar path from root to leaf, similar micro access
operations can be merged. As shown in Table 4, disabling the access
lowering phase has a significant impact on performance.

The stages of moving down a single hierarchy in the data structure
are as follows. First, offsets at each dimension are computed, along
with the starting and ending position of each index represented as
bit masks (0ffsetAndExtractBit). This instruction is data-structure-
aware. For example, if the kernel is 4-wide loop vectorized over index
j and the child of the current block has a size larger than 4, we are
guaranteed that 0ffsetAndExtractBit will return the same value
forj, j + 1, j + 2, j + 3. Inference like this allows us to ag-
gressively simplify accesses. Next, the extracted multi-dimensional
indices are flattened into a linear offset (Linearize). Then a pointer
to the item in the data structure is fetched from the current level
of the data structure using the linear offset, along with a check
of whether the node is active or not (SNodeLookUp). We need to
pay special attention to SNodeLookUp when the node is not active:
for read accesses SNodeLookUp returns an “ambient node” with all
fields being ambient values such as 0; for write access SNodeLookUp
first allocates the node and then return the new node. Finally the
corresponding field in the item is fetched (Getch).

In cases where two micro access instructions of the same type
lead to a compile-time-known non-zero offset, we replace the sec-
ond micro access instruction with an IntegerOffset instruction,
representing the relationship between the two accesses in bytes,
avoiding data structure traversals.

5.2 Memory Management

Our system relies heavily on the allocation-on-demand mechanism
and supports data structures with dynamic topology. Therefore,
efficient management of memory is a key to performance, especially
on massively parallel GPUs.

Memory allocators for variable size requests usually need com-
plex data structures to maintain available segments, leading to an
unacceptable runtime cost. Therefore, we designed a memory man-
agement system that needs only very simple data structures, spe-
cialized for our abstraction.

The memory manager has a memory allocator tailored for each
node that requires on-demand allocation, e.g. the pointer and hash
nodes. The benefit of having multiple allocators is that each allocator
only needs to allocate memory segments of a fixed size, which
greatly simplifies and accelerates the process.

To minimize the internal data structure used by each memory
allocator, we conservatively reserve a memory pool from our virtual
address space, whose size is equal to the amount of physical memory.
Only the actual used space will become a resident page in physical
memory. This design allows us to implement memory allocation
with a single integer atomic operation.

We make heavy use of the virtual memory system in modern op-
erating systems, inspired by the SPGrid virtual memory design [Se-
taluri et al. 2014]. The runtime system will first reserve a virtual
address space of size 2*°B = 1TB. The memory pages will not be
allocated immediately, but in an on-demand manner, with pages
zero-initialized by the hardware. We use the unified memory access
feature on NVIDIA GPUs, thus this address space is shared by the
CPU and GPU.

We additionally maintain a list of metadata for each block, includ-
ing its memory location and coordinates.

5.3 Loop Vectorization on CPUs

We designed a loop vectorizer to utilize vector instruction sets such
as SSE and AVX2/512 on modern CPUs. The design is similar to
ISPC [Pharr and Mark 2012] where masking is used to avoid side
effects of diverging control flow. We ensure that access to data
structures is done through vectorized loads and writes whenever

possible.

Vectorized memory access on CPUs. To achieve good memory be-
havior, it is necessary to issue vectorized memory operations instead
of scalar loads.> We emit SIMD loads and then blend instructions to
make maximum usage of the vector units, based on the compile-time-
known offset information after the access simplifications (Fig. 11).

>

= load_int32x8(b+2)
(a2 Ja.1] a

= blend_int32x8(X, Y, 0b0@101111) [a |

=<

= load_int32x8(a-2)

N

Fig. 11. Loading an 8-wide vector with elements [xp12, Xp+3, Xa, Xp 45,
Xa+2> Xa+3, Xa+4> Xg+5]- The Taichi compiler, to utilize AVX instructions
on x86 for high performance, only issues two vectorized loads that fetch
contiguous data from memory, and then a SIMD blend to generate the
desired vector, with binary mask "00101111". Note that a naive data loading
code generator would issue one scalar load, one scalar to vector promotion,
one vector shuffle, and finally one vector blend instruction, for each element
in the vector.

5.4 Interaction with the Host Language

Our language can interact with the C++ host language easily. C++
can be used to initialize the data, invoke the compiled kernels, and
possibly store the outputs. After a Kernel, laplace, has been defined,
it can be used as follows:

30n GPUs this optimization is done via the memory coalescing hardware on the fly,
relieving the compiler of the burden of this optimization.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:10 « Huetal.

Table 1. Benchmarks. Commands to reproduce our performance numbers are provided in detailed tables in each subsection. Geometric means of the four
benchmarks where access has strong coherence are calculated for the summary. “-Opt" means with our domain-specific optimizations off, leaving the code
generation and optimization to the backend general-purpose compiler; “+Opt" means with our optimizations on. If we include comparisons of our GPU
backend with reference CPU implementations, we are on average 4.55X faster, otherwise 2.82x faster on the same hardware. Machine specifications for each
benchmark are detailed in Appendix B. clang-format-6.0 was used to reformat the code into the same style to get fair lines of code (LoC) numbers, with a

right margin at 80 characters and all empty lines removed.

Benchmark \ Reference Timing | CPU-Opt CPU+Opt | GPU-Opt GPU+Opt | Ref. LoC ~ Ours LoC
MLS-MPM | 3.85ms (GPU, Pascal) | -| 7.24ms 3.15ms | 3091 237
FEM Linear Elasticity | 30.71ms (CPU, AVX2) | 182.19ms 17.16ms | 11.78ms 2.11ms | 267 21
MGPCG Solver \ 2.20s (CPU) | 2.98s | 1.78s 1.13s |~ 2000 ~ 300
Sparse CNN | 37.44ms (GPU, Turing) | -| 556ms 3.02ms | 183 20

Summary (coherent cases) : Ours:Ref=2.82x

Opt On:0ff=3.02%

GPU:CPU=4.63x ~ 10.0x shorter code

Volumetric Path Tracing ‘ 554.14s (CPU) ‘

243.69s

232.52s | 2.34s 2.35s

// Initialize
for (int i = 0; i < nj; i++)
for (int j = 0; j < 32; j++)
x.val<float32>(i, i + j) = sin(j);
// Run the kernel on the active region
laplace();

// Output
printf("%f\n", y.val<float32>(n/2, n/2));

6 EVALUATION AND APPLICATIONS

In this section, we evaluate our language on end-to-end applications
for large-scale visual computing tasks covering physical simulation,
rendering, and 3D deep learning. The results are summarized in
Table 1. In computation with coherent accesses, our domain-specific
optimizations boost performance by a geometric mean of 3.02x on
the same device. Our implementations require 1—10 as many lines of
code and run 2.82X faster than the reference implementations. The
code for our implementations can be found in the supplementary
material.

6.1 Moving Least Squares Material Point Method

The Material Point Method [Stomakhin et al. 2013; Sulsky et al. 1995]
is a hybrid-Eulerian-Lagrangian method, and is one of the state-
of-the-art approaches for elastoplastic continuum simulation. The
method is challenging to implement efficiently due to the interaction
between particles and grids. Gao et al. [2018] implemented a high-
performance Moving Least Squares Material Point Method [Hu et al.
2018] solver on GPU with intensive manual 0ptimization4, including

(1) A tailored SPGrid variant on GPUs;
(2) Staggered particle-block ownership (Fig. 15, left and middle)
for parallel scattering, with shared memory utilization;

“We obtained their open-source CUDA solver and did further performance optimiza-
tions which made this reference implementation 1.98X faster, and carefully confirmed
that we have achieved the best-human-effort performance following their design
decisions.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

(3) Warp-level reductions to reduce atomic operations during
scattering;

(4) Dedicated sorting and delayed reordering to reduce memory
bandwidth consumption.

It took us a few attempts, but thanks to the easy data structure ex-
ploration supported by our language, we eventually surpassed their
performance by 18%. We initially followed the structure of arrays
(SOA) particle layout in their reference implementation. Although
we are easily able to implement optimization (1) and (2) within ten
lines of code (instead of hundreds in the reference implementation),
the warp-level optimization (3) is below our level of abstraction®, and
we did not implement the complex sorting and reordering scheme
(4) for simplicity. When particles are perfectly sorted, we were able
to achieve comparable performance with the reference implemen-
tation. However, when the simulation progresses and the spatial
distribution of particles changes, our performance drops drastically
(Table 2, row “SOA”), especially when simulating liquids.

Table 2. [Gao et al. 2018] used an SOA particle layout that makes sequential
access efficient, yet complex sorting and reordering schemes are needed.
When particles’ attributes are randomly shuffled in memory, the simula-
tion runs 6.03% slower due to insufficient GPU cacheline utilization under
random memory access. Our AOS particle layout is easy to implement and,
more importantly, less sensitive to particle order, because even under ran-
dom particle access order, different attributes of the particle stay in the
same or nearby cacheline. Unlike CPUs, NVIDIA GPUs have no prefetch-
ing, so cacheline usage is key to performance, and access predictability
is of less importance. This makes sorting unnecessary, leading to a much
simpler and more efficient algorithm. [Reproduce: ti mpm_benchmark
particle_soa=[true/false] initial_shuffle=[true/false]]

Particle Layout Ordered Randomly Shuffled

SOA 3.52ms 21.23 ms

AOS 3.15ms 4.28 ms

SFor portability, we do not provide warp-level intrinsics such as __ballot.

Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures « 201:11

Fig. 12. A sand jet animation using MLS-MPM with up to 3 million particles, simulated using on average 2.2 sec/frame (100 substeps/frame). [Reproduce: ti
mpm_full scene=4 material=sand output=sand]

Fortunately, using our language we were able to quickly explore
different particle/grid layout schemes and found that switching
particle layouts from structure of arrays to array of structures re-
solved this issue (Table 2, row “AOS”). In contrast, in the reference
implementation the data layout is tightly coupled with the computa-
tional kernels, making it difficult to experiment with different data
structures.

The data structure code for the high-performance data structure
we found for MPM is illustrated in Figure 13. For particles we use ar-
ray of structures, for grids we use structure of arrays, and each block
maintains a list of indices of its contained particles. This greatly
simplifies the data structure and algorithms used by Gao et al., for
example we avoid the complex radix sort of the particles. The origi-
nal grid hierarchy used by [Gao et al. 2018] is sparse yet bounded.
This leads to simplicity and lower access cost, yet often leads to
unnatural behavior when the simulation bound cannot be predeter-
mined. In our language, adding a hash or dense() .pointer () node
at the top level of the grid conveniently makes the simulation do-
main virtually unbounded, which will suit corresponding boundary
conditions (Figure 14).

Our implementation has only four kernels: sort particle indices
to their containing blocks, particle to grid (P2G), grid normalization,
and grid to particle (G2P). In contrast, the reference implementation
has over 20 kernels, with the majority of them dealing with data
structure maintenance. Our compiler automatically generates code
to maintain the topology of the data structure. For example, it auto-
matically activates a block and its parents when a particle touches
it.

In the P2G and G2P kernels, we use the AssumeInRange construct
to hint to the compiler the spatial relationship between blocks and
their containing particles. We also apply Gao et al’s stagger particle-
grid ownership optimization by offsetting the particle position by
Ax (Fig. 15), leading to a tighter access bound at the parent level. The
compiler will automatically allocate scratchpads for each particle’s
33X 3 span on each 4 X 4 X 4 block, which is a 6 X 6 X 6 scratchpad
in shared memory. We did an ablation study on the scratchpad
optimization, and it indeed leads to a significant speedup (Table 3).

auto i = Index(0), j = Index(1l), k = Index(2);
auto p = Index(3);
auto &fork = root.dynamic(p, max_n_particles);
// Particle array of structures
for (int i = 05 1 < 3; i++)
for (int j = 0; j < 335 j++)
fork.place(particle_F(i, j)); // 3x3 force matrix
// ... do the same for other particle attributes
// Grid structure of arrays
auto &block = root.dense({i, j, k}, n / grid_block_size)
.pointer();
block.dense({i, j, k}, grid_block_size).place(
grid_velocity(0), grid_velocity(l), grid_velocity
(2), grid_mass);
// Each voxel stores a list \finalchanged{}{of} particle
indices
block.dynamic(p, pow(grid_block_size, 3) * 64).place(l);

Fig. 13. The data structure code for our material point method simulation.
The interaction between particle and grid in this hybrid-Eulerian-Lagrangian
approach leads to a huge space of potential data structure designs. We use
array of structures for the particles and structure of arrays for the grids. We
also store a dynamic list of particles in each voxel for speeding up particle
lookup (the “Hierarchical Particle Buckets” in Fig. 6). We can easily modify
the code to change the layout, or switch to a hash table for the top level of
the grid to achieve an unbounded domain (Fig. 14).

Table 3. Using scratchpad memory (SPM, a.k.a. “shared memory" on
NVIDIA GPUs) makes the P2G kernel 2.54% faster and G2P kernel 2.73x
faster. In our language this optimization can be easily achieved with the
“Cache” hint. [Reproduce: ti mpm_benchmark use_cache=[true/false]]

GPU-SPM GPU+SPM

P2G 5.102ms
G2P 1.975ms

2.011ms

0.722ms

Examples of MLS-MPM sand and liquid animation simulated and
rendered with Taichi programs are shown in Fig. 12 and Fig. 16.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:12 « Huetal

frame 0 frame 35 frame 99 (unbounded)
Fig. 14. Smashing a snow ball onto the ground: bounded vs. unbounded
simulation. By changing data structures (and boundary conditions), we can
easily switch to a virtually unbounded domain. [Reproduce: ti mpm_full
scene=1 scene=1 material=snow output=snow ground_friction=0.2
frame_dt=0.001 dt_mul=0.5 E=4e4 group_size=100 total_frames=200
bbox=[t/f]]

Fig. 15. Optimizing particle sorting. Left: We first sort the indices of par-
ticles to their respective grid blocks. P2G and G2P can then be done in a
block-wise manner with high locality. Middle: We sort particles to a block
staggered by Ax. Gao et al. [2018] describe a similar optimization: by doing
so, particles sorted to each block will touch 2 x 2 X 2 blocks only, instead
of 3 X 3 X 3 blocks in the case without staggering. Right: Note the extra
grey cells without staggering. Since our compiler can automatically apply
bounds inference, we quickly experimented with this approach and observed
a 1.29% speed up. [Reproduce: ti mpm_benchmark stagger=[t/f]]

6.2 Linear Elasticity Finite Element Kernel

A large scale sparse grid-based finite element solver was presented
by Liu et al. [2018] for high-resolution topology optimization. They
proposed a matrix-free elasticity operator for the conjugate gradient
iterations on x86_64 with vectorization. Their hand-optimized ker-
nel is tailored for SPGrid [Setaluri et al. 2014], with carefully imple-
mented vectorized load instructions (e.g. via the _mm256_loadu_ps
intrinsic). This is a highly compute-bound task. For each voxel,
over one thousand multiply and add instructions are issued, while
fetching material parameters from only 2 X 2 X 2 cells and 3D dis-
placements from 3 X 3 x 3 nodes. The whole algorithm is gather-only
so it parallelizes naturally. We consider Liu et al’s code a highly-
optimized reference implementation for evaluating our language
and compiler in a compute-bound situation.

We reproduced their algorithm in our language. Our compiler is
especially good at compute-bound tasks, as our access optimization
and auto-vectorization significantly reduce the number of instruc-
tions (Table 4). With all optimizations on, our implementation is
1.77x faster on an x86 CPU. Without modifying the code, our pro-
gram runs on a GPU 8.2x faster than the generated CPU code, and
14.6X faster than the reference CPU implementation. We conduct
a comprehensive ablation study of our compiler optimizations in

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

Fig. 16. A fluid animation using MLS-MPM with up to 3 million par-
ticles. [Reproduce: ti mpm_full scene=3 material=fluid output=fluid
dt_mul=0.7 bbox=true]

Table 4, and found our compiler optimizations lead to 10.6x and
5.58% higher performance on CPU and GPU.

6.3 Multigrid Poisson Solver

Large-scale Poisson equation solving has extensive use in graph-
ics, including fluid simulation [Losasso et al. 2004], image process-
ing [Agarwala 2007] and mesh reconstruction [Kazhdan et al. 2006].

We implement a Multigrid-Preconditioned Conjugate Gradients

(MGPCG) solver [McAdams et al. 2010], which has become popular

for pressure projection in physically based animation.

We implemented a simplified version of the reference implemen-
tation, with the following differences:

e Smoothers: the reference implementation uses Gauss-Seidel for
boundary smoothing and damped Jacobi for interior smoothing,
while we used red-black Gauss-Seidel smoothing for both bound-
ary and interior regions.

o Restriction and prolongation: instead of using the 4x4 x4 trilinear
interpolation operator, we use 2 X 2 X 2 averaging.

e Boundary conditions: we support zero Dirichlet boundary con-
ditions only, while the reference implementation also supports
Neumann boundaries and their coarsening.

Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures « 201:13

Table 4. An ablation performance study on the linear elasticity FEM kernel.
Disabling the simplification | pass before lowering access does no harm
to run-time performance, yet it increases compilation time from several
seconds to 40 minutes when generating CPU code. Disabling the simpli-
fication Il pass after lowering access leads to a binary size of 8.1MB in-
stead of 377KB, since clang failed to remove redundant accesses. Using
a bad data layout makes performance drop by nearly an order of magni-
tude. [Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8]
lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]]

Ablation CPU Time GPU Time
No multithreading 73.43ms -
No vectorization 83.54ms -
No vectorized load instructions 22.69ms -
No simplification I 17.01ms 2.13ms
No access lowering 182.19ms 6.046 ms
No simplification II 85.51ms 11.784 ms
AOS instead of SOA 136.03ms 20.992 ms
All optimizations on 17.16ms 2.11ms

o Operator fusing: the reference implementation aggressively fuses
operations, such as smoothing and dot products, to save memory
bandwidth. We use temporary buffers to store some of these
results to simplify the code.

Fully implementing McAdams et al’s algorithm is possible in our

language. For this specific benchmark we only need a simplified

version.

A user experienced with both our language and physical simu-
lation was able to implement our multigrid preconditioner within
only 80 minutes and 300 lines of code.

We run both our implementation and reference on an x86 CPU
until convergence. Our performance is 1.35X lower than the ref-
erence, likely because our implementation has a slightly inferior
convergence rate and uses temporary buffers to simplify the code.
On the other hand, changing our backend to GPU requires no effort,
and it runs 2.64X faster than our CPU version and 1.9X faster than
the reference implementation. An ablation study on our compiler
optimizations and parallelization is shown in Table 5.

Table 5. An ablation performance study on the MGPCG Poisson solver.
[Reproduce: ti mgpcg_poisson gpu=[t/f] vec=[t/f] threads=[1-8]
lower_access=[t/f] vec_load_cpu=[t/f]]

Ablation CPU Time GPU Time
No multithreading 7.30s -
No vectorization 4.01s -
No access lowering 5.68s 1.78 s
All optimizations on 2.98s 1.13s

Our solver automatically generalizes to an irregular and sparse
case, while the reference implementation deals with only dense
grids. To implement this multi-resolution approach, we generated a
structural tree of 36 nodes and 31 kernels for a five-level multigrid
hierarchy.

The performance data are obtained from a 2563 dense grid, with
zero Dirichlet surrounding voxels. The initial right-hand side is an
analytical field sin(27x) cos(27y) sin(27z), with x, y, z € [0, 1) being
the spatial coordinates. Initial guesses for the conjugate gradient
are set to zero. We stop iterating when the Iy norm of residual is
reduced by a factor of 10°.

The same solver can potentially be used for other graphics appli-
cations such as panorama image stitching [Agarwala 2007] or mesh
reconstruction [Kazhdan et al. 2006].

6.4 3D Convolutional Neural Networks

3D deep learning requires convolutional neural networks to operate
on voxels instead of images. Unlike images, voxels require an effi-
cient sparse representation for high-resolution 3D objects. Several
sparse voxel approaches have been proposed for 3D deep learn-
ing [Graham et al. 2018; Riegler et al. 2017; Wang et al. 2017, 2018].
We implemented a 3D convolution layer, operating on multi-channel
sparse voxels. The kernel is as simple as the mathematical definition
of convolution, while the compiler automatically generates the code
for efficiently accessing the sparse voxels. We compare to the Sparse
Convolutional Network [Graham et al. 2018] implemented in CUDA,
which uses a hash table with pointers to a dense matrix to store
sparse 3D feature maps. We take the Stanford bunny, voxelize it
into a 256 X 256 X 256 grid, and copy over 16 channels. We then
apply a 3 X 3 X 3 X 16 X 16 convolution layer. By using a two-level
hierarchy with pointer arrays, under 1% sparsity, we are roughly 12
times faster than the reference code. Under 10% sparsity, we are 23
times faster. We use the Cachel 1 schedule to cache the convolution
weights in GPU L1 cache. This schedule hint boosts performance
by 1.8X. [Reproduce: ti cnn opt=[t/f] cache_l1=[t/f].]

6.5 Volumetric Path Tracing

We implemented a volumetric path tracer inspired by Mitsuba [Jakob
2010]’s implementation, with Woodcock tracking [1965] and an
isotropic phase function. We compare against the Tungsten ren-
derer®, which uses VDB [Museth 2013] to represent volumes.

The benchmark scene includes a 584 X 576 X 440 density field
containing bunny-shaped smoke and a single point light source.
We rendered 512 X 512 images with 128 samples per pixel and a
path length limit of 128. On CPU, our implementation is 2.38X faster
than the reference implementation. Our GPU version is 98.86X faster
than our CPU version and 235.6X faster than the reference imple-
mentation. [Reproduce: ti smoke_renderer gpu=[t/f] opt=[t/f]]
Our domain-specific optimizations only lead to a 5% performance
boost on CPU and no performance improvement on GPU, since the
access pattern is largely incoherent in volume rendering. Still, we
obtain a fast GPU renderer with no additional implementation, and
are able to explore different sparse data structures.

Shttps://github.com/tunabrain/tungsten

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:14 « Huetal.

We made our best effort to match our implementation to Tung-
sten’s. With slight modifications to both renderers’, we get qualita-
tively similar results (see the supplemental material).

7 LIMITATIONS

Although we in general get satisfactory results on the five bench-
mark cases, there are limitations and potential for future work:

Low arithmetic intensity tasks. In the material point method (Sec. 6.1)

and finite element method (Sec. 6.2) cases, when the performance is
compute-bound, our access optimizer can greatly improve perfor-
mance by reducing access instructions. However, in the multigrid
Poisson solver case (Sec. 6.3), although the optimizer improves per-
formance by a factor of 1.9%, we are soon bounded by memory
bandwidth. In these cases reducing instructions no longer helps. As
a result, the unvectorized reference implementation is still faster
than our vectorized implementation by 1.3%. This is because the
reference is more bandwidth-efficient, due to operator fusing op-
timizations. This suggests investigating approaches that can auto-
matically fuse operators, which might require further decoupling of
computation and scheduling [Ragan-Kelley et al. 2012].

Less coherent accesses. For the volume rendering example (Sec. 6.5),
while the rays exhibit some coherent behavior, our compiler is not
able to infer this at compile time. Approaches that extract locality
information at run-time such as ray reordering [Pharr et al. 1997]
could potentially be used to boost performance.

8 RELATED WORK
8.1 Array Compilers

Many programming models for efficiently compiling array opera-
tions have been proposed.

Halide [Ragan-Kelley et al. 2012, 2013] decouples image process-
ing operations and lower-level scheduling such as loop transforma-
tions and vectorization. Several polyhedral compilers adopt a similar
idea [Baghdadi et al. 2015, 2019; Mullapudi et al. 2015; Vasilache
et al. 2018]. All these compilers focus on dense data structures and
do not model sparsity. Our language decouples algorithms from the
internal organization of sparse data structures, allowing program-
mers to quickly switch between data organizations to achieve high
performance.

Several sparse tensor compilers target linear algebra operations
(e.g. taco [Chou et al. 2018; Kjolstad et al. 2017], ParSy [Cheshmi et al.
2017, 2018]). They focus on constructing efficient iteration spaces
between different sparse matrices under linear algebra operations.
Several compilers target graph operations such as breath-first-search
or shortest path (e.g. [Wang et al. 2016; Zhang et al. 2018]). In con-
trast, we focus on generating high-performance traversal code for
spatially coherent access to hierarchical and sparse data structures.

To efficiently vectorize access to data structures, we adopt the
Single-Program-Multiple-Data model [Darema et al. 1988] in our
computational kernels, which is the foundation of modern parallel

"We implemented Woodcock tracking in Tungsten, and used a two-level grid in our
implementation to approximate the OpenVDB hierarchical DDA traversal [Museth
2014] in Tungsten.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

languages such as CUDA, OpenCL [Stone et al. 2010], ispc [Pharr
and Mark 2012], and IVL [Leif3a et al. 2012].

Physical Simulation Languages. Several domain-specific languages
exist for physical simulation. They usually abstract the domain
as a graph structure for representing meshes. Liszt [DeVito et al.
2011] focuses on solving partial differential equations on meshes.
Simit [Kjolstad et al. 2016] models the domain as sparse matrices
while Ebb [Bernstein et al. 2016] employs a relational data model.
We provide a different abstraction for lower-level optimizations,
focusing on hierarchical sparse data structures.

8.2 Data-Oriented Design

Inspired by the increasing relative expense of memory operations,
the video game and visual effects industries have recently started
to adopt the data-oriented design philosophy [Acton 2014; Lee et al.
2017]. It is a software engineering approach focused on data access,
as opposed to the more traditional object-oriented design where the
storage is fragmented. Adopting a similar philosophy, ispc [Pharr
and Mark 2012] and IVL [Leifa et al. 2012] both provide constructs
for transformations between array of structures and structure of
arrays. Our language facilitates data-oriented design and shares
the same philosophy through decoupling of data structures and
computation.

8.3 Hierarchical Sparse Grids in Graphics

Computer graphics, especially in the field of physical simulation,
has a long history of using multi-level sparse regular grids for finite
element methods, level set methods [Osher and Sethian 1988], or
Eulerian fluid simulation. Sparse grids are used for representing
large-scale simulation data. Bridson [2003] uses a two-level grid,
Houston et al. [2006] use run-length-encoding to compress data. DT-
Grid [Nielsen and Museth 2006] employs compressed-row-storage.
VDB [Museth 2013] uses a static B+tree-like structure to represent
an unbounded domain. SPGrid [Setaluri et al. 2014] uses a shallow
hierarchy while utilizing the modern virtual memory system. GPU
variants of VDB [Hoetzlein 2016; Wu et al. 2018] and SPGrid [Gao
et al. 2018] have recently been designed. Nielsen and Bridson [2016]
propose a wide-branching tile tree of voxels for fluid simulation. Bai-
ley et al. [2013] sort particles to corresponding voxel blocks, similar
to our "Hierarchical Particle Buckets" described in Section 6.1. Out-
side of simulation, Kazhdan et al. [2006] and Agarwala [2007] used
octrees for solving Poisson’s equation for image stitching and mesh
reconstruction, respectively. Chen et al. [2013] use a hierarchical
grid for storing signed distance fields.

9 CONCLUSION

We have presented a new programming language and its optimiz-
ing compiler for developing high-performance implementations of
sparse visual computing tasks. Our novel design allows the language
to provide both productivity and performance.

The computation-data structure decoupling allows the program-
mer to quickly explore different data structure hierarchies. As an
example, we used this successfully to find a new efficient layout
for the material point method, demonstrating the potential of the
language for developing novel, high-performance data structures.

Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures « 201:15

Our compiler’s automatic parallelization and access optimizations
are especially useful in reducing the number of instructions for
compute-bound tasks, while the scratchpad optimization improves
memory locality. Our compiler enables programmers, for the first
time, to implement optimized large-scale simulations within a few
hundred lines of code.

ACKNOWLEDGMENTS

We thank Sylvain Paris for his insightful comments in the early
stages of this work, and Eftychios Sifakis, Yunming Zhang, Andrew
Adams and the anonymous reviewers for reading our manuscript
and providing valuable feedback. This work was partly supported by
the NSF/Intel Partnership on Computer Assisted Programming for
Heterogeneous Architectures (CCF-1723445). This work was also
partially supported by the Toyota Research Institute (TRI). However,
this article solely reflects the opinions and conclusions of its authors
and not TRI or any other Toyota entity. Yuanming Hu is partly
supported by a Snap Research fellowship.

REFERENCES

Mike Acton. 2014. Data-oriented design and C++. (2014). https://www.youtube.com/
watch?v=rX0ItVEVjHc

Aseem Agarwala. 2007. Efficient Gradient-domain Compositing Using Quadtrees. ACM
Trans. Graph. (Proc. SSGGRAPH) 26, 3 (2007), 94.

Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chan-
dan Reddy, Sven Verdoolaege, Adam Betts, Alastair F Donaldson, Jeroen Ketema, et al.
2015. PENCIL: A platform-neutral compute intermediate language for accelerator
programming. In Parallel Architecture and Compilation. IEEE, 138-149.

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrah-
man Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman Amaras-
inghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and portable code.
Code Generation and Optimization (2019), 193-205.

Dan Bailey, lan Masters, Matt Warner, and Harry Biddle. 2013. Simulating fluids using
a coupled voxel-particle data model. In ACM SIGGRAPH 2013 Talks. ACM, 15.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for physical simulation on
CPUs and GPUs. ACM Trans. Graph. 35, 2 (2016), 21:1-21:12.

Robert Edward Bridson. 2003. Computational Aspects of Dynamic Surfaces. Ph.D.
Dissertation. Stanford University, Stanford, CA, USA. Advisor(s) Fedkiw, Ronald.

Jiawen Chen, Dennis Bautembach, and Shahram Izadi. 2013. Scalable Real-time Volu-
metric Surface Reconstruction. ACM Trans. Graph. (Proc. SGGRAPH) 32, 4 (2013),
113:1-113:16.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2017. Sympiler: Transforming sparse matrix codes by decoupling symbolic analysis.
In International Conference for High Performance Computing, Networking, Storage
and Analysis. ACM, 13:1-13:13.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi. 2018.
ParSy: Inspection and transformation of sparse matrix computations for parallelism.
In International Conference for High Performance Computing, Networking, Storage,
and Analysis. 62.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format abstraction for
sparse tensor algebra compilers. Proceedings of the ACM on Programming Languages
2, OOPSLA (2018), 123.

Frederica Darema, David A George, V Alan Norton, and Gregory F Pfister. 1988. A
single-program-multiple-data computational model for EPEX/FORTRAN. Parallel
Comput. 7,1 (1988), 11-24.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina,
Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, et al. 2011.
Liszt: A domain specific language for building portable mesh-based PDE solvers. In
International Conference for High Performance Computing, Networking, Storage and
Analysis. 9.

Ming Gao, Xinlei Wang, Kui Wu, Andre Pradhana-Tampubolon, Eftychios Sifakis, Yuksel
Cem, and Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods.
ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 4 (2018), 102.

Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 2018. 3D semantic
segmentation with submanifold sparse convolutional networks. In Computer Vision
and Pattern Recognition. 9224-9232.

Rama Karl Hoetzlein. 2016. GVDB: Raytracing sparse voxel database structures on
the GPU. In Proceedings of High Performance Graphics. Eurographics Association,

109-117.

Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken Museth.
2006. Hierarchical RLE level set: A compact and versatile deformable surface
representation. ACM Trans. Graph. 25, 1 (2006), 151-175.

Yuanming Hu. 2018. Taichi: An open-source computer graphics library. arXiv preprint
arXiv:1804.09293 (2018).

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-
fanfu Jiang. 2018. A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 37, 4 (2018), 150.

Wenzel Jakob. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface recon-
struction. In Eurographics Symposium on Geometry Processing, Vol. 7.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 77.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin, Shinjiro
Sueda, Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar, Wojciech
Matusik, and Saman Amarasinghe. 2016. Simit: A language for physical simulation.
ACM Trans. Graph. 35, 2 (2016), 20:1-20:21.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization.

Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized Production Path
Tracing. In High Performance Graphics.

Roland Leif3a, Sebastian Hack, and Ingo Wald. 2012. Extending a C-like Language for
Portable SIMD Programming. SIGPLAN Not. 47, 8 (2012), 65-74.

Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018.
Narrow-band Topology Optimization on a Sparsely Populated Grid. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 251:1-251:14.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. In ACM Trans. Graph. (Proc. SSIGGRAPH), Vol. 23. ACM,
457-462.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. 2010. A parallel multigrid Poisson
solver for fluids simulation on large grids. In Symposium on Computer Animation.
ACM/Eurographics Association, 65-74.

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic
optimization for image processing pipelines. SSGARCH Comput. Archit. News 43, 1
(2015), 429-443.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32, 3 (2013), 27.

Ken Museth. 2014. Hierarchical digital differential analyzer for efficient ray-marching
in OpenVDB. (2014).

Michael B Nielsen and Robert Bridson. 2016. Spatially adaptive FLIP fluid simulations
in bifrost. In ACM SIGGRAPH 2016 Talks. ACM, 41.

Michael B. Nielsen and Ken Museth. 2006. Dynamic Tubular Grid: An Efficient Data
Structure and Algorithms for High Resolution Level Sets. . Sci. Comput. 26, 3 (2006),
261-299.

Stanley Osher and James A. Sethian. 1988. Fronts Propagating with Curvature-
dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comput.
Phys. 79, 1 (1988), 12-49.

Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. 1997. Rendering Complex
Scenes with Memory-coherent Ray Tracing. In SSGGRAPH. ACM, 101-108.

Matt Pharr and William R Mark. 2012. ispc: A SPMD compiler for high-performance
CPU programming. In Innovative Parallel Computing. 1-13.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines. ACM Trans. Graph. (Proc. SGGRAPH)
31,4 (2012), 32:1-32:12.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. SIGPLAN
Not. 48, 6 (jun 2013), 519-530.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. Octnet: Learning deep
3d representations at high resolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 3577-3586.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 33, 6 (2014), 205.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A material point method for snow simulation. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 102.

John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in science & engineering
12, 3 (2010), 66-73.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. 1995. Application of a particle-
in-cell method to solid mechanics. Computer physics communications 87, 1-2 (1995),

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

201:16 « Huetal.

236-252.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen.
2018. Tensor comprehensions: Framework-agnostic high-performance machine
learning abstractions. arXiv:1802.04730 (2018).

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-
CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM
Transactions on Graphics (SSGGRAPH) 36, 4 (2017).

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2018. Adaptive O-CNN:
A patch-based deep representation of 3D shapes. ACM Transactions on Graphics
(SIGGRAPH Asia) 37, 6 (2018).

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D.
Owens. 2016. Gunrock: A high-performance graph processing library on the GPU.
SIGPLAN Not. 51, 8 (2016), 11:1-11:12.

E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the
GEM code for Monte Carlo neutronics calculations in reactors and other systems
of complex geometry. In Applications of Computing Methods to Reactor Problems,
Vol. 557.

Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast fluid simulations
with sparse volumes on the GPU. In Computer Graphics Forum (Proc. Eurographics),
Vol. 37. Wiley Online Library, 157-167.

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. Graphlt: A high-performance graph DSL. Proceedings of
the ACM on Programming Languages 2, OOPSLA (2018), 121.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965-972.

A INTERMEDIATE REPRESENTATION INSTRUCTIONS

Our intermediate representation follows the typical static single
assignment form. It contains the following control flow nodes:
structFor (for looping data structures), RangeFor (for looping data
over ranges), If, While, WhileControl (while combined with break).

The expression tree contains the following nodes: Const, Alloca
(for local mutable variables), UnaryOp, BinaryOp, TrinaryOp, Rand,
ElementShuffle (for loop vectorization), RangeAssumption (for bound
inference).

When a data structure is accessed, GloballLoad and GlobalStore
are issued with addresses pointed to by GlobalPtr. SNodeOp is used
to activate grids and check for sparsity. When a local mutable vari-
able is accessed, LocalStore and LocallLoad are issued. Atomic in-
structions are represented by AtomicOp. ClearAll cleans up the data
structures.

As mentioned in Sec. 5.1, GlobalPtr is lowered to the following
micro access nodes, to facilitate expression simplification:

o OffsetAndExtract
Linearize
SNodeLookup
GetCh
IntegerOffset

B BENCHMARK MACHINE SPECIFICATIONS

Here we list the machine specifications for our benchmarks for
reproducing the performance numbers.

The MLS-MPM, FEM and MGPCG benchmarks were done on an
Intel Core i7-7700K CPU with four cores at 4.2GHz, 32 GB main
memory, and an NVIDIA GTX 1080Ti graphics card.

The CNN benchmark was done on an Intel Core-i7 9800X CPU
with eight cores at 3.8GHz, 32 GB main memory, and an NVIDIA
RTX 2080 GPU.

The rendering benchmark was done on an Intel Xeon E5-2690
v4 with 28 cores at 2.60GHz, 64 GB main memory, and an NVIDIA
Tesla V100 GPU.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.

clang-7 and nvcc 10.0 were used as backend compilers.

Although finding a machine with these exact specifications may
be difficult, the relative performance numbers are roughly machine-
independent. We encourage the reader to run the example programs
with the provided commands to reproduce our results, and to explore
different combinations of data structures and compiler optimiza-
tions.

	Abstract
	1 Introduction
	2 Goals and Design Decisions
	2.1 Design Decisions

	3 The Taichi Programming Language
	3.1 Defining Computation
	3.2 Describing Internal Structures Hierarchically

	4 Domain-Specific Optimizations
	4.1 Scratchpad Optimization through Boundary Inference
	4.2 Removing Redundant Accesses
	4.3 Automatic Parallelization and Task Management

	5 Compiler and Runtime Implementation
	5.1 Simplification
	5.2 Memory Management
	5.3 Loop Vectorization on CPUs
	5.4 Interaction with the Host Language

	6 Evaluation and Applications
	6.1 Moving Least Squares Material Point Method
	6.2 Linear Elasticity Finite Element Kernel
	6.3 Multigrid Poisson Solver
	6.4 3D Convolutional Neural Networks
	6.5 Volumetric Path Tracing

	7 Limitations
	8 Related Work
	8.1 Array Compilers
	8.2 Data-Oriented Design
	8.3 Hierarchical Sparse Grids in Graphics

	9 Conclusion
	Acknowledgments
	References
	A Intermediate Representation Instructions
	B Benchmark Machine Specifications

