






201:4 • Hu et al.

2.1 Design Decisions

Our design decisions are made based on the aforementioned goals

and non-goals.

• Decouple data structures fromcomputation.The user should

write high-level code for computation as if they are processing a

dense array, while also being able to explore different sparse data

structures without affecting the computation code. We achieve

this by abstracting data structure access with Cartesian index-

ing, while the actual data structures define the mapping from the

index to the actual memory address (Sec. 3.1).

• Regular grids as building blocks The basic data structure enti-

ties of our system are regular grids, which can be easily flattened

into 1D arrays that map closely to modern computer architecture

with linear memory addressing. We do not directly model more

irregular structures such as meshes or graphs2. Multiresolution

representations such as adaptive grids [Losasso et al. 2004] need

to be composed manually in our language (see Section 6.3, or

Setaluri et al.’s multigrid preconditioner [2014]).

• Describe data structures throughhierarchical composition.

To model spatial sparsity, and to express a wide variety of data

structures, we develop a data structure mini-language to compose

data structure hierarchies (Sec. 3.2). The mini-language is made

up of several elementary components, such as dense arrays and

hash tables, that are arbitrarily composable.

• Fixed data structure hierarchy. We facilitate compiler opti-

mizations and simplify memory allocation by assuming the hier-

archy to be fixed at compile time. We do not support octrees or

bounding volume hierarchies with dynamic depth. Many state-

of-the-art physical simulation systems use data structures with a

fixed hierarchy such as SPGrid [Setaluri et al. 2014] andVDB [Hoet-

zlein 2016; Museth 2013].

• Single-Program-Multiple-Data (SPMD)with sparse iterators.

We adopt an imperative SPMD model to harness the power of

modern hardware such as vectorized instructions on CPUs and

massively parallel GPUs. To exploit sparsity, we design compu-

tation kernels to be parallel for loops with sparse iterators on

active elements only. This provides programmers a simple yet

expressive interface to sparse computation.

• Generate optimized backend code automatically. Our com-

piler should generate high-performance backend code automati-

cally, while optimizing for locality (Sec. 4.1), minimizing redun-

dant accesses using access coherency (Sec. 4.2), automatically

parallelizing (Sec. 4.3) and allocating memory (Sec. 5.2). The user

should only need to provide the backend target architecture and

optionally some scheduling hints for the compiler to generate

better optimized code.

3 THE TAICHI PROGRAMMING LANGUAGE

We demonstrate our language using a 2D Laplace operator u =

∇2v , which is frequently used in physical simulation and image

processing. After finite difference discretization, the operation is

2It is possible to use 1D arrays for storing vertices and edges in meshes/graphs.

defined as:

ui, j =
1

∆x2
(4vi, j −vi+1, j −vi−1, j −vi, j+1 −vi, j−1).

3.1 Defining Computation

To decouple data structures from computation, we abstract data

structures as mappings from multi-dimensional indices to the actual

value. For example, access to the 2D scalar field u is always done

through indexing, i.e. u[i, j], no matter what the internal data

structure is. This is similar to high-level interfaces of some data

structure libraries, yet our compiler analyzes these accesses and

produces code that minimizes redundancy across multiple accesses.

Our language’s frontend is embedded in C++. Computations in

our language are usually defined as kernels looping over active data

structure elements (e.g. non-zero pixels or voxels), to efficiently

exploit data sparsity. The kernel contains imperative code that op-

erates on the data structures.

We define the aforementioned Laplace operator as a kernel, using

a for loop over variable u, which iterates over all pairs (i, j)where

u[i, j] is an active element:

Kernel(laplace).def([&]() {
For(u, [&](Expr i, Expr j){
auto c = 1.0f / (dx * dx);
u[i, j] = c * (4 * v[i, j] - v[i+1, j]

- v[i-1, j] - v[i, j+1] - v[i, j-1]);
});

});

For loops over active elements are key to sparse computation

in Taichi. The compiler automatically maintains sparsity. When

reading from an inactive element of v, the compiler returns an

ambient value (e.g., 0). When writing to an inactive element of u, the

compiler automatically changes the internal data structure, allocates

memory, and marks the element as active (In this specific kernel, no

activation will occur, since we are only writing to active elements

of u, and interaction with v is read-only).

We adopt the Single-Program-Multiple-Data paradigm. Our lan-

guage is similar to other SPMD languages such as ispc and CUDA,

with three additional components: 1) parallel sparse For loops, 2)

multi-dimensional sparse array accessors, and 3) compiler hints for

optimizing program scheduling.

The For loop is automatically parallelized and vectorized. Our

language supports typical control flow statements, such as If-Then

-Else and While loops. We allow users to define mutable local vari-

ables (Var). Our language can be used to write a full volumetric path

tracer with complex control flow (Sec. 6.5). The language constructs

supported inside computation kernels are listed below.

// Parallel loop over the sparse tensor "var"
For(Expr var, std::function)
// Loop over [begin, end)
For(Expr begin, Expr end, std::function)
// Access one element in "var" with index (i, ...)
operator[](Expr var, Expr i, ...)

While(Expr cond, std::function)
If(Expr cond)
If::Then(std::function)
If::Else(std::function)
Var(Expr) // Declare a mutable local variable
Atomic(A) += B // Atomic add to global element A

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures • 201:5

Our language also offers compiler hints for scheduling:

// For CPU
Parallelize(int num_threads) // Multi-threading
Vectorize(int width) // Loop vectorization
// For GPU
BlockDim(int blockDim) // Specify GPU block size
// For scratchpad optimization
AssumeInRange(Expr base, int lower, int upper)
Cache(Expr)
// Cache data into GPU L1 cache
CacheL1(Expr)

More discussions on hints for scratchpad optimization (AssumeInRange

and Cache) and CacheL1 are in Section 4.1.

3.2 Describing Internal Structures Hierarchically

After writing the computation code, the user needs to specify the in-

ternal data structure hierarchy. Specifying a data structure includes

choices at both the macro level, dictating how the data structure

components nest with each other and the way they represent spar-

sity, and the micro level, dictating how data are grouped together

(e.g. structure of arrays vs. array of structures).

Structural nodes and their decorators. Our language provides struc-

tural nodes to compose the hierarchy, and decorators to provide

structural nodes with particular properties. These constructs and

their semantics are listed below:

dense: A fixed-length contiguous array.

hash: Use a hash table to maintain the mapping from active coordi-

nates to data addresses in memory. Suitable for high sparsity.

dynamic: Variable-length array, with a predefined maximum length.

It serves the role of std::vector, and can be used tomaintain objects

(e.g. particles) contained in a block.

(a) structural nodes

morton: Reorder the data in memory using a Z-order curve (Morton

coding), for potentially higher spatial locality. For dense only.

bitmasked: Use a mask to maintain sparsity information, one bit per

child. For dense only.

pointer: Store pointers instead of the whole structure to save mem-

ory and maintain sparsity. For dense and dynamic.

(b) node decorators

These data structure components provide trade-offs regarding

access cost and space consumption. For example, a hash table has

relatively long access time (e.g. 50 CPU cycles), but it is very eco-

nomical in terms of memory space, especially in extremely sparse

cases (e.g. 0.1%). Therefore it is often suitable for the top layer, when

only a few hundred children are active out of, say, 128 × 128 × 128.

On the other hand, a dense array with a bitmask can be activated

and accessed quickly, but the bitmask will occupy space inefficiently

in highly sparse cases.

Defining the hierarchy. Users can compose the data structure

components arbitrarily to form desired hierarchies and to explore

different trade-offs. The compiler will then synthesize how compu-

tational kernels are executed on the specific sparse data structure

(Fig. 5).

Fig. 5. In our language, programmers define data structures by nesting

elementary components such as hash tables and dense arrays. Kernels are

defined as iterations over leaf elements (i.e., voxels or pixels), independent
of the internal data organization. Leaf blocks, immediate blocks of leaf

elements, are the smallest quantum of storage and computation tasks.

For example, the following code specifies two fixed-size 2D dense

arrays over u and v.

Global(u, f32); Global(v, f32);
layout([&]() {
auto ij = Indices(0, 1);
// Allocate a structure-of-arrays dense grid.
// Equivalent to:
// float u[256][256]; float v[256][256];
root.dense(ij, {256, 256}).place(u);
root.dense(ij, {256, 256}).place(v);

});

Global(u, type) declares an N-dimensional (sparse) tensor of

name u and type type. These tensors are accessible by all kernels,

so we call them global variables.

layout takes a C++ lambda function that describes the data struc-

ture hierarchy. Indices are used to specify sizes of structural nodes.

root denotes the root of the hierarchy. dense, a structural node

of the tree, creates a child node of the root. Calling dense on root

twice creates two children. Each structural node function call has

two arguments, the first specifies the dimensions of its children,

the second specifies the number of elements in the corresponding

dimension. Here, dense(ij, {256, 256})means the 2D dense array

has 256 cells along index i (x-axis) and 256 cells along j (y-axis).

place(u) and place(v) assign the global variables u, v to the

corresponding data structure hierarchies. The equivalent C-style

data structure definition is provided in the comments.

The code above specifies a structure-of-arrays (SOA) layout. We

can easily switch to an array-of-structures (AOS) layout using the

following code:

// struct node {float u, v;};
// node data[256][256];
auto &node = root.dense(ij, {256, 256});
node.place(u); node.place(v);
// or equivalently
root.dense(ij, {256, 256}).place(u, v);

In this case, a single dense node contains both u and v, since

we called place twice on the same dense node. As syntactic sugar,

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



201:6 • Hu et al.

root.hash(ijk, 32).dense(ijk, 16).pointer()
.dense(ijk, 8).place(u, v, w);

(a) 3D VDB-style [Museth 2013] structure with configuration [5, 4, 3]. The

root-level hash table allows negative coordinates to be accessed, providing

the user with an unbounded domain.

root.dense(ijk, 512).morton().bitmasked()
.dense(ijk, {8, 4, 4}).place(flags, u, v, w);

(b) 3D SPGrids [Setaluri et al. 2014] occupying voxels in the bounding box

[0, 4096) × [0, 2048) × [0, 2048). The data structure is relatively shallow

(only two levels), so root-to-leaf accesses have relatively low cost.

// "Hierarchical Particle Buckets": each leaf block contains all indices of particles within its range
root.dynamic(l, 2048).place(particle_x, particle_y, particle_z, particle_mass);
root.hash(ijk, 512).dense(ijk, 32).pointer().dense(ijk, 8).pointer().dynamic(l, 2048).place(particle_index);

// "SPVDB": Unbounded shallow data structures with bitmasks and Morton coding. (VDB and SPGrid combined.)
root.hash(ijk, 512).dense(ijk, 512).morton().bitmasked().dense(ijk, {8, 4, 4}).place(flags, u, v, w);

// "Hybrid Eulerian-
Lagrangian Grid"

auto &block = root
.hash(ij, 8)
.dense(ij, {16, 8})
.bitmasked();

// Child 1: grid nodes
block.dense(ij, {4, 8})

.place(grid_vx)

.place(grid_vy);

// Child 2: particles
block.dynamic(i, 32)

.place(part_x)

.place(part_y)

.place(part_vx)

.place(part_vy);

(c) łHPBž, łSPVDB", łHLEGž: We can easily design new data structures with customized features.

Fig. 6. The layout language allows users to define data structures using our building blocks. We can reproduce two popular multi-level sparse grid used

in simulation (a) (b). Furthermore, we can use our language to design new data structures (c) by chaining and forking elementary components. Hybrid

Eulerian-Lagrangian simulations (e.g. FLIP [Zhu and Bridson 2005] and MPM [Stomakhin et al. 2013]) often need to maintain both particles and grids, and the

required data structures are usually complicated. Using these building blocks, we easily found a data structure with a hierarchical pointer list of particles,

which we call Hierarchical Particle Buckets, that is especially useful for the material point method simulation (Sec.6.1).

place can also take more than one parameter. When materialized

in memory, in this AOS layout ui, j and vi, j are next to each other,

while in the previous SOA layoutui, j is next toui, j+1 and is far away

from vi, j . These two layouts have very different memory behaviors

(e.g. cacheline utilization) in different applications.

We can nest the structural nodes to specify the hierarchical tree

structure in a top-down order. For example, the following code

defines a three-level sparse grid, with the top-level being a hash

table, the second-level being a dense array of pointers, and the

third-level being a fixed-size dense array (Fig. 5):

root.hash(ij, {4, 4})
.dense(ij, {4, 4}).pointer()
.dense(ij, {16, 16}).place(u, v);

Apart from multiple global variables, structural nodes can also

have multiple structural nodes as children. For example, the fol-

lowing code defines a bitmasked sparse array, where each of its

elements is composed of a dense array and a dynamic array (similar

to std::vector):

Global(u, f32); Global(v, f32); Global(p, f32);
auto k = Index(2);
auto &block = root.dense(ij, {16, 16});
// Child 1: dense array
block.dense(ij, {16, 16}).place(u, v);

// Child 2: dynamic array
block.dynamic(k, 256).place(p);

The equivalent C++ code is:

struct Child1Node {
float u;
float v;

};
struct Block {
Child1Node child1[16][16];
std::vector<float> child2; // p
// Note: in Taichi the dynamic array has a
// pre-defined maximum size, unlike std::vector that

grows arbitrarily.
};
struct Root {
Block blocks[16][16];

};

The structural node types are concise, but they are capable of

expressing a large variety of data structures. Figure 6 illustrates a

few complex data structures represented with our language. A new

data structure can be designed with a few lines of code. Rapidly ex-

perimenting with these data structures allows us to find the optimal

one for a specific task and hardware architecture.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.





201:8 • Hu et al.

same ancestor with x[i, j]. Therefore, it will be possible to tra-

verse the data structure just once for both i, j and i, j+1. Our

compiler detects this and handles boundary cases using the specific

offset information stored in the IR (Fig. 8), while traditional compil-

ers’ heuristics usually fail to optimize due to code complexity and

potential race conditions and pointer aliasing.

Fig. 8. Access optimization assuming the three accesses occur from left to

right. The common paths of the accesses are eliminated. The yellow access

is simplified to a compile-time known offset relative to the red access.

A similar optimization can also be applied for write operations. If

two write accesses happen in the same memory address in the same

kernel, the second write does not need to perform the expensive

sparsity check and allocation.

4.3 Automatic Parallelization and Task Management

Parallelization and Load Balancing. Evenly distributing work onto

processor cores is challenging on sparse data structures. Naively

splitting an irregular tree into pieces can lead to partitions with

drastically different numbers of leaf blocks (Fig.9).

Fig. 9. Unlike the dense case (left), in sparse data structures, partitioning

leaf nodes at a certain level may lead to an unsatisfactory load imbalance

and therefore inefficient parallelism (right).

Our strategy is to generate a task list of leaf blocks, which flattens

the data structure into a 1D array, circumventing the irregularity of

incomplete trees. Importantly, we generate a task per block instead

of a task per element (Fig. 5), to amortize the generation cost.

On CPU, generating the task list can be done via a light-weight

traversal of the tree in serial. The task list is then queued into a

thread pool. We then process the task queue in parallel via OpenMP.

On GPU, generating the task list in serial is infeasible. Instead,

we maintain multiple task lists, one for each structural node on the

root-to-leaf path. The lists are generated in a layer-by-layer manner:

starting from the root node, the queue of active parent nodes is used

to generate the queue of active child nodes. A global atomic counter

is used to keep track of the current queue head.

Fig. 10. The compilation pipeline. The solid lines represent our computation

IR pipeline, while dotted lines indicate the use of data structure information.

Kernel launch management on GPU. Synchronizing GPU kernels

with the CPU host can be quite costly. In our system, CPU-GPU

synchronization (i.e., cudaDeviceSynchronize()) will only happen

when the user explicitly calls the synchronization function or tries

to read/write data from/to the data structure on GPU memory. This

design makes asynchronized execution on GPUs transparent to the

user.

5 COMPILER AND RUNTIME IMPLEMENTATION

The Taichi programming language is embedded in C++14, providing

easy interoperability with the host language. We plan to release a

Python 3 embedding to further lower the language learning bar-

rier and development cost. The compiler is implemented in C++17,

borrowing infrastructure from the Taichi library [Hu 2018]. The

frontend kernel code is lowered to an intermediate representation

before being compiled into standard C++ or CUDA code. Key com-

ponents of our compiler and runtime are a two-phase simplifier for

reducing instructions and removing redundant accesses, an access

lowering transform, a customized memory management system for

memory allocation and garbage collection, and a CPU loop vector-

izer. The compilation workflow is summarized in Fig. 10.

Our intermediate representation follows the static single assign-

ment design and is similar to LLVM [Lattner and Adve 2004]. Our

intermediate representation is more high-level, containing explicit

information about data structure accesses, such as the access index

bounds and the size of the data structure element. This, combined

with data structure composition information, makes it possible for

our compiler to perform automatic access optimizations. The full

list of intermediate representation nodes is described in Appendix A.

We also include a snippet of compiled code in the supplementary

material.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures • 201:9

5.1 Simplification

Apart from the dedicated optimization for the data structure access,

our simplification phase applies most common general-purpose

compiler optimizations, such as common subexpression elimination,

local variable store forwarding, dead instruction elimination, and

lowering łifž-statements into conditional moves.

We split the simplification into two phases. The first phase greatly

reduces and simplifies the number of instructions andmakes it easier

for the second simplification phase. In practice we have observed

cases where disabling the first phase increases compilation time

from a few seconds to tens of minutes. Removing łifž-statements

yields bigger straightline code regions, enabling more potentially

helpful optimizations.

Central to data structure access simplification are what we callmi-

cro access instructions: OffsetAndExtractBit, SNodeLookup, GetCh,

and IntegerOffset. They are produced during the access lowering

phase, where a root-to-leaf access (e.g. x[i]) is broken down into

several stages for each level in the hierarchy. Since many different

accesses share a similar path from root to leaf, similar micro access

operations can be merged. As shown in Table 4, disabling the access

lowering phase has a significant impact on performance.

The stages ofmoving down a single hierarchy in the data structure

are as follows. First, offsets at each dimension are computed, along

with the starting and ending position of each index represented as

bit masks (OffsetAndExtractBit). This instruction is data-structure-

aware. For example, if the kernel is 4-wide loop vectorized over index

j and the child of the current block has a size larger than 4, we are

guaranteed that OffsetAndExtractBit will return the same value

for j, j + 1, j + 2, j + 3. Inference like this allows us to ag-

gressively simplify accesses. Next, the extracted multi-dimensional

indices are flattened into a linear offset (Linearize). Then a pointer

to the item in the data structure is fetched from the current level

of the data structure using the linear offset, along with a check

of whether the node is active or not (SNodeLookUp). We need to

pay special attention to SNodeLookUp when the node is not active:

for read accesses SNodeLookUp returns an łambient nodež with all

fields being ambient values such as 0; for write access SNodeLookUp

first allocates the node and then return the new node. Finally the

corresponding field in the item is fetched (GetCh).

In cases where two micro access instructions of the same type

lead to a compile-time-known non-zero offset, we replace the sec-

ond micro access instruction with an IntegerOffset instruction,

representing the relationship between the two accesses in bytes,

avoiding data structure traversals.

5.2 Memory Management

Our system relies heavily on the allocation-on-demand mechanism

and supports data structures with dynamic topology. Therefore,

efficient management of memory is a key to performance, especially

on massively parallel GPUs.

Memory allocators for variable size requests usually need com-

plex data structures to maintain available segments, leading to an

unacceptable runtime cost. Therefore, we designed a memory man-

agement system that needs only very simple data structures, spe-

cialized for our abstraction.

The memory manager has a memory allocator tailored for each

node that requires on-demand allocation, e.g. the pointer and hash

nodes. The benefit of havingmultiple allocators is that each allocator

only needs to allocate memory segments of a fixed size, which

greatly simplifies and accelerates the process.

To minimize the internal data structure used by each memory

allocator, we conservatively reserve a memory pool from our virtual

address space, whose size is equal to the amount of physical memory.

Only the actual used space will become a resident page in physical

memory. This design allows us to implement memory allocation

with a single integer atomic operation.

We make heavy use of the virtual memory system in modern op-

erating systems, inspired by the SPGrid virtual memory design [Se-

taluri et al. 2014]. The runtime system will first reserve a virtual

address space of size 240B = 1TB. The memory pages will not be

allocated immediately, but in an on-demand manner, with pages

zero-initialized by the hardware. We use the unified memory access

feature on NVIDIA GPUs, thus this address space is shared by the

CPU and GPU.

We additionally maintain a list of metadata for each block, includ-

ing its memory location and coordinates.

5.3 Loop Vectorization on CPUs

We designed a loop vectorizer to utilize vector instruction sets such

as SSE and AVX2/512 on modern CPUs. The design is similar to

ISPC [Pharr and Mark 2012] where masking is used to avoid side

effects of diverging control flow. We ensure that access to data

structures is done through vectorized loads and writes whenever

possible.

Vectorized memory access on CPUs. To achieve good memory be-

havior, it is necessary to issue vectorized memory operations instead

of scalar loads.3 We emit SIMD loads and then blend instructions to

makemaximumusage of the vector units, based on the compile-time-

known offset information after the access simplifications (Fig. 11).

Fig. 11. Loading an 8-wide vector with elements [xb+2, xb+3, xa, xb+5,

xa+2, xa+3, xa+4, xa+5]. The Taichi compiler, to utilize AVX instructions

on x86 for high performance, only issues two vectorized loads that fetch

contiguous data from memory, and then a SIMD blend to generate the

desired vector, with binary mask "00101111". Note that a naive data loading

code generator would issue one scalar load, one scalar to vector promotion,

one vector shuffle, and finally one vector blend instruction, for each element

in the vector.

5.4 Interaction with the Host Language

Our language can interact with the C++ host language easily. C++

can be used to initialize the data, invoke the compiled kernels, and

possibly store the outputs. After a Kernel, laplace, has been defined,

it can be used as follows:
3On GPUs this optimization is done via the memory coalescing hardware on the fly,
relieving the compiler of the burden of this optimization.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



201:10 • Hu et al.

Table 1. Benchmarks. Commands to reproduce our performance numbers are provided in detailed tables in each subsection. Geometric means of the four

benchmarks where access has strong coherence are calculated for the summary. ł-Opt" means with our domain-specific optimizations off, leaving the code

generation and optimization to the backend general-purpose compiler; ł+Opt" means with our optimizations on. If we include comparisons of our GPU

backend with reference CPU implementations, we are on average 4.55× faster, otherwise 2.82× faster on the same hardware. Machine specifications for each

benchmark are detailed in Appendix B. clang-format-6.0 was used to reformat the code into the same style to get fair lines of code (LoC) numbers, with a

right margin at 80 characters and all empty lines removed.

Benchmark Reference Timing CPU-Opt CPU+Opt GPU-Opt GPU+Opt Ref. LoC Ours LoC

MLS-MPM 3.85ms (GPU, Pascal) - - 7.24ms 3.15ms 3091 237

FEM Linear Elasticity 30.71ms (CPU, AVX2) 182.19ms 17.16ms 11.78ms 2.11ms 267 21

MGPCG Solver 2.20s (CPU) 5.68s 2.98s 1.78s 1.13s ∼ 2000 ∼ 300

Sparse CNN 37.44ms (GPU, Turing) - - 5.56 ms 3.02 ms 183 20

Summary (coherent cases) : Ours:Ref=2.82× Opt On:Off=3.02× GPU:CPU=4.63× ∼ 10.0× shorter code

Volumetric Path Tracing 554.14s (CPU) 243.69s 232.52s 2.34s 2.35s - -

// Initialize
for (int i = 0; i < n; i++)
for (int j = 0; j < 32; j++)

x.val<float32>(i, i + j) = sin(j);

// Run the kernel on the active region
laplace();

// Output
printf("%f\n", y.val<float32>(n/2, n/2));

6 EVALUATION AND APPLICATIONS

In this section, we evaluate our language on end-to-end applications

for large-scale visual computing tasks covering physical simulation,

rendering, and 3D deep learning. The results are summarized in

Table 1. In computation with coherent accesses, our domain-specific

optimizations boost performance by a geometric mean of 3.02× on

the same device. Our implementations require 1
10 as many lines of

code and run 2.82× faster than the reference implementations. The

code for our implementations can be found in the supplementary

material.

6.1 Moving Least Squares Material Point Method

TheMaterial Point Method [Stomakhin et al. 2013; Sulsky et al. 1995]

is a hybrid-Eulerian-Lagrangian method, and is one of the state-

of-the-art approaches for elastoplastic continuum simulation. The

method is challenging to implement efficiently due to the interaction

between particles and grids. Gao et al. [2018] implemented a high-

performance Moving Least Squares Material Point Method [Hu et al.

2018] solver on GPUwith intensive manual optimization4, including

(1) A tailored SPGrid variant on GPUs;

(2) Staggered particle-block ownership (Fig. 15, left and middle)

for parallel scattering, with shared memory utilization;

4We obtained their open-source CUDA solver and did further performance optimiza-
tions which made this reference implementation 1.98× faster, and carefully confirmed
that we have achieved the best-human-effort performance following their design
decisions.

(3) Warp-level reductions to reduce atomic operations during

scattering;

(4) Dedicated sorting and delayed reordering to reduce memory

bandwidth consumption.

It took us a few attempts, but thanks to the easy data structure ex-

ploration supported by our language, we eventually surpassed their

performance by 18%. We initially followed the structure of arrays

(SOA) particle layout in their reference implementation. Although

we are easily able to implement optimization (1) and (2) within ten

lines of code (instead of hundreds in the reference implementation),

thewarp-level optimization (3) is below our level of abstraction5, and

we did not implement the complex sorting and reordering scheme

(4) for simplicity. When particles are perfectly sorted, we were able

to achieve comparable performance with the reference implemen-

tation. However, when the simulation progresses and the spatial

distribution of particles changes, our performance drops drastically

(Table 2, row łSOAž), especially when simulating liquids.

Table 2. [Gao et al. 2018] used an SOA particle layout that makes sequential

access efficient, yet complex sorting and reordering schemes are needed.

When particles’ attributes are randomly shuffled in memory, the simula-

tion runs 6.03× slower due to insufficient GPU cacheline utilization under

random memory access. Our AOS particle layout is easy to implement and,

more importantly, less sensitive to particle order, because even under ran-

dom particle access order, different attributes of the particle stay in the

same or nearby cacheline. Unlike CPUs, NVIDIA GPUs have no prefetch-

ing, so cacheline usage is key to performance, and access predictability

is of less importance. This makes sorting unnecessary, leading to a much

simpler and more efficient algorithm. [Reproduce: ti mpm_benchmark
particle_soa=[true/false] initial_shuffle=[true/false]]

Particle Layout Ordered Randomly Shuffled

SOA 3.52ms 21.23 ms

AOS 3.15ms 4.28 ms

5For portability, we do not provide warp-level intrinsics such as __ballot.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures • 201:11

Fig. 12. A sand jet animation using MLS-MPM with up to 3 million particles, simulated using on average 2.2 sec/frame (100 substeps/frame). [Reproduce: ti
mpm_full scene=4 material=sand output=sand]

Fortunately, using our language we were able to quickly explore

different particle/grid layout schemes and found that switching

particle layouts from structure of arrays to array of structures re-

solved this issue (Table 2, row łAOSž). In contrast, in the reference

implementation the data layout is tightly coupled with the computa-

tional kernels, making it difficult to experiment with different data

structures.

The data structure code for the high-performance data structure

we found for MPM is illustrated in Figure 13. For particles we use ar-

ray of structures, for grids we use structure of arrays, and each block

maintains a list of indices of its contained particles. This greatly

simplifies the data structure and algorithms used by Gao et al., for

example we avoid the complex radix sort of the particles. The origi-

nal grid hierarchy used by [Gao et al. 2018] is sparse yet bounded.

This leads to simplicity and lower access cost, yet often leads to

unnatural behavior when the simulation bound cannot be predeter-

mined. In our language, adding a hash or dense().pointer() node

at the top level of the grid conveniently makes the simulation do-

main virtually unbounded, which will suit corresponding boundary

conditions (Figure 14).

Our implementation has only four kernels: sort particle indices

to their containing blocks, particle to grid (P2G), grid normalization,

and grid to particle (G2P). In contrast, the reference implementation

has over 20 kernels, with the majority of them dealing with data

structure maintenance. Our compiler automatically generates code

to maintain the topology of the data structure. For example, it auto-

matically activates a block and its parents when a particle touches

it.

In the P2G and G2P kernels, we use the AssumeInRange construct

to hint to the compiler the spatial relationship between blocks and

their containing particles. We also apply Gao et al.’s stagger particle-

grid ownership optimization by offsetting the particle position by

∆x (Fig. 15), leading to a tighter access bound at the parent level. The

compiler will automatically allocate scratchpads for each particle’s

3× 3× 3 span on each 4× 4× 4 block, which is a 6× 6× 6 scratchpad

in shared memory. We did an ablation study on the scratchpad

optimization, and it indeed leads to a significant speedup (Table 3).

auto i = Index(0), j = Index(1), k = Index(2);
auto p = Index(3);
auto &fork = root.dynamic(p, max_n_particles);
// Particle array of structures
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
fork.place(particle_F(i, j)); // 3x3 force matrix

// ... do the same for other particle attributes
// Grid structure of arrays
auto &block = root.dense({i, j, k}, n / grid_block_size)

.pointer();
block.dense({i, j, k}, grid_block_size).place(

grid_velocity(0), grid_velocity(1), grid_velocity
(2), grid_mass);

// Each voxel stores a list \finalchanged{}{of} particle
indices

block.dynamic(p, pow(grid_block_size, 3) * 64).place(l);

Fig. 13. The data structure code for our material point method simulation.

The interaction between particle and grid in this hybrid-Eulerian-Lagrangian

approach leads to a huge space of potential data structure designs. We use

array of structures for the particles and structure of arrays for the grids. We

also store a dynamic list of particles in each voxel for speeding up particle

lookup (the łHierarchical Particle Bucketsž in Fig. 6). We can easily modify

the code to change the layout, or switch to a hash table for the top level of

the grid to achieve an unbounded domain (Fig. 14).

Table 3. Using scratchpad memory (SPM, a.k.a. łshared memory" on

NVIDIA GPUs) makes the P2G kernel 2.54× faster and G2P kernel 2.73×

faster. In our language this optimization can be easily achieved with the

łCachež hint. [Reproduce: ti mpm_benchmark use_cache=[true/false]]

GPU-SPM GPU+SPM

P2G 5.102ms 2.011ms

G2P 1.975ms 0.722ms

Examples of MLS-MPM sand and liquid animation simulated and

rendered with Taichi programs are shown in Fig. 12 and Fig. 16.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



201:12 • Hu et al.

Fig. 14. Smashing a snow ball onto the ground: bounded vs. unbounded

simulation. By changing data structures (and boundary conditions), we can

easily switch to a virtually unbounded domain. [Reproduce: ti mpm_full
scene=1 scene=1 material=snow output=snow ground_friction=0.2
frame_dt=0.001 dt_mul=0.5 E=4e4 group_size=100 total_frames=200
bbox=[t/f]]

Fig. 15. Optimizing particle sorting. Left:We first sort the indices of par-

ticles to their respective grid blocks. P2G and G2P can then be done in a

block-wise manner with high locality. Middle: We sort particles to a block

staggered by ∆x . Gao et al. [2018] describe a similar optimization: by doing

so, particles sorted to each block will touch 2 × 2 × 2 blocks only, instead

of 3 × 3 × 3 blocks in the case without staggering. Right: Note the extra
grey cells without staggering. Since our compiler can automatically apply

bounds inference, we quickly experimented with this approach and observed

a 1.29× speed up. [Reproduce: ti mpm_benchmark stagger=[t/f]]

6.2 Linear Elasticity Finite Element Kernel

A large scale sparse grid-based finite element solver was presented

by Liu et al. [2018] for high-resolution topology optimization. They

proposed a matrix-free elasticity operator for the conjugate gradient

iterations on x86_64 with vectorization. Their hand-optimized ker-

nel is tailored for SPGrid [Setaluri et al. 2014], with carefully imple-

mented vectorized load instructions (e.g. via the _mm256_loadu_ps

intrinsic). This is a highly compute-bound task. For each voxel,

over one thousand multiply and add instructions are issued, while

fetching material parameters from only 2 × 2 × 2 cells and 3D dis-

placements from 3×3×3 nodes. The whole algorithm is gather-only

so it parallelizes naturally. We consider Liu et al.’s code a highly-

optimized reference implementation for evaluating our language

and compiler in a compute-bound situation.

We reproduced their algorithm in our language. Our compiler is

especially good at compute-bound tasks, as our access optimization

and auto-vectorization significantly reduce the number of instruc-

tions (Table 4). With all optimizations on, our implementation is

1.77× faster on an x86 CPU. Without modifying the code, our pro-

gram runs on a GPU 8.2× faster than the generated CPU code, and

14.6× faster than the reference CPU implementation. We conduct

a comprehensive ablation study of our compiler optimizations in

Fig. 16. A fluid animation using MLS-MPM with up to 3 million par-

ticles. [Reproduce: ti mpm_full scene=3 material=fluid output=fluid
dt_mul=0.7 bbox=true]

Table 4, and found our compiler optimizations lead to 10.6× and

5.58× higher performance on CPU and GPU.

6.3 Multigrid Poisson Solver

Large-scale Poisson equation solving has extensive use in graph-

ics, including fluid simulation [Losasso et al. 2004], image process-

ing [Agarwala 2007] and mesh reconstruction [Kazhdan et al. 2006].

We implement a Multigrid-Preconditioned Conjugate Gradients

(MGPCG) solver [McAdams et al. 2010], which has become popular

for pressure projection in physically based animation.

We implemented a simplified version of the reference implemen-

tation, with the following differences:

• Smoothers: the reference implementation uses Gauss-Seidel for

boundary smoothing and damped Jacobi for interior smoothing,

while we used red-black Gauss-Seidel smoothing for both bound-

ary and interior regions.

• Restriction and prolongation: instead of using the 4×4×4 trilinear

interpolation operator, we use 2 × 2 × 2 averaging.

• Boundary conditions: we support zero Dirichlet boundary con-

ditions only, while the reference implementation also supports

Neumann boundaries and their coarsening.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures • 201:13

Table 4. An ablation performance study on the linear elasticity FEM kernel.

Disabling the simplification I pass before lowering access does no harm

to run-time performance, yet it increases compilation time from several

seconds to 40 minutes when generating CPU code. Disabling the simpli-

fication II pass after lowering access leads to a binary size of 8.1MB in-

stead of 377KB, since clang failed to remove redundant accesses. Using

a bad data layout makes performance drop by nearly an order of magni-

tude. [Reproduce: ti fem gpu=[t/f] simp1=[t/f] vec=[t/f] threads=[1-8]
lower_access=[t/f] simp2=[t/f] vec_load_cpu=[t/f] block_soa=[t/f]]

Ablation CPU Time GPU Time

No multithreading 73.43ms -

No vectorization 83.54ms -

No vectorized load instructions 22.69ms -

No simplification I 17.01ms 2.13 ms

No access lowering 182.19ms 6.046 ms

No simplification II 85.51ms 11.784 ms

AOS instead of SOA 136.03ms 20.992 ms

All optimizations on 17.16ms 2.11 ms

• Operator fusing: the reference implementation aggressively fuses

operations, such as smoothing and dot products, to save memory

bandwidth. We use temporary buffers to store some of these

results to simplify the code.

Fully implementing McAdams et al.’s algorithm is possible in our

language. For this specific benchmark we only need a simplified

version.

A user experienced with both our language and physical simu-

lation was able to implement our multigrid preconditioner within

only 80 minutes and 300 lines of code.

We run both our implementation and reference on an x86 CPU

until convergence. Our performance is 1.35× lower than the ref-

erence, likely because our implementation has a slightly inferior

convergence rate and uses temporary buffers to simplify the code.

On the other hand, changing our backend to GPU requires no effort,

and it runs 2.64× faster than our CPU version and 1.9× faster than

the reference implementation. An ablation study on our compiler

optimizations and parallelization is shown in Table 5.

Table 5. An ablation performance study on the MGPCG Poisson solver.

[Reproduce: ti mgpcg_poisson gpu=[t/f] vec=[t/f] threads=[1-8]
lower_access=[t/f] vec_load_cpu=[t/f] ]

Ablation CPU Time GPU Time

No multithreading 7.30s -

No vectorization 4.01s -

No access lowering 5.68s 1.78 s

All optimizations on 2.98s 1.13 s

Our solver automatically generalizes to an irregular and sparse

case, while the reference implementation deals with only dense

grids. To implement this multi-resolution approach, we generated a

structural tree of 36 nodes and 31 kernels for a five-level multigrid

hierarchy.

The performance data are obtained from a 2563 dense grid, with

zero Dirichlet surrounding voxels. The initial right-hand side is an

analytical field sin(2πx) cos(2πy) sin(2πz), with x ,y, z ∈ [0, 1) being

the spatial coordinates. Initial guesses for the conjugate gradient

are set to zero. We stop iterating when the l2 norm of residual is

reduced by a factor of 106.

The same solver can potentially be used for other graphics appli-

cations such as panorama image stitching [Agarwala 2007] or mesh

reconstruction [Kazhdan et al. 2006].

6.4 3D Convolutional Neural Networks

3D deep learning requires convolutional neural networks to operate

on voxels instead of images. Unlike images, voxels require an effi-

cient sparse representation for high-resolution 3D objects. Several

sparse voxel approaches have been proposed for 3D deep learn-

ing [Graham et al. 2018; Riegler et al. 2017; Wang et al. 2017, 2018].

We implemented a 3D convolution layer, operating onmulti-channel

sparse voxels. The kernel is as simple as the mathematical definition

of convolution, while the compiler automatically generates the code

for efficiently accessing the sparse voxels. We compare to the Sparse

Convolutional Network [Graham et al. 2018] implemented in CUDA,

which uses a hash table with pointers to a dense matrix to store

sparse 3D feature maps. We take the Stanford bunny, voxelize it

into a 256 × 256 × 256 grid, and copy over 16 channels. We then

apply a 3 × 3 × 3 × 16 × 16 convolution layer. By using a two-level

hierarchy with pointer arrays, under 1% sparsity, we are roughly 12

times faster than the reference code. Under 10% sparsity, we are 23

times faster. We use the CacheL1 schedule to cache the convolution

weights in GPU L1 cache. This schedule hint boosts performance

by 1.8×. [Reproduce: ti cnn opt=[t/f] cache_l1=[t/f].]

6.5 Volumetric Path Tracing

We implemented a volumetric path tracer inspired byMitsuba [Jakob

2010]’s implementation, with Woodcock tracking [1965] and an

isotropic phase function. We compare against the Tungsten ren-

derer6, which uses VDB [Museth 2013] to represent volumes.

The benchmark scene includes a 584 × 576 × 440 density field

containing bunny-shaped smoke and a single point light source.

We rendered 512 × 512 images with 128 samples per pixel and a

path length limit of 128. On CPU, our implementation is 2.38× faster

than the reference implementation. Our GPU version is 98.86× faster

than our CPU version and 235.6× faster than the reference imple-

mentation. [Reproduce: ti smoke_renderer gpu=[t/f] opt=[t/f]]

Our domain-specific optimizations only lead to a 5% performance

boost on CPU and no performance improvement on GPU, since the

access pattern is largely incoherent in volume rendering. Still, we

obtain a fast GPU renderer with no additional implementation, and

are able to explore different sparse data structures.

6https://github.com/tunabrain/tungsten

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



201:14 • Hu et al.

We made our best effort to match our implementation to Tung-

sten’s. With slight modifications to both renderers7, we get qualita-

tively similar results (see the supplemental material).

7 LIMITATIONS

Although we in general get satisfactory results on the five bench-

mark cases, there are limitations and potential for future work:

Low arithmetic intensity tasks. In thematerial pointmethod (Sec. 6.1)

and finite element method (Sec. 6.2) cases, when the performance is

compute-bound, our access optimizer can greatly improve perfor-

mance by reducing access instructions. However, in the multigrid

Poisson solver case (Sec. 6.3), although the optimizer improves per-

formance by a factor of 1.9×, we are soon bounded by memory

bandwidth. In these cases reducing instructions no longer helps. As

a result, the unvectorized reference implementation is still faster

than our vectorized implementation by 1.3×. This is because the

reference is more bandwidth-efficient, due to operator fusing op-

timizations. This suggests investigating approaches that can auto-

matically fuse operators, which might require further decoupling of

computation and scheduling [Ragan-Kelley et al. 2012].

Less coherent accesses. For the volume rendering example (Sec. 6.5),

while the rays exhibit some coherent behavior, our compiler is not

able to infer this at compile time. Approaches that extract locality

information at run-time such as ray reordering [Pharr et al. 1997]

could potentially be used to boost performance.

8 RELATED WORK

8.1 Array Compilers

Many programming models for efficiently compiling array opera-

tions have been proposed.

Halide [Ragan-Kelley et al. 2012, 2013] decouples image process-

ing operations and lower-level scheduling such as loop transforma-

tions and vectorization. Several polyhedral compilers adopt a similar

idea [Baghdadi et al. 2015, 2019; Mullapudi et al. 2015; Vasilache

et al. 2018]. All these compilers focus on dense data structures and

do not model sparsity. Our language decouples algorithms from the

internal organization of sparse data structures, allowing program-

mers to quickly switch between data organizations to achieve high

performance.

Several sparse tensor compilers target linear algebra operations

(e.g. taco [Chou et al. 2018; Kjolstad et al. 2017], ParSy [Cheshmi et al.

2017, 2018]). They focus on constructing efficient iteration spaces

between different sparse matrices under linear algebra operations.

Several compilers target graph operations such as breath-first-search

or shortest path (e.g. [Wang et al. 2016; Zhang et al. 2018]). In con-

trast, we focus on generating high-performance traversal code for

spatially coherent access to hierarchical and sparse data structures.

To efficiently vectorize access to data structures, we adopt the

Single-Program-Multiple-Data model [Darema et al. 1988] in our

computational kernels, which is the foundation of modern parallel

7We implemented Woodcock tracking in Tungsten, and used a two-level grid in our
implementation to approximate the OpenVDB hierarchical DDA traversal [Museth
2014] in Tungsten.

languages such as CUDA, OpenCL [Stone et al. 2010], ispc [Pharr

and Mark 2012], and IVL [Leißa et al. 2012].

Physical Simulation Languages. Several domain-specific languages

exist for physical simulation. They usually abstract the domain

as a graph structure for representing meshes. Liszt [DeVito et al.

2011] focuses on solving partial differential equations on meshes.

Simit [Kjolstad et al. 2016] models the domain as sparse matrices

while Ebb [Bernstein et al. 2016] employs a relational data model.

We provide a different abstraction for lower-level optimizations,

focusing on hierarchical sparse data structures.

8.2 Data-Oriented Design

Inspired by the increasing relative expense of memory operations,

the video game and visual effects industries have recently started

to adopt the data-oriented design philosophy [Acton 2014; Lee et al.

2017]. It is a software engineering approach focused on data access,

as opposed to the more traditional object-oriented design where the

storage is fragmented. Adopting a similar philosophy, ispc [Pharr

and Mark 2012] and IVL [Leißa et al. 2012] both provide constructs

for transformations between array of structures and structure of

arrays. Our language facilitates data-oriented design and shares

the same philosophy through decoupling of data structures and

computation.

8.3 Hierarchical Sparse Grids in Graphics

Computer graphics, especially in the field of physical simulation,

has a long history of using multi-level sparse regular grids for finite

element methods, level set methods [Osher and Sethian 1988], or

Eulerian fluid simulation. Sparse grids are used for representing

large-scale simulation data. Bridson [2003] uses a two-level grid,

Houston et al. [2006] use run-length-encoding to compress data. DT-

Grid [Nielsen and Museth 2006] employs compressed-row-storage.

VDB [Museth 2013] uses a static B+tree-like structure to represent

an unbounded domain. SPGrid [Setaluri et al. 2014] uses a shallow

hierarchy while utilizing the modern virtual memory system. GPU

variants of VDB [Hoetzlein 2016; Wu et al. 2018] and SPGrid [Gao

et al. 2018] have recently been designed. Nielsen and Bridson [2016]

propose a wide-branching tile tree of voxels for fluid simulation. Bai-

ley et al. [2013] sort particles to corresponding voxel blocks, similar

to our "Hierarchical Particle Buckets" described in Section 6.1. Out-

side of simulation, Kazhdan et al. [2006] and Agarwala [2007] used

octrees for solving Poisson’s equation for image stitching and mesh

reconstruction, respectively. Chen et al. [2013] use a hierarchical

grid for storing signed distance fields.

9 CONCLUSION

We have presented a new programming language and its optimiz-

ing compiler for developing high-performance implementations of

sparse visual computing tasks. Our novel design allows the language

to provide both productivity and performance.

The computation-data structure decoupling allows the program-

mer to quickly explore different data structure hierarchies. As an

example, we used this successfully to find a new efficient layout

for the material point method, demonstrating the potential of the

language for developing novel, high-performance data structures.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



Taichi: A Language for High-Performance Computation on Spatially Sparse Data Structures • 201:15

Our compiler’s automatic parallelization and access optimizations

are especially useful in reducing the number of instructions for

compute-bound tasks, while the scratchpad optimization improves

memory locality. Our compiler enables programmers, for the first

time, to implement optimized large-scale simulations within a few

hundred lines of code.

ACKNOWLEDGMENTS

We thank Sylvain Paris for his insightful comments in the early

stages of this work, and Eftychios Sifakis, Yunming Zhang, Andrew

Adams and the anonymous reviewers for reading our manuscript

and providing valuable feedback. This work was partly supported by

the NSF/Intel Partnership on Computer Assisted Programming for

Heterogeneous Architectures (CCF-1723445). This work was also

partially supported by the Toyota Research Institute (TRI). However,

this article solely reflects the opinions and conclusions of its authors

and not TRI or any other Toyota entity. Yuanming Hu is partly

supported by a Snap Research fellowship.

REFERENCES
Mike Acton. 2014. Data-oriented design and C++. (2014). https://www.youtube.com/

watch?v=rX0ItVEVjHc
Aseem Agarwala. 2007. Efficient Gradient-domain Compositing Using Quadtrees. ACM

Trans. Graph. (Proc. SIGGRAPH) 26, 3 (2007), 94.
Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chan-

dan Reddy, Sven Verdoolaege, AdamBetts, Alastair F Donaldson, Jeroen Ketema, et al.
2015. PENCIL: A platform-neutral compute intermediate language for accelerator
programming. In Parallel Architecture and Compilation. IEEE, 138ś149.

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrah-
man Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman Amaras-
inghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and portable code.
Code Generation and Optimization (2019), 193ś205.

Dan Bailey, Ian Masters, Matt Warner, and Harry Biddle. 2013. Simulating fluids using
a coupled voxel-particle data model. In ACM SIGGRAPH 2013 Talks. ACM, 15.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for physical simulation on
CPUs and GPUs. ACM Trans. Graph. 35, 2 (2016), 21:1ś21:12.

Robert Edward Bridson. 2003. Computational Aspects of Dynamic Surfaces. Ph.D.
Dissertation. Stanford University, Stanford, CA, USA. Advisor(s) Fedkiw, Ronald.

Jiawen Chen, Dennis Bautembach, and Shahram Izadi. 2013. Scalable Real-time Volu-
metric Surface Reconstruction. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013),
113:1ś113:16.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi.
2017. Sympiler: Transforming sparse matrix codes by decoupling symbolic analysis.
In International Conference for High Performance Computing, Networking, Storage
and Analysis. ACM, 13:1ś13:13.

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and MaryamMehri Dehnavi. 2018.
ParSy: Inspection and transformation of sparse matrix computations for parallelism.
In International Conference for High Performance Computing, Networking, Storage,
and Analysis. 62.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format abstraction for
sparse tensor algebra compilers. Proceedings of the ACM on Programming Languages
2, OOPSLA (2018), 123.

Frederica Darema, David A George, V Alan Norton, and Gregory F Pfister. 1988. A
single-program-multiple-data computational model for EPEX/FORTRAN. Parallel
Comput. 7, 1 (1988), 11ś24.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina,
Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, et al. 2011.
Liszt: A domain specific language for building portable mesh-based PDE solvers. In
International Conference for High Performance Computing, Networking, Storage and
Analysis. 9.

MingGao, XinleiWang, KuiWu, Andre Pradhana-Tampubolon, Eftychios Sifakis, Yuksel
Cem, and Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods.
ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 4 (2018), 102.

Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 2018. 3D semantic
segmentation with submanifold sparse convolutional networks. In Computer Vision
and Pattern Recognition. 9224ś9232.

Rama Karl Hoetzlein. 2016. GVDB: Raytracing sparse voxel database structures on
the GPU. In Proceedings of High Performance Graphics. Eurographics Association,

109ś117.
Ben Houston, Michael B. Nielsen, Christopher Batty, Ola Nilsson, and Ken Museth.

2006. Hierarchical RLE level set: A compact and versatile deformable surface
representation. ACM Trans. Graph. 25, 1 (2006), 151ś175.

Yuanming Hu. 2018. Taichi: An open-source computer graphics library. arXiv preprint
arXiv:1804.09293 (2018).

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-
fanfu Jiang. 2018. A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACMTrans. Graph. (Proc. SIGGRAPH
Asia) 37, 4 (2018), 150.

Wenzel Jakob. 2010. Mitsuba renderer. (2010). http://www.mitsuba-renderer.org.
Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface recon-

struction. In Eurographics Symposium on Geometry Processing, Vol. 7.
Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-

inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 77.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin, Shinjiro
Sueda, Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar, Wojciech
Matusik, and Saman Amarasinghe. 2016. Simit: A language for physical simulation.
ACM Trans. Graph. 35, 2 (2016), 20:1ś20:21.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization.

Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized Production Path
Tracing. In High Performance Graphics.

Roland Leißa, Sebastian Hack, and Ingo Wald. 2012. Extending a C-like Language for
Portable SIMD Programming. SIGPLAN Not. 47, 8 (2012), 65ś74.

Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018.
Narrow-band Topology Optimization on a Sparsely Populated Grid. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 37, 6 (2018), 251:1ś251:14.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. In ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 23. ACM,
457ś462.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. 2010. A parallel multigrid Poisson
solver for fluids simulation on large grids. In Symposium on Computer Animation.
ACM/Eurographics Association, 65ś74.

Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage: Automatic
optimization for image processing pipelines. SIGARCH Comput. Archit. News 43, 1
(2015), 429ś443.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32, 3 (2013), 27.

Ken Museth. 2014. Hierarchical digital differential analyzer for efficient ray-marching
in OpenVDB. (2014).

Michael B Nielsen and Robert Bridson. 2016. Spatially adaptive FLIP fluid simulations
in bifrost. In ACM SIGGRAPH 2016 Talks. ACM, 41.

Michael B. Nielsen and Ken Museth. 2006. Dynamic Tubular Grid: An Efficient Data
Structure and Algorithms for High Resolution Level Sets. J. Sci. Comput. 26, 3 (2006),
261ś299.

Stanley Osher and James A. Sethian. 1988. Fronts Propagating with Curvature-
dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. J. Comput.
Phys. 79, 1 (1988), 12ś49.

Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. 1997. Rendering Complex
Scenes with Memory-coherent Ray Tracing. In SIGGRAPH. ACM, 101ś108.

Matt Pharr and William R Mark. 2012. ispc: A SPMD compiler for high-performance
CPU programming. In Innovative Parallel Computing. 1ś13.

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines. ACM Trans. Graph. (Proc. SIGGRAPH)
31, 4 (2012), 32:1ś32:12.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. 2013. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. SIGPLAN
Not. 48, 6 (jun 2013), 519ś530.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. 2017. Octnet: Learning deep
3d representations at high resolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 3577ś3586.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 33, 6 (2014), 205.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle.
2013. A material point method for snow simulation. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 102.

John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in science & engineering
12, 3 (2010), 66ś73.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. 1995. Application of a particle-
in-cell method to solid mechanics. Computer physics communications 87, 1-2 (1995),

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.



201:16 • Hu et al.

236ś252.
Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary

DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen.
2018. Tensor comprehensions: Framework-agnostic high-performance machine
learning abstractions. arXiv:1802.04730 (2018).

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-
CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM
Transactions on Graphics (SIGGRAPH) 36, 4 (2017).

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. 2018. Adaptive O-CNN:
A patch-based deep representation of 3D shapes. ACM Transactions on Graphics
(SIGGRAPH Asia) 37, 6 (2018).

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D.
Owens. 2016. Gunrock: A high-performance graph processing library on the GPU.
SIGPLAN Not. 51, 8 (2016), 11:1ś11:12.

E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the
GEM code for Monte Carlo neutronics calculations in reactors and other systems
of complex geometry. In Applications of Computing Methods to Reactor Problems,
Vol. 557.

Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast fluid simulations
with sparse volumes on the GPU. In Computer Graphics Forum (Proc. Eurographics),
Vol. 37. Wiley Online Library, 157ś167.

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. GraphIt: A high-performance graph DSL. Proceedings of
the ACM on Programming Languages 2, OOPSLA (2018), 121.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions
on Graphics (TOG) 24, 3 (2005), 965ś972.

A INTERMEDIATE REPRESENTATION INSTRUCTIONS

Our intermediate representation follows the typical static single

assignment form. It contains the following control flow nodes:

StructFor (for looping data structures), RangeFor (for looping data

over ranges), If, While, WhileControl (while combined with break).

The expression tree contains the following nodes: Const, Alloca

(for local mutable variables), UnaryOp, BinaryOp, TrinaryOp, Rand,

ElementShuffle (for loop vectorization), RangeAssumption (for bound

inference).

When a data structure is accessed, GlobalLoad and GlobalStore

are issued with addresses pointed to by GlobalPtr. SNodeOp is used

to activate grids and check for sparsity. When a local mutable vari-

able is accessed, LocalStore and LocalLoad are issued. Atomic in-

structions are represented by AtomicOp. ClearAll cleans up the data

structures.

As mentioned in Sec. 5.1, GlobalPtr is lowered to the following

micro access nodes, to facilitate expression simplification:

• OffsetAndExtract

• Linearize

• SNodeLookup

• GetCh

• IntegerOffset

B BENCHMARK MACHINE SPECIFICATIONS

Here we list the machine specifications for our benchmarks for

reproducing the performance numbers.

The MLS-MPM, FEM and MGPCG benchmarks were done on an

Intel Core i7-7700K CPU with four cores at 4.2GHz, 32 GB main

memory, and an NVIDIA GTX 1080Ti graphics card.

The CNN benchmark was done on an Intel Core-i7 9800X CPU

with eight cores at 3.8GHz, 32 GB main memory, and an NVIDIA

RTX 2080 GPU.

The rendering benchmark was done on an Intel Xeon E5-2690

v4 with 28 cores at 2.60GHz, 64 GB main memory, and an NVIDIA

Tesla V100 GPU.

clang-7 and nvcc 10.0 were used as backend compilers.

Although finding a machine with these exact specifications may

be difficult, the relative performance numbers are roughly machine-

independent. We encourage the reader to run the example programs

with the provided commands to reproduce our results, and to explore

different combinations of data structures and compiler optimiza-

tions.

ACM Trans. Graph., Vol. 38, No. 6, Article 201. Publication date: November 2019.


	Abstract
	1 Introduction
	2 Goals and Design Decisions
	2.1 Design Decisions

	3 The Taichi Programming Language
	3.1 Defining Computation
	3.2 Describing Internal Structures Hierarchically

	4 Domain-Specific Optimizations
	4.1 Scratchpad Optimization through Boundary Inference
	4.2 Removing Redundant Accesses
	4.3 Automatic Parallelization and Task Management

	5 Compiler and Runtime Implementation
	5.1 Simplification
	5.2 Memory Management
	5.3 Loop Vectorization on CPUs
	5.4 Interaction with the Host Language

	6 Evaluation and Applications
	6.1 Moving Least Squares Material Point Method
	6.2 Linear Elasticity Finite Element Kernel
	6.3 Multigrid Poisson Solver
	6.4 3D Convolutional Neural Networks
	6.5 Volumetric Path Tracing

	7 Limitations
	8 Related Work
	8.1 Array Compilers
	8.2 Data-Oriented Design
	8.3 Hierarchical Sparse Grids in Graphics

	9 Conclusion
	Acknowledgments
	References
	A Intermediate Representation Instructions
	B Benchmark Machine Specifications

