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Abstract—Advancements in packaging and 3D-stacking tech-
nology have enabled novel non-uniform processing-in-memory
(NUPIM) architectures integrating a network of hybrid modules
each with varying sizes and proportions of compute and memory.
In such systems, network congestion can have a significant
impact on performance and energy-efficiency scaling. At the
same time, NUPIM systems often have strict power and thermal
constraints, where traditional routing/redundancy or buffering
based approaches to reduce congestion cannot be applied.

In this paper, we propose a low-overhead yet scalable scheme
for congestion management in off-chip networks of emerging
GPU-based NUPIM systems. We note that congestion in NUPIM
networks exhibits a form of tree saturation in which individually
congested links form congested paths, where congestion effects
due to back pressure vary across paths. Additionally, memory
responses can have different performance impact due to memory
divergence. Our approach exploits differences in performance
impact of NUPIM traffic to mitigate congestion effects. We
dynamically track congested paths and divergent data to manage
priorities and accelerate performance-critical traffic. We further
use critical paths knowledge to dynamically manage link widths
and save I/O energy.

Results show that our congestion management outperforms a
configuration with double the number of virtual channels and
buffers indicating its effectiveness in managing congestion under
stringent constraints. It improves performance by 15% (and up to
31%) over baseline and 10% (and up to 29%) against a memory
distance based approach for congestion-affected benchmarks.
Our scheme reduces 78% of I/O energy on average and up to
29% of system energy across all benchmarks.

I. INTRODUCTION

Recent technological trends have aided the design and
development of large-scale heterogeneous systems: 1) 3D-
stacking has enabled opportunities to place memory over com-
pute units [1] resulting in architectures as shown in Fig. 1a, and
2) advancements in packaging technology now allow integrat-
ing high-bandwidth memory in the same package as compute
using silicon interposers [2] as shown in Fig. 1b. These
trends have opened up a new class of non-uniform processing-
in-memory (NUPIM) system architectures. NUPIM systems
consist of multiple modules each integrating memory and
compute (2.5D or 3D stacked) together in the same package
and interconnected via an off-chip network [3], where GPUs
have become the most popular compute units for in- or near-
memory processing [2], [3].

Unlike existing systems that have a centralized compute ar-
chitecture (Fig. 2), the inherently distributed nature of NUPIM
systems (Fig. 3) enables scaling of memory and compute ca-
pabilities with minimum fabrication and engineering overhead.

(a) In-memory processing. (b) In-package memory.

Fig. 1: Technology trends.

At the same time, this scalability comes at the cost of large
off-chip data-movement. Associated network congestion can
be a major factor that adversely affects performance in such
systems. As such, alleviating the adverse impact of off-chip
congestion is vital for scaling of performance with system size.

Traditional solutions to reduce congestion involve adaptive
routing over redundant links in the network [4], [5]. How-
ever, NUPIM systems often have more stringent constraints.
Both individual stacked modules as well as complete systems
deploying NUPIM architectures have strict power and thermal
budgets [6], [7], where I/O links and buffers already contribute
to high energy overhead constituting 73% of network [8]
and 31-35% of router energy [9], respectively. As such,
adding redundant links between modules or additional mon-
itoring/overlay networks is typically not feasible. Alternative
approaches that rather aim to mitigate the adverse effects of
congestion have been proposed for memory networks [10], but
they don’t address any-to-any traffic patterns seen in NUPIM
systems with distributed compute/memory modules.

In this paper, we study the data movement and congestion
within off-chip networks of GPU-based NUPIM systems, and
we propose a scalable way to manage congestion and alleviate
its adverse effects with minimum additional resources. NUPIM
systems exhibit any-to-any inter-module traffic patterns in
their off-chip networks, where individual links can become
oversubscribed and saturated. They are therefore susceptible
to a form of tree saturation [5], [11] in which the branches of
multiple overlayed saturated trees are comprised of individu-
ally congested links, where the effect of congestion increases
along some paths more than others due to back pressure.
Our proposed scheme dynamically predicts congested paths
within the network. Once a critically congested path has
been identified, flits traversing along it are prioritized over
other flits to improve performance. We also use critical path
information to reduce interconnect energy by aggressively
and adaptively varying width of non-critical links without
significantly impacting performance.



Fig. 2: Traditional centralized system architecture.

Fig. 3: NUPIM system architecture.

Furthermore, we exploit that not all memory response
traffic equally contributes to performance. In GPUs, memory
divergent data responses are less likely to contribute to warp
progress [12]. We mark flits to indicate if they originate from
divergent memory instructions, where flits from non-divergent
instructions are prioritized to maximize performance benefits.

The rest of the paper is organized as follows: We ana-
lyze congestion and its impact in Section II. Our proposed
congestion management scheme is described in Section III.
Section IV presents our experimental setup followed by results
in Section V. Related work is discussed in Section VI. The
paper concludes with a summary in Section VII.

II. MOTIVATION

In the following, we compare the performance and data
movement bottlenecks of NUPIM and traditional centralized
systems to evaluate the penalty for distributing compute. We
further study network congestion and memory divergence
behavior to identify opportunities for mitigating congestion
effects. We evaluate systems with a total of 64 SMs and
16 memory stacks, where 8 memory stacks are placed in a
large central module while the rest are externally connected
in a tree topology. For a traditional centralized configuration,
all compute is placed in the central module. By contrast,
NUPIM configuration consists of modules with equal compute
to memory ratios with the central module having 32 SMs and
other modules having 4 each. Details about our experimental
setup are provided in Section IV.

Fig. 4 shows the performance and off-chip data movement
for both configurations normalized to that of centralized con-
figuration. Benchmarks are categorized as high or low sharing
based on their data-thread locality. Applications in which
threadblocks share pages and therefore cannot be cleanly
partitioned are categorized as high-sharing. By contrast, appli-
cations with mostly private pages are labelled as low-sharing
(see Section IV-B). We use round-robin page mapping for
the former and locality-based data mapping for the latter. We
notice that, in addition to their inherent scalability, NUPIM
systems can, in some cases significantly, reduce inter-module
data movement and improve performance for low-sharing
benchmarks. By contrast, a NUPIM system loses up to 20%
performance and endures up to 88% higher off-chip traffic for
high-sharing benchmarks. This performance degradation is due
to the high off-chip traffic and resulting network congestion.

Fig. 4: IPC vs off-chip traffic.

(a) BFS (b) CFD
Fig. 5: Interconnect congestion stalls.

In order to scale performance and energy-efficiency with
system size, the penalty for distributing compute has to be
reduced. NUPIM configurations have inherent advantages for
low-sharing benchmarks. However, data cannot be cleanly
partitioned for high-sharing applications. To design a general-
purpose architecture that can support all classes of applications
with highest performance, there is a need to mitigate the
adverse effects of off-chip data traffic and congestion under
given resource/energy constraints in NUPIM systems. We
observe that data traversing the links of NUPIM networks can
have varying impact on performance. We aim to exploit such
behavior to mitigate the performance impact of off-chip data
traffic and congestion.

We first study congestion behavior to demonstrate the
varying importance of different traffic paths within NUPIM
networks. Congestion heatmaps for BFS and CFD benchmarks
(representative high-sharing benchmarks, see Section IV) ex-
ecuted on a NUPIM system with central module M0 and
external modules M1-M8 are shown in Fig. 5. The colors of
the links indicate the number of stalls experienced by flits
traversing along the specific link due to a buffer being full.
They are normalized against the average congestion stalls
experienced by a single connection to an in-package stack. We
can make the following observations: 1) Individual congested
off-chip links can form a large critically congested path. E.g.,
in BFS (Fig.5a), M6 →M2 →M0 →M3 is a critical path;
2) Due to back-pressure, a small number of stalls at the end
of a critical path snowballs into a large number of stalls at
the source of the path as evident from the increasing intensity
of congestion from M0 to M5 along the critical path in CFD
(Fig. 5b); and 3) The critical path can vary across applications
as seen from the differences between Fig. 5a and 5b.

These observations show that distributed NUPIM systems
are vulnerable to a form of tree saturation [5], [11]. While
tree saturation can occur from both end-point and network
congestion [13], we find network-congestion due to over-



Fig. 6: Distribution of divergent memory accesses.

subscription of links around the central module to be the
dominant cause. In our applications, traffic was roughly equal
across all modules (the average coefficient of variation in the
number of flits across different nodes is < 7%) and no end-
point hot-spots were observed. This is expected because of
interleaved data-mapping [14] and similarity in thread memory
accesses. Even if a different mapping results in hot-spots,
network congestion is likely to remain the main cause for
saturation due to limitations on the number of off-chip links
in NUPIM systems. All in all, links comprising the critical
paths have larger impact on performance than other links.
As such, prioritizing traffic on critical over non-critical paths
allow reducing congestion impact and improving performance.

Similar to path-based differences in importance, the per-
formance impact of data packets traversing a link can also
depend on the nature of the request. In GPUs, a warp load
instruction can result in up to 32 memory accesses due to
memory divergence [12], where all resulting memory requests
must be serviced for the warp instruction to complete. Fig. 6
shows the distribution of divergent memory accesses resulting
from individual warp instructions for different benchmarks. On
average, 46% of warp load instructions result in more than one
memory access. Memory divergence is more prevalent in high-
sharing applications due to their irregular access patterns. For
example, BFS and CFD have 15% and 23% of their memory
instructions resulting in 4 or more accesses, respectively.

In case of multiple accesses, there can be a significant delay
between divergent responses. Fig. 7 shows the distribution of
delay between the first and last response (excluding L1 hits)
received per memory instruction for different benchmarks. A
delay of 0 indicates that only 1 request was serviced at L2 or
memory. It can be seen that up to 27% of memory responses
have more than 20 cycles delay between first and last response.
This indicates that even if 1 divergent response returns, there
can be a significant delay before the instruction completes.
Such delays are only expected to exacerbate as NUPIM
system size scales. As such, servicing requests with lower
memory divergence has higher probability to contribute to
warp progress. Prioritizing responses for load instructions with
lower divergence reduces more memory stalls and increases
the chance of making forward progress.

III. OFF-CHIP CONGESTION MANAGEMENT

We propose a low-overhead and scalable way to detect
critically congested paths and divergent data responses to
intelligently manage congestion within a NUPIM network

Fig. 7: Delay between first and last divergent response.

while minimizing cost. We detect critical paths using a novel
lightweight technique to link congested ports across switches.
On detecting the critical paths, we prioritize the packets
traversing along the critical path during the virtual channel
(VC) and switch allocation stages of the router pipeline to
improve performance. Additionally, the flits originating from
non-divergent instructions are identified and prioritized over
other flits traversing along the same link. Finally, knowledge
about congested paths is further used to save energy by
aggressively varying link width [15] for non-critical links
while not affecting performance significantly.
A. Critical Path Detection

As discussed earlier, a critical path is a combination of
individual congested links. Detecting a critical path requires
identifying: 1) the congested output ports in every switch, and
2) the input ports that are linked to congested ports of adjacent
switches. This information should be gathered in a scalable
manner to ensure feasibility across networks of varying sizes.
Congestion in output ports can be tracked by having stall
counters for every output port [16]. Every switch has counters
to track the number of stalls due to congestion (i.e., output
buffer full). These counters get reset at regular intervals of
time (epoch) and the counter values are used to determine the
congestion for each port in a specific epoch.

Traditional solutions to reduce congestion in on-chip net-
works approaches employ separate monitoring networks to
communicate stall counters to adjacent switches and thus
achieve regional congestion awareness [16]. We propose a
novel approach to track globally congested paths without the
need for additional communication overhead. Our approach
uses tracker bits attached to regular flits to identify the input
ports that are linked to congested ports of adjacent switches
and thus establish congested paths.

Our approach requires 1 additional bit for bookkeeping in
the header of every flit. Since the packet size is not usually a
multiple of the flit size, 1 extra bit does not usually result in
additional flits per packet. Tracker flits are regular flits whose
tracker flag is set. Any regular flit can act as a tracker flit
when its tracker flag is set. At the beginning of each epoch, a
tracker flit is sent along the most congested downstream port
in every switch. This is done by setting the tracker flag of
a flit that is about to traverse the selected link. The flag is
cleared once it reaches the subsequent router. When a tracker
flit is sent along an output port, the port is marked as critical
by setting the bit corresponding to the port in a critical port
bitmask that is introduced in every switch. Every switch also



Fig. 8: Critical path detection.

sends a tracker flit along its most congested downstream port
on receiving a tracker flit. Hence, a chain of tracker flits are
sent along the sequence of congested links tracking the critical
path. Every time a tracker flit is triggered due to an incoming
tracker flit, the input port from where the incoming tracker
was received and the output port along which the outgoing
tracker was sent are recorded in a list of critical input-output
port pairs per switch. The critical port pair list is a list of
input-output port tuples that are part of a critical path, where
the information about the entire critical path is not available in
any single switch but is distributed among the routers allowing
the technique to scale with network size.

To prevent the same output port from being repeatedly
selected in the same epoch, every switch maintains a bit mask
of output ports along which tracker flits have been previously
sent. When a new incoming tracker is received, an outgoing
tracker flit is sent along the most congested downstream port
that has not yet been tracked. To limit the number of ports
being tracked, ports should have at least k% of the stalls of the
port with highest congestion to be considered as a candidate,
where k is a tunable parameter.

Fig.8 shows our critical path detection scheme in action.
Consider a NUPIM system in a tree topology, specifically
focusing on S0 and S2 switches. For the purpose of this
explanation, flits from S5 and S6 to S2 are not considered.
Initially, the critical port and tracker sent bitmasks for every
port are cleared. Furthermore, the critical port pair list is empty
and the congestion stalls incurred by every output port in
the previous epoch are assumed to be available. The tracking
threshold is assumed to be k = 50%. At the beginning of an
epoch (step 1 in the figure), modules M2 and M0 dispatch
tracker flits along their most congested output ports, which
are assumed to be along S0 and S2. The corresponding critical
bits for the ports are set in each switch. As these tracker flits
reach the destination switches, they in turn trigger additional
tracker flits in those switches (step 2 in Fig. 8). In switch S0, a
tracker flit is sent along S1 since it is the next most congested
downstream port that has not been tracked and has congestion
above the threshold. The critical bit for the corresponding port
is set and the input-output port tuple is inserted into the critical
port pair list. In switch S2, no additional tracker flit is sent
since the congestion along all downstream ports is lower than
50% of the highest congested port.

At the end of each epoch, the tracker sent bitmask and stall
counters are cleared. The entries in the critical port pair list and
critical port bitmask need to be cleared to prevent saturation,
but such that the entries don’t fluctuate in and out of the list
across epochs. This is achieved by adding a h-bit hysteresis
counter. List and bitmask entries are cleared only if they are
not selected for 2h consecutive epochs. A 6-bit hysteresis
counter was determined suitable for our design empirically
and is used in all our evaluations.

B. Path-based Prioritization

At the end of each epoch, every switch knows the the input-
output port tuples that are part of the critically congested
path(s) and the relative extent of congestion along each.
The switch then uses this information to prioritize the flits
traversing along the identified critical input-output port pairs
during the VC and switch allocation stages. This in turn
reduces congestion along the critical path at the cost of data
moved along other paths. The manner in which the most
congested ports in each switch are identified ensures that the
input-output port tuples are inserted into the critical port pair
list in decreasing order of congestion. In the proposed scheme,
packets are prioritized according to the order of their input-
output port pairs in the list. Therefore, packets traveling along
highly congested paths are selected over other congested paths.
Since a strictly priority-based scheme is used, fairness and
starvation can be potential issues. However, we did not observe
any deadlocks in the applications evaluated. We experimented
with fairness-enforcing schemes that select non-critical packets
with some probability, but they did not perform better.

C. Divergence-based Prioritization

As mentioned earlier, not all types of data request traffic
contribute equally to performance. In our scheme, we prior-
itize requests/responses with no divergence (i.e. instructions
resulting in 1 coalesced memory access) over others traversing
along the same link as they have higher chance of contributing
to forward warp progress. Other prioritization heuristics are
possible. For example, prioritizing the slowest among the
divergent requests. However, identifying such requests is not
simple and individual memory instruction latency does not
significantly impact GPU performance as long as some threads
can make progress and hide it. Identifying non-divergent
memory requests is simpler and prioritizing them ensures that
their corresponding warp will make progress. Note that our
prioritization does not reduce memory divergence.

The coalescer within each SM generates memory requests
for every memory instruction. In our scheme, the coalescer
also sets a bit to indicate if the request is divergent or not
as part of its header information. A 4-entry priority buffer is
added per input port, which is exclusively used by flits of non-
divergent requests/responses. The priority buffer acts as small
virtual channel with higher priority that allows non-divergent
responses to bypass other traffic traversing along the same link.
We reduce the size of normal VCs by the size of the priority
buffer to keep the total buffer overhead constant. During VC



allocation, non-divergent flits are allocated entries within the
priority buffer if space is available. Otherwise, normal VCs are
used similar to other traffic. When a port is selected during
VC or switch allocation, the flits within the priority buffer
are selected over those from normal VCs. Since the priority-
buffer is only used by non-divergent requests/responses, it is
vulnerable to under-utilization. However, since the applications
evaluated have significant proportion of non-divergent traffic
(54%), under-utilization of the priority buffer is not a signifi-
cant problem. For a general case, it is possible to have designs
where the priority buffer acts as normal VC when not in use,
as previously done in [17].

D. Link Width Management

Knowledge about critical paths can be further exploited for
dynamic and adaptive optimization of energy consumption.
In order to save energy, the width of interconnect links can
be varied dynamically [15], where their bandwidth and energy
changes proportionally. We adopt this approach to reduce links
down to 1/2, 1/4 or as low as 1/8 of their original width every
epoch. The penalty for varying the width is set as 1µs [15],
epoch length is set to trade off responsiveness versus per-epoch
link management overhead. We selected a length of 40µs (40x
larger than the link adjustment time) to balance and amortize
the overhead. Link width is determined differently for critical
and non-critical links. For critical links, the width is adjusted
in accordance with the intensity of data traffic. By contrast,
for non-critical links, the width is adjusted aggressively to save
energy and less importance is given to traffic intensity.

The link width for critical links is determined based on the
flit rate and downstream traffic intensity. We obtain the flit rate
by counting the number of credits received at each output port
in an epoch. In addition, the congestion stalls for each output
port reflect the traffic intensity downstream along the port. The
traffic intensity is compared against the flit rate for each output
port and the link width (and in turn the bandwidth and energy)
is set to its maximum if the former is higher than the latter.
Otherwise, the width is set such that the resulting bandwidth is
a tier higher than the minimum required to support the data rate
downstream. More specifically, let FRp and Tp be the flit rate
and traffic intensity (number of congestion stalls) measured
along port p, and let W and BW be default/maximum link
width and the full bandwidth possible along any link. The link
width Wp along a critical port p is then determined as:

Wp =


W, Tp > FRp

W, FRp > BW/4
W/2, FRp > BW/8
W/4, otherwise

For non-critical links, the width is only determined by the
downstream traffic intensity. If the traffic intensity along a port
is more than a preset threshold w times that of the port with
the highest stalls, then the width is raised to the next higher
tier. Otherwise, the link width is reduced to the next lower tier
until it is set to the lowest width. The threshold w is set to 0.9
for our evaluations. Let the width of Wp along a non-critical
port p be initially set to its default/maximum W . Furthermore,

Fig. 9: Simulation setup.

let Tmax = maxp Tp be the highest stalls incurred along any
output port in a specific epoch. The link width is adjusted as:

Wp =
{

min(2Wp,W ), Tp > 0.9Tmax

max(Wp/2,W/8), otherwise

IV. EXPERIMENTAL SETUP

We evaluate the impact of our optimizations on performance
and energy for a distributed NUPIM system architecture over
a range of benchmarks. We first provide details of system
configurations and our experimental setup followed by a
discussion of the benchmarks evaluated.

A. System configurations

We use GPGPUSim v3.2.2 [18] coupled with
GPUWattch [19] for modeling of SM power consumption
and DRAMPower [20] to model the memory and I/O
power. The simulator has been modified to replicate our
system configurations and congestion management scheme.
We configure GPGPUSim to model 3D-stacked memory
according to Hybrid Memory Cube (HMC) specifications [21]
since HMC allows integration of units into a network. The
capacity of each stack is the same and total memory is set
to be equal to the memory footprint of each application
evaluated. We assume that up to 4 GTX480 SMs fit within
the logic layer of external memory stacks. Considering the
area available in HMC logic layers [22] and the size of
vault controllers [23] and the area for GTX480 SMs [24]. 4
SMs can comfortably fit within the logic layer [25] without
violating thermal and power considerations [7]. While many
NUPIM configurations are possible, we analyze a NUPIM
system in which multiple modules having homogeneous
memory-to-compute ratios are interconnected together. This
configuration can easily be scaled with growing compute
and memory requirements. Our simulation setup is shown
in Fig. 9, and the exact simulator parameters for the
configurations evaluated are summarized in Table I.

B. Benchmarks

We use a range of benchmarks from Rodinia [28] and
Lulesh [29] benchmark suites to evaluate our scheme. The
complete list of benchmarks is shown in Table II. Benchmarks
are simulated with specified inputs to completion or for 1
billion instructions, whichever occurred first.

Since congestion in a NUPIM network is greatly dependent
on application behavior and partitioning of data and compute,
it is necessary to understand application behavior and data
mapping used for evaluating such systems. As mentioned



TABLE I: Simulation parameters.
Architectures

System Total SMs 64
parameters Total DRAM stacks Centrl:8, Ext.:8

Centrl pkg SMs 32
SMs/Ext. stack 4

SM Configuration
Core configuration 1.4Ghz, GTO warp scheduler [18]
Private L1 cache 32kB, 4-way, write through [1]
Shared L2 cache 1MB, 16-way, write through [1]

Interconnect
Frequency 2.5Ghz
Topology Ext: Tree, Centrl pkg: Fully connected

Switch islip allocation, credit-based flow
control [18], Min routing [26]

Virtual channels(VC) 2 VC per port
Bandwidth

In-pkg bandwidth 160 GB/s per stack [1]
Off-chip bandwidth 80 GB/s [1]

Memory Stack
Memory stack
configuration

16 memory stacks, 16 vaults/stack,
16 banks/vault, 64 TSVs/vault [1]

Scheduling policy FR-FCFS
DRAM Timing DDR3 [27]

TABLE II: Benchmarks.
Benchmark Input

BFS [28] 1MW
CFD [28] 0.2M
Srad [28] 100, 0.5, 502, 458

Lulesh [29] Default
Streamcluster (SC) [28] Default

Backprop (BP) [28] 256k
Btree [28] mil.tx
NN [28] list5120k 512.txt

Pathfinder (PF) [28] 100000,100,20
Hotspot3D (H3D) [28] 512, 8, 100, power512x8, temp512x8

earlier, applications can vary from having negligible to sig-
nificant inter-thread sharing. To understand and differentiate
application memory access patterns, we define the average
page sharing of an application as PSavg = 1

N

∑N
k=1 Tbk,

where Tbk is the number of unique threadblocks accessing
page k and N is the total pages in the application’s working
set. Thus, PSavg indicates the average number of unique
threadblocks sharing a page. A PSavg value of 1 indicates
that no two threadblocks access same page. For applications
with multiple kernels, the PSavg of each kernel is weighted
and averaged based on the dynamic memory instruction count.

In some applications, a small set of pages is shared by a
large number of threadblocks while the vast majority of pages
are shared among a few. This results in a small PSavg value
despite having page sharing. Therefore, we also define the
maximum page sharing PSmax = maxk Tbk as the maximum
number of threadblocks any page is shared with.
PSavg and PSmax for different benchmarks are plotted

in Fig.10. We distinguish between low-sharing applications
that can be cleanly partitioned and high-sharing applications
that share pages among threadblocks throughout this paper.
In reality, applications usually don’t fall into a single category
completely. We therefore categorize applications based on their
PSavg and PSmax values. NN, Hotspot3D, and Pathfinder
have small PSavg and PSmax and are categorized as low-
sharing while others are considered as high-sharing.

Fig. 10: Average (PSavg) vs. maximum (PSmax) page sharing
of benchmark applications.

(a) Hotspot3D (b) BFS (Z6kernel)
Fig. 11: Benchmark memory access patterns.

Previous work [30] suggested that a locality-based data
mapping suits regular benchmarks with low page sharing.
Hence, while evaluating low-sharing benchmarks, we map data
based on the locality policy presented in [30]. We use pre-
collected memory traces to statically place the pages into ap-
propriate memory stacks. For irregular benchmarks with high
page sharing, other work has demonstrated that interleaving
data provides best performance [14]. For such high-sharing
benchmarks, we thus interleave data across modules in chunks
of 256 Bytes [31] for our evaluations.

V. RESULTS

We apply our congestion management scheme on a ho-
mogeneous NUPIM configuration as described in Section IV
to evaluate its effectiveness in alleviating the adverse effects
of off-chip congestion. We compare a baseline configuration
without improvements (Base) to a configuration that performs
only critical path prioritization (Crit), a configuration that
performs both critical path and non-divergent traffic prior-
itization (Crit+Tr) and a setup that additionally performs
dynamic link width management (Crit+Tr+W). We compare
our schemes against distance-based (Dist) arbitration from [10]
and a baseline NUPIM configuration with double the number
of virtual channels and buffers (Double). Note that doubling
the virtual channels introduces high area and power overheads
(up to 74%) [32] that would violate NUPIM constraints and
thus reduce the available budget for in-memory compute.

A. Performance Results

Fig. 12 shows the IPC of different benchmarks across
different configurations normalized to Base. For high-sharing
benchmarks, we can notice that Dist only achieves marginal
performance improvement (up to 3%). This is because it does
not account for variations in congestion between paths of the



Fig. 12: Performance across different NUPIM congestion management configurations.

Fig. 13: Energy breakdown.

same length and treats all data as equally important. Crit
achieves 5% average (and up to 15%) improvement, while
Crit+Tr achieves 16% average (and up to 33%) improvement
over baseline. Crit+Tr outperforms Dist by 10% on average
(and up to 29%) and exceeds the performance obtained by
Double, indicating that the proposed congestion management
scheme is effective in eliminating the adverse impact of off-
chip traffic congestion while adding minimum overhead. Our
link width management scheme (Crit+Tr+W) achieves lower
benefits (6% on average and up to 30%) due to reduced link
widths, but saves I/O and system energy as will be shown later.
The extent of improvement observed across benchmarks varies
depending on the impact of congestion on their performance.
For example, congestion is more severe for CFD compared
to Backprop and CFD thus benefits more from our proposed
optimizations. The Srad benchmark experiences a drop in
performance since it has multiple kernels that are smaller than
the epoch length, where our scheme responds slowly.

Low-sharing benchmarks are not affected by our proposed
scheme as they have low congestion. This is because data can
be partitioned cleanly among modules for these benchmarks,
thereby avoiding the congestion problem in the first place.

B. Energy Results

Fig. 13 shows the normalized system energy consumed by
baseline, Crit+Tr and Crit+Tr+W configurations. We break
system energy down into GPU, memory I/O, and and other
memory components. It can be noted that memory energy is
dominated by its I/O component. Similar observations have
been made in [8]. Our approach for link width management
(Crit+Tr+W) reduces I/O energy by 78% on average and sys-
tem energy by 8% (and up to 29%). For Streamcluster, Crit+Tr
consumes less energy because of its higher performance and
smaller execution time. Energy consumed increases for CFD
because of increased utilization of GPU resources.

VI. RELATED WORK

While memory networks [8], [10] and processing-in-
memory [1], [33] have been studied and evaluated extensively
in isolation, to the best of our knowledge no prior work has
evaluated combined networks of non-uniform processing-in-
memory (NUPIM) modules. For tree saturation due to network
congestion, adaptive routing has been proposed and widely
studied [13]. Alternatively, to mitigate congestion impact,
traffic prioritization and acceleration have been proposed. In
the following, we discuss related work in these areas.

Numerous works on adaptive routing [5], [16], [34] measure
interconnect congestion and dynamically configure the routing
algorithm accordingly. But such approaches assume topologies
that provide multiple, redundant routes between nodes. This
may not be feasible in a NUPIM system due to higher I/O
energy required for any additional/redundant off-chip links [8].
Indirect adaptive routing techniques [35] have been proposed
for large interconnect networks without the need for additional
overlay networks. We use a similar Piggyback (PB) approach
to communicate 1-bit information across routers over packets,
but our approach carries information needed for detecting
congested paths and not identifying alternate routes. As such,
we also send information (tracker bits) only along congested
links and do not broadcast it across all routers. Furthermore,
our approach only stores state about input-output port pairs
and does not need to track the state of other routers.

Recently, researchers have analyzed memory networks and
have shown the importance of interconnect networks on perfor-
mance and energy. The work in [10] proposed a distance-based
arbitration scheme to improve memory network performance.
However, as we have seen in Fig. 5, equidistant modules within
NUPIM systems can have varying congestion along the route
and hence traffic across them should be prioritized accordingly.
[8] explores different power management techniques for mem-
ory networks such as DVFS and variable width links (VWL)
under network-unaware and -aware scenarios. Their approach
relies on the assumption that upstream links have higher traffic
than immediate downstream links. This does not apply for
distributed NUPIM architectures as each module could have
both memory and compute.

Some previous approaches have proposed accelerating pack-
ets but mostly rely on network/interconnect characteristics or
data packet type [36] to select packets to be prioritized. [37] al-
lows packets traversing a certain number of hops in a particular
direction to skip the internal processing pipeline of and thus
creating an effect of bypassing intermediate routers. Others



have suggested skipping switch allocation stages based on
temporal locality of crossbar connections [38]. Our approach
considers the behavior of both the network and the core issuing
requests while prioritizing traffic.

Memory divergence has been widely studied and many
approaches have been proposed using warp scheduling [39],
cache management [12], [40] and memory scheduling [41] to
solve divergence issues. In contrast to these approaches, we
do not target reducing memory divergence itself, but exploit
memory divergence information to accelerate packets with the
highest performance impact.

VII. SUMMARY AND CONCLUSIONS

Current technology trends have opened up a new class of
NUPIM system architectures. Although many NUPIM system
configurations are possible, configurations with distributed
memory and compute are best suited for ensuring system scal-
ability. At the same time, congestion can have adverse impact
on performance scaling in such systems. Any-to-any inter-
module traffic (and congestion) patterns and stronger power
and thermal constraints make congestion in such systems dif-
ferent from traditional on-chip and memory networks. There-
fore, existing redundancy/routing based or up/down stream
specific solutions cannot be applied.

We show that NUPIM systems are susceptible to tree
saturation due to network congestion resulting in critical paths
comprising of several individual links. We exploit the varying
congestion across paths as well as the differing impact of
data packets on performance due to memory divergence in
NUPIM networks. We propose a novel, lightweight scheme
that exploit such variations to mitigate congestion effects while
reducing energy without incurring the overhead of additional
links. Our scheme achieves on average 16% (and up to 33%)
improvement over baseline and 10% (and up to 29%) im-
provement over other congestion mitigation schemes for high-
sharing benchmarks. Our scheme with link width management
can save 78% of I/O energy on average and up to 29% system
energy while achieving up to 30% improvement.
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