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Abstract—With the end of Dennard scaling, energy efficiency
has become an important metric driving future processor ar-
chitectures, particularly in the fields of mobile and embedded
devices. To support rapid, power-aware micro-architectural de-
sign space exploration, it is important to accurately quantify the
power consumption of the processors early in the design flow and
at a high level of abstraction. Existing CPU power models rely
on either generic analytical power models or simple regression-
based techniques that suffer from large inaccuracies. More
recently, machine learning techniques have been proposed to
build accurate power models. However, existing approaches still
require slow RTL simulations or have only been demonstrated
for fixed-function accelerators at higher levels.

In this work, we present a machine learning-based approach
for power modeling of programmable CPUs at the micro-
architecture level. Our models provide cycle-accurate and hi-
erarchical power estimates down to sub-block granularity. Using
only high-level information that can be obtained from micro-
architecture simulations, we extract representative features and
develop low-complexity learning formulations that require a small
number of gate-level simulations for training. Results show that
our hierarchically composed model predicts cycle-by-cycle power
consumption of RISC-V processor core within 2.2% of a gate-
level power estimation on average.

Index Terms—Machine learning, power modeling, micro-
architecture simulation

I. INTRODUCTION

With the breakdown of Dennard scaling, power consump-
tion, especially that of processors, is a first-order concern in all
modern chips. Accurately quantifying the power consumption
through power analysis in early design stages is crucial for
power-aware hardware and processor design.

Accurate power estimation relies on gate-level analysis,
which comes at the cost of long simulation times and avail-
able only in very late phases of the design flow. At the
register-transfer level (RTL), industry tools such as Power-
Artist and PowerPro can provide accurate aggregate power
estimates sufficient to highlight coarse-grain RT-level power
saving opportunities. Regression-based approaches [1], [2], [3]
support building power models at a finer granularity, but at
the expense of decreased accuracy. More recently, advanced
machine learning (ML) approaches using deep neural networks
(DNNs) have demonstrated the capability for highly accurate
RTL power estimation [10]. However, deep learning requires
a large amount of training data to be obtained from gate-level
reference simulations. Furthermore, the need for slow RTL
simulations limits the usefulness and extent of design space
exploration that is possible with any RTL power estimation.

This work was supported by Samsung GRO and NSF grant CCF-1763848.

978-1-7281-5758-0/19/$31.00 ©2019 IEEE

Early design space exploration of CPUs is most commonly
performed at an abstract micro-architecture level. Tradition-
ally, spreadsheet-based or generic analytical power models [4]
are used to provide power estimates at this level. However,
such models have been shown to be highly inaccurate [5].
Regression methods have also been applied instead to model
power at higher instruction and micro-architecture levels [6],
[9], but they often similarly suffer from larger inaccuracies due
to the challenge of modeling the non-linear power character-
istics of the underlying circuits accurately at such high levels
of abstraction. Advances in machine learning have made it
possible to accurately capture such complex relationships. At
the same time, training and inference costs should not negate
the speed benefits of working at a higher abstraction level.
This rules out expensive deep learning approaches. Instead,
dedicated learning formulations that can achieve high accuracy
with low complexity need to be developed. Such approaches
have recently been provided for fixed-function accelerators [7],
but they have not yet been applied to model programmable
processors above RTL.

In this work, we present a micro-architecture level ma-
chine learning-based power model of programmable CPUs.
Using high-level activity information available from micro-
architecture simulations, we extract features and develop learn-
ing formulations that can capture correlations with minimal
training overhead and complexity. Our models are trained on
gate-level simulations of small instruction sequences. Trained
models can then provide highly accurate cycle-by-cycle power
estimates in a hierarchical fashion at the complete core level
and down to different CPU sub-blocks. The specific contribu-
tions of this work are:

o We identify key representative features for modeling of
common CPU blocks with high predictability and low
complexity.

« We explore advanced non-linear regressors for power mod-
eling of different micro-architectural blocks in a CPU with
low training overhead and high accuracy.

« We propose a hierarchical model composition that accounts
for glue logic in super-block power modeling.

« We apply our approach to power modeling of a RISC-V
core. Results show that a decision tree based model can
predict cycle-accurate power with less than 2.2% mean
absolute error (MAE).

The rest of this paper is organized as follows: Section II
first highlights related work and Section III then gives an
overview of our power modeling flow. Section IV provides
details of our CPU power modeling approach. Experimental
results are presented in Section V. Finally, Section VI provides
a summary and concluding remarks.
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Fig. 1: Power modeling flow.

II. RELATED WORK

Traditional approaches to micro-architecture level power
(and performance) modeling can be classified broadly into an-
alytical and regression based models. Analytical models such
as [4] map sub-blocks to commonly used circuit structures
and underlying physical technology models. Such approaches
are generic and do not map well to one specific processor
implementation. As such, they suffer from large inaccura-
cies [8]. It is possible to calibrate analytical models against
low-level measurements [5], but the parameter fitting will
limit interpretability at the sub-block level. Regression-based
approaches instead rely on simulating an implementation,
sampling and fitting generic regression equations for modeling
CPU power at the pipeline or instruction level [6]. Other works
[9] combine analytical approaches with regression equations
formulated using pre-characterized power data from existing
designs. However, all of these simple models still suffer from
inaccuracies in modeling cycle-by-cycle power of a processor
at fine sub-block granularity.

Several ML-based approaches for power modeling have
recently been explored. PRIMAL [10] uses a convolutional
neural network (CNN) for modeling RTL power trained from
gate-level simulations using the combined activity of all regis-
ters in a design. Such a CNN-based model is very accurate but
requires a large amount of training samples and training time
compared to simple regression models. Traditional regression-
based RTL models [1], [2], [3]. [3] propose various approaches
for selecting critical signals and registers that are strongly
correlated with power, but they are tied to simple, often linear
models with limited accuracy. In all the above cases, proposed
models rely on details available only at RTL or lower levels
of abstraction during late design stages. Recent work [7] has
shown the possibility of building ML-based power models
at a higher, C++/ SystemC level of abstraction. The work
proposes several feature selection and model decomposition
techniques to enable highly accurate prediction using low-
complexity non-linear regressors. However, it has only been
demonstrated for fixed-function accelerator IPs. To the best of
our knowledge, we are the first to apply a similar approach to
programmable CPUs by adopting ML-based regression meth-
ods at the CPU sub-block level and hierarchically composing
such models.

III. METHODOLOGY

Fig 1 shows an overview of our power modeling flow.
The primary inputs are the gate level netlist and a cycle-
accurate model of a processor. In this paper, we generate a
cycle-accurate C++ model from the RTL description of the
processor using the Verilator tool [12]. However, our approach
only requires high-level activity information, and the Verilator
model can be easily replaced with a high-level cycle-accurate,
micro-architecture simulation model.

During the training phase, simulations are run at both gate
and cycle-accurate levels using the same micro-benchmarks.
Cycle-by-cycle per block reference power traces are generated
using industry-standard gate-level simulations, and activity
traces are extracted from the cycle-accurate model simulation.
In the power model synthesis step, we extract features for the
different functional blocks and apply functionality dependent
feature selection and decomposition techniques to make the
power model more accurate. Using extracted features and
reference power values, a ML regressor is trained to learn the
correlation between the decomposed features per block and the
power consumed by that block across cycles. These learned
models are then stored to be used during the prediction phase.

During the prediction phase, the full workload to analyze is
simulated in the cycle-accurate model. Feature extraction and
decomposition is applied to the activity information extracted
from the simulation and previously trained models are used to
predict cycle-by-cycle power per block hierarchically up to the
full core level. Hierarchically decomposed power models down
to the sub-block level thereby enable micro-architecture level
exploration as pre-trained blocks can be arranged in different
compositions and only blocks that are modified need to be
re-trained or analytically scaled.

IV. POWER MODEL

Effectiveness of supervised learning approaches depends on
engineering features that are highly correlated with the values
to be predicted as well as on selection of appropriate learning
models that can capture underlying correlations with low over-
head. Power consumption of a circuit specifically is sensitive to
certain key contributor signals [1], [2]. ML-based hierarchical
power modeling of CPUs thus involves the following steps:
(1) identification of key contributing activity information, (ii)
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Fig. 2: ALU block with signals selected for prediction.

mapping of key contributing signals to features and feature
engineering, (iii) model selection for each block, and (iv)
super-block power model composition. This section covers the
functionality dependent feature and model selection techniques
for the three common categories of blocks found in the CPU,
as well the handling of super-blocks for power modeling.
We limit feature selection to activity data that can be
extracted from cycle-accurate performance models. We eval-
uate six linear as well as non-linear ML regressors to model
the power consumption of different blocks in the CPU: (i)
least-squares linear regression, (LR) (ii) linear regression with
I2-norm regularization (LR-R), (iii) linear regression with
L1 prior regularization (LR-L), (iv) a linear model with 12
regularization where the priors over the hyperparameters are
chosen to be gamma distributions (LR-B), (v) a decision tree
based regressor (DT), and (vi) a gradient boosting model of
equivalent complexity with a regression tree fitted on the neg-
ative gradient of the loss function in each stage (GB). Details
about our experimental setup are described in Section V.

A. Data-dominant blocks

Blocks that form the datapath in processors and that per-
form similar operations every cycle are categorized as data-
dominant blocks. Intuitively, the power consumption of these
blocks strongly depends on the activity of the data they
process. Hamming distance (HD) has been widely used as a
feature to concisely capture such data activity. At the same
time, hamming distance of the entire data word has weak
correlation to power. This is because of the difference in
the circuit components that each toggling bit can effectively
activate. For most of the commonly used datapath components,
bits far off spatially (LSBs vs. MSBs) differ significantly,
while those closer together (e.g. bits 0 and 1) show similar
power behavior as a function of toggling activity. Based on this
observation, byte-wise feature decomposition and hamming
computation can provide good accuracy power models for
these blocks, while still retaining simplicity of using hamming
distance of byte groups in place of single bit switching traces
as features.

Figure 2 shows a basic block diagram for the ALU in
the RISC-V core used in our experiments (see Section V for
details). We select the ALU operands and the ALU operating
mode input as the only signals used for prediction and traced
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Fig. 3: ALU feature and model selection.

in the cycle-accurate simulations. Figure 3 summarizes the
mean absolute prediction error (MAE) of using byte-wise
decomposition of features (HD_8) compared to using the
hamming distance of the entire word (HD_32) for data inputs
across different learning models. As results show, a decision
tree based model achieves significantly better accuracy than
other models, where byte-wise feature decomposition helps to
improve accuracy by an additional 0.25%.

We apply a similar byte-wise decomposition of operand
input to other datapath units in the processor’s execution
stage. In case of the multiplier, the multiplier of the RISC-
V core maintains an internal state for sub-word selection
during the 4-cycle MULH (multiplication with upper word
result) operation. This sub-word selection signal is control
input for subsequent cycles of a multi-cycle operation and as
such included as feature.

B. Control blocks

Blocks that activate different portions of the underlying
circuit depending on the current value of different control
signals are categorized as control-dominated blocks. For these
blocks, both the switching of the data as well the current
value of the control input determines the power consumption
at every cycle. Consequently, both the current value as well as
the switching activity (captured as hamming distance) are used
as features for these blocks. For example, instruction decode
and register read pipeline stages in a processor will activate
different portions of the circuit depending on the state of the
different control signal, such as the opcode, the source register
to be read, etc.

Specifically, in case of the instruction decoder, the instruc-
tion word is the data that the decode stage processes in each
cycle. Figure 4 shows the different bitfields in an instruction of
the RISC-V IM instruction set. Rather than a generic byte-wise
decomposition, the instruction word is sliced based on the sub-
field boundaries in the instruction format to allow the model
to learn the relation of each sub-fields with power. Figure 5
shows the error trend across different learning models with
different feature decomposition techniques: HD_32 (hamming
distance of the entire instruction word), HD_16 (hamming
distance of half-words), HD_8 (hamming distance per byte),
HD_BF (hamming distance per bitfield), ST+HD_BF (current
value and hamming distance per bitfield). Again, a decision
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Fig. 5: Instruction decode stage feature and model selection.

tree model provides the best accuracy, where feeding both the
current value and hamming distance per bitfield into the model
provides between 0.9% and 1.2% better accuracy than other
decompositions.

C. Memory blocks

Blocks such as physical register file and different buffers,
whose main functionality is buffering of data with possibly
multiple readers and writers are categorized as memory blocks.
From our analysis, the majority of the sequential component’s
clock power has very low variance at cycle level granularity
and can be very easily modeled as a constant bias term in
regression models. The variance in power consumption in
these blocks is dominated by the switching of muxes and
routing logic driven by the data that is being written/read
from at the current cycle. Based on this rationale, the input
and output ports are selected as signals for the register file.
Hamming distances of the entire word can be used as features
since all the bits traverse similar paths in these blocks.

D. Model composition

To handle super-blocks in hierarchical power modeling,
there are two possible approaches: (i) synthesize a separate
power model for the super-block, or (i) compose a power
model for the super-block from the component power models.
Though the first approach can generate accurate power models
with the right set of features, the second approach has the
advantage of reduced power model synthesis time and better
architectural exploration support. However, the composition
approach suffers from inaccuracies due to the additional glue
logic that is present in the super-block not being modeled.

Such glue logic can be a significant contributor to total
super-block power. From our gate-level analysis, glue logic
at the core level can consume about 5% of the average
total power in a very simple CPU and can contribute up
to 10% on a cycle-by-cycle basis. Our approach to solving
this problem is to treat the glue-logic as a virtual block
and synthesize a power model for it. This is achieved by
subtracting the sum of component powers from the total power
during training to obtain the reference power for the glue logic
block. During prediction, the glue logic block then forms a part
of the composed super-block power model. Super-block power
modeling, model composition with and without glue logic will
be evaluated in Section V.

V. EXPERIMENTS

We have evaluated our proposed approach to model a power
consumption of a RISC-V based processor, the open-source
RISCY core that is part of the PULP platform [11] developed
at ETH Zurich and the University of Bologna. It is a 4-stage,
in-order 32-bit RISC-V processor core. It fully implements
the RV32IMFC ISA and many other PULP-specific extensions
such as post incrementing load-store, MAC operations, and
hardware loops. For this work, the floating-point module was
not instantiated. Figure 6 shows the major blocks in the core.
The hierarchical decomposition for power modeling purposes
is highlighted with dotted boxes. For generality, the physical
memory protection (PMP) unit and control and status register
(CSR) block with all the performance counters instantiated are
also included for power modeling purposes. However, CSR is
not included as part of Execute_stage power model, but as a
separate block.

The open-source RISCY core RTL is synthesized with the
Nangate 45nm PDK using Synopsys Design compiler (L-
2016.03-SP5). Seven benchmarks (aes_cbc, conv2d, fdctfst,
fft, fir, keccak, matmul) from the pulpino test suites are chosen
for training and evaluation of the models. The benchmarks are
compiled using the riscv-gnu-toolchain and object code is used
for the simulations. Synopsys VCS is used for the zero-delay
gate-level simulation of the RISCY core (@25MHz) with the
chosen benchmarks using provided inputs. Activity vectors
at sub-block and per-cycle level are then extracted from the
simulation dumps, and Primetime PX (PTPX) is run in time-
based power mode to generate cycle-by-cycle reference power
numbers. Table I shows the gate counts and power statistics
of the top level blocks when analyzed at the gate level using
PTPX, while running all the seven benchmarks back to back.

The Scikit-learn Python package is used for model synthesis
and prediction.
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A. Cross-validation results

10-fold cross-validation is used for the evaluation of the
feature correlation and accuracy of the models on the cumu-
lative data samples constructed from the 7 benchmarks. This
resampling procedure nullifies the model bias on the data split
and thereby allow us to evaluate the pure feature correlations to
power. We use cycle-by-cycle mean absolute error (MAE) of
values predicted by each model compared to gate-level power
estimation, normalized to mean reference power of the block
as our evaluation metric.

Figure 7 summarizes the 10-fold cross-validations results for
the 6 core-level sub-blocks. We can observe that the decision
tree (DT) based model performs well compared to the linear
models in all cases. As has been demonstrated in earlier
work [7], decision tree-based data representations efficiently

capture the inherent non-linear but typically discrete power
behaviour of design blocks. Gradient boosting based models
are of similar complexity, but perform poorly in most of the
cases; this shows the necessity of more depth to capture the
non-linearity. As listed in Table I, the CSR block has the least
variance in power in the modeled core, which explains the
high accuracy of the power models. On the other hand, low
power but high variance blocks such as the LS_unit show poor
accuracy in modeling with the evaluated models. Accurately
modeling the power consumption of the blocks in this category
needs more study and considered for future work. For this
work, due to its small contribution to the total power of
the core, a model with 16.6% error rate for the LS_unit is
sufficient for gaining high accuracy for the core composed
power model.



TABLE II: Top decision tree features for different blocks.

Block Features (Importances)

Fetch_stage

HD(instr_addr) (0.32), instr_rdata (0.27),instr_addr (0.22), HD(instr_rdata) (0.19)

Decode_stage

HD(instr[24:20]) (0.70), HD(alu_a) (0.14), HD(instr[31:25]) (0.05), instr[11:7] (0.02), instr[24:20] (0.01), HD(instr[11:7]) (0.01),
HD(alu_b) (0.01), instr[19:15] (0.01), instr[6:0] (0.01), instr[31:25] (0.01)

Execute_stage

HD(alu_a[7:0]) (0.51), HD(alu_a[23:16]) (0.19), HD(alu_operator) (0.10), HD(mult_a[7:0]) (0.07), HD(alu_b[23:16]) (0.03),
HD(alu_b[7:0]) (0.02), HD(alu_a[15:8]) (0.02), HD(alu_b[31:24]) (0.02), HD(alu_a[31:24]) (0.02), HD(mult_b[7:0]) (0.01)

LS_unit HD(data_rdata[15:8]) (0.52), HD(b[7:0]) (0.20), HD(b[31:24]) (0.07), HD(data_rdata[7:0]) (0.04), HD(a[7:0]) (0.02), HD(a[15:8])
(0.02), HD(b[15:8]) (0.02), HD(a[23:16]) (0.01), HD(a[31:24]) (0.01), HD(data_wdata[15:8]) (0.01)

CSR HD(csr_wdata) (0.95), HD(pc_if) (0.03), HD(branch_i) (0.01)

Pmp_unit HD(data_addr) (0.95), HD(instr_addr) (0.04)

Core HD(pc_if) (0.69), HD(data_addr) (0.16), HD(instr_rdata[31:25]) (0.04), HD(csr_wdata) (0.02), instr_rdata (0.01), HD(alu_operator)

(0.01), HD(alu_a) (0.01), instr_addr (0.01), HD(data_rdata[7:0]) (0.004), HD(instr_addr) (0.004)

TABLE III: Predicted power statistics of decision tree (DT) based power model.

Block Avg. Power | Max power | Min Power MAE Max error | Avg. error
Fetch_stage 0.29mW 0.42mW 0.11mW 5.38% 66.0% 0.26%
Decode_stage 0.49mW 1.0ImW 0.35mW 3.43% 58.0% 0.14%
Regfile 0.26mW 0.40mW 0.22mW 4.44% 64.0% 0.08%
Execute_stage 0.2ImW 0.58mW 0.17mW 1.84% 90.9% 0.02%
ALU 0.11mW 0.35mW 0.07mW 4.28% 147% 0.10%
Multiplier 0.09mW 0.49mW 0.09mW 0.30% 235% 0.09%
LS_unit 0.03mW 0.13mW 0.02mW 16.65% 210% 0.34%
CSR 0.25mW 0.31mW 0.18mW 1.17% 16.9% 0.01%
Pmp_unit 0.16mW 0.54mW 0.12mW 4.15% 114% 0.01%
Core (standalone) 1.48mW 2.63mW 0.99mW 1.07% 40.7% 0.04%
Core (composed) 1.48mW 2.63mW 0.99mW 3.37% 34.7% 2.83%
Core (w/ glue logic) 1.48mW 2.63mW 0.99mW 2.15% 34.8% 0.006%
B. Learning rate, feature ranking and accuracy
. . . . 351
Figure 8 shows the training curve and learning rate of
different blocks for the best fold. The main learning overhead 37
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HD(x) denotes that the hamming distance of x. This ranking
can convey additional information about the power behavior
to drive power optimizations.
Finally, Table III summarizes the performance of the decision
tree (DT) based power model for different blocks, including
hierarchical composition of the core using either a standalone
model or as the sum of sub-block models with and without
a dedicated glue logic model. Modeling the core power with
single DT model has a mean absolute error of 1.07%. By
contrast, building a power model for core by composing block-
level power models has a much higher MAE of 3.37%. This
can be compensated and made more accurate by modeling the
glue logic as a virtual block (with 2.15% MAE).
VI. SUMMARY AND CONCLUSIONS

In this paper, we presented a hierarchical power modeling
approach that supports development of simple yet accurate
power models for CPUs at micro-architecture levels of abstrac-
tions. Our approach provides cycle-accurate power estimates
at sub-block granularity with low training overhead using
features that are extracted from micro-architecture simulations.
Using this approach, a decision tree based hierarchically
composed model is built for a RISC-V core that can predict
cycle-by-cycle power with less than 2.2% error rate.
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