
Scheduling Many Types of Calibrations

Hua Chen1, Vincent Chau2(B), Lin Chen3, and Guochuan Zhang1

1 Zhejiang University, Hangzhou, China
{chenhua by,zgc}@zju.edu.cn

2 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

vincentchau@siat.ac.cn
3 Texas Tech University, Lubbock, TX, USA

chenlin198662@gmail.com

Abstract. Machines usually require maintenance after a fixed period.
We need to perform a calibration before using the machine again. Such
an operation requires a non-negligible cost. Thus finding a schedule min-
imizing the total cost of calibrations is of great importance.

This paper studies the following scheduling problem. We have a sin-
gle machine, n jobs where each job j is characterized by its release time
rj , deadline dj , and processing time pj . Moreover, there are K types
of calibrations, i.e., when the machine performs a calibration of type
k ∈ {1, . . . , K} instantaneously, it can maintain calibrated for a fixed
length Tk with a corresponding cost fk. Jobs can only be processed when
the machine is in the calibrated state. Our goal is to find a feasible sched-
ule that minimizes the total cost of calibrations.

We consider two classes of models: the costs of the calibrations are
arbitrary, and the costs of the calibrations are equal to their length.
For the first model, we propose a pseudo-polynomial time algorithm and
a (2 + ε)-approximation algorithm when jobs have agreeable deadlines
(later release time implies a later deadline). For the second model, we
give a 2-approximation algorithm.

Keywords: Scheduling · Calibration · Approximation algorithms

1 Introduction

Scheduling is one of the most classical and important problems in combinatorial
optimization. Recently a class of scheduling problems related to calibrations has
been brought up by Bender et al. in their seminal paper [3]. The motivation of
the problem comes from the Integrated Stockpile Evaluation (ISE) problem [4].
ISE is a program to test nuclear weapons so that they can function normally.
Operating these tests needs precision, or safety mistakes can produce a significant

Hua Chen and Guochuan Zhang are supported by NSFC (No. 11531014). Vincent
Chau is supported by the CAS President’s International Fellowship Initiative no

2020FYT0002, 2018PT0004.

c© Springer Nature Switzerland AG 2020
Z. Zhang et al. (Eds.): AAIM 2020, LNCS 12290, pp. 286–297, 2020.
https://doi.org/10.1007/978-3-030-57602-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57602-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-57602-8_26


Scheduling Many Types of Calibrations 287

loss. Meanwhile, there are testing machines for testing weapons. The testing
machines need to be calibrated after running a fixed period to ensure that the
testing tasks are processed smoothly.

Similarly, the calibration scheduling problem can be seen as a multi-agents
game. For example, during a game, the agents may have abrasion resulting in the
inaccurate shooting and need to be calibrated after using for a while. Generally,
every agent can decide to charge after some time, and every charging has its
corresponding cost and working time.

We formally define the ISE problem as follows: we are given a set J of n
jobs (weapons) and m identical machines (testing machines). Each job j ∈ J
is defined by its release time rj , its deadline dj and its processing time pj . We
calibrate a machine instantaneously, and the machine can stay valid for T ≥ 2
time units. The scheduling of all jobs must be feasible, i.e., (1) each job must
be scheduled on one of the m identical machines and must be scheduled during
pj calibrated slots, (2) each job must be entirely scheduled between its release
time rj and its deadline dj and (3) one machine can only process one job at the
same time. The goal is to find a feasible schedule using the minimum number
of calibrations, where a feasible schedule requires that the scheduling of all jobs
should be feasible, and the calibrations used are non-overlapping.

Using the 3-field notation developed in [10], the problem can be denoted as
P |rj , dj , pj , T |#(calibrations).

Related Work
Bender et al. [3] studied the problem in which jobs have unit processing time.
They gave a polynomial time algorithm to compute the optimal solution, while a
2-approximation algorithm is given for the multiple machine case. They pointed
out that the complexity of the problem remained unknown. Recently, Chen et al.
[8] proved that when the number of machines m is constant, the problem can be
solved polynomially with dynamic programming. On the other hand, when m is
part of the input, they gave a PTAS (polynomial-time approximation scheme).

Later, Fineman and Sheridan [9] considered the case in which jobs have
arbitrary processing time, and the preemption of jobs is not allowed1. Note
that it is NP-hard to decide whether a feasible schedule exists since it can be
reduced from the decision version of the bin packing problem. They considered a
resource-augmentation version of the problem, and they related it to the classical
machine minimization problem [13]. When preemption of jobs is allowed, Angel
et al. [1] generalized the algorithm from [3] and showed that it could be solved
in polynomial time.

Chau et al. [5] considered the flow time problem with calibrations. They
focused on the online version whose objective is to minimize the total flow time,
the elapsed time between the release time of a job until its completion, as well
as the calibration cost. They aimed to find a tradeoff between the flow time
and the cost of the calibrations, and they gave several constant competitive
online algorithms for different settings. Wang [14] studied the time-slot cost

1 A job is not allowed to be interrupted once it has been started.



288 H. Chen et al.

variant of the scheduling problem with calibrations. The cost of scheduling a job
depends on the starting time. The goal is to compute a schedule of minimum
cost with at most B calibrations. Wang [14] proposed dynamic programmings
for different scenarios of this variant. Chau et al. [6] investigated the throughput
variant of this scheduling problem: the goal is to maximize the total profit of
scheduled jobs. They showed that the problem admits a constant approximation
algorithm for arbitrary processing time jobs. Finally, Chau et al. [7] considered
that calibrations could only occur simultaneously. They showed that the problem
could be solved in polynomial time by giving a dynamic programming algorithm.
They also proposed some fast approximation algorithms depending on the cost
function of a batch of calibrations.

All the above problems considered one type of calibration. When there are
K types of calibrations with respective length Tk and respective cost fk for
k ∈ {1, . . . , K}, Angel et al. [1] proved that when jobs have unit processing
time, the problem can be solved in polynomial time by providing a dynamic
programming algorithm. However, when jobs have arbitrary processing time,
the problem becomes NP-hard. They showed for the particular case in which
all the jobs have the same release time and the same deadline. This particular
case is similar to the Knapsack Cover Problem for which there exists a (1 + ε)-
approximation algorithm [11].

Scheduling with calibrations has similarities with some other well-known
scheduling problems, such as minimizing idle periods [2], and scheduling on
cloud-based machines which must be rented to perform work [12].

Our Contributions
In this paper, we study the scheduling problem with K types of calibrations
on a single machine. We have n jobs where each job j is characterized by its
release time rj , deadline dj , and processing time pj . Moreover, there are K
types of calibrations, i.e., when the machine performs a calibration of type k ∈
{1, . . . , K} instantaneously, it can maintain calibrated for a fixed length Tk with
a corresponding cost fk. Jobs can only be processed when the machine is in the
calibrated state. Our goal is to find a feasible schedule that minimizes the total
cost of calibrations.

The problem is NP-hard even if all the jobs have common release time and
common deadline. We investigate the following two generalized cases:

– arbitrary calibration cost : the cost of the calibrations does not depend on
its length. In this work, we assume that every single job can entirely be
scheduled into a single calibration, i.e., maxj pj ≤ mink Tk, and jobs have
agreeable deadline, i.e., for every pair of jobs i, j, we have ri ≤ rj , if and only
if di ≤ dj . In particular, we establish:

• a pseudo-polynomial time algorithm whose running time is O(n5

K2P 2f2
min) where P =

∑n
j=1 pj and fmin = mink fk in Sect. 2.1.

• a (2 + ε)-approximation algorithm in Sect. 2.2.
– uniform calibration cost : the cost of the calibrations is equal to its length.

For this case, we give a 2-approximation algorithm in Sect. 3.



Scheduling Many Types of Calibrations 289

In the sequel, we suppose without loss of generality that jobs are sorted in
non-decreasing order of their deadlines, i.e., d1 ≤ d2 ≤ . . . ≤ dn. Similarly,
we sort the calibration types in the non-decreasing order of their length, i.e.,
T1 < T2 < . . . < TK . Without loss of generality, we also have f1 < f2 < . . . < fK .

2 Arbitrary Calibration Cost

In this section, we investigate the problem with arbitrary calibration cost by
proposing dynamic programming algorithms. We first give a pseudo-polynomial
time algorithm, then we show how to adapt it into a polynomial running time
by losing a constant factor on the objective function.

2.1 A Pseudo-Polynomial Time Algorithm

We first define several time points that are pertinent in any schedule. In [1], they
showed some properties for the unit processing time jobs case. We obtain the
following by dividing the jobs into unit processing time jobs, i.e., for each job j,
we replace by pj jobs with unit processing time.

Let Φ := {dj − h|j = 1, . . . , n;h = 1, . . . , P}.

Proposition 1 (Proposition 1 [1]). There exists an optimal schedule in which
calibrations start at a time in Φ.

In the sequel, we only consider schedules satisfying Proposition 1. Moreover,
since jobs have agreeable deadlines, we have the following proposition.

Proposition 2 (Lemma 1 [14]). There exists an optimal solution in which
jobs are scheduled in the non-decreasing order of their deadline.

Let F := {fmin, fmin + 1, . . . , nfmin} be the set of cost of any schedule where
fmin = mink fk.

Because each job can fit into a single calibration, we know that the cost of
the optimal solution OPT is at least fmin and at most nfmin, so OPT ∈ F . We
are now ready to describe our dynamic programming.

Dynamic Programming. Let c(j, f, t, k) be the minimum completion time of job
j in a feasible schedule whose cost is at most f , such that:

– the first j jobs ({1, . . . , j}) are scheduled into the opened calibrations;
– the starting time of the last calibration is t;
– the type of the last calibration is k.

The idea of our dynamic programming is to compute the number of available
time slots in the last calibration. Because jobs have agreeable deadline, we know
that the job j will be scheduled after the job j − 1. The idea is to schedule the
job j as early as possible in order to get the minimum completion time. We
distinguish three cases (See Fig. 1 for an illustration of the different cases):



290 H. Chen et al.

1. Job j is scheduled in the same calibration as the completion time of job j −1.
(a) The job j starts immediately after the completion of the job j − 1. The

job j will be scheduled from c(j − 1, f, t, k) to c(j − 1, f, t, k) + pj .
(b) There are some idle time slots between the completion time of the job j−1

and the release time of the job j. Then, the job j is scheduled from rj to
rj + pj .

2. Job j is scheduled in two calibrations: it starts in the same calibration as the
completion of job j − 1, and ends in another calibration.

(a) The job j starts immediately after the completion of the job j − 1. The
job j will be executed from c(j − 1, f ′, t′, k′) to t′ + Tk′ , then from t to
t + pj − (t′ + Tk′ − c(j − 1, f ′, t′, k′)).

(b) There are some idle time slots between the completion time of the job j−1
and the release time of the job j. Then, the job j starts from rj to the end
of the calibration at t′ + Tk′ , then from t to t + pj − (t′ + Tk′ − rj).

3. Job j is scheduled in a different calibration as job j − 1.
(a) The job j starts in a different calibration containing the job j − 1 and it

starts at time t. The job j is executed from t to t + pj .
(b) The job j is executed in a different calibration containing the job j − 1

and starts at its release time rj > t. Thus, the job j is executed from rj

to rj + pj .

Fig. 1. Illustration of different cases for scheduling job j in the dynamic programming.
cj−1 denotes the completion time of job j −1. In 1(a) and 1(b), cj−1 := c(j −1, f ′, t, k).
In the remaining cases, we have cj−1 := c(j − 1, f ′, t′, k′).

Hence, we have the following recursive function.



Scheduling Many Types of Calibrations 291

Proposition 3. By convention, if the schedule is not feasible, the completion
time of such a schedule is +∞. We have c(j, f, t, k)

= min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{cj | cj = pj + max{c(j − 1, f, t, k), rj}, cj ≤ min{dj , t + Tk}}

min
{

cj

∣
∣
∣

cj = pj − t′ − Tk′ + max{c(j − 1, f ′, t′, k′), rj} + t, cj ≤ dj ,
rj < t′ + Tk′ , f ′ + fk ≤ f, f ′ ∈ F , t′ ∈ Φ, k′ ∈ {1, . . . , K}

}

min{cj | cj = max{t, rj} + pj , cj ≤ dj , rj ≥ t′ + Tk′ , f ′ + fk ≤ f}

+∞

We initialize the table as follows:

c(1, f, t, k) = min
{

max{t, r1} + p1, if f ≥ fk and max{t, r1} + p1 ≤ d1,
+∞, otherwise.

The objective is to find the minimum cost f∗ such that c(n, f∗, t, k) ≤ dn for
f∗ ∈ F , t ∈ Φ, k ∈ {1, . . . , K}.

Theorem 1. The dynamic programming algorithm in Proposition 3 computes
an optimal solution for the arbitrary calibration cost scheduling problem.

Proof. If the jobs {1, . . . , j} cannot be scheduled into the opened calibrations
whose total cost is at most f , then the schedule is not feasible, and we have
c(j, f, t, k) = +∞. In particular, if there are not enough time slots for the job j,
i.e., c(j, f, t, k) > dj , then the of the schedule is +∞. It corresponds to the last
line of the dynamic program.

We prove the claim by showing that in the dynamic program, we have tried
every possibility of scheduling the job j, as well as the starting time of the
calibrations. As described previously, we have six forms in mathematics (We
assume c(j, f, t, k) ≤ dj in the following):

1. Job j is scheduled in the same calibration as the completion of job j − 1.
(a) If rj < c(j − 1, f, t, k), then c(j, f, t, k) = c(j − 1, f ′, t, k) + pj .
(b) If rj ≥ c(j − 1, f, t, k), then c(j, f, t, k) = rj + pj .

2. Job j is scheduled into two calibrations. Since we need to open a new cali-
bration, we need to ensure that the schedule of the first j − 1 jobs is of cost
at most f ′ = f − fk.

(a) If rj < t′ + Tk′ and c(j − 1, f ′, t′, k′) > rj , it means that the job j is
scheduled right after the completion time of job j − 1 until the end of the
current calibration, and then the remaining part of the job j, which is equal
to pj − (t′ + Tk′ − c(j − 1, f ′, t′, k′)), is scheduled in the last calibration
that starts at time t. Hence, c(j, f, t, k) = min

f ′,t′,k′
{pj − (t′ + Tk′ − c(j −

1, f ′, t′, k′)) + t}.



292 H. Chen et al.

(b) If rj < t′ +Tk′ and c(j −1, f ′, t′, k′) ≤ rj , which means that the remaining
part of the job, which is equal to pj − (t′ +Tk′ − rj), is scheduled in a new
calibration of type k starting at time t. Hence, c(j, f, t, k) = min

f ′,t′,k′
{pj −

(t′ + Tk′ − rj) + t}.
3. Job j starts in a different calibration as job j − 1. As the previous case, we

need to open a new calibration, and we need to ensure that the schedule of
the first j − 1 jobs is of cost at most f ′ = f − fk.

(a) If rj ≥ t′ + Tk′ and t > rj , it means that we have to schedule the job j no
earlier than t, and thus c(j, f, t, k) = t + pj .

(b) If rj ≥ t′ + Tk′ and t ≤ rj , which means that the job j starts no earlier
than its release time rj , thus c(j, f, t, k) = rj + pj .

The optimal value is min
{

f
∣
∣
∣
{
c(n, f, t, k) : f ∈ F , t ∈ Φ, k ∈ {1, . . . , K}}}

.
According to the dynamic programming algorithm above, its running time is
O(nK2|Φ|2|F|2) = O(n5K2P 2f2

min), due to |Φ| = O(nP ) and |F| = O(nfmin).
Hence, the running time is pseudo-polynomial. ��

2.2 A Constant Approximation Algorithm

To achieve a polynomial time algorithm, we aim to avoid going through all
different parameter values in the dynamic program. So, we focus on the sets F
and Φ whose sizes are pseudo-polynomial. We aim to reduce the size of such sets.
We define the set of different objective values of the schedules as F ′.

Let F ′ := {fmin · (1+ ε)q|q = 0, . . . , �log1+ε n	}. We have |F ′| = O(log1+ε n).
We now show that considering the values in F ′ can lead to a solution whose cost
is no more than (1 + ε) times of optimal cost OPT .

Lemma 1. If we restrict the cost f to F ′ and assume f∗ attains the minimum
value in all schedules of

{
c(n, f, t, k)|f ∈ F ′, t ∈ Φ, k ∈ {1, . . . ,K}}

after using
the dynamic programming for f ∈ F ′, t ∈ Φ, k ∈ {1, . . . , K}, then we have
f∗ ≤ (1 + ε)OPT .

Proof. We know that fmin ≤ OPT ≤ nfmin. Then there exists a q0 such that
fmin · (1 + ε)q0−1 ≤ OPT ≤ fmin · (1 + ε)q0 . Thus, OPT ≤ fmin · (1 + ε)q0 ≤
OPT · (1 + ε). Since f∗ ≤ fmin · (1 + ε)q0 , we obtain f∗ ≤ (1 + ε)OPT . ��

Similarly, we define the new set of the starting times of the calibrations as
Φ′ := {dj − aT1|j = 1, . . . , n; a = 0, . . . , n}.

Note that we have |Φ′| = O(n2). Next, we show that if we restrict the starting
times of calibrations to Φ′ and do not restrict the costs, then a solution with no
more than twice the optimal cost exists. We initially allow to have overlapping
calibrations (a time slot can be covered by more than one calibration), which
will be handled later without increasing the solution’s cost.

Lemma 2. For the scheduling problem with arbitrary calibration cost, there
exists a 2-approximate solution such that the calibrations start at a time in Φ′.



Scheduling Many Types of Calibrations 293

Proof. We denote OPT to be the optimal value of the problem. Let O be an
optimal solution verifying Proposition 1, and we denote the sequence of calibra-
tions in O as {CO

i1
, CO

i2
, . . . }, where CO

iu
represents the u-th calibration in O and

its type is iu where iu ∈ {1, . . . , K}.
We show that when we restrict the starting times of the calibrations in S to

Φ′, we can get our desired conclusion. Let CO
iu

be a calibration in O such that
it does not start at a time in Φ′. We replace it by two calibrations of the same
type such that the first one starts at a time in Φ′ and such that they cover (at
least) the same interval as initially.

Since the schedule O verifies Proposition 1, it means that the starting time of
the calibration CO

iu
is at most at a distance of P from a deadline dh. We assume

the distance between dh and the starting time of CO
iu

is �. See Fig. 2.
Moreover, we have minj pj ≤ T1, so we have � ≤ P ≤ nT1, so there is an

integer point t = dh − aT1 ∈ [dh − � − Tiu , dh − �] ∩ Φ′, where a ∈ {0, . . . , n}.
Thus, we can replace such calibration by two calibrations starting respectively
at t and t + Tiu . See Fig. 3.

Fig. 2. Illustration of the calibration CO
iu in O.

Fig. 3. Illustration of relation of O and the constructed S.

We repeat such modification as long as there is a calibration that does not
start at a time in Φ′ in the schedule (except the newly added calibrations).

For every calibration in O, there are two consecutive identical calibrations
whose types are the same, and the starting time of the first one is in Φ′. Then,
all the jobs stay at the same time as in O. Hence, the cost of such schedule is
2OPT . ��



294 H. Chen et al.

Note that the schedule is feasible for jobs but not for the calibrations since
there may exist calibrations that overlap each other. To make all calibrations
used be non-overlapping, we need the following observation.

Observation 1. We can transform a schedule with overlapping calibrations into
a schedule without overlapping calibrations in polynomial time without increasing
the cost of the solution.

Indeed, when two calibrations overlap, we can change the starting time of
the one that starts later to start when the first calibration ends. Meanwhile, all
the jobs stay scheduled at their initial time. We modify at most 2n calibrations.
Figure 4 illustrates an example to handle two overlapping calibrations.

Fig. 4. An example of handling the overlapping calibrations.

The running time of the dynamic program is pseudo-polynomial in the num-
ber of choices of cost. Because of Lemma 2, we need to redefine the range of F ′

to F ′′, where F ′′ := {2fmin · (1 + ε)q|q = 0, . . . , �log1+ε n	}.
First, we discretize the choices of the cost to F ′′ instead of F ′. Then, we force

the starting times of calibrations to be in a set Φ′. Finally, we use two calibrations
every time to ensure consistency with the constructed S in Lemma 2.

Now we will show that when we restrict the cost to F ′′ and the starting times
of calibrations to Φ′, there exists a feasible solution whose cost is no more than
(2 + ε)OPT .

Modified Dynamic Programming (MDP). We modify the dynamic programming
proposed in Proposition 3 as follows:

– we restrict the choices of the cost to F ′′;
– we restrict the choices of the starting times of calibrations to Φ′;



Scheduling Many Types of Calibrations 295

– when a new job comes, there are two possibilities:
• there is not any new calibration to increase;
• increase two new consecutive calibrations whose types are identical.

The objective is to find the smallest f∗ such that c(n, f, t, k) ≤ dn for f ∈ F ′′, t ∈
Φ′, k ∈ {1, . . . , K}.

Theorem 2. For the problem with arbitrary calibration cost, MDP computes
a feasible schedule whose cost is no more than (2+ε) times of the optimal value,
for ε > 0 arbitrarily small. The running time of MDP is polynomial in n and
in 1/ε.

Proof. In order to prove the theorem, we combine Lemma 1 with Lemma 2. Note
that the schedule returned by MDP allows the calibrations to overlap. So the
cost f∗ is a lower bound of the cost of such a schedule. Moreover, we have
f∗ ≤ 2OPT · (1+ ε) by Lemma 1. So we have f∗ ≤ 2(1+ ε)OPT = (2+ ε′)OPT ,
where ε′ = 2ε.

Finally, we perform the same operations according to Observation 1 to make
all calibrations non-overlapping. Thus, we get a feasible schedule of cost no more
than f∗, which completes the proof of the approximation ratio (2 + ε) for ε > 0
arbitrarily small.

Running Time. Since |F ′′| = O(log1+ε n), |Φ′| = O(n2), and |{1, . . . , K}| = K,
the size of the table of MDP is n · |F ′′| · |Φ′| · |{1, . . . , K}| = O(n3K log1+ε n).
When the values of the table are fixed, the minimization is over the values
f ′, t′ and k′, so the running time is O(n2K log1+ε n). Hence, the overall time
complexity is O(n5K2 log21+ε n). ��

3 Uniform Calibration Cost

In this section, we consider the case in which the calibration cost is equal to its
length. We show that there exists a 2-approximation algorithm. In particular,
we use the Preemptive Lazy Binning (PLB) algorithm [1] with the shortest
calibration.

Theorem 3. For the problem 1|rj , dj , pmtn, {T1, · · · , TK}|cost(calibrations)
with fk = Tk for all k ∈ {1, . . . , K}, PLB algorithm with the shortest calibration
is a 2-approximate.

Proof. Suppose we have the optimal sequence of calibrations type O =
{Ti1 , Ti2 , . . .}. Then we construct a feasible solution in which we only use the
type 1.

We replace all the calibrations in O with type 1 such that they cover the initial
calibrations {Ti1 , Ti2 , . . .}, i.e., if a calibration has length Tk, then we replace it
with �Tk/T1	 calibrations of type 1. See S′ in Fig. 5. Jobs stay scheduled at the
same time. Similarly, if some calibrations overlap, then we perform the operations
as in Observation 1. A non-overlapping schedule S shown in Fig. 5 is obtained.



296 H. Chen et al.

Fig. 5. Illustration of analysis.

Note that for any Tiu in O, the new constructed schedule S′ above will cover
it by at most Tiu + T1 < 2Tk since T1 < Tk. So the cost of the non-overlapping
schedule S is no more than the cost of S′ whose cost is less than twice of the
optimal value.

We recall that the PLB algorithm proposed in [1] returns a schedule with the
minimum number of calibrations in polynomial time when there is only one type
of calibration. If we are only allowed to use the shortest calibration of length T1,
S is a feasible schedule, while PLB algorithm returns a schedule with at most
as many calibrations as in S.

Hence, by using the PLB algorithm with the shortest calibration, the cost
of the returned schedule is no more than the cost of S and less than twice of the
optimal value. ��

4 Conclusion

In this paper, we studied the scheduling problem with multiple types of calibra-
tion. When jobs have agreeable deadlines, we showed that the problem could be
solved in pseudo-polynomial time, and we gave a (2 + ε)-approximation algo-
rithm. We further studied the case in which the calibration cost is equal to its
length, and we gave a simple 2-approximation algorithm. A natural question is
to improve the approximation ratio. It would be mostly interesting if one can
show a PTAS or exclude its existence.

Moreover, no approximation algorithm is known for the general case of jobs,
a constant approximation algorithm would be of great interest.



Scheduling Many Types of Calibrations 297

References

1. Angel, E., Bampis, E., Chau, V., Zissimopoulos, V.: On the complexity of min-
imizing the total calibration cost. In: Xiao, M., Rosamond, F. (eds.) FAW 2017.
LNCS, vol. 10336, pp. 1–12. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-59605-1 1

2. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a poly-
nomial time algorithm for offline dynamic power management. In: Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), pp.
364–367. Society for Industrial and Applied Mathematics (2006)

3. Bender, M.A., Bunde, D.P., Leung, V.J., McCauley, S., Phillips, C.A.: Efficient
scheduling to minimize calibrations. In: Proceedings of the 25th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pp. 280–287 (2013)

4. Burroughs, C.: New integrated stockpile evaluation program to better ensure
weapons stockpile safety, security, reliability (2006). http://www.sandia.gov/
LabNews/060331.html

5. Chau, V., Li, M., McCauley, S., Wang, K.: Minimizing total weighted flow time
with calibrations. In: Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 67–76. ACM (2017)

6. Chau, V., Feng, S., Li, M., Wang, Y., Zhang, G., Zhang, Y.: Weighted through-
put maximization with calibrations. In: Friggstad, Z., Sack, J.-R., Salavatipour,
M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 311–324. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-24766-9 23

7. Chau, V., Li, M., Wang, E.Y., Zhang, R., Zhao, Y.: Minimizing the cost of batch
calibrations. Theor. Comput. Sci. 828–829, 55–64 (2020)

8. Chen, L., Li, M., Lin, G., Wang, K.: Brief announcement: approximation of schedul-
ing with calibrations on multiple machines. In: Proceedings of the 31st ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA), pp. 237–239. ACM
(2019)

9. Fineman, J.T., Sheridan, B.: Scheduling non-unit jobs to minimize calibrations.
In: Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 161–170 (2015)

10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. In: Annals of Discrete
Mathematics, vol. 5, pp. 287–326. Elsevier (1979)

11. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the Knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

12. Mäcker, A., Malatyali, M., Meyer auf der Heide, F., Riechers, S.: Cost-efficient
scheduling on machines from the cloud. J. Comb. Optimiz. 36(4), 1168–1194
(2017). https://doi.org/10.1007/s10878-017-0198-x

13. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. In: Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (STOC), pp. 140–149 (1997)

14. Wang, K.: Calibration scheduling with time slot cost. Theor. Comput. Sci. 821,
1–14 (2020)

https://doi.org/10.1007/978-3-319-59605-1_1
https://doi.org/10.1007/978-3-319-59605-1_1
http://www.sandia.gov/LabNews/060331.html
http://www.sandia.gov/LabNews/060331.html
https://doi.org/10.1007/978-3-030-24766-9_23
https://doi.org/10.1007/s10878-017-0198-x

	Scheduling Many Types of Calibrations
	1 Introduction
	2 Arbitrary Calibration Cost
	2.1 A Pseudo-Polynomial Time Algorithm
	2.2 A Constant Approximation Algorithm

	3 Uniform Calibration Cost
	4 Conclusion
	References




