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a b s t r a c t 

Many plastics show necking and drawing behavior in tension, sometimes called “cold 

drawing”. In contrast, elastomers stretch homogeneously in tension. We examine the ten- 

sile behavior of rubber–plastic laminate composites using 3D finite element simulations 

and an analytical model. A rate-independent constitutive behavior was adopted in which 

the modulus at small-strain, strain hardening at large strain, and yield stress (only for the 

plastic) can all be varied independently. For sufficiently small rubber/plastic thickness ra- 

tio, layered composites show necking and drawing wherein a tensile bar coexists in two 

strain states, one with a large stretch (necked region) and the other with a modest stretch 

(unnecked region). With increasing rubber/plastic thickness ratio, the two strain states ap- 

proach each other in a manner resembling a second order phase transition culminating 

in a critical point. Above this critical rubber/plastic thickness ratio, the layered compos- 

ites stretch homogeneously. An analytical model based on adding the First Piola–Kirchoff

stresses of the rubber and plastic layers, along with a modification for inelastic deforma- 

tion, is shown to capture most of the results of 3D simulations accurately. We comment on 

the practical relevance of these results to toughening relatively brittle plastics, and more 

specifically, the critical importance of strain hardening of the rubber. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Many polymers show yielding behavior during deformation wherein the slope of the true stress–strain relationship de-

creases sharply at some stress, generally called the yield stress ( Argon, 2013b ). However, when deformed to higher strain,

some yielding polymers show strong strain hardening wherein the slope of the true stress–strain relationship increases again

( Argon, 2013a ). A macroscopic consequence of yielding followed by strain hardening is an inhomogeneous deformation be-

havior called “cold drawing”: under tension, a bar of the polymer first develops a neck ( Hutchinson and Miles, 1974 ), how-

ever, the deformation in the neck stagnates and then the neck propagates steadily along the length of the bar ( Andrews and

Ward, 1970 ; Barenblatt, 1974 ; Carothers and Hills, 1932 ; Vincent, 1960 ). In contrast, elastomers do not show yielding behav-

ior and deform without necking, as may be verified readily by stretching a rubber band. 

This article is about the behavior of layered composites of a cold drawing polymer and an elastomer. Composites com-

prising layers with distinct material properties have been found to exhibit exceptional properties. For instance, the tear

strength of a brittle material can be improved by layering it with a compliant layer ( Hutchinson, 2014 ). Bonding a layer of

elastomer to a ductile metal can allow the layered composite to stretch a larger extent without necking, whereas the metal

alone would neck to failure at only a small applied strain ( Li et al., 2004 ; Lu et al., 2007 ). For example, a gold film deposited

on elastomer was found to stretch 100% more without losing conductivity ( Lambricht et al., 2013 ). 

This paper is motivated by our recent experimental research ( Ramachandran et al., 2018 ) on the large-deformation tensile

behavior of bilayer composites comprising a cold drawing plastic layer (linear low-density polyethylene, LLDPE) bonded to

an elastomer (styrene-ethylene/propylene-styrene, SEPS). Fig. 1 A shows a snapshot of the tensile deformation of a dog bone

shaped specimen of LLDPE undergoing cold drawing. The gauge section of the sample shows two distinct zones: a highly

stretched necked region with a stretch of almost 6, and an unnecked region with a stretch of less than 1.2. In contrast,

SEPS rubber ( Fig. 1 B) stretched without necking to a few hundred percent strain, as typical for elastomers. Fig. 1 C is a

bilayer laminate composite of SEPS and LLDPE whose behavior is intermediate between the plastic and the rubber: while

it showed necking and drawing, the degree of non-homogeneity of deformation reduced as compared to the pure LLDPE.

For such composites, deformation became increasingly homogeneous as the rubber/plastic thickness ratio increased, and the

transition region between the necked and unnecked regions became much wider. 

During drawing, the material in the necked region is subjected to a large true stress due to a significant reduc-

tion in cross-section area. Strain hardening in the plastic controls the cold drawing phenomenon ( Bigg, 1976 ; Coates and

Ward, 1978 , 1980 ; Erickson, 1975 ; Gsell and Jonas, 1979 ; Hutchinson and Miles, 1974 ; Hutchinson and Neale, 1977 ;

Vincent, 1960 ). This article focuses on the modifications to the large deformation of thin layers of cold drawing polymers

due to the addition of a rubber layer. The goals of this study are as follows. First, we seek a clear understanding of the

effects of the rubber modulus and the rubber strain hardening on the deformation. Specifically, the rubber modulus is ex-

pected to affect small deformation processes (e.g. neck initiation) whereas the rubber strain hardening behavior is expected

to affect large deformation processes (e.g. neck propagation). To isolate these effects clearly, we adopt constitutive equations

in which the low strain modulus, yielding behavior, and strain hardening can all be varied independently. Such independent

control of various material properties is not possible experimentally. Second, we seek to test whether the predictions of

an analytical model developed in our previous paper are valid, even approximately. Even though the model cannot give all

details of the deformation during neck propagation, it readily predicts practically useful quantities such as the engineering

stress needed for stable neck propagation, or the stretch within the necked region (sometimes called draw ratio). If these

model predictions can be shown to agree with 3D simulations, the analytical model can be practically useful for design

purposes, e.g. rapidly estimating the rubber/plastic ratio needed to eliminate necking, or estimating the maximum stress

experienced in each layer. 

This paper is organized as follows. Section 2 describes the constitutive equations used and the simulation methods.

Section 3 discusses the simulation results of how rubber thickness affects the stress–strain behavior for one specific case of

material properties. Section 4 discusses the analytical model to show that many of the important quantities obtained from
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Fig. 1. Deformed shapes during tensile tests of dogbone-shaped samples of (A) Cold drawing LLDPE plastic (B) SEPS rubber which deforms uniformly 

throughout the gauge section. (C) SEPS - LLDPE bilayer of rubber/LLDPE thickness ratio of 1.2 ( Ramachandran et al., 2018 ). Note the strongly non- 

homogeneous deformation in Fig. 1 A where the necked region has a stretch of ~6, whereas the unnecked region has a stretch of less than 1.2. In contrast, 

the stretch in the necked region of the composite in Fig. 1 C is lower, roughly 4.5. Increasing rubber thickness further reduced the stretch in the necked 

region( Ramachandran et al., 2018 ). The black dots are markers used for quantitative image analysis conducted previously( Ramachandran et al., 2018 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

simulations can be predicted accurately and discusses the effect of inelastic deformation on the model predictions. Further,

we conduct a parametric study to test how the material parameters of the rubber affect the initiation of necking and stable

neck propagation. Finally, the practical relevance of these results to rubber-plastic laminates are discussed. 

2. Methods 

2.1. Constitutive modeling of rubber and cold drawing plastic 

The rubber (denoted with the subscript r) was modeled as a rate-independent, isotropic, incompressible hyperelastic

material. For our constitutive model, the behavior in uniaxial tension is: 

σr ( λ) = 

[
2 
(
C 1r + C 2r λ

−1 
)

+ 4 C 3r 
(
λ2 − 2 λ−1 − 3 

)](
λ2 − λ−1 

)
(1)

where σ r is the xx component of the Cauchy stress of the rubber (true stress), λ (true stretch) is the uniaxial stretch

along the x direction, and C 1r , C 2r , and C 3r are fitting parameters. The constitutive behavior for rubber in terms of the First

Piola-Kirchoff (PK1) stress is given as: 

P r ( λ) = 

σr 

λ
(2)

The cold drawing plastic (denoted with the subscript p) was modeled as a rate-independent, isotropic, incompressible

elasto-plastic material. For our constitutive model, the behavior in uniaxial tension is: 

σp ( λ) = 

{ 

2 C 1p 
(
λ2 − λ−1 

)
, i f σp < σy 

σy + H ̄εp + 4 C 2p 
(
λ2 − 2 λ−1 − 3 

)(
λ2 − λ−1 

)
, i f σp ≥ σy 

(3)

where σ p is the xx component of the Cauchy stress of the plastic (true stress), σ y is the yield stress, H is the coefficient of

linear strain hardening and C 2p is the non-linear strain hardening coefficient. The plastic strain ε̄p is given as 

ε̄p ( λ) = ln 

(
λ

λy 

)
∀ λ > λy (4)

where λy is the yield stretch obtained from setting σp = σy in Eq. (3) . Once again, constitutive behavior of plastic in terms

of PK1 stress can be obtained as: 

P p ( λ) = 

σp 

λ
(5)

3D form of the constitutive relations Eq. (1) and Eq. (3) for rubber and plastic were implemented in finite element

simulations. Further details of the simulation procedure were published previously ( Yang et al., 2017 ). 
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Fig. 2. Uniaxial constitutive behavior for the cold drawing plastic and the rubber (A) true stress ( σ − λ curve) (B) PK1 stress ( P − λ curve). PK1 stress in 

the plastic does not increase monotonically in contrast to rubber which increases monotonically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Material parameters for the rubber and plastic 

The material parameters of cold drawing polymer and hyperelastic rubber were calibrated by regressing simulated engi-

neering stress-applied stretch curves against uniaxial experimental curves for LLDPE and SEPS rubber respectively. For the

rubber, the simulated engineering stress with material parameter values C 1r = 0 MPa, C 2r = 0.7 MPa, and C 3r = 0.004 MPa

yielded a good fit with experimental engineering stress-applied stretch behavior of SEPS (Appendix Fig. A2 A). These values

are used for most of the research in this paper. For the parametric analysis ( Section 4.3 ), C 1r was kept unchanged, whereas

C 2r was varied from 0.7 to 14.7 MPa, and C 3r was varied from 0 to 0.14 MPa. 

For the cold drawing plastic, the engineering stress response from finite element simulation was calibrated against the

experimentally obtained engineering stress response, as well as the experimentally measured draw ratio (i.e. the stretch in

the neck during stable drawing), of LLDPE. The simulated engineering response with shear modulus, 2 C 1 p = 100 MPa, the

yield stress and the strain hardening parameters σy = 18 . 4 MPa , H = 19 MPa , and C 2 p = 0 . 0073 MPa captured the experi-

mental engineering stress-applied stretch response reasonably well as shown in the Electronic Supplementary Information

(Appendix Fig. A2 B) . These values are used throughout this paper. 

The constitutive behavior in terms of true stress ( σ − λ curve) and PK1 stress ( P − λ curve) for rubber and plastic

with material parameter values given above are shown in Fig. 2 . The key point to note is that the P − λ curve increases

monotonically for the rubber layer, but shows a maximum followed by a minimum for the plastic layer. This non-monotonic

behavior is the crucial feature that induces necking and drawing as discussed later. 
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Fig. 3. The rectangular specimen geometry 20 × 3 mm. One-eighth of geometry is modeled with rollers (green open circles) applied along the X = 0 , Y = 

0 , and Z = 0 planes. The thickness of the element along the center (in the X direction) is decreased by 2 μm to induce consistent neck initiation at the 

center. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Finite element model 

Simulations were conducted using a custom nonlinear finite element program. One-eighth of the plastic/rubber/plastic

trilayer specimen of rectangular cross-section was modeled to exploit the symmetry of the specimen. The computational

model consisted of a single layer of plastic and rubber each, with length l = 10 mm along the stretching direction, and width

w = 1.5 mm along the transverse direction. This geometry mimics the gauge section of the tensile experiments of Fig. 1 ,

although the experiments used bilayers rather than trilayers. The thickness of the plastic layer was kept at, h p = 100 micron

and the rubber thickness were varied from h r = 100 to 800 μm. This corresponds to rubber/plastic thickness ratio ( ω) defined

as ω = h r / h p , in the range from 1 to 8.0. The thickness of the array of elements (75 μm long in the stretching direction) on

the top surface along the centerline in the plastic layer was reduced by 2 μm (see inset of Fig. 3 ) to consistently introduce

necking at the midplane. Roller boundary conditions were enforced on adjoining faces in all three rectangular directions

( X = 0 , Y = 0 , and Z = 0 planes), as marked by green circles in the top and side view ( Fig. 3 A and B). The rubber and the

plastic faces with X = l (rightmost edge in Fig. 3 B) were displaced stepwise along x-direction to stretch the sample, whereas

the surfaces Y = w and Z = h p + h r were specified as stress-free. 

The representative computational model of the trilayer was meshed using 8-noded brick elements. Each material layer

contained at least 2 elements in the thickness direction with 1330 elements in each layer (mesh shown in Fig. 3 ). The ratio

of the deformed length ( δ + l) to the original length l is defined as the applied stretch, λapp = 1 + 
δ
l 
where δ is the applied

displacement. A stretch of 6.5 was applied at the right end in 70 0 0 steps. Stretch, plastic strain and effective stress contours

were enumerated at an interval of 20 steps over the specimen volume. The stretch and stress distribution monitored on the

top free surface ( Z = h r + h p ) are shown in Section 3 . Reaction forces were measured at all the nodes on the midplane along

the length of the specimen ( X = 0 plane), which is the symmetry plane that acts as a boundary of the simulation domain.

The engineering stress ( N ) over the composite is calculated by: N = 
F 
A 0 

= 
F 

w ( h r + h p ) . where F is the sum of current reaction

forces in all the nodes along the midplane ( X = 0 plane) and A 0 = w ( h r + h p ) is the cross-section area in the undeformed

state. 

3. Results 

Section 3.1 discusses the deformation of free-standing rubber and cold drawing plastic from finite element simulations.

Section 3.2 discusses rubber-plastic trilayer composites for different ω values. 

3.1. Deformation of free-standing plastic and rubber 

The engineering stress in uniaxial tension from finite element simulations for the rubber and the cold drawing plastic

is shown in Fig. 4 A. The corresponding deformed configurations at λapp values of 1, 1.5, 3 and 6 are shown in Fig. 4 B

and C respectively. The color map shows the stretch distribution in the longitudinal direction. The Von Mises stress ( σ e )

distribution at λapp = 3 for the rubber and cold drawing plastic are shown in Fig. 4 D and E, respectively. 

For the rubber, the engineering stress vs applied stretch ( N − λapp curve) increases monotonically ( Fig. 4 A) , and Fig. 4 B

shows that the deformation remains homogeneous, i.e. at all locations within the sample, the stretch value in the longitu-

dinal direction is equal to the applied stretch. Due to chosen boundary conditions, the stress field is uniform under uniaxial

loading, as indicated in Fig. 4 D. Furthermore, although not shown in Fig. 4 A, the engineering stress agrees almost exactly

with the PK1 stress, P r ( λ) ( Eqn. (2) ), which was already shown in Fig. 2 B. 
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Fig. 4. (A). Engineering stress vs applied stretch (N − λapp curve) from simulations of rubber and cold drawing plastic. Initial configuration and deformed 

configurations for (B) the rubber and (C) the cold drawing plastic. Numbers far left indicate applied stretch ( λapp ) values for each configuration, and 

contours indicate the distribution of stretch in the tensile direction. Deformed configuration with color map of Von Mises stress, σ e at an applied stretch 

( λapp ) of 3 for the rubber (D) and the cold drawing plastic (E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, for the free-standing plastic, the N − λapp curve does not increase monotonically ( Fig. 4 A). The deformation of

the plastic, as shown in Fig. 4 C is non-homogeneous. The specimen stretches uniformly up to a stretch of 1.12, upon which a

neck initiates at the center, and the engineering stress reduces sharply. The neck then stretches locally, whereas the material

outside the neck stays at a lower stretch. This state is illustrated at λapp = 1 . 5 in Fig. 4 C. In concert, the engineering stress

reduces towards a plateau at draw stress of N draw 
≈ 13 MPa. The configuration at λapp = 3 in Fig. 4 C shows the deformed

shape typical of a specimen within the engineering stress plateau where three distinct regions can be identified. The first

is the necked region near the center which has a large stretch ( λneck ≈ 5.9) compared to the rest of the geometry. The

second is the unnecked region where the material remains in nearly the same state prior to necking, with a local stretch of

λunneck ≈ 1.1. The third is the transition region between the aforementioned regions, where the value of the stretch smoothly

transitions from the value in necked region to the value in the unnecked region. Similar to the stretch distribution, the stress

within this sample is also non-homogeneous as indicated in Fig. 4 E. The stress is maximum in the neck with a value of 80

MPa. 

These three regions do not change significantly with λapp throughout the engineering stress plateau; the sole change

is the increase in the length of the necked region at the expense of the unnecked region. Thus, this regime of stretching

corresponds to stable drawing or stable neck propagation. Finally, at λapp = 5 . 9 the necked state spans the entire specimen,

beyond which the sample stretches homogeneously. 

Incidentally, the dip in stress seen at λapp ≈ 5.5 is due to the geometric softening when the neck reaches the edge of the

specimen. The reduction in cross-section of the transition zone reduces the force required to sustain tensile deformation.
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Such a dip is an artifact of the rectangular simulation geometry and would not be seen experimentally when dog-bone

shaped specimens are used. 

Unlike the rubber which deforms homogeneously, for the cold drawing plastic, the N − λapp curve distinctly deviates

from the P − λ relation. Analytical prediction of some of the features of N − λapp curve from the P − λ relation is discussed

in Section 4 . 

3.2. Deformation of rubber/plastic laminates 

The engineering stress response ( N − λapp curve) of laminate composites with ω = 1, 3 and 7 are shown in Fig. 5 A. The

curves for the free-standing plastic layer ( ω = 0 ) and the free-standing rubber, which were shown in Fig. 4 A, are also shown

for reference. The deformed shapes at a λapp = 3 for the specimens are shown in Fig. 5 B. The color maps indicate the local

stretch in the x-direction. For ω = 1 and 3, the engineering stress exhibits a peak, followed by a plateau, both typical of

necking and stable drawing behavior. The corresponding deformed shapes clearly show non-homogeneous deformation. The

stretch maps indicate that with increasing ω, the stretch in the neck λneck decreases and the stretch in the unnecked region

λunneck increases. For a fixed ω value the λneck and λunneck remain constant throughout the neck propagation, similar to the

free-standing plastic in Fig. 4 B. All these trends agree with our previous experimental observations ( Ramachandran et al.,

2018 ). For ω = 7 , necking is eliminated completely as judged by both, the monotonic rise on N with λapp , as well as by the

uniform stretch distribution. 

It is interesting to compare the simulated behavior of the composite against a thickness-weighted sum of the force

in each free-standing layer. However, such force additivity of the free-standing rubber and plastic does not capture the

entire stress-stretch behavior of the laminate composite accurately. This issue is discussed further in the Supplementary

Information along with Fig. A1 . 

To further emphasize this issue of different strain states, Fig. 5 C plots the Cauchy stress and the stretch of the individual

layers within the composites in the necked and unnecked region. The solid and dashed curves represent the constitutive

behavior of the plastic and the rubber in uniaxial tension respectively ( Eqs. (3) and ( 1 )). The circles on the solid curve mark

the true stress in the necked and unnecked region for free-standing plastic, with the larger value of stress corresponding

to the necked region. With increase in ω, the true stress in the necked region decreases. This plot shows that the plastic

layers in the composites experience lower stress and therefore experience deformation states that are inaccessible to the

free-standing plastic during drawing. 

Another significant effect is that the increase in ω delays the peak in engineering stress-stretch response ( λpeak ) to a

larger applied stretch. Yet the yield strain in the plastic layer of the composite remains a constant since it is a material

property. Therefore increasing ω increases the inelastic deformation in the plastic material at the onset of necking. This is

illustrated more clearly in Fig. 6 , which plots the plastic strain at the onset of necking; it is clear that when bonded to

rubber, the plastic layer can undergo large plastic deformation before necking. This same point was made previously by

Li et al. (2005 ), albeit with a plastic that was not capable of cold drawing. The central point, therefore, is that bonding

together the rubber and the plastic forces the individual materials to stretch in a fashion that is different from the same

materials when stretched alone. 

Four key quantities of practical interest, λpeak , N draw 
, λneck , and λunneck can be extracted readily from the simulations. The

first two can be extracted directly from the engineering stress data: the stretch corresponding to the peak in engineering

stress, λpeak , which marks the onset of necking, and the engineering stress, N draw 
for stable drawing, corresponding to the

stress plateau. The increase in λpeak with ω is shown in Fig. 7 A, whereas the decrease in N draw 
with ω is shown in Fig. 7 B.

λneck and λunneck can be obtained from the deformed configurations. To do this in a consistent fashion for all samples, we

plot the highest and the lowest stretch within each specimen during stretching (see Appendix Fig. A3 ) and extract the two

plateau values which correspond to stable drawing. The two quantities are plotted vs the rubber/plastic ratio ω in Fig. 7 C.

Such plots depend on the material properties, and Section 4.2 will show similar plots for laminate composites with different

parameter values in the material constitutive equations. The solid curves in Fig. 7 will be discussed later. 

4. Analytical model 

The central phenomenon of interest in this paper is the coexistence of two strain states during stable drawing and the

changes in these states as rubber thickness changes. We extend the Maxwell analysis, which identifies the two coexisting

states( Coleman, 1983 ; Erickson, 1975 ; Fager and Bassani, 1986 ; Hutchinson and Neale, 1983 ; Neale and Tugcu, 1985 ), to the

tensile deformation of the composites. Unlike our previous paper( Ramachandran et al., 2018 ), we will focus on the energy of

the system to make more explicit the analog to phase transition phenomenon familiar from thermodynamics and to make

more transparent the issue of inelastic deformation that was ignored previously. 

4.1. Comparison against energy-based 1D model 

It is well-recognized that in uniaxial elongation of a bar, if the P − λ curve shows a maximum, a neck initiates at the

stretch corresponding to the maximum ( Considère, 1885 ; Courtney, 1990 ). Stable neck propagation further requires that the

P − λ curve also has a minimum ( Coleman, 1983 ; Erickson, 1975 ; Neale and Tugcu, 1985 ). Fig. 8 A therefore illustrates a P − λ
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Fig. 5. (A) Engineering stress vs applied stretch ( N − λapp ) response of layered composites with rubber/plastic ratios ( ω) listed alongside each curve. (B) The 

deformed configurations at λapp = 3 for free-standing plastic ( ω = 0 ) and composites of ω values listed on the left of each image. Laminates with ω = 1 

and 3 show drawing behavior, but the stretch in the neck ( λneck ) decreases with increasing ω. (C) The true stress in the necked and unnecked regions of 

individual layers of composites are marked on the respective true stress vs true stretch ( σ − λ) curve. Solid and dashed lines are the σ − λ for the rubber 

and plastic, Eqs. (1) and ( 3 ), respectively. The green circles mark the true stress in the necked and unnecked region in free-standing plastic during neck 

propagation, whereas the red triangles and blue squares mark the true stress in the necked and unnecked region in the rubber and plastic layer in laminate 

composites of ω values of 1 and 3 respectively. 
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Fig. 6. Effective plastic strain from the 3D simulations at the onset of necking is shown as open circles. The dashed line corresponds to substituting the 

prediction for λ = λpeak from Eqn. (7) into Eqn. (4) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

curve showing such a maximum followed by a minimum. In previous analyses of stable neck propagation ( Coleman, 1983 ;

Erickson, 1975 ; Hutchinson and Neale, 1983 ), the cold drawing material was assumed to have a fictitious non-linear elastic

sigmoidal stress-stretch response, and a Maxwell equal area construction was then developed to identify the two coexisting

strain states that correspond to stable drawing. This construction is illustrated as a dashed green line in Fig. 8 A, where

points b and c correspond to the unnecked and necked states respectively, and the shaded areas are equal. Prediction from

Maxwell analysis has been compared against experiments previously and found to be in reasonable agreement ( Crist and

Metaxas, 2004 ). 

The total area under the P − λ curve is proportional to the work done in deforming the sample to any desired applied

stretch, λapp . Within the energy-conservation framework, this corresponds to the strain energy density, W 

W = 

∫ λapp 

1 

P dλ (6)

It is illuminating to illustrate the deformation process on a W vs λapp diagram ( Fig. 8 B), which closely resembles the

energy vs order parameter diagrams commonly used in the study of phase transitions. Coexistence between the necked and

unnecked states can now be identified by the familiar double-tangent construction for first-order phase transitions. This

double-tangent makes it obvious that for λapp values between those of points b and c , a specimen with two coexisting strain

states can have lower energy than a specimen that stays homogeneous. The region between points b and a is metastable:

while a specimen may remain in a homogeneous strain state, the separation between two coexisting strain states can reduce

the energy to the value indicated by the double tangent. Such metastable states, e.g. supercooled liquids, are well-known

amongst phase transitions. Thus, when stretching a bar of the material, necking initiates when the specimen is stretched

to point a ; once the neck is initiated, the stress must reduce to the level indicated by the Maxwell construction while the

sample bifurcates into unnecked and necked regions in states b and c respectively. This decrease in stress is accompanied

by a decrease in energy, indicated by a downward arrow in Fig. 8 B. 

The schematic of Fig. 8 applies for any specimen capable of stable drawing in tension. To apply it quantitatively to

layered composites, an expression is needed for the P − λ curve. We adopt a simple expression of thickness-weighted stress

additivity: 

P = P p 

(
1 

ω + 1 

)
+ P r 

(
ω 

ω + 1 

)
(7)

It must be emphasized that Eq. (7) adds the nominal stresses under homogenous deformation. Eq. (A1) in the Appendix

discusses a different version which adds forces from the free-standing layer. 

Using the analytical expressions from Eqs. (2) and (5) , the P − λ curve for the laminate composite can be calculated from

Eq. (7) . Plots of Eq. (7) for various values of ω are shown in Fig. 9 . For small values of ω, this equation is non-monotonic. The

maximum then gives the stretch, λpeak , at which a neck initiates. Further, the Maxwell construction identifies λneck , λunneck ,

(the red and blue squares respectively) and the draw stress, N draw 
(PK1 stress corresponding to horizontal green dashed line).

This Maxwell construction implemented using MATLAB R ©, is also illustrated in Fig. 9 . For ω ≥ 6.7, P increases monotonically

with λ, i.e. it is no longer possible to initiate necking. The corresponding predictions for stable neck propagation are shown

as solid lines in Fig. 7: these correspond to the location of the maximum of Eq. (7) in Fig. 7 A, and the results of the Maxwell

construction in Fig. 7 B and C. 

There is an obvious resemblance of Fig. 7 C to second-order phase transitions, e.g. gas-liquid coexistence near the critical

point, liquid-liquid coexistence near the consolute point or the ferromagnetic transition near the Curie point. For the specific

material parameters selected here, the critical value of rubber thickness, i.e. the value above which P ( λ) becomes monotonic,

corresponds to ω c = 6 . 7 . Indeed, Appendix Fig. A4 plots the results in the form suggested from the critical phenomena

literature and shows that ( λneck − λunneck ) ∝ ( ω c − ω ) β . The critical exponent β is found to be 0.54, a value close to 0.5,

predicted from the mean-field theory of critical phenomena. 
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Fig. 7. (A) Open circles are stretch values at which simulations show a peak in engineering stress. (B) Open circles are engineering draw stress (normalized 

by the yield stress) from simulations. (C) Filled circles are simulation results for the stretch in the necked and unnecked regions ( λneck and λunneck ) during 

stable drawing. Solid lines are predictions: in (A) solid curve is the λ at which P − λ curve of composites ( Eq. (7) ) shows a peak, at any value of ω. In (B) 

and (C) solid curves are the predictions of N draw (normalized by σ y ), λneck and λunneck by applying Maxwell construction to Eq. (7) (see Fig. 9 ). The dashed 

line in (C) is the prediction for λunneck after correcting for inelastic deformation effects (see text and Fig. 10 ). In all graphs, the asterisk is the critical point, 

i.e. the lowest ω value ( ω c ) needed for the P ( λ) from Eq. (7) to be monotonically increasing. 

 

 

 

 

 

As mentioned in the Introduction, one key goal of this paper was to examine whether the analytical model of Eq. (7) ,

combined with the Maxwell construction, can predict the key quantities obtained from the simulations. If so, the model can

give rapid predictions for composite behavior based on pure component properties without needing detailed simulations.

The solid curves in Fig. 7 suggest that the model can predict all quantities well, except λunneck which is significantly under-

predicted. Section 4.3 will show that the degree of the underprediction of λunneck depends on the material properties. The

following section examines the reasons for the underprediction. 
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Fig. 8. (A) Schematic of a P − λ curve with a maximum and minimum, which can show stable neck propagation. The neck initiates at the peak load 

(marker a ). Constant PK1 stress dashed green line ( N draw ) corresponds to the Maxwell construction where the two shaded areas are equal. Points b and 

c correspond to material states in the unnecked and necked region during stable neck propagation. (B) Strain energy per unit volume corresponding to 

constitutive behavior shown in Fig. 8 A. The dashed green line is a double tangent to the W( λ) curve. The black dotted curves in both figures correspond 

to unstable regions where homogeneous deformation is not possible. 

 

 

 

 

 

 

 

 

 

 

 

4.2. Irreversible deformation effects 

The effect of irreversible deformation of the cold drawing plastic layer on the prediction of material configuration in the

unneck region of the composite is discussed below. For illustrative purposes, most of the calculations in this section are done

for a rubber-plastic composite of ω = 3 . 5 . The P − λ curve calculated from Eq. (7) , with ω = 3 . 5 , is shown in Fig. 10 A. As

explained along with the discussion of Fig. 8 above, during initial stretching, the neck initiates at the maximum in the P − λ
curve, marked a . As per the Maxwell construction, stable neck propagation requires lower engineering stress. This decrease

in engineering stress after point a must be accompanied by a decrease in the stretch in the unnecked region. In a purely

elastic system, the stretch of the unnecked region can recover from point a to point b , and in this final state, both layers

would still remain under tension. However, with plasticity effects, i.e. irreversible deformation, the situation is different:

if λa − λb > εy , the plastic layer would lose tension altogether and experience compression. Further if λa − λb > 2 εy , the
plastic would have to yield in compression. Here εy = λy − 1 is the yield strain of the cold drawing material. The rubber

in the unnecked region may not have sufficient elastic energy to accomplish the work necessary to force this compressive

deformation. Therefore, the actual stretch of the unnecked region, λd would exceed λb . The goal of this section is to estimate

λd through an energy analysis that accounts for irreversible work done. 
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Fig. 9. P − λ curves for composites ( Eq. (7) ) of various ω values indicated for each curve. Dotted regions of each curve correspond to regions where 

homogeneous stretching is not possible. Dashed green lines show Maxwell constructions where the shaded areas above and below each green line are 

equal. The material configurations in the necked and the unnecked regions are marked as the red and blue squares respectively on each P − λ curve. The 

P − λ curve is monotonic for laminate composites with ω > 6.7 (not shown here). 

Fig. 10. (A) P − λ curve for the rubber–plastic laminate of ω = 3 . 5 ( Eq. (7) ). Maxwell construction is indicated by the green dashed, constant PK1 stress 

line. The points b and c where the Maxwell construction intersects the P − λ curve are the predictions for material states in necked and unnecked regions. 

The material state in the unnecked region after considering the inelastic deformation of is marked as d . The dashed arrow linking a and d is indicative 

only. (B) Loading from λ = 1 to λ = λa . The black curve is the work done per unit volume of the composite, i.e. the area under the P − λ curve in A. Blue 

dot-dashed line is the total strain energy density ( Eqn. (8) ). (C) Strain energy density when loading from λ = 1 to λ = λa . Plastic contribution (green) and 

rubber contribution (black dashed), their sum (blue dot-dashed, which is the same curve as in B). (D) Strain energy density when unloading from λ = λa . 
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For the following analysis, the composite is treated as a single material with uniform properties. The strain energy den-

sity of the composite is computed by the volume fraction-weighted sum of rubber and plastic strain energy density during

loading and unloading. Loading and unloading are considered separately due to path dependence of the cold drawing ma-

terial. 

Therefore, we now write the total strain energy in the layered composite as a sum of contributions from the rubber and

the plastic: 

wl ( h r + h p ) W ( λ) = wl h r W r ( λ) + wl h p W p ( λ) 

Hence W(λ) = 
ω 

ω+1 W r (λ) + 
1 

ω+1 W p (λ) 

W ( λ) = W 

′ 
r ( λ) + W 

′ 
p ( λ) (8)

where w and l are the width and length of the specimen, respectively. W 

′ 
r (λ) = 

ω 
ω+1 W r (λ) is the rubber contribution to the

strain energy density of the laminate composite, and similarly, W 

′ 
p (λ) = 

1 
ω+1 W p (λ) is the plastic contribution to the strain

energy density of the laminate composite. 

During the loading process, for the rubber layer, all the work is presumed to be reversible, and hence is stored as elastic

energy: 

W r ( λ) = 

∫ λ

1 

P r ( λ) dλ (9)

In contrast, for the plastic, only the work done prior to yielding is taken to be reversible. Thus, the plastic strain energy

density is given as: 

W p ( λ) = 

{ ∫ λ
1 P p ( λ) dλ, i f λ < λy ∫ λy 

1 
P p ( λ) dλ, i f λ ≥ λy 

(10)

From the above equations, W 
′ 
r , W 

′ 
p , and their sum W( λ), during the loading process can be calculated readily and the

values for ω = 3 . 5 are shown in Fig. 10 C. It is important to note that the latter integral in Eq. (10) is independent of λ, i.e.
beyond the yield point, the plastic makes no further contribution to elastic energy. Therefore W 

′ 
p becomes horizontal for

stretch larger than λy in Fig. 10 C. The strain energy density of the composite, W( λ) and the work done per unit volume up

to the P − λ curve peak (marker a ) are shown in Fig. 10 B. At the onset of necking, the work done per unit volume of the

composite far exceeds the strain energy density. 

We now turn to the unloading process in which the λ reduces starting from point a . To proceed, it is convenient to

define �ε = λ − λa , i.e. the decrease in strain after the neck initiates, and εy = λy − 1 as the yield strain. Since the rubber is

elastic, its loading and unloading is not path dependent. Hence the rubber contribution to the strain energy density of the

laminate during unloading is W 
′ 
r ( λa − �ε) from Eq. (9) . The plastic contribution to the strain energy density of the laminate

during unloading is path dependent and given as: 

W p ( λ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

W p ( λa ) −
∫ 1+ εy −�ε
1+ εy P p ( λ) dλ, i f �ε < ( εy ) ∫ 1+ ( �ε−εy ) 

1 
P p ( λ) dλ, i f ( εy ) ≤ �ε < 2 ( εy ) ∫ 1+ εy 

1 
P p ( λ) dλ, i f �ε ≥ 2 ( εy ) 

(11)

Eq. (11) can be understood as follows: As the stretch decreases below λa , the plastic layer first reduces its strain energy

density while remaining under tension. At �ε = εy , the plastic completely loses tension and its strain energy density is zero.

Further increase in �ε forces the plastic into compressive deformation, and the strain energy density increases. Once �ε
reaches 2 εy , the plastic yields in compression, after which there is no further increase in strain energy density. This process

is represented by the U-shaped green curve in Fig. 10 D. The total strain energy in the composite during unloading can be

found by adding the plastic and the rubber contributions ( Eq. (8) ), and is shown as the U-shaped blue dot-dashed curve.

The minimum in this blue dot-dashed curve is now the predicted value of the stretch λd of the unnecked state. The point d

is also marked in Fig. 10 A. The dashed arrow linking a and d is only for illustration, and not quantitative. 

The calculation illustrated in Fig. 10 was done for several ω values to obtain a prediction for λunneck which is shown as

the dashed blue line in Fig. 7 C. It is in reasonable agreement with the λunneck obtained from simulations suggesting that the

above model can successfully capture the effects of inelastic deformation. We emphasize that this updated prediction still

relies on Eq. (7) , but it no longer uses the Maxwell construction. 

4.3. Effect of rubber parameters 

Simulations were conducted varying the two parameters C 2r and C 3r which define the constitutive behavior of the rubber

( C 1r was still kept at zero). These simulations were done only at an equal thickness of the rubber and plastic layers, i.e.

at ω = 1 . Fig. 11 shows the engineering stress curves and the corresponding deformed shapes as C 2r or C 3r are increased,

holding all the other parameters constant. Qualitatively, the effect of changing these parameters is similar to that of changing



14 R.G. Ramachandran, S. Maiti and S.S. Velankar / Journal of the Mechanics and Physics of Solids 142 (2020) 104012 

Fig. 11. (A,B): Engineering stresses and deformed shapes for laminate composites at λapp = 3 with ω = 1 as the C 2r value is changed keeping C 3r = 

0 . 004 MPa = 0 . 00021 × σy . (C&D): C 3r value is changed while keeping C 2r = 0 . 7 MPa = 0 . 038 × σy . The deformed configuration is shown at a λapp = 2 . 

The orange solid curves are identical to the orange curve in Fig. 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rubber thickness ( Fig. 5 ): increasing these parameters reduces the non-homogeneity of deformation (necking appears at a

higher applied stretch; λneck decreases; λunneck increases) and the nominal draw stress increases. At sufficiently high values

of C 2r and C 3r , necking is eliminated altogether. 

There are however quantitative differences between the effects of these two parameters, which can be seen by plotting

the four key metrics, λpeak , λneck , λunneck and N draw 
, against C 2r and C 3r ( Fig. 12 ). It is clear that the stretch at which the neck

appears, λunneck and N draw 
all increase significantly as C 2r increases, whereas these same quantities are fairly insensitive to

C 3r . In contrast, the stretch of the necked region, λneck , is strongly sensitive to C 3r . The reasons for these trends are evident

from Eq. (1) , the constitutive behavior for the rubber in uniaxial tension. With a series expansion at small strains, it can be

shown that 

σr = ( 6 C 2r − 48 C 3r ) ( λ − 1 ) + O 

(
( λ − 1 ) 

2 
)

(12) 

i.e. the tensile modulus is ( 6 C 2r − 48 C 3r ) . Since the C 2r values in Fig. 12 are typically two orders of magnitude higher than

C 3r values, the tensile modulus, and hence the small-strain behavior, is almost entirely dominated by C 2r . Since the neck

usually initiates at small stretch values, and λunneck is also usually small, both these are fairly insensitive to C 3r . On the

other hand, at large stretch, the terms containing 1/ λ in Eq. (1) become less important and hence the large strain behavior

is dominated by C 3r . More specifically, as increasing C 3r makes the rubber more strain hardening, it strongly resists large

deformation, and hence the λneck value reduces sharply. 

Finally, we also calculated these four quantities using the models of Section 4.1 and 4.2 and those predictions are shown

as solid lines in Fig. 12 . Broadly, the conclusions remain the same as in the previous two sections: Eq. (7) along with the

Maxwell construction method gives excellent predictions for λpeak , λneck , and N draw 
. However, λunneck is significantly under-

predicted by the Maxwell construction and slightly underpredicted by the correction for irreversible deformation illustrated

in Fig. 10 . 
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Fig. 12. Parameters extracted from the simulations of the previous Fig. 11 . Solid lines in A and D are the location of the maximum PK1 stress in Eq. 

(7) . Solid lines in B, C, E, F are predictions of Maxwell construction as applied to Eq. (7) . The dashed line in C and F are the modification described in 

Section 4.2 . 

 

 

 

 

 

 

 

4.4. Practical relevance 

The first practical message from the previous sections is that a rubber layer can altogether eliminate the necking of the

plastic. The analytical model offers a simple way to estimate the thickness of rubber needed (i.e. the ω value needed) to en-

force homogeneous deformation: ω c is the minimum rubber-plastic thickness ratio ( ω) required to make the nominal stress

response monotonic. Appendix ( Eqs. (A2) –(12)) proves that for a given plastic, the quantities ω c C 2r and λc do not depend

on C 2 r and C 3 r separately, but on the ratio C 3r / C 2r . Thus master curves of ω c C 2r / σ y and λc vs C 3r / C 2 r can be constructed

readily ( Fig. 13 ), and ω c needed for from any choice of rubber can be identified. For example, at fixed C 2r , Fig. 13 A shows

that ω c reduces strongly with increasing C / C at small values of C / C . Recognizing that the modulus is almost entirely
3r 2 r 3r 2 r 
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Fig. 13. (A) The minimum rubber/plastic ratio to avoid necking ( ω c ) in scaled form (see text) and (B) the corresponding critical stretch λc , both plotted 

against the ratio of two rubber material parameters C 3r / C 2r . 

 

 

 

 

 

 

 

 

 

determined by C 2 r ( Eq. (12) ), this means that at fixed modulus, if the rubber is even slightly strain hardening, a small rubber

thickness is sufficient to eliminate necking. 

In fact, bonding a rubber layer may be useful for improving the failure resistance of the plastic layer even if necking is

not completely eliminated. To illustrate this, Fig. 14 A redraws the state diagram of Fig. 7 C but superposes the Von Mises

effective stress in the plastic layer as a color map. Here the effective stress is calculated as: 

σe , p ( λapp ) = 

⎧ ⎨ 

⎩ 

σp ( λapp ) , i f λapp < λpeak i.e. homogenous de formation 

σp ( λneck ) , i f λpeak ≤ λapp ≤ λneck i.e. necked state 

σp ( λapp ) , i f λapp > λpeak i.e. homogenous de formation 

(13) 

Outside of the stable drawing envelope, deformation is homogeneous and hence the constant-stress contours are hori-

zontal because stress only depends on the applied stretch. In contrast, inside the envelope where the material bifurcates

into two coexisting phases, the constant-stress contours are vertical since they do not depend on the applied stretch, but

only on the material and geometric properties. 

Consider now a plastic with a failure stress of σe , p = 60 MPa , a value that exceeds the stress in the necked region of

a free-standing plastic layer. Accordingly, a free-standing plastic layer fails as soon as the neck initiates, i.e. at only a few

percent strain. Bonding a rubber layer reduces the stress in the plastic, and Fig. 14 A shows that at ω = 1 . 1 , the stress in the
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Fig. 14. (A, B, C) Envelope of stable drawing for rubber/plastic composites with three different rubbers of properties in the table. (D) Engineering stress–

strain behavior of the three rubbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plastic layer during stable drawing is below the adopted failure value. Thus, rubber bonding may be an effective toughening

mechanism, i.e. may force ductile deformation in a plastic that is relatively brittle. 

Finally, the ability of the rubber layer to reduce stress in the plastic depends almost entirely on the strain hardening

characteristics of the rubber at large strain, not on its small strain behavior. This is illustrated in Fig. 14 B–D. Fig. 14 D shows

the nominal stress–strain behaviors of three different rubbers dubbed r, ra , and rb . The rubber material properties C 2r and

C 3r are listed in Fig. 14 . The rubber r corresponds to the same properties as used in most of this paper. The rubber ra has

nearly the same modulus as r but no strain hardening, whereas rb has the same strain hardening behavior as r , but zero

C 2r . 

Fig. 14 B and C shows the boundaries of the coexistence regions for ra and rb respectively. The minimum rubber thickness

value needed to avoid the necking of the plastic layer are seen to be ω = 29 . 9 for ra and ω = 98 . 4 for rb . i.e. both these

rubbers require a large thickness to eliminate necking. However, to avoid failure (i.e. keep σp , eff = 60 MPa ), the ω values

needed are 39.3 for ra and 1.4 for rb ; the latter value is not much larger than for the rubber r , which was 1.1. Clearly,

reducing the degree of strain hardening of the rubber greatly increases the rubber thickness needed to avoid failure, whereas

reducing the rubber modulus has little effect. This is not surprising: since λneck values for the plastic are quite high, the

low-strain behavior of the rubber does not play a significant role. Indeed, some polymeric plastics can have λneck values

exceeding 10 ( Andrews and Ward, 1970 ; Seguela, 2007 ), especially at elevated temperatures. In such situations, the rubber

would be forced into an extremely high-strain state, and even very thin rubber layers may significantly reduce the stress in

the plastic. In summary, for improving failure resistance during drawing, one needs to add a layer with high large strain-

strain hardening, whereas its small strain behavior is nearly irrelevant. 

5. Summary and conclusions 

We adapted an energy-based model, originally developed to capture the behavior of unsupported plastics, to rubber-

plastic laminate composites. This model quantitatively captured some of the key parameters predicted by the simula-

tions, including the engineering stress (or force) needed for drawing, the stretch at which the neck first appeared, and

the stretch of the necked region during stable propagation. However, because the model ignores inelastic deformation (i.e.

plasticity), it underpredicts the stretch of the unnecked region. An improved prediction was obtained by including the ef-
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fects of irreversible deformation explicitly in the energy model. The results from finite element simulations validate the

model. 

The two most interesting insights from this article are 

(1) The stable drawing behavior of the laminate composites can be regarded as the coexistence of two states, analogous

to the thermodynamic phase transition that ends in a critical point. The envelope of this two-state region as layer

thickness is varied strongly resembles a typical two-phase region, e.g. of a gas-liquid transition. 

(2) Strain hardening rubber layer can reduce the stress in the plastic layer, even when the rubber is too thin to eliminate

necking. Therefore, even a modest amount of elastomer may inhibit failure of the plastic layer during drawing. 
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Appendix 

Rule of mixtures using force in free-standing layers 

Thickness-weighted sum of the force in each free-standing layer gives: 

F = w h p F p + w h r F r 

which can be re-written as 

N = N p 

(
1 

ω + 1 

)
+ N r 

(
ω 

ω + 1 

)
. (A1) 

In this equation, N = 
F 

w ( h p + h r ) is the nominal stress in the laminate composite, whereas N p = 

F p 
w h p 

and N r = 
F r 
w h r 

are the

nominal stresses in the free-standing plastic and rubber respectively. Such a force-additivity rule of mixtures is convenient

experimentally since it can be constructed from measured forces without needing to assume any specific constitutive be-

havior for each material. In contrast, Eq. (7) in the main text requires knowledge of the constitutive behavior since it is the

PK1 stresses that are added. 

Appendix Fig. A1 shows that Eq. (A1) tracks the nominal stress curves approximately, but with significant and systematic

deviations over much of the stretch range. Most obviously the nominal stress from the simulation shows a much broader

peak and a completely flat plateau, neither of which are captured correctly by Eq. (A1) . 

This deviation is not surprising since the assumption underlying Eq. (A1) is that the two materials are stretched in

parallel with no interaction between the layers. Therefore, the plastic and rubber layers can be in different stretch states,

and in particular, Eq. (A1) adds together the forces from a free-standing plastic layer that deforms non-homogeneously and

a free-standing rubber layer that stretches homogeneously. In contrast, the simulation imposes perfect bonding between the

layers and hence equal stretch in both layers. Accordingly, over a wide range of stretch values, the free-standing plastic, the

free-standing rubber, and the composite are all in different stretch states, thus a simple addition of forces does not give an

accurate prediction. 

Scaling of the critical point with ratio of the rubber parameters 

In the article, we constructed the PK1 ( P ) stress for the composite as a weighted average of the rubber and plastic: 

P = 

(
1 

ω + 1 

)
P p ( λ) + 

(
ω 

ω + 1 

)
P r ( C 2r , C 3r , λ) (A2) 

In the above, P p is denoted as a function of λ alone to indicate that for the following analysis, the parameters of the

plastic are taken as a constant. The first two derivatives are each set to zero: 

∂ P p ( λc ) 

∂λ

(
1 

ω + 1 

)
+ 

∂ P r ( C 2r , C 3r , λc ) 

∂λ

(
ω c 

ω + 1 

)
= 0 (A3) 
c c 
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Fig. A1. Solid lines are the simulated nominal stress response for cold drawing plastic- rubber trilayer laminates of ω = 1 , 3 and 7 (same data as in Fig. 5 A). 

The dotted lines are the rule of mixture prediction based on the nominal stress behavior of individual free-standing layers ( Eq. (A1) ). 

 

 

 

 

 

 

 

 

 

 

∂ 2 P p ( λc ) 

∂ λ2 

(
1 

ω c + 1 

)
+ 

∂ 2 P r ( C 2r , C 3r , λc ) 

∂ λ2 

(
ω c 

ω c + 1 

)
= 0 (A4)

The above two equations give two expressions for ω c , 

ω c = −
∂ P p ( λc ) 

∂λ
∂ P r ( C 2r , C 3r , λc ) 

∂λ

and ω c = −
∂ 2 P p ( λc ) 

∂ 2 λ
∂ 2 P r ( C 2r , C 3r , λc ) 

∂ 2 λ

(A5)

These two equations can be equated to eliminate ω c and rearranging, 

∂ P r ( C 2r , C 3r , λc ) 
∂λ

∂ 2 P r ( C 2r , C 3r , λc ) 
∂ λ2 

= 

∂ P p ( λc ) 
∂λ

∂ 2 P p ( λc ) 
∂ λ2 

= f 1 ( λc ) (A6)

where f 1 ( λc ) is a function of λc alone. While f 1 ( λc ) can be evaluated from the expression P p given in the text, for the

present purposes, it is not necessary to evaluate it explicitly. We can relate, C 2r , C 3r and λ through the constitutive relation

as follows: 

P r ( C 2r , C 3r , λ) = 

[
2 C 2r λ

−1 + 4 C 3r 
(
λ2 − 2 λ−1 − 3 

)](
λ − λ−2 

)
(A7)

Taking the first and second order partial derivative of P r with λ and substituting in Eq. (A6) , 

∂ P r ( C 2r , C 3r , λc ) 
∂λ

∂ 2 P r ( C 2r , C 3r , λc ) 
∂ λ2 

= 

−C 2r λ
−4 
c + 2 C 3r 

(
λ2 
c − 2 λ−4 

c − 2 λ−3 
c − 1 

)
4 C 2r λ

−5 
c + 4 C 3r 

(
λc + 4 λ−5 

c + 3 λ−4 
c 

) = f 1 ( λc ) 

which gives , 
−λc + 

2 C 3r 
C 2r 

(
λ7 
c − 2 λc − 2 λ2 

c − λ5 
c 

)
4 + 

4 C 3r 
C 2r 

(
λ6 
c + 4 + 3 λc 

) = f 1 ( λc ) (A8)

Rearranging, 

C 3r 
C 2r 

= 

4 f 1 ( λc ) + λc 

2 
[
λ7 
c − 2 λc − 2 λ2 

c − λ5 
c − 2 

(
λ6 
c + 4 + 3 λc 

)
f 1 ( λc ) 

] = f 2 ( λc ) (A9)

where f 2 ( λc ) is a function in λc alone. This shows that λc depends on the ratio 
C 3r 
C 2r 

, and not on C 2r and C 3r separately,

justifying the plot of Fig. 2 B in the main text. 

Returning to the equation for ω c 

ω c = −
∂ P p ( λc ) 

∂λ
∂ P r ( C 2r , C 3r , λc ) 

= −
∂ P p ( λc ) 

∂λ

−C 2r λ
−4 
c + 2 C 3r 

(
λ2 
c − 2 λ−4 

c − 2 λ−3 
c − 1 

) (A10)
∂λ
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Therefore, 

ω c C 2r = −
∂ P p ( λc ) 

∂λ

−λ−4 
c + 

2 C 3r 
C 2r 

(
λ2 
c − 2 λ−4 

c − 2 λ−3 
c − 1 

) (A11) 

Since λc has one-to-one relation with 
C 3r 
C 2r 

, the form of the above equation is 

ω c C 2r = f 3 ( λ) = f 4 

(
C 3r 
C 2r 

)
(A12) 

This shows that ω c C 2r depends on the ratio C 2r / C 3r and not on C 3r and C 2r separately, justifying Fig. 13 A in the main text.

Experimental and simulated engineering stress – applied stretch curves 

Determination of stretch in the necked and unnecked regions 

Critical exponent 
Fig. A2. Simulated (sold curves) and experimentally obtained (dashed curves) engineering stress-applied stretch curve for (a) SEPS rubber and (b) LLDPE. 
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Fig. A3. (A) Maximum and minimum values of stretch within each specimen during the stretching process. The specimen length is 20 mm. The diagonal 

λ = λapp line represents homogeneous deformation. Simulations with ω ≤ 5 show clear plateaus in λmax and λm in , which are respectively taken as λneck 

and λunneck respectively. Simulations with ω > 6.7 show no deviation from the diagonal, i.e. homogeneous deformation. The simulation with ω = 6 does 

not show clear plateaus in λmax and λmin because the deformation is nearly homogeneous. Specifically, the neck evolves very gradually, and hence the 

entire sample reverts to homogeneity before stable drawing can be established. This is a finite-length effect, as illustrated in B. (B) Simulation with ω = 6 

conducted with two different simulation lengths keeping the width and thickness fixed. The longer geometry gives clear plateaus in λmax and λmin . For 

this ω value, the longer simulation geometry was used to obtain λneck and λunneck . 

Fig. A4. The predictions of the Maxwell construction (same as λneck and λunneck values as from Fig. 7 C) redrawn in the form suitable for second-order 

phase transitions. 
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