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Flash points of organic molecules play an important role in preventing flammability hazards
and large databases of measured values exist, although millions of compounds remain
unmeasured. To rapidly extend existing data to new compounds many researchers have used
quantitative structure-property relationship (QSPR) analysis to effectively predict flash points.
In recent years graph-based deep learning (GBDL) has emerged as a powerful alternative
method to traditional QSPR. In this paper, GBDL models were implemented in predicting
flash point for the first time. We assessed the performance of two GBDL models, message-
passing neural network (MPNN) and graph convolutional neural network (GCNN), by
comparing against 12 previous QSPR studies using more traditional methods. Our result
shows that MPNN both outperforms GCNN and yields slightly worse but comparable
performance with previous QSPR studies. The average R? and Mean Absolute Error (MAE)
scores of MPNN are, respectively, 2.3% lower and 2.0K higher than previous comparable
studies. To further explore GBDL models, we collected the largest flash point dataset to date,
which contains 10575 unique molecules. The optimized MPNN gives a test data R? of 0.803
and MAE of 17.8 K on the complete dataset. We also extracted 5 datasets from our integrated
dataset based on molecular types (acids, organometallics, organogermaniums, organosilicons,

and organotins) and explore the quality of the model in these classes.
1 Introduction

Quantitative structure—property relationship (QSPR) analysis has been widely used in
predicting various properties of molecular systems. As a popular analytical method, many
previous studies have been done on assessing QSPR.[!#1 QSPR uses features, typically
directly calculated from molecular structure (e.g., bond networks, functional groups,
molecular size) but also potentially from measured properties (e.g., boiling points), and

correlates them with measured properties of interest, such as toxicity, solubility, and flash



point. The correlations are then applied to predict the target properties for new systems. A
large list of features has been developed through extensive human ingenuity and testing over
many decades, and now thousands of possible features can be determined from just the basic

molecular description (e.g., SMILES string).

In recent years, with the development of deep learning, machine learning models have
become increasingly popular as a QSPR method. In particular, graph-based deep learning
(GBDL) models have emerged as a promising QSPR method in predicting properties of
molecular systems.[*!!l GBDL models map molecules to graphs, where nodes are atoms and
edges are chemical bonds. These graphs are represented by adjacency matrices. Features, such
as atom features, bond features and geometrical features, are also represented as matrices,
which are then incorporated together with adjacency matrices by using various algorithms and

model architectures to predict molecular properties.

Traditional QSPR features are motivated by chemical intuition and therefore have had
significant human input into their development. GBDL methods use a limited set of
fundamental features specifying the basic atomic structure of the molecule. The GBDL
approaches may therefore offer more flexibility in systems with novel chemistry and
potentially provide greater accuracy on problems where the deep learning algorithms can
discover better feature maps than those developed by humans. It is therefore important to
assess how well such GBDL methods perform compared to more traditional QSPR

approaches based on more human engineered features.

In this work we focus on modeling flash points. This physical property was chosen for
the following three reasons: First, flash point is an important property to prevent fire hazard
related to the storage, transport, and use of flammable substances, so accurate models are of
value. Second, previous studies and public chemistry databases provide enough flash point
values to train deep learning models and provide robust model assessment. To enable this
study, we have collected the largest flash point dataset to date of which we are aware, which

contains 10575 unique molecules, all with valid SMILES strings (see section 2.1 for details of
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the database). Third, to the best of our knowledge, no researchers have used GBDL to predict
flash point in the literature, so a comparison between GBDL models and traditional QSPR
approaches in predicting flash point provides a test of the graph-based methods for a new

domain of significant practical importance.

This work assesses the performance of GBDL models in predicting flash points with
two methods. First, by comparing our results with previous studies that use traditional QSPR
approaches, and second, by using our models to predict a test sample of our dataset as well as
samples of data in different chemical domains. We apply two GBDL models that are
implemented in DeepChem:[!3] Graph Convolutional Neural Network (GCNN)!Bl and Message
Passing Neural Network (MPNN).!'!l To conduct an effective comparison to previous QSPR
studies, we first identified the datasets and data partitioning methods from each previous

study, then trained and tested optimized GBDL models using these datasets.

The samples from the comprehensive dataset and chemical domain datasets were used
to measure the robustness and chemical domain adaptability of the GBDL models. Fitting and
testing on our complete distribution assessed the ability of our models to predict flash points
across many chemistries. Training on the full dataset and assessing the fit accuracy on specific
chemical subsets assessed how well our models predict flash point in specific domains of
potential interest, which may be significantly different from the average accuracy on the total
dataset. For subsets we focused on acids and different types of organometallics. The
motivation for these subsets is that they represent categories with different chemistry, e.g.,
governed by their metal content, which might make them both of interest for certain
applications and susceptible to significant fitting bias. For example, acids are of interest for
their corrosive properties and represent a certain health hazard, and organisilicons are of
interest as sealants and herbicide additives. The studied categories are representative
examples of how a flash point model might be used in a specific domain, although these are

by no means the only possible examples.



The paper in organized as follows. Sec. 2 describes the methods, including properties

of all the datasets and models. Sec. 3 gives the results, including a comparison of the GBDL

models to previous studies (Sec. 3.1), an assessment of the GBDL models on the total dataset

(Sec. 3.2), and an assessment of the GBDL models on the specific chemically related subsets

(Sec. 3.3). Sec. 4 provides a summary of conclusions and Sec. 5 provides a summary of the

data and code management.
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Figure 1. Flash point distribution of integrated dataset after removing duplicates.

Chen Wang Mathieu Mathieu Katrizky Saldana Le Pan Pan Patel Carroll Carroll Carroll Godinho
14 11 12 14 07 11 15 07 13 10 10 11 15 11
I\/I(ia)m 3155 3149 3149 338.6 3082 3245 3714 287.1 313.6 3284 293.1 3127 3241 334.6
Stdev 46.1 446 446 69.6 48.6 56.2 741 375 441 649 391 414 394 18.9
Size 211 210 210 1328 739 631 8843 92 193 234 292 937 81 75
Original
Size 236 230 230 1457 758 631 9399 92 207 236 300 1000 82 103

Table 1. Statistics of extracted datasets from papers. Names refer to first author and year for the following references:
Chen14 [19], Wang11 [14], Mathieu12 [23], Mathieu14[27], Katrizky07 [28], Saldana11 [26], Le15 [21], Pan07 [22], Pan13 [24],
Patel10 [25], Carroll10 [16], Carroll11 [15], Carroll15 [18], Goinho11 [20]. “Original size” is the size of the dataset taken from the

reference. “Size” is the size of the dataset we used after removing cases where we could not obtain valid SMILES strings.

2 Methods

2.1 Dataset Description

We collected data from academic papers,!

14--

28] the Gelest chemical catalogue,*Y the

DIPPR database,!'?! Lange’s Handbook of Chemistry,'*!l the Hazardous Chemicals

Handbook,*?! and the PubChem chemical database.** Basic properties of the flash point

datasets from each paper (size, average, and standard deviation) are given in Tablel. Only



experimental data was used. In particular, only flash point values that were stated to be
experimental were collected from DIPPR, which also contains significant amounts of flash
point data predicted by models. In the collection process, we included flash point values
measured with open cup and closed cup methods together, although some subsets from
specific papers used only closed cup. The advantage of including both types of measurements
is that this provides the largest possible dataset for training. As stated by Le et al.,*!) the
closed cup flash point is typically 5-10 K lower than the open cup one and experimental errors
are typically 5-8 K. Thus the errors between methods are close to the inherent experimental
errors and we feel that little accuracy is lost in the machine learning modeling by including
both open and closed cup measurements together. All distinct databases and datasets of which
we were aware that were easily accessible and from the past ten years were collected. We
excluded data in PDF formats that Tabula,*! an open-source table extractor for PDF files,
could not extract. We also excluded entries for which we could not obtain a valid SMILES
string (see section 2.2). All collected data was integrated into a dataset of 17333 total and
10575 unique compounds. We remove all duplicates from the dataset as described in section
2.2, where duplicate is defined as having the same canonical SMILES representation. When
duplicates occur, we find their mean and standard deviation. If the standard deviation of
duplicate flash point values is greater than 5 K we remove all entries of that compound and
take it to be uncertain. If the standard deviation is less than or equal to 5 K we keep one entry
representing all the duplicates and assign it the mean value of all duplicate flash points. The
distribution of flash points after removing duplicates is shown in Figure 1, and statistics on
the whole dataset are given in Table 2. All the data is provided in the supporting information

except data from DIPPR, as this database is proprietary.

We explored the accuracy of our models on specific chemical subsets of the data to
determine if there are any biases related to specific chemistries. For the chemistry types we
divided our entire dataset into five categories: acids (contain the word “acid(s)” in the

chemical name), all organometallics (contain a metal or metalloid atom), organogermaniums



(contain Ge), organosilicons (contain Si), and organotins (contain Sn). The size of each

chemical dataset and their average and standard deviation flash points values are given in

Table 2.
Full Aci Organo- Organo- Organo- Organo-
cids . . . ’
Dataset metallics germaniums silicons  tins
'\"(f("’)‘” 3710 401.8 320.1 3232 3149 387.9
Std 733 658 523 37.9 43.5 78.9
Size 10575 1386 1576 35 1382 50

Table 2. Statistics for whole dataset and each chemical dataset.

2.2 Data Preparation

We collected compounds' TUPAC name and used an open source parser, OPSIN,4l to
generate SMILES strings from the [TUPAC name. RDKit,**) an open-source cheminformatics
software package, was then used to canonicalize SMILES strings and validate their
correctness. We removed compound names that OPSIN could not convert to SMILES strings,
but the tool effectively generated SMILES strings for most of the chemical compounds. For
any given test described below we removed duplicate canonical SMILES strings as
appropriate so that training, validation, and test datasets never contained duplicates within or
between each other. The final data refinement step was to keep only entries that were organic
(and metalorganic) molecules. Specifically, we manually checked data extracted from non-
academic paper sources, removing all non-organic molecules. We defined organic molecules
simply as molecular systems having at least one carbon atom. Open-source software from the
DeepChem library converted the SMILES strings to feature vectors used to train graph-based
deep learning models. DeepChem’s convolutional featurizer generator made features for the

GCNN model and the weave featurizer generated features for the MPNN model.

2.3 Models

Implementations of MPNN and GCNN models were taken from the DeepChem

library.['3] At a high level, both approaches abstract a molecule as a graph where the nodes are
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atoms and the edges are bonds. MPNN and GCNN features include atom degree, implicit
valence, formal charge, number of radical electrons, and hybridization encoded via one hot
encoding. Both models use a canonical adjacency list and bond list for graph representation.
The MPNN model has an additional set of pair features, which encodes the connectivity of

atoms per molecule.

Graph convolution models take the aforementioned features as initial features for
every molecule, which features are then passed to graph convolution modules. In graph
convolution modules, each of which contains a graph convolutional layer followed by a batch
normalization layer and a graph pool layer, atom features are updated by combining with
neighboring atoms using an adaptive function. Then feature vectors are passed to a fully-
connected layer to finish the convolution. Finally, the feature vectors for all atoms are
summed, generating a graph feature vector, which is fed to a regression layer for making
predictions.® Our GCNN implementation!*¢! followed DeepChem’s GCNN implementation,
which contains two graph convolution modules followed by a fully-connected dense layer and

a regression layer.

MPNN operates on undirected graphs with a feature vector per node and edge. The
two forward feeding phases are a readout phase and a message passing phase. The readout
phase computes the feature vector for the entire graph and the message passing phase updates
hidden states at each node based on the selected update function. Our implementation of the
MPNN model followed DeepChem’s MPNN implementation,*®! which uses the best
approaches for MPNN models determined in Gilmer et al.l''! A seq2seql! model implements
the readout phase, which is a machine learning model used to abstract features from sets. An
edge dependent neural network implements the message passing phase, which maps all
neighboring atoms’ feature vectors to updated messages merged by gated recurrent units. The
seq2seq model implements the gated recurrent units. In the final readout phase all atoms’
feature vectors are abstracted as a set. The seq2seq model updates the final feature vectors and

outputs them to the graph representing the molecule.!"]



2.4 Optimization and Evaluation of Graph-based Deep Learning Models

We made our comparisons according to the metrics of Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), R-squared Score (R?), and Average Absolute Relative
Error (AARE), although not all statistics were available from each paper. We used built-in
methods in the DeepChem package!'*! to calculate RMSE, MAE, and R2. Equations used to

calculate RMSE, MAE, R? and AARE are shown in Equation (1)--(4) respectively.
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* N is the number of compounds; FP,,.q; and FP,,,; are, respectively, the i*" molecule’s

predicted flash point value and experimental flash point value. FF,,,, is the mean value of

experimental flash point values

When doing literature comparisons, a nested 5-fold cross validation method was
implemented for model optimization and error assessment. Comparisons were made to the
best model from each paper. The primary papers that we compared against can be divided into
two categories with respect to their testing: The first category used an 80 % training 20 % test
splitting method (“80/20 split” papers) without providing the exact test set!!3-17- 19-22.24. 28]
Note that we used Katrziky07’s ANN dataset partitioning method®® as we compared to their
ANN modeling. The second category provided a specific test set in the paper (“explicit test”

),11418:23.251 and for this category we use the provided test sets for assessing our models.

papers
For the 80/20 split papers we used a 5-fold cross validation on randomly shuffled data, which
should be a comparable model assessment to that used in the paper. The first fold was taken

as the test set and the remaining 4 folds were combined as a training set. An optimization of

the GCNN and MPNN model hyperparameters was then done on the training set by



minimizing the (nested) 5-fold cross validation RMSE (details of the hyperparameter
optimization are below). Then we trained our optimized model on the full training set, tested
on the test set, and recorded test set RMSE, MAE, R? and AARE scores. To ensure stable
error estimates for the test set, we repeated the aforementioned procedure until all 5 folds
were used. The one exception to this approach was our analysis of Lel5, where, due to the
large size of the data, only one fold was used. It should be noted that one test fold of the Lel5
dataset contains 1768 compounds, which size we believe ensures the robustness of test set
prediction statistics. If the optimization-testing procedure was conducted more than once, we
calculated the mean value and standard deviation for each metric as our final result. For the
“explicit test” papers we optimized each GCNN model and MPNN model on the provided
training set by minimizing the 5-fold cross validation RMSE. Then we trained our optimized
model on the provided training set, tested on the provided test set, and recorded test set
RMSE, MAE, R? and AARE scores as our final results. With these steps, we believe our
comparisons are as accurate as possible. We note that some of the papers using boiling-point
as a feature used other testing methods but as these papers are not appropriate comparisons for
the GBDL methods (see Sec. 3.1) we do not make any attempt to mimic their testing

approaches.

We tested the performance of the models on test sets constructed from the entire
dataset, as well as from subsets broken out by specific chemical types, as described above.
For the chemical subset test sets, we randomly selected 20% of acids, 20% of
organometallics, 50% of organogermaniums, 20% of organosilicons, and 50% of organotins
as test sets for each chemical type, respectively. It should be noted that, while we generally
chose 20% size test datasets in this work when a choice was needed, the 50% of
organogermaniums and organotins are used here to try to have a larger test dataset size as
these chemical classes have relatively few members. For testing on the entire dataset, we
integrated the aforementioned chemical test sets and randomly added points from the full

database (excluding the chemical test sets) to the integrated test set to make the total test set



size to be around 20% of the entire dataset size. Then all other points in our entire dataset
were used as the training set. Before testing, we optimized the GCNN model and MPNN
model hyperparameters on the training set by randomly choosing 20% of the training set as a
validation set. For these tests, we didn’t use multiple leave-out validation sets because the
validation set is large enough to obtain a stable result and multiple hyperparameter
optimizations on such a large training set was too computationally demanding. After
optimizing, we trained our model on the training set, tested our model on total and chemistry
specific test sets, and recorded test set RMSE, MAE, R? and AARE scores. Both the GCNN

and the MPNN were optimized and trained on CPU and GPU architectures.

We used a simple grid search method to do model hyperparameter optimization,
taking the best performing value from the grid as the optimal parameter set. The spaces
searched for GCNN and MPNN models are summarized in Table 3. We also note that this set
of hyperparameters is not comprehensive and that the exploration was only over a very
modest grid of values. This limited search was necessary to keep computations manageable
over the many optimizations performed in this work. However, it is likely that at least
somewhat better hyperparameter sets could be found for any particular case with a more

complete optimization.
GCNN Grid Search Space

Batch size 8%,32
Epochs 70,100,150%,200,400
Tasks 1
Convolution layers [64,64]
Dense layers 128,256,512*
Dropout 0.0,0.2%,0.4
Learning rate 0.005, 0.0005*, 0.001

MPNN Grid Search Space

Batch size 8*,32
Epochs 70,100,150,200%,400
Tasks 1

Atom features 75
Pair features 14
T 1
M 1
Dropout 0.0,0.2%,0.4
Learning rate 0.005, 0.0005*, 0.001
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Table 3. Search space for grid search optimization. Definitions of all parameters are given in Refs. [36, 8] (GCNN) and [36, 11]
(MPNN). Optimal values used for the model for the full dataset (see section 3.2) are noted with a *.

Chen Wang Mathieu Katrizky Le Pan Pan Patel Weighted Weighted
yee "0 110 12 07 15 o7 13 10 Mean Stdev i oge  stdev
Original - Best g5 g9 089 08 09 099 091 0772 091 004 089 003
reference result
Mean 078 085 085 084 087 09 086 081 084 004 086 002
Stdev 007 - ; 003 - 006 002 - 004 002 004 002
GCNN  piff -0.14 -0.04 -0.04 -0.01 -0.03 -0.09 -0.05 0.04 -0.05 005 -0.03 0.02
Rz Diff % |50, 46% 46% 16% o7, -89% -58% 52% 49% 58% 37% 237%
Mean 083 087 087 087 086 09 086 082 087 004 086 001
Stdev 006 - ; 002 - 002 007 - 004 003 003 003
MPNN  Diff -0.09 -0.02 -002 002 -004 -003 -005 005 -0.02 004 -003 002
Diff % -9.5% -2.2% 22% 25% , ., -30% -53% 62% -23% 48% 37%  262%
Original - Best 444 115 42 439 - 48 111 - 105 31 12 24
reference result
Mean 163 139 139 13 189 9 151 24 155 44 182 23
conn Stev 18 - ; 13 - 12 22 - 16 04 15 0.4
) Dif 6 28 19 -09 - 42 4 - 3 23 17 28
MAE (K) Diff % 57.9% 24.9% 16.1% -6.3% -% 87.5% 36.1% -% 36.0% 33.0% 18.8%  30.1%
Mean 17.8 133 133 122 179 6 13 246 147 54 173 25
ey Stdev 2 ; ; 12 - 12 22 - 17 05 15 05
Dif 74 21 13 A7 - 12 19 - 2 3 0.9 3.2
Diff % 72.0% 19.1% 10.7% -122% % 25.0% 17.1% -% 21.9% 27.7% 10.9%  29.3%
Original - Best ; ; - 257 69 141 - 156 95 253 29
reference result
Mean 215 17 17 199 27 12 187 324 207 64 259 35
Stdev 24 - ; 24 - 18 25 - 23 03 24 0.2
) GONN hir - ; ; - 13 514 45 - 37 24 14 07
RMSE (K) Diff% -% %  -% %  51% 74.6% 32.2% -% 37.3% 35.1% 6.4%  9.1%
Mean 19.8 162 162 181 277 84 169 336 196 7.7 262 43
ey Stdev 28 - ; 26 - 21 38 - 28 07 28 05
Diff - ; ; ; 2 15 28 - 21 06 2 01
Dif% % % % % 77% 22.4% 19.6% % 16.6% 7.8% 81%  2.6%
Original -~ Best 55 57 ; ; - - 32 - 35 02 35 0.2
reference result
Mean 54 46 46 43 49 34 49 69 49 1 49 0.4
cony Stlev 08 - ; 06 - 06 08 - 07 04 0.7 01
Dif 18 09 ; ; - 3 - 19 14 1.9 1.0
AARE(%)? )
Diff % 49.1% 257%  -% % % <% 503% -% 41.7% 13.9% 415% 13.1%
Mean 48 44 44 4 46 22 42 69 44 13 46 05
Stdev 09 - ; 05 - 05 07 - 06 02 06 0.2
MPNN "o
Dif 12 07 ; ; - - 03 - 07 04 07 0.4
Diff % 33.3% 202%  -% % % % 302% % 27.9% 69% 27.8%  65%

" All results are test set results

2R2 was also referred to as predictive capability (Q2) [14]

®MAE was also referred to as average absolute deviation [22, 23, 25]
¢ RMSE was also referred to as standard error of prediction [21]
4 AARE was also referred to as average absolute error in percentage [19], average error in percentage [14, 24], and absolute

average relative deviation [23].

€Wang11 and Mathieu12 used same dataset
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Table 4. Comparisons between GBDL models and non-boiling point papers (see text for details on the role of boiling point

Original Reference Best Result,

) *100.

feature). Diff is calculated by (Mean — Original Reference Best Result), and Diff % is calculated by
(Mean—Original Reference Best Result

Type Ca;r(l;oll Ca;r1roll Ca;rgoll Got11|1nho Mean  Stdev Wf,:g';:\ed W:tlggfled
Original reference rzzlsjltt 0.99 0.99 1 0.97 0.99 0.01 0.99 0.01
Mean  0.97 0.93 0.98 0.74 0.9 0.11 0.93 0.06
Stdev  0.01 0.03 - 0.21 0.08 0.11 0.04 0.05
Diff -0.02 -0.07 -0.02 -0.24 -0.08 0.1 -0.07 0.05
R Diff % -1.50% -6.70% -1.90% -24.40% -8.60% 10.80% -6.3% 5.5%
Mean  0.98 0.96 0.98 0.96 0.97 0.01 0.97 0.01
Stdev 0 0.02 - 0.05 0.02 0.02 0.02 0.01
Diff -0.01 -0.03 -0.02 -0.01 -0.02 0.01 -0.02 0.01
Diff % -1.00% -3.30% -1.90% -1.40% -1.90% 1.00% -2.6% 1.1%
Original reference rzgﬁltt 2.9 2.5 2.2 2.8 2.6 0.31 2.6 0.2
Mean 6.4 7.3 5.1 6 6.2 0.93 6.9 0.7
Stdev 2.8 0.4 - 1 1.41 1.26 1.0 1.2
. Diff 3.5 4.8 2.9 3.2 3.6 0.85 43 0.8
MAE (K) Diff % 121.90% 192.00% 130.50% 114.30% 139.70% 35.50% 169.4%  36.6%
Mean 4.8 5.9 3.9 25 4.27 1.45 5.4 1.0
Stdev 0.6 1 - 0.5 0.7 0.27 0.9 0.2
Diff 1.9 34 1.7 -0.3 1.67 1.53 2.8 1.1
Diff % 64.50% 136.80% 77.30% -11.50% 66.80% 60.90% 110.1% 47.2%
Original reference rzzlsjltt - - - - - - - -
Mean 8.3 11.4 6.1 8.3 8.5 2.19 10.3 1.9
Stdev 2.6 1.9 - 1.2 1.87 0.7 2.0 0.4
Diff - -% - - - - - -
RMSE (K) Diff % % % % % % % % -
Mean 6.3 8.7 6.5 3.2 6.15 2.27 7.8 1.7
Stdev 0.9 1.8 - 0.5 1.08 0.66 1.5 0.5
Diff - -% - - - -% - -
Diff % -% -% -% -% -% -% -% -
Original reference rzglsjltt - 0.8 - - 0.8 -% 0.8 -
Mean 22 23 1.6 1.8 1.98 0.34 22 0.2
Stdev 1 1.3 - 0.3 0.88 0.52 1.2 0.3
AARE (%) Diff - 1.5 -% -% 1.53 - 1.5 -
Diff % -% 191.10% -% -% 191.10% -% 191.1% -
Mean 1.6 1.9 1.2 0.8 1.37 0.5 1.7 0.3
Stdev 0.2 0.3 - 0.1 0.22 0.09 0.3 0.1
Diff - 1.1 -% -% 1.1 - 1.1 -
Diff % -% 137.50% -% -% 137.50% -% 137.5% -

" All results are test set results
#MAE was also referred to as average absolute deviation [15, 16, 18, 20].

Table 5. Comparisons between GBDL models and boiling point papers (see text for details on role of boiling point feature). Diff

is calculated by (Mean — Original Reference Best Result) and Diff % is calculated by

Mean-Original Reference Best Result

Original Reference Best Result,
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*Le15 and Patel10 didn’t provide MAE.
*Wang11, Mathieu12, Le15, Patel 10, and Carroll15 were only tested on given test set once. More details please see Sec 2.4

Figure 2. (A) MPNN R? result comparisons. (B) MPNN MAE result comparisons. Error bars represent one standard deviation of
values over all validation or test sets studied (see section 3.1 text for discussion of validation and test sets).

3 Results and Discussion

3.1 Comparison to Literature Results
The developed GCNN and MPNN models were compared against the results of a
number of previous investigations into flash point prediction. We excluded testing against

previous papers that made use of the DIPPR dataset. This choice was motivated by two

13



factors. First, DIPPR contains both experimental and model data, the latter predicted by data
centric approaches. Some authors did not clearly state that they were including only
experimental data, and if they included model data it might skew their models and would not
be a proper dataset for testing machine learning approaches. Second, because DIPPR is
proprietary, authors did not share their datasets (or at least should not have shared sets if they
did), which means that in almost all cases we cannot determine exactly which data points
were used in the fitting. Excluding comparisons to DIPPR studies still allowed comparisons to
a number of other studies without such issues. We divide the analysis into two categories:
comparisons with papers that did not use boiling point as a molecular feature (non-boiling
point papers) and comparisons with papers that did use boiling point as a feature (boiling
point papers). We make this separation because, while using measured physical properties
like boiling point can boost prediction accuracy, getting such features for any new system
requires synthesizing that system and then measuring the property. These steps are
enormously more difficult for new systems than using features that can be automatically
generated from just the molecular description. Therefore, boiling point papers represent a
qualitatively different type of model than non-boiling point papers and should be compared
separately. Details regarding the results of comparisons are recorded in Table 4 and Table 5.
In Table 4 and Table 5, we provide both a uniform weighted (a simple mean) and dataset
relative size weighted average score for each metric. The uniform weighted approach simply
weights the value from each paper by 1/(number of papers) and represents a typical value you
might get for a given paper dataset. The dataset relative size weighted approach weights the
value from each paper by (dataset size for that paper)/(sum of all dataset sizes) and represents
a typical value you might get for a random sample from all the available data. Dataset sizes
are taken from the “Size” row in Table 1. For each weighted average we also provide the
corresponding weighted standard deviation. Equations used to calculate weighted average and

weighted standard deviation are shown in Equation (5) and (6) respectively.

Zil 1w+ x;) (5)
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=N 1s the number of datasets involved in the calculation; N’ is the number of non-zero

weights; w; are weights; X, is weighted average.
For this paper, N’ and N are the same and the sum of weights is 1 in Equation (6).

As the goal for this paper is to assess GBDL models by comparing with specific
previous QSPR studies, our discussion will be based on mean values. Mean values from Table
4 are also shown in bar charts comparing MPNN results with previous studies for two of the
most widely used statistics, R> and MAE, in Figure 2A and 2B, respectively. Recall that we
are using statistically similar test data and comparison in most cases, and exact test data
comparisons for some cases (see Methods section). Upon analysis of the comparisons, it
becomes immediately clear that the MPNN model outperforms the GCNN model as MPNN
has better average scores, and generally better scores for each dataset, for all four metrics we
are using to evaluate models. Given these observations, further discussion of comparisons

with paper results will only consider the MPNN model.

With respect to the non-boiling point papers, the MPNN model generally performed
worse than the average reported results of the papers. We obtain decreases in R? of 2.3% on
average, and an average increase in MAE of 21.9% (2.0 K). Across each metric, significant
improvements were observed in comparisons to two papers. Specifically, the MAE and R?
values for katritzky07"?®! dropped by 12.2% and increased by 2.5% respectively, and the
R? value for patel10 increased by 6.2%. Performance worsened significantly in only one
instance. The MAE and R? values for chen14!"! increased by 72% and decreased by 9.5%. In
all other cases, the MPNN model performance was essentially comparable to the results given

in the paper.

When comparing our MPNN model with boiling point papers (Table 5) we obtain only
modest decreases in R? of 1.9% on average, and an average increase in MAE of 66.8% (1.7

K). This increase is a large percentage, although still only a few degrees K. We believe that
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the larger errors from the MPNN vs. models in these papers is due to their use of the boiling
point feature which, as mentioned above, enhances accuracy, but at the cost of greatly

increasing the amount of work needed to predict a new compound.

Here we consider in more detail the comparison to the non-boiling point studies.
While the MPNN model does underperform on average when compared to previous studies,
the results are sometimes better, often similar, and always quite close even when worse.
Evidence of this can be seen across all comparisons in the absolute errors. On average, these
errors are within 1—4 K (and differences in the MAE and RMSE are always less than 3.5 K
and 2 K, respectively) which is overall a relatively small discrepancy compared to the mean
or range of flash point values (hundreds of degrees), standard deviations in the datasets (37-74
K), and even differences between different experiments on the same material, which can often
be one or two K. This suggests that MPNN, with just the modest level of optimization
pursued here, can already obtain performance only slightly worse on average than comparable
models built from traditional features. This result suggests that traditional feature approaches
may be better for many problems, but that GBDL can yield similar performance and is worth
considering if easier to implement. Furthermore, the GBDL results here are close enough to
those from the previous work that it is possible that more extensive optimization of the
present approaches, and/or additional methodological improvements, will make these GBDL
approaches superior to the more traditional ones. These results are somewhat in contrast to
those presented by some previous references, which showed GCNNI67%-101 and MPNNI!!]
outperforming previous QSPR studies on datasets related to toxicity, solubility, and quantum
chemistry predicted properties. The origin of the greater success of GBDL vs. traditional
QSPR approaches in previous assessments compared to this one is not clear but may be
related to more extensive optimization of the GBDL networks for those problems, or some
aspects of the datasets being studied. In particular, the datasets used here are all either the
same size or smaller than those used in the original papers (see Table 1 for sizes) because we

could not convert some compounds to SMILES strings (see section 2.2 for discussion).
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Having less data might lead to worse models and could create reductions in our average

performance. However, we don’t see any correlation of our model performance vs. the

original papers and the amount of data lost. For example, the largest percent reduction

between the original dataset and our dataset is the 27% reduction for Godinhol1, but the

average MAE score of our MPNN model outperforms the original paper’s MAE score by 0.3

K. More work is clearly needed to understand when these GBDL methods are likely to be

most effective compared to traditional approaches.
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Figure 3. (A) Predicted vs. experimental values of flash point on full integrated distribution test set for MPNN. (B) Predicted vs.
experimental values of flash point on full integrated distribution test set for GCNN.

Full Acids Organometallics Organogermaniums  Organosilicons Organotins
Mean (K) 365.36 362.38 323.08 326.76 316.24 405.35
Teif]:coset Std 71.64 60.94 58.80 40.28 46.50 75.94
Size 1621 239 290 18 240 25
GCNN 30.79 27.82 37.81 22.82 19.90 64.17
RMSE (K)
MPNN 30.55 29.87 37.82 17.34 20.92 74.87
GCNN 19.14 19.48 22.03 18.90 13.15 45.47
MAE (K)
MPNN 18.76 20.56 20.14 14.61 12.65 42.57
5 GCNN 0.82 0.79 0.61 0.91 0.82 0.51
R
MPNN 0.83 0.77 0.64 0.82 0.81 0.18
GCNN 5.21 5.28 6.76 5.57 4.22 10.29
AARE (%)
MPNN 5.07 5.65 6.21 4.51 4.04 9.32

" All results are test set results

Table 6. Statistics and results for model fits on molecule type subsets.
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3.2 Performance of Models on Entire Dataset

As noted in section 2.1, in developing our comprehensive data for the testing set, we
included DIPPR, and therefore also included some studies that had potentially useful datasets
that could expand our collection, even if those studies used DIPPR for some or most of their

data.

The prediction performance of GCNN and MPNN models on the full dataset are
presented in parity plots in Figure 3 and detailed statistics regarding the test dataset and test
results are in Table 6. Unlike in the fits to specific papers, which showed MPNN clearly
superior to GCNN, here both models gave essentially identical results. In general, the GBDL
on the complete dataset is less accurate than on any of the subsets used in the specific papers
discussed above. This is likely due to a larger and more complex database being used here

compared to most other studies.

To test the robustness of GCNN and MPNN on our entire dataset, we did a second full
fit for both models, starting again from a different random initialization of the weights in the
neural networks. The difference of MAE and R? of these two tests were 0.73 K and 0.005,
respectively, for GCNN and 0.49 K and 0.007, respectively, for MPNN. These changes in
MAE and R? are less than 4% and 0.85%, respectively, and therefore suggest that our results

will not change significantly by simply refitting from a different starting point.

3.3 Statistics and Results for Model Fits on Molecule Type Subsets

It is of some interest to ask if the overall model might perform differently for different
chemical classes, an effect which can be readily explored in our large heterogeneous database.
The chemical classes were discussed in the Methods section and details regarding chemical

test datasets and associated prediction statistics are shown in Table 6.
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Both the GCNN and MPNN models were optimized on the integrated dataset and the
fit accuracy assessed on subset datasets from each chemical compound group. As observed in
the integrated dataset test, both models performed about equivalently. MPNN outperformed
GCNN by a significant margin in only the organogermanium dataset, where it is better on all
statistics, but underperforms by a significant margin for RMSE and R? on the organotin
dataset (but is actually outperforming GCNN for MAE and AARE). In this discussion we
therefore report both values, with MPNN values before GCNN values, with the latter
immediately following in parentheses. We focus on RMSE as a representative statistic except
when other statistics suggest a clearly different conclusion. The acids dataset distribution
matched that of the full dataset quite well. Predictions resulted in an RMSE of 29.87 K (27.82
K), slightly better than the performance of the full dataset. The organometallic dataset
exhibited a poorer RMSE of 37.82 K (37.81 K). The low R? value of 0.64 (0.61) is likely due
to a number of outliers throughout the organometallic dataset, consistent with the difference
in RMSE from the full dataset. Our GBDL models predicted both the organogermaniums and
organosilicon compounds well, achieving RMSE values of 17.34 K (22.82 K) and 20.92 K
(19.90 K) respectively. The corresponding R? values of 0.82 (0.91) (organogermaniums) and
0.81 (0.82) (organosilicons) show that the model was capable of fitting to the overall data
distribution while robustly modeling these chemical subclasses. The organotin compounds
proved to be a challenge, with a RMSE of 74.87 K (64.17 K) and R? of 0.18 (0.51). The fact
that the RMSE is comparable to the standard deviation of the data is a sign that the model is
capturing little of flash point physics for this dataset. In particular, we note that a model that
simply gives the mean of a dataset will achieve an RMSE equal to the dataset’s standard
deviation, so these errors suggest that the model is doing little better than just guessing the
mean of the data. The reduced accuracy of the model for some of these materials suggests that
they may be meaningfully distinct from the overall dataset, and that there were only a small
number in the overall dataset to guide the fitting for this chemistry. While it would be

valuable to understand to what extent the GBDL models’ errors are tied to specific aspects of
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the chemistry in each dataset, we were not able to extract any such understanding from the
trends we observed. While such correlations may exist, they are very difficult to separate from
the many other numerical factors controlling the results of these models. However, these tests
do show that the optimized MPNN and GCNN models can perform somewhat unreliably
when considering specific chemical domains of interest, and that careful testing and possible

refinement is advisable before applying these models to specific subsets of data.

4 Conclusions

This work conducted comparisons between two GBDL models (MPNN and GCNN)
and previous QSPR studies in predicting flash point. As the comparison results show in Table
4 and Table 5, in general the GBDL models do not outperform traditional QSPR methods for
the datasets studied here. More specifically, we found that MPNN is more accurate than
GCNN and that MPNN gives results comparable to, although slightly worse on average than,
traditional QSPR methods. This result suggests that either the essential physics for flash
points is already present in the traditional QSPR features or that we have inadequate data
and/or optimization to training the GBDL approaches. Regarding the latter issue, the limited
hyperparameter optimization of the MPNN models suggests that further efforts could yield
results as good as or better than traditional methods, although additional study is needed to
support such a claim. We assembled the largest flash point dataset to date, containing 10575
unique molecules, and found that the MPNN model gave an overall RMSE, MAE, R?, and
AARE of 30.55 K, 18.76 K, 0.83, and 5.07%, respectively, providing a generally accurate
model trained on a wide range of data. However, tests on five chemical subsets extracted from
this integrated dataset showed predictions were significantly worse for some of these
chemistries. This could be related to the small amount of data in these subsets and/or some
aspects of their chemistry. Given this result, care should be taken in use of the model in

specific chemical subdomains. In future work it would be of interest to see if more extensive
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hyperparameter optimization could improve GBDL’s flash point performance, and if a model
with better results in targeted chemistry domains with limited data (e. g., different

organometallics) could be established.
5 Data and Code Dissemination

We have shared the following data and code information:

1. The software used to manage the workflow of calling and testing the models. The code can
be found at https://github.com/uw-cmg/MoleProp. This repository also contains training and
test sets for each fold for the optimizations done for the paper comparisons and all

information on the final optimized hyperparameters for each paper comparison.

2. For each model testing run we have saved the computed metrics after each cross-validation
fold represented in the test set. For the total dataset studies, we have also saved the specific
test sets (i. e. the integrated dataset test set and the chemical subset test sets). These are shared
in the following files and folders along with a README file for guidance. Note that the
proprietary DIPPR data has been removed from this data. For “explicit test” datasets (see
section 2.4 for details on explicit test dataset selection), we have marked the training data and
test data in the dataset we provide in the supplementary materials. All other data points used
in paper comparisons are used as both training and test data through cross validation and are

marked as such in the the dataset we provide in the supplementary materials.

e Plots file that contains parity plots and residual histogram plots for each test fold for

the cross-validation tests associated with paper comparisons

e Outliers file for every test dataset considered in the study. These outliers are defined as
predicted values with errors compared to true values of greater than 100 K (in files
outliers.csv). Note that these outliers are provided for convenience and we do not
mean to imply that they are in some way incorrect data, although that might be the
case. Note that, consistent with our removal of all proprietary DIPPR database data,

outliers that were from the DIPPR database have been removed.
e Final test results for each paper comparison test
e Digital excel files with data used for Fig 2A, 2B.
All of the items in 2 and 3 have been submitted as part of Supplement Information as well as

shared in the form of tarballs on Figshare at 10.6084/m9.figshare.9275210.
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