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A B S T R A C T

A central strategy in achieving greenhouse gas mitigation targets is the transition of vehicles from internal
combustion engines to electric power. However, due to complex emission sources and nonlinear chemistry, it is
unclear how such a shift might impact air quality. Here we apply a prototype version of the new-generation
NOAA GFDL global Atmospheric Model, version 4 (GFDL AM4) to investigate the impact on U.S. air quality from
an aggressive conversion of internal combustion vehicles to battery-powered electric vehicles (EVs). We examine
a suite of scenarios designed to quantify the effect of both the magnitude of EV market penetration and the
source of electricity generation used to power them. We find that summer surface ozone (O3) decreases in most
locations due to widespread reductions of traffic NOx emissions. Summer fine particulate matter (PM2.5) in-
creases on average and largest in areas with increased coal-fired power generation demands. Winter O3 increases
due to reduced loss via traffic NOx while PM2.5 decreases since larger ammonium nitrate reductions offset in-
creases in ammonium sulfate. The largest magnitude changes are simulated at the extremes of the probability
distribution. Increasing the fraction of vehicles converted to EVs further decreases summer O3, while increasing
the fraction of electricity generated by “emission-free” sources largely eliminates the increases in summer PM2.5

at high EV adoption fractions. Ultimately, the number of conventional vehicles replaced by EVs has a larger
effect on O3 than PM2.5, while the source of the electricity for those EVs exhibit greater control on PM2.5.

1. Introduction

The widespread electrification of the U.S. transportation sector of-
fers the potential to simultaneously reduce greenhouse gas emissions,
strengthen energy security, and improve air quality (Jacobson, 2009;
IEA, 2018). However, the extent to which these benefits are realized –
specifically for air quality – is largely dependent on the number and
type of electric vehicles (EVs) that replace traditional internal com-
bustion vehicles as well as the source of electricity generation used to
power them (Requia et al., 2018). Here we investigate the air quality
implications of a suite of EV transition and marginal electricity gen-
eration scenarios using a prototype version of the new-generation
NOAA GFDL global Atmospheric Model, version 4 (GFDL AM4).

The exponentially increasing global market share of EVs (IEA, 2018)
has prompted research on their efficacy in reducing greenhouse gases,
but comparatively little effort has focused on their impact on air quality

(Requia et al., 2018). This despite evidence that suggests air pollution
impacts from the transportation sector exceed those from greenhouse
gases (Delucchi, 2000; Hill et al., 2009; Michalek et al., 2011). A recent
review article (Requia et al., 2018) concludes that a transition to EVs
likely has greater potential to reduce emissions of gaseous pollutants
(e.g., carbon monoxide (CO), nitrogen oxides (NOx), volatile organic
compounds (VOCs), sulfur dioxide (SO2)) compared to particles (i.e.,
PM). Of the relatively few studies that have investigated the impact of
EVs on ground-level ozone (O3; seven identified by Requia et al.
(2018)), most find that EVs will be a net benefit; however, the exact
impact on O3 is often dependent on location (e.g., urban vs. rural),
season, and standing patterns in precursor emissions. The impact on air
quality from the adoption of EVs can vary substantially between regions
depending on existing transportation type and density (Huo et al.,
2015), proximity to and type of power generation (Ji et al., 2012, 2015;
Huo et al., 2013; Nichols et al., 2015), and the region's chemical regime
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(e.g., NOx-vs. VOC-limited for O3 (Seinfeld, 1986), NH3-rich vs. NH3-
poor for PM (Ansari and Pandis, 1998)). For example, states in the
western U.S. (WUS) generally produce a larger fraction of their elec-
tricity from renewable and/or “emission-free” sources (i.e., solar, wind,
hydroelectric, and nuclear) as compared to the eastern U.S. (EUS),
where the electricity market is dominated by pollutant and precursor
emitting combustion sources (i.e., coal, oil, natural gas, and biomass).

Most studies that have examined the impact of EVs report only
changes in the total emissions associated with their adoption, but do
not consider their spatial or temporal variation (Requia et al., 2018).
For CO2, a well-mixed greenhouse gas emitted by both conventional,
internal combustion vehicles and electric generating units (EGUs),
changes in its emissions can be directly related to changes in its at-
mospheric abundance, even if the location of the emissions are dis-
placed by 100s of km (i.e., from the road to the power plant). The fate
of the emissions of many air pollutants and their precursors, however,
depends on additional factors including the proximity to, type, and
magnitude of other nearby emissions sources, the relative rates at
which co-pollutants are emitted, and even the season and time of day
during which they are emitted. Thus to fully account for the complexity
of changes to air pollution chemistry, emission changes should be used
to drive a chemical transport model (CTM).

Several EV transition studies have employed a CTM over the U.S.,
mostly over smaller domains such as metropolitan areas (Alhajeri et al.,
2011), regional air basins (Razeghi et al., 2016), or states (Brinkman
et al., 2010; Thompson et al., 2011), but a few have used a CTM over
the entirety of the continental U.S. as we do here (e.g., Tessum et al.,
2014; EPRI, 2015; Nopmongcol et al., 2017). We expand on this work
by first considering a wider range of more aggressive EV adoption
scenarios (here, 25% and 75% compared to 10% (Tessum et al., 2014)
or 17% (EPRI, 2015; Nopmongcol et al., 2017)), in line with some
nations’ legislated near-term electrification targets (IEA, 2018). Ambi-
tious electrification targets provide the opportunity to examine poten-
tial chemical nonlinearities as well as assess the consequences of larger
magnitude emission change signal. Similar to Tessum et al. (2014), we
also explore the impact of the source of the marginal electricity demand
(i.e., the additional electricity produced by EGUs on top of their base-
load) by testing scenarios that range from a high-emission “combustion-
only” scenario to an ambitious scenario that assumes a doubling of
current marginal emission-free generation. Furthermore, we estimate
the emission changes associated with an EV transition using a method
that does not require the use of a power dispatch model, capacity ex-
pansion model, and/or economic model, all of which are typically
close-guarded and proprietary (e.g., EPRI, 2015; Nopmongcol et al.,
2017). Although there are multiple simplifications and assumptions,
our emission remapping method is relatively simple and transparent,
and thus can easily be implemented by other modeling groups using
open-source data.

The paper is organized as follows: in Sect. 2 we describe the GFDL
AM4 and the emission remapping method. Sect. 3 describes the results,
where we evaluate the GFDL AM4, present our estimates of the emis-
sions changes associated with a transition to EVs, and examine the
model-simulated changes in surface air quality, from seasonal averages
to the full probability distribution including extremes. Our conclusions
and discussion are in Sect. 4.

2. Materials and methods

2.1. Model description

We use a developmental version of the new-generation NOAA
Geophysical Fluid Dynamics Laboratory Atmospheric Model, version 4
(GFDL AM4) for our simulations (Zhao et al., 2018a, b). Details of the
physical atmospheric model and changes from the previous version
(AM3) are described in detail by Zhao et al. (2018a, b), although the
prototype configuration of AM4 used here differs from that described in

Zhao et al. (2018a, b). We double the horizontal resolution of the
standard model setup; i.e., from∼100 km (96×96 grid boxes per cube
face) to ∼50 km (192×192), and we extend the model domain ver-
tically, with 49 levels up to∼80 km (1 Pa) and a bottom layer thickness
of about ∼30m. We also include a detailed online representation of
tropospheric (and stratospheric) chemistry, updated from that in AM3
(Donner et al., 2011; Naik et al., 2013), and described by Schnell et al.
(2018). To facilitate an evaluation of the model skill in simulating
surface O3 and PM2.5, we nudge the model to NCEP-NCAR reanalysis
winds using a pressure-dependent nudging technique and a relaxation
time scale of 6 h at the surface and weakening to∼60 h by 100 hPa (Lin
et al., 2012).

We model each of the major components of PM2.5 individually and
sum them to calculate the total mass of dry PM2.5 (i.e., excluding
aerosol water vapor) following Schnell et al. (2018). The major com-
ponents include black carbon (BC), primary organic matter (OM), sec-
ondary organic aerosol (SOA), ammonium ( +NH4 ), sulfate (SO4

2–), ni-
trate, (NO3

–), sea salt, and mineral dust. Anthropogenic SOA is assumed
to be formed from C4H10 by reaction with OH. Pseudo-emissions of
biogenic SOA are parameterized as a 5% per carbon yield of offline
emissions of isoprene and monoterpenes from vegetation. This simple
formulation of biogenic SOA leads to a large overestimate of the OM
component of PM2.5 over the southeastern U.S. (see Fig. S1); however,
lowering the yield further would result in unrealistically low values of
global SOA production. All simulations use the same biogenic SOA
source so although BASE is biased high, PM2.5 absolute changes be-
tween experiments are unaffected (% changes are biased low).

For BASE, we integrate the model for two years (1 Jan 2013–31 Dec
2014) and discard the first year as spin up. Our sensitivity simulations
branch off BASE on 1 Jan 2014 and are integrated for one year. Our
base emissions dataset is that developed in support for the upcoming
Coupled Model Intercomparision Project Phase 6 (CMIP6) (van Marle
et al., 2017; Hoesly et al., 2017), which have a spatial resolution of
0.5°× 0.5° and a temporal resolution of 1 month.

2.2. Emission remapping algorithm

We construct an EV emissions dataset E* by removing light duty
passenger vehicle (LDPV) emissions and assigning new emissions ac-
cording to extant power generation infrastructure and the fractional
conversion to an EV fleet (Eq. (1)).

= − +∗E E E Es t j s t j s t j
LDPV

s t j
EGU

, , , ,
0

, , , , (1)

where Es t j, ,
0 are the unmodified CMIP6 emissions of species s at time t

and grid cell xj, Es t jLDPV
, , are the emissions of LDPVs, and Es t jEGU

, , are the
emissions of EGUs that power a fleet of EVs.

2.2.1. Emissions of gasoline and diesel powered LDPVs
We calculate the emissions of LDPVs as:

= ⋅ ⋅E fEV fE Es t j
LDPV

s j
LDPV

s t j
TRA

, , , , , (2)

where fEV is the simulation-dependent fraction of the LDPV fleet
converted to EVs, fEs jLDPV, is the fraction of transportation emissions
associated with LDPVs and Es t jTRA

, , is the total transportation emissions in
the CMIP6 dataset. For fEs jLDPV, , we use 2014 state-level speciated
emission estimates from the National Emissions Inventory (US EPA,
2014), including BC, CO, NO, NH3, OM, SO2, and CH2O. Estimates are
also provided for a generic VOC category (Table S1), which we use as a
proxy for species the model requires as input but without explicit LDPV
fractions.

2.2.2. Emission from EGUs that power EVs
We calculate the EGU emissions that power EVs as:

= ⋅E ER Vs t j
EGU

s j
EGU

t j, , , , (3)
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where ERs jEGU, is the average emission rate (g Wh−1) of species s for the
EGUs in grid cell xj, and Vt j, is the marginal electricity (Wh) generation
assigned to grid cell xj. We calculate ERs jEGU, by identifying all EGUs of
type biomass, coal, oil, and natural gas in the eGRID database (US EPA,
2017) and collocating them to a grid cell in the CMIP6 emission data-
base. We only consider fossil fuel and biomass sources (hence, “com-
bustion”) to calculate the emission rate to allow for additional sensi-
tivity simulations (see below). We determine the grid cell average
emission rate for each modeled species as a weighted average of the
individual EGU's emission rates with the weights equal to the EGUs'
generating capacities. Each EGU has emission rates for NO and SO2.
Individual EGU emission rates for BC and OM are not available from
eGRID so we calculate the emission rate at each grid cell using a
weighted average of the mean emission rate (Cai and Wang, 2014) for
the generation type (Table S2) and the weights equal to the EGUs'
generating capacities. For model simulated species without published
emission rates (mostly VOCs), we assume a conservative scaling factor
equal to the lowest emission increase (associated with and only applied
to energy production emissions) of the above four species. By only using
combustion electricity generation sources to calculate our grid cell
average emission rates, we can perform additional sensitivity simula-
tions that vary the amount of emission-free electricity generation
sources used to produce the additional electrical load needed to power
the added EVs. Our primary simulation assumes all additional power is
generated from extant combustion EGUs. For additional sensitivity si-
mulations, we reduce the amount of added electricity at xj (Eq. (4)) by
the current fraction of electricity that is generated from emission-free
sources (i.e., wind, water, solar, and nuclear) by state (US EPA, 2017;
Table S1). On a state average level, this allows the current generation
mix to produce any added electricity. We perform additional simula-
tions by doubling the fraction of electricity produced by emission-free
sources for all states (limiting to 100%). As this applies only to marginal
generation, the ‘doubling’ can equivalently be thought of as either
added renewable capacity (e.g., wind farm installation) or reduced
combustion sources (e.g., retiring of coal plants).

2.2.3. New electricity generation requirement
The marginal electricity generated at a grid cell xj required to power

EVs at each of K grid cells xk is:

∑= ⋅ ⋅ −
=

V w Q R( (1 ))t j
k

K

k j
F

t k j,
1

, ,
(4)

where Qt k, is the electricity required for transitioning a portion of the
LDPV fleet to EVs, Rj is the fraction of emission-free generation sources
for the state in which grid cell xj is located in (equal to 0, the year 2014
fraction, or double the year 2014 fraction depending on the experiment;
Table S1), and the cumulative weight wk j

F
, is the combination of three

individual weights (Eq. (5)). The individual weights are functions of
distance (wD, Eq. (6a)), whether the grid cells are within the same North
American Electric Reliability Corporation (NERC) grid interconnection
(wR, Eq. (6b); https://www.eia.gov/maps/layer_info-m.php), and the
available electricity generation capacity (wW, Eq. (6c)). This weight
formulation allows a grid cell xj to produce electricity associated with
the demand from grid cell xk if (i) xj and xk are in the same NERC grid
interconnection, and (ii) xj has an existing combustion-based EGU. Note
that for clarity in the notation of Eqs. (4)–(8), we refer to xk as the grid
cell where electricity is required and xj as the grid cell where electricity
is produced although the sets X= {x1, x2, …, xk} and X= {x1, x2, …,
xj}are identical.
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where D, a minimum distance parameter that prevents a singularity
when xj and xk are the same grid cell (i.e., wk j

D
, =∞, which would

remap all of the additional electricity required from a grid cell to itself)
is set to 50 km (roughly the size of a model grid cell). We also tested a
value of D=25 km, but it had only a minor effect on the remapped
emission and resultant changes to the abundances of relevant species
(not shown). The available generating capacity C(xj) is the difference
between the total generating capacity and total electrical load of
combustion EGUs in grid cell xj.

2.2.4. Electricity requirement to power EVs
The electricity need for the EVs in grid cell xk is calculated as:

= ⋅ ⋅ ⋅ −− −Q fEV VKT EV L( ) (1 )t k t k
LDPV

eff, ,
1 1 (7)

where VKTt kLDPV, is the vehicle kilometers traveled by LDPVs in grid cell
xk, EVeff is the efficiency (kmW−1h1) of a typical entry-level EV (Table
S3), and L is the fraction of the marginal electricity lost in transmission
(Table S3). We determine VKTt kLDPV, using NOx emissions from the
transportation sector of the CMIP6 emission database as a proxy.

= ⋅ ⋅ −( )VKT fE E ERt k
LDPV

NO k
LDPV

NO t k
TRA

NO
LDPV

, , , ,
1

x x x (8)

where fENO k
LDPV

,x is the fraction of transportation NOx emissions associated
with gasoline and diesel LDPVs (39), ENO t k

TRA
, ,x is the NOx emissions from

the CMIP6 transportation sector, and ERNOLDPVx is the NOx emission factor
(g km−1) of the replaced LDPVs. We choose a value for ERNOLDPVx =0.96
gNOx km−1, which gives us a value of
∑ ∑= = VKTt k

K
t k
LDPV

1
12

1 , =3.3×1012 km, in agreement with observations
of total U.S. annual VKT (US DOT, 2017). Our ERNOLDPVx assumption is
higher than an EPA reported value for gasoline fueled passenger cars
and light trucks (0.693 gNOx km−1; (US EPA, 2008)), however, using
this value also results in calculated NOx reductions from transportation
consistent with the NEI totals for LDPV. The emission rate discrepancy
could be due to the EPA's exclusion of diesel powered vehicles, spatial
variations in ERNOLDPVx not captured here, or simply an overestimation of
NOx transportation emissions in the CMIP6 database. Regardless, we
utilize an ERNOLDPVX value that provides a VKTt kLDPV, value and NOx re-
ductions consistent with observations.

2.2.5. Method caveats and assumptions

• Each EGU lists an additional emission factor for NO emitted during
the “ozone season” (defined for each state; e.g., April to September).
We performed one experiment that uses these “ozone season” values
and found that several plant-level outliers of emission rates resulted
in unrealistic “hotspots”, so we only use the non-ozone season value
for the remaining simulations.

• We assume EVs are charged and thus the marginal electric demand
is co-located with where the EVs are driven. While this assumption
may not be appropriate for finer resolution emission and/or mod-
eling grids, it is likely not an important consideration for the
∼50 km resolution of our model and emissions.

• Although rarely necessary, we assume that EGU generation capacity
expands to accommodate the load when the marginal electrical load
required to power the EVs exceeds extant available capacity.

• We do not consider the life-cycle emissions of EVs, such as the
emissions associated with the production of the EVs' batteries;
however, roughly half of those emissions occur outside of the U.S.
(Tessum et al., 2014).

• The electricity generation mix is assumed to be constant throughout
the year, and so, like the time-of-day charging effects (below), we do
not account for daily, monthly, or seasonal variations in generation
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mix (e.g., increased solar generation during summer and periods of
clear skies).

• We also do not consider the time of day charging and its effects on
EGU emission rates (e.g., Thompson et al., 2009; Weis et al., 2015).
For example, EVs would likely predominantly be charged at night
when fossil fuel sources make up a higher fraction of total electricity
generation as compared to during the day (e.g., Zivin et al., 2014).
In this case our grid-averaged emissions rates are likely biased low
since the individual EGU emission rates are themselves a temporal
average. Moreover, the impact on chemistry is drastically different
for daytime vs. nighttime emissions of O3 and PM2.5 precursors.
However, since anthropogenic emissions in the model are constant
at each timestep within each month, we do not attempt to discern
time of day generation and/or emissions.

• For LDPV emissions of BC and OM, we only remove those associated
with vehicle exhaust, which we calculate as the difference between
the total emissions and the non-exhaust component. We calculate
the non-exhaust fraction using (i) the total PM2.5 emission rates
(Timmers and Achten, 2016) of brake wear, tire wear, and road dust
suspension/resuspension (i.e., non-exhaust emissions – those that
EVs emit), (ii) the fraction of BC and OM in each of the non-exhaust
sources (Cai and Wang, 2014; Chen et al., 2012), and (iii) the as-
sumption that 85% of total PM2.5 emissions are from non-exhaust
sources (Timmers and Achten, 2016). To be sure, since EVs are
heavier than their conventional counterparts they would have
higher non-exhaust emission rates (Simons, 2016), but we do not
account for this here.

3. Results

3.1. Model evaluation

We evaluate the ability of the GFDL AM4 to simulate the abun-
dances of species relevant to air quality using observations from surface
monitoring networks in the U.S. and Canada. For ozone (O3), we use
hourly observations from the U.S. EPA's Air Quality System (AQS;
https://www.epa.gov/aqs) and Clean Air Status and Trends Network
(CASTNet; https://www.epa.gov/castnet) and Environment Canada's
National Air Pollution Surveillance Program (NAPS; http://maps-
cartes.ec.gc.ca/rnspa-naps/data.aspx). The hourly values are con-
verted to the maximum daily 8-h average (MDA8) due to its use as a
regulatory and health impact metric. For PM2.5, we use daily average
data from AQS and NAPS. Data for ammonium sulfate (NH4SO4), am-
monium nitrate (NH4NO3), organic matter (OM, 1.6*OC), and black
carbon (BC) are from the Interagency Monitoring of Protected Visual
Environments network (IMPROVE; http://vista.cira.colostate.edu/
Improve/). For O3 and PM2.5, we only use stations with data from at
least 50% of the days in the season of interest. We only require data
coverage of 16.7% of days for other species since they are typically only
measured every third day.

Fig. S1 shows the summer (JJA) mean bias of BASE compared to
station observations for MDA8 O3 (Fig. S1a) and 24-h average PM2.5

(Fig. S1b) and its major components (Figs. S1c–f). Fig. S2 show the
analogous plots for winter (DJF). Regional averages are provided for
the WUS (west of 100°W) and EUS (east of 100°W); this boundary is
used for all regional average calculations. The model is biased high in
summer MDA8 O3 nearly everywhere, similar to many current global
chemistry-climate models (e.g., Young et al., 2018). However, the
correlation coefficient for daily MDA8 O3 (Fig. S3) is greater than
∼0.6 at most stations, indicating the model is correctly simulating the
major processes that control surface O3. Modeled PM2.5 is mostly biased
low except for the southeastern US and in parts of the Southwest. The
high bias in the Southeast is due to excessive OM, specifically biogenic
SOA, and thus does not affect the interpretation of our results since each
experiment has the same biogenic SOA. The high bias in the Southwest
is accompanied by consistently negative correlation coefficients (Fig.

S3), possibly indicating a misrepresentation of dust emissions since dust
is a dominant component (∼50%) of PM2.5 in the region and the
emissions are a function of wind speed and thus can have substantial
daily variability (Ginoux et al., 2001). (NH4)2SO4 is biased low in most
locations, particularly over the EUS (NMB=−22%) where significant
coal-fired electricity generation occurs. The summertime bias for
NH4NO3 is generally near-zero or negative, however, summer abun-
dances (both modeled and observed) are typically low due to its
thermal instability. The bias in winter (Fig. S12D) is positive and much
larger in magnitude (NMB=106%) compared to summer, possibly
resulting from inadequate surface NO3

– removal (Paulot et al., 2016). As
such, any simulated reductions in NH4NO3 may be exaggerated. Beyond
the six species we have evaluated here, similar configurations of the
GFDL model have been recently evaluated in their ability to simulate
pollution and relevant chemistry, demonstrating its wide use and uti-
lity: e.g., sulfate and conversion of SO2 to sulfate (Paulot et al., 2016);
nitrate and ammonia (Paulot et al., 2017) and NOx, NOy, HNO3, and
several VOCs (Li et al., 2018).

3.2. Experiments and associated annual emission changes

We performed six model simulations with GFDL AM4 for the year
2014 designed to span a range of hypothetical EV market penetrations
and marginal electricity generation types (Table 1). We refer to the
experiments as eX-rY, where X is the percentage of gasoline- and diesel-
powered light-duty passenger vehicles (LDPVs) converted to EVs (either
25% or 75%), and Y denotes the emission-free (i.e., solar, hydro, wind,
and nuclear) generation of marginal electricity (i.e., only that required
to power the EV fleet), which can be 0 (marginal electricity demand
generated solely by combustion sources), C (EVs are powered by the
current electricity generation mix for each state), or 2C (each state's
emission-free fraction is doubled). We focus the presentation of our
results on the scenario with 25% adoption of EVs with a doubled cur-
rent fraction of emission-free generation, hence e25-r2C, which is likely
closest to similar studies' design and market-projected near-term future
(e.g., Tessum et al., 2014; EPRI, 2015; Nopmongcol et al., 2017; IEA,
2018). We note, however, that direct comparisons to other studies
should be made with caution due to wide-ranging assumptions and
experimental setup. We refer to the control simulation as BASE.

The annual total anthropogenic emission changes (Mg yr−1) of NO,
SO2, organic matter (OM), black carbon (BC), CO, and C4H10 (n-butane,
see below) for the e25-r2C experiment compared to BASE are shown at
each 0.5°× 0.5° grid cell of the native emissions in Fig. 1a–e, respec-
tively. Relative (%) changes are shown in Fig. S4, absolute changes for
all experiments for these six species are shown in Fig. S5, and regional
average relative and absolute changes are provided in Tables S4 and S5,
respectively, for each experiment and each species emitted in the
model.

Emission decreases are widespread for all species, with the largest
decreases throughout the eastern urban corridor, major metropolitan
areas, and highly-trafficked areas of the west coast (Fig. 1). Although

Table 1
Summary of modeling experiments.

Name % EV Renewable Fractiona

BASE 0 n/a
e75-r0 75 0
e75-rC 75 2014
e75-r2C 75 2*2014
e25-r0 25 0
e25-rC 25 2014
e25-r2C 25 2*2014

a0= combustion only (i.e., only coal, oil, gas, and biomass).
a2014= year 2014 state-level emission-free generation.
a2*2014 = double year 2014 values (≤100%).
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most grid cells show decreases (> 80% of grid cells for each species),
the positive changes (where electricity generation occurs) are up to 10
times the magnitude (note the color bar scale) and largely offset the
reductions in traffic emissions on a regional average, at least for species
emitted by the power generation sector. For NOx, we estimate anthro-
pogenic emission decreases of about 4% (∼0.3 Tg) for the e25-r2C
scenario. For SO2, which is emitted in relatively small quantities from
the transportation sector (mostly from diesel fuel combustion), emis-
sions increase by ∼2% (∼0.1 Tg) over the U.S. as a whole, consistent
with some previous work on EV adoption over the U.S. (Nichols et al.,
2015) and elsewhere (Li et al., 2016; Wu and Zhang, 2017). While some
western states have relatively large increases in SO2 emissions (e.g.,
Colorado), the bulk of the increase occurs along the Ohio River Valley
and the eastern urban corridor where vehicle density is high (i.e., in-
creasing the amount of electricity need) and where coal supplies a large
fraction of electricity generation. While our estimate that SO2 emissions
increase following partial electrification agrees with most prior work
(Requia et al., 2018), one study finds a decrease (Nopmongcol et al.,
2017); however they model the year 2030 when EGU SO2 emissions are
assumed much smaller while our experiments assume no modifications
to the power generation sector. Emissions changes for C4H10, which in
the model represents hydrocarbons with four or more carbons ex-
cluding isoprene and terpenes, are shown since its abundance directly
impacts the formation of modeled anthropogenic secondary organic
aerosol (SOA). C4H10 emissions decrease at most grid cells and on
average over both the EUS (−2%) and WUS (−1%). Nopmongcol et al.
(2017) model large VOC reductions in emissions from hydrocarbon fuel
refinery, which we and others (e.g., Tessum et al., 2014) do not; and
thus we may underestimate the total VOC reduction. This emission
source, like the production of EV batteries (Tessum et al., 2014), is
likely an important source of uncertainty and will be investigated in
subsequent research. CO emissions have the largest relative (−9%) and
absolute (−3 Tg yr−1) decrease since the transportation sector is its

largest source and it is emitted only in small quantities by the power
generation sector. Emission changes for other scenarios are similar in
pattern but vary in magnitude (Fig. S5).

3.3. Seasonal average changes

Fig. 2 shows the changes in summer (June–July–August) average
maximum daily 8-h average (MDA8) O3, and daily average fine parti-
culate matter (PM2.5) and its major constituents for the e25-r2C ex-
periment. Changes for winter (discussed below) are plotted in Fig. S6;
changes for each season and experiment are shown spatially in Figs.
S7–S12 and averaged over regions in Table S6.

Widespread summer O3 decreases are simulated (up to ∼1–3 parts
per billion (ppb), Fig. 2a), largely following the pattern of relative re-
ductions in NOx (Fig. S4a). Indeed, the largest decreases occur in the
Pacific Northwest and the Mid-Atlantic states where both the LDPV
fraction of transportation NOx (Table S1) and overall NOx reductions
(Fig. 1a) are largest. Both odd oxygen (Ox = O+O3) production (P(Ox)
and loss (L(Ox)) decrease at the surface during summer in all scenarios
and in both regions (Fig. S13), but O3 abundances decrease since re-
ductions in P(Ox) are about 50% larger than the reductions in L(Ox).
Only a few grid cells do not see O3 decreases; i.e., in locations where
newly allocated marginal power generation significantly increases NOx

emissions (e.g., northern Missouri and southwestern Wyoming; Fig. 1a
and Fig. S4a), or where O3 production is likely VOC-limited (e.g.,
southern California (Duncan et al., 2010)) or both (Las Vegas area). On
a regional average, both the WUS and EUS become more NOx-limited
during summer, with the surface CH2O/NO2 ratio (Jin et al., 2017)
increasing by ∼3% (∼10%) for the e25-r0/C/2C (e75-r0/C/2C) sce-
narios (Fig. S13). Summer average O3 also decreases nearly everywhere
even when all of the marginal electricity is generated by combustion
sources (e25-r0); in fact, summer O3 decreases on average in all of our
scenarios (Table S6).

The changes in total PM2.5 (Fig. 2b) are the sum of the changes in its
components (Fig. 2c–f), which often conflict in sign due to their

Fig. 1. Spatial patterns of the e25-r2C scenario annual total anthropogenic
emission changes (Mg yr−1) for (a) NO, (b) SO2, (c) OM, (d) BC, (e) C4H10, and
(f) CO. Regional average percent changes are provided for the WUS (west of
100°W) and EUS (east of 100°W). Note that each species has a scaling factor at
the top of the plot (e.g., 102 for NO) and that positive side of the colorbar is 10
times the negative side; the black line in (a) is 100°W.

Fig. 2. Spatial patterns of the e25-r2C scenario summer (June-July-August)
changes in (a) MDA8 O3, and daily average (b) PM2.5, (c) (NH4)2SO4, (d)
NH4NO3, (e) OM, and (f) BC. Units for MDA8 O3 are ppb, all others are μg m3.
Regional averaged percent changes are provided for the WUS (west of 100°W)
and EUS (east of 100°W).
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differing emission sources and chemical controls. Overall, total summer
PM2.5 for e25-r2C increases slightly on average over both the WUS and
EUS due to increased (NH4)2SO4 and OM. Indeed, the abundance of
summer surface SO2 (a hazardous air pollutant and precursor to
(NH4)2SO4) increases by ∼3% over the EUS for e25-r2C and over 15%
for e75-r0 (Fig. S13b). The effect of electricity generation mix on re-
sultant PM2.5 is especially evident over Illinois, which is largely in-
sulated from the increased PM2.5 of adjacent states due to its large
current (51%) and doubled (100%) renewable generation fraction. In-
creasing the amount of combustion generation generally results in
greater increases in PM2.5 (Fig. S8). One exception is summer averaged
over the WUS, where the e75-r2C scenario has a larger positive PM2.5

change compared to the e75-rC scenario (Table S6) despite fewer
emissions of all species in the e75-r2C scenario (Table S5). We hy-
pothesize that this is due to nonlinear chemistry from wildfire OM
emissions stretching from northeast Montana through Arkansas.

Changes in OM are positive in the central U.S. and a northern swath
from eastern Montana to New York, while the changes are negative
over most of the southeast. BC changes are closely related spatially to
OM changes but are about an order of magnitude smaller. Although
biogenic SOA (counted as part of OM) is constant among the experi-
ments here, it would likely increase in many locations due to increases
in SO2 emissions (Fig. 1b) and the associated enhancement of acid-
catalyzed aqueous-phase SOA formation from isoprene epoxydiols
(IEPOX) (Marais et al., 2016).

Overall, winter O3 changes for e25-r2C (Fig. S6a) are mostly small
and positive (∼1 ppb), but small decreases occur in remote regions. The
largest winter increases occur in regions with the largest summer re-
ductions – namely the Mid-Atlantic states and the eastern urban cor-
ridor. For more aggressive adoption scenarios (i.e., those with greater
NOx reductions), increases are found in areas with ample winter in-
solation – e.g., Florida, Texas. The winter O3 increase is due to reduced
L(Ox) (Fig. S14), likely via reduced titration by traffic NO since the e75-
r0/C/2C scenarios have increased L(Ox) compared to the e25-r0/C/2C
scenarios.

Winter PM2.5 decreases occur nearly everywhere (Fig. S6b) and
result from much larger reductions in NH4NO3 in winter compared to
summer due to the enhanced thermal stability of NH4NO3 in colder
temperatures (Stelson and Seinfeld, 1982). Similar to summer,
(NH4)2SO4 abundances increase in winter and are again largest over the
EUS due to heavy reliance on coal-fired power generation. Both winter
OM and BC decrease on average, but there are highly localized areas
with large increases – specifically OM, which is likely a combination of
biomass-powered electricity generation and relatively shallow, stable
boundary layers that confine pollution near the surface.

3.4. Extreme changes

Besides average seasonal changes, it is also important to examine
changes over the full probability distribution – particularly at the ex-
tremes – since the highest pollutant abundances have disproportionate
impacts on ecosystem and human health (IPCC, 2014) and often coin-
cide with other extremes such as heat waves (Schnell and Prather,
2017). Fig. 3 shows each scenario's changes relative to BASE binned at
every 10th percentile for O3, PM2.5, NH4NO3, and (NH4)2SO4, averaged
over the WUS and EUS separately. Relative changes are shown in Fig.
S13.

Changes in O3 (Fig. 3a–b) are almost entirely negative for both
averaging domains and all scenarios except for the lowest percentiles
(i.e., cleanest winter days). The magnitude of the decrease is largely
determined by the number of conventional vehicles replaced by EVs
and thus NOx emission reductions, with the e75 scenarios (red/yellow
lines) showing much larger O3 decreases than the e25 scenarios (blue
lines). The source of electricity generation only has a notable impact on
O3 for the e75 scenarios at high percentiles over the EUS, with the e75-
r2C scenario having the largest O3 benefit (∼2 ppb). An EV transition

has the largest impact on high percentiles of O3 (Fig. 3b), consistent
with previous work over California (Razeghi et al., 2016).

Changes in PM2.5 (Fig. 3c–f) are more nuanced than O3 and depend
on the season considered, resulting from competing effects of increases
in (NH4)2SO4 and reductions in NH4NO3. Due to this and the bimodal
annual cycle of PM2.5, we separate the PM2.5 probability distribution
into extended summer (April–September, Fig. 3c–d) and extended
winter (October–March, Fig. 3e–f) to better describe PM2.5 changes. The
non-traditional ‘season’ definitions ensure each value is included in the
calculations. Like O3, the largest PM2.5 changes occur at the high end of
the distribution. In summer, PM2.5 is largely controlled by changes in
(NH4)2SO4 (and OM) and thus mostly increases except for e75-rC and
e75-r2C over the WUS and e75-r2C over the EUS. The largest increases
generally occur for the combustion-only scenarios (i.e., e75-r0, e25-r0),
highlighting the stronger influence of electricity generation type on
resultant summer PM2.5 as compared to O3. This effect is more evident
over the EUS. Winter PM2.5 is dominated by NH4NO3 and as such de-
creases due to large reductions in NH4NO3, especially at high percen-
tiles; however caution is warranted interpreting this result as the model
is biased high during winter. In any case, the summer-winter disparity
in PM2.5 changes emphasizes an important point: summer PM2.5 is
controlled more strongly by the source of electricity generation used to
power EVs, but winter PM2.5 can decrease even when only combustion
sources power EVs so long as the EV market penetration is high enough.
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4. Conclusions and discussion

The scientific effort to quantify the environmental impact of EV
adoption has largely paralleled the increasing global EV market share
and has generally revealed that EVs offer a net environmental benefit
(IEA, 2018; Requia et al., 2018). Using an emission remapping algo-
rithm and a state-of-the-art chemistry-climate model, we have explored
a range of scenarios to estimate the potential impact on U.S. air quality
resulting from an aggressive transition from conventional, internal
combustion, light-duty passenger vehicles to battery-powered electric
vehicles. It is difficult to quantitatively compare results across studies
due to wide ranging assumptions, model parameters, and disparate
methodologies (e.g., spatial and temporal range, EV type, electricity
generation types, emission remapping model, etc.); overall, however,
our estimates for emission changes and resulting modeled air quality
changes are similar to other comparable studies that have examined the
electrification of transportation over the U.S. using a CTM (Tessum
et al., 2014; EPRI, 2015; Nopmongcol et al., 2017).

Our method and results reveal the differing sensitivities of some
measures of air quality to the reductions in the existing fleet's emissions
and the type of power generation used to power a hypothetical EV fleet.
We find that average summer O3 abundances will decrease as EVs
continue to make up a larger share of the U.S. vehicle fleet, regardless
of the source of the electricity that charges them. A more aggressive
transition to EVs results in greater O3 reductions. The largest O3 de-
creases are simulated at the extremes of the probability distribution and
in the most polluted locations. Changes in PM2.5 abundances are spa-
tially, temporally, and scenario dependent. Summer PM2.5 generally
increases due to increased (NH4)2SO4, but decreased winter PM2.5 is
found for almost all locations because of larger reductions in NH4NO3.
Ultimately, the number of conventional vehicles replaced by EVs has a
larger effect on O3 than PM2.5, while the source of the electricity for
those EVs exhibit greater control on PM2.5. Thus, if the displacement of
the combustion engine with battery power outpaces the expansion of
renewable energy sources for power generation, air pollution – parti-
cularly from fine particulate matter –may worsen until cleaner fuels are
adopted.

Due to the novelty of the emission remapping methods, we have
developed emissions for simulations at coarser resolutions (time and
space) compared to most regional CTMs (∼50 km vs. 4 km; monthly vs.
hourly prescribed emissions) in an effort to limit complexity and reduce
assumptions while still demonstrating utility of the methods. For ex-
ample, a finer scale analysis would likely need to incorporate the im-
pacts of both time-of-day driving and charging in order to match other
urban-rural disparities illuminated by higher-resolutions. For example,
we assume EVs are charged and thus the marginal electric demand is
co-located with where the EVs are driven, which is likely a less valid
assumption as resolution increases. Future work at higher resolutions
can and should attempt to incorporate these processes.

A key limitation in accurately quantifying emission and air quality
changes from EV adoption is the lack of open-source data and tools
needed to determine where the marginal electric load will be allocated
and, subsequently, the magnitude of the allocated power generation
facility emissions. While so-called dispatch models exist, they are ty-
pically proprietary and/or only cover small geographic regions.
Moreover, without publicly available and regularly updated data on the
structure and details of the power grid, these types of models will likely
remain proprietary and regionally focused. Our method circumvents
this restriction, albeit with its own limitations. However, used in con-
junction with open-source databases such as the Global Power Plant
Database (Byers et al., 2018), it offers the potential for research beyond
the U.S., where relatively little effort has been focused (Requia et al.,
2018) despite more aggressive and near-term EV adoption targets.
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