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Abstract The large deflections of panels in subsonic flow are considered. Specifically, a fully clamped von
Karman plate accounting for both rotational inertia in plate filaments and (mild) structural damping. The
panel is taken to be embedded in the boundary of the positive halfspace in R3 containing a linear, subsonic
potential flow. Solutions are constructed via a semigroup approach despite the lack of natural dissipativity
associated to the generator of the linear dynamics. The flow-plate dynamics are then reduced—via an
explicit Neumann-to-Dirichlet (downwash-to-pressure) solver for the flow—to a memory-type dynamical
system for the plate. For the non-conservative plate dynamics, a global attractor is explicitly constructed
via Lyapunov and recent quasi-stability methods. Finally, it is shown that, via the compactness of the
attractor and finiteness of the dissipation integral, that all trajectories converge strongly to the set of
stationary states.
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1 Introduction

In this treatment we present and discuss rigorous results for a panel flutter model appearing in the classic
aeroelasticity literature [20-22], namely, a subsonic, inviscid potential flow interacting with the large
deflections of a fully clamped plate. We specifically take a von Karman-type plate, allowing for rotational
inertia effects in plate filaments as well as some (small) amount of structural damping. We are concerned
with the Hadamard well-posedness of solutions (existence, uniqueness, and continuous dependence upon
data), as well as qualitative properties of solutions beyond the transient regime. Specifically, we are
interested in aeroelastic instabilities such as flutter.

Aeroelastic flutter, in a flow-plate system, is a particular type of feedback instability where the flow’s
aerodynamical loading at the fluid-structure interface destabilizes the otherwise stable damped plate [22,
27]. The flutter instability occurs as a bifurcation in the flow parameters, typically that of the unperturbed
flow velocity U. Such an instability can manifest itself via chaotic plate oscillations [24], but often occurs
in the form of limit cycle oscillations. Stationary instability—elastic bucking—is also possible, depending
on the mechanical forcing and flow quantities in the system. Hence, a variety of interesting questions
present themselves: (i) can one detect, from the parameters in the problem, if flutter will occur? (ii)
is flutter, so to speak, suppressed by the inclusion of some form of mechanical damping? (iii) in what
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ways does the long-time behavior of the flow-plate system depend on the initial configuration? Engineers,
for instance, often observe/remark that panel flutter only occurs supersonically [21,23]. In this paper,
we attempt to address these points in a mathematically rigorous way, in the fully infinite dimensional
setting, taken from the strongly coupled flow-plate PDE system presented below.

Here, we will present the construction of both strong and weak PDE solutions through the semigroup
approach, in particular characterizing the domain of the generator for the flow-plate dynamics. We utilize
the structure of the potential flow equation to explicitly construct a particular Neumann-to-Dirichlet
map for the flow, which permits a closed representation for the plate with memory effects scaled by the
characteristic flow velocity. For the resulting non-conservative plate with memory, we construct a smooth,
compact global attractor of finite dimension, so long as some structural damping is present in the plate.
This attractor is global in the sense that it attracts bounded sets in the state space with uniform rate,
i.e., does not depend on specific initial data. With the attractor in hand, we utilize the finiteness of the
dissipation integral, along with the compactness of the plate-to-flow (Neumann) mapping, to show that
subsonic trajectories always converge to the stationary set; this is to say, we confirm the engineering
assertion that subsonic panel systems have stationary end behavior.

Many of relevant and related results presented in this paper come from a variety of places, e.g.,
[5-7,15,27,30,34]. These references span books, book chapters, surveys, older papers, and newer papers,
in some cases with sparse details. To our knowledge, a full rigorous discussion of this subsonic flow-panel
system—f{rom PDE model to well-posedness to attractors to stabilization—has not appeared. We do note
the paper [34] of this form, as well as [35] where inertia is neglected, which consider a thermoelastic panel.
In our case, we choose a particular structurally damped panel, where a full exposition is possible. Indeed,
we consider the case of a clamped von Karman plate with rotational inertia effects included, as well as
appropriately scaled mild structural damping, precisely because the model permits a clean sequence of
rigorous results and a linear discussion. The style of the paper is to provide all of the main results (and
the lemmata on which they are built) in a formal mathematical way, without necessarily proving each of
these supporting facts. In the relevant cases below, we clearly provide the reference for the proofs and
further discussion. In what follows below, we provide new approaches and/or proofs for the system (e.g.,
making use of the recent quasi-stability approach [9]) which have not been applied to this model in the
literature. And, in the case of our main stabilization result, we provide a detailed proof.

1.1 Panel Flutter Model

The large deflections of an aeroelastic panel are typically modeled via the plate theory of von Karman
[15,19], going back to the early aeroelasticity literature [4,20]. Here, we also choose this cubic-type model
based upon the quadratic strain-displacement law [19,28]. At equilibrium, we model the center line of
the plate by a bounded domain® 2 C {x3 = 0} with smooth boundary I" having unit outward normal v.

The inviscid potential flow corresponds to the linearization of compressible Navier-Stokes about the
stationary state Ueq, i.e., constant flow of velocity U in the z-direction; we normalize the flow parameters
so that U = 1 corresponds to the speed of sound, i.e., Mach 1. The flow environment we consider as
R = {x € R® : x3 > 0} so that the plate’s centerline £2 C IR3.

In this situation, then, u : 2 x [0,00) — R corresponds to the transverse plate deflections; ¢ :
Ri x [0,00) — R is the perturbation velocity potential, such that v = Ue; 4+ V¢ is the perturbed flow
field. Then, the evolution flow-plate system of interest here is given by:

(1 — aA)ug + A%u+ k(1 — al)uy(t) + fo(u) = po+ [0 + U83:1]<Z>|Q in 2x(0,7),

u(0) = up; u(0) = w in 2,

u=0,u=0 on 92 x (0,7), (11)
(0 + U0, )% = A in R3 x(0,7), '
$(0) = do; ¢:(0) = ¢n in R3

Opy® = [(0¢ + Uy, )u] on {z3 =0} x (0,7).

ext

Above, parameters such as mass, density, thickness, and stiffness have been scaled out. The remaining
parameters are those relevant to this mathematical analysis: U, «, k. Here, « > 0 corresponds to the

L If 2 is a rectangle, no results below are affected.
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accommodation of rotational inertia of plate filaments [28], whereas k > 0 corresponds to the presence of
mild structural damping. The function py(x) corresponds to a stationary pressure on the top surface of
the plate. The notation []eyx; above means extension by zero from {2 — R? with corresponding restriction
rol], and the standard trace operator denoted by +[-] onto 942 or {z3 = 0} is utilized (of course in the
appropriate functional senses).

The (scalar) von Karman nonlinearity [15,19,28] is given through the von Karman bracket and the
Airy stress function. The bracket is

[u, w] = (97, u)(97,w) + (92,u) (07, W) — 2D, Dy ) (D, D w),
while the Airy function is defined as an elliptic solver, namely, v = v(u) is the solution to
A% =—[u,u] in 2, v=0,0=0 on I (1.2)

Finally, letting Fj(x) represent a stationary planar force on {2 corresponding to in-plane plate loading
(pre-stressing), we have the von Karman nonlinearity

fo(u) = —[u,v(u) + Fp]. (1.3)

Remark 1.1 The damping above in (1.1) would be delineated as “square-root” type in the case o = 0,
as it is in some sense an interpolation between weak damping of the form +kqu — ¢, and Kelvin-Voigt
damping of the form +koA2u;. This type of damping it is popular in engineering since it most accurately
reproduces physical (low) modal damping decay rates. See [25, Section 2.1] for detailed discussion and
further references. In our treatment we refer to it as mild structural damping.

1.2 Notation and Conventions

In this paper we utilize the standard notation and conventions for LP(&’) spaces and Sobolev spaces
of order s € R, H?(0) where € is some domain. The space H{(f2) denotes the completion of the
test functions C§°(£2) in the H*®(£2) norm with dual H~°({2). For our norm notation, we will denote
|- |[#:(ey = || - ||s, where the spatial domain will be clear from context; we will identify | - [|z2(5) = || - ||,
omitting s = 0. Inner products on R will be denoted by (-,-) := (-, ')LQ(Ri) and on JR? we utilize the
notation (-,-) := (-,-)r2(0). The trace operator on H'(&) spaces will be denoted by ~[-] with range in
H'?(90). We denote an open ball of radius R in a Banach space X by Br(X).

Throughout the entirety of this paper, unless otherwise explicitly stated, we consider
U elo,1).

1.3 Energies and Solutions

The energetic constraints for solutions manifest themselves through natural topological requirements,
namely, for L2 (2) given by

IE ||2Lg;(n) =allV- ||%2((2) +1I - ||2L2(Q)7
finite energy solutions should have the properties:
we C(0, T Hf () N CH 0, T3 L2(2)); ¢ € CO,T;Wi(R}))NCHO, T3 LP(RY)),  (1.4)
where W1 (R3) denotes the homogeneous Sobolev space of order 1. Here,

WiRY) ={p e L} (R2): Vo e L*(R})},

loc

which is to say the space topologized by the gradient norm ||V¢||L2(R3+) without L?(R3 ) norm control.
To set provide a dynamical systems framework, the principal state space is taken to be

Y =Yy x Y, = (Wi(RY) x L*(RY)) x (H§(2) x L2(£2)), (1.5)
We will also consider a stronger space on finite time intervals:

Y, = H'Y(R3) x L*(RY) x HZ(£2) x L2(2). (1.6)
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The energies corresponding to finite energy solutions of (1.1), and the above space Y, are given below.

1 1
Ey = §[|\Ut\|2Lg(Q) + || Aul? + §||Av(u)|\2] — (Fo, [u, ul) + (po, u), (1.7)
1
En = el + [[VEIP — U102, ¢l I], (1.8)
£ = Epl + Efl + Eint. (1.10)

The pair (¢, u) as in (1.4) is said to be a strong solution to (1.1) on [0,T] if:

o (6r,u) € L0, HY(RE) x HA(2) N H(2)) for any (a,b) C 0,7

o (Gu,un) € L1 (a, b L2(RY) x Hg(rz)) for any (a,b) C [0, ).

o ¢(t) € H*(R3) and A%u(t) + k(1 — A)w(t) € H1(2) ae. t €[0,T).

e The equation (1 — ad)uy + A%u+ k(1 — al)us + f,(u) = po +roy|ér + Ug,] holds in H=1(£2) a.e.
t>0.

e The equation (9; + Ud,)*¢ = A¢ holds a.e. t > 0 and a.e. x € R3.

e The boundary conditions in (1.1) hold a.e. t € [0,T] and a.e. x € I', x € R? respectively.

e The initial conditions are satisfied point-wisedly; that is ¢(0) = ¢, ¢+(0) = ¢1, ©u(0) = up, u(0) =
Uuy.

Strong solutions are point-wise or classical solutions.

The pair (¢, u) is said to be a generalized solution to problem (1.1) on the interval [0, T if there exists
a sequence of strong solutions (¢"(t); u"(t)) with some initial data (¢, ¢7;uf;ul) such that (¢™,u™)
converge to (¢, u) in the sense of C([0, T]; Y;) as n — oo. Such solutions correspond to semigroup solutions
for initial data in Y rather than the domain of the generator.

Lastly, the pair (u, ¢), with

we Wy = {u e L=°(0,T; H2(£2)), dyu(x,t) € L® (o,T;Hg(rz))}

6 V= {¢ € L(0,T; H'(R3)), dhd(x,t) € L®(0,T; LQ(Ri))},
is said to be a weak solution to (1.1) on [0, T if
. U(>T<7 0) = uo(x), us(x,0) = u1(x) and $(x,0) = ¢o(x), P¢(x,0) = $1(x)
o [ (= a2 @ute).00(0) = k(1 = a2)@rutr). w(1) — (Auft). Au(®) = (f,(u(t) = po. ()
— (raA[B(0), B (t) + Uy, w(®))) dt = (w1 = ro71d0],w(0))
for all test functions w € #4 with w(T) = 0.

T
o [ @+ U200 01+ VB 0(0) - (V610 T0(0)
(

+ (B + Uda, Ju(t), rg’y[ GO dt = (61 + U, 60, 6(0))
for all test functions 1 € ¥7 such that ¥(T) =

It is clear that strong solutions are generalized, and we state without proof that generalized solutions are
in fact weak—see the discussion of abstract second order equations in [15].

1.4 Outline and Overview of Results Presented Here

In Section 2 we rewrite the problem abstractly, as dictated by the principal spatial operators for the
plate and flow equations. We show, via a semigroup approach, that the underlying linear problem is
well-posed via the Lumer-Phillips Theorem. From there, the locally Lipschitz nature of the von Karman
nonlinearity yields local-in-time strong and generalized solutions, which are made global by specific bounds
on trajectories. We utilize tight control of lower order terms via the superlinear nature of the von Karman
nonlinearity, as well as the Hardy inequality to control interactive, non-dissipative flow-plate terms. The
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global in time bounds on trajectories provide finiteness of the dissipation integral, a critical piece of the
stability analysis to follow.

Section 3 describes the stationary problem associated to the flow-plate dynamics (1.1). We quote
results about the existence of stationary solutions, and remark on the mutliplicity of such solutions in
general, concluding that the stationary set is generically finite owing to the Sard-Smale theorem.

In Section 4 we look at the decoupled Neumann-type wave equation corresponding to the subsonic
flow, driven by a given downwash. We decompose the effects of initial and given boundary data, and
discuss stability and Huygen’s principle in this context. In fact, as the hyperbolic equation is posed on
the half space, we have an explicit solution representation (via transform methods) for ¢ in terms of
the Neumann data. Section 5 uses this explicit solution form to compute the Dirichlet trace of the
material derivative of the flow potential (the pressure). Since the flow data are in fact taken from the
plate equation, this calculation allows us to consider a closed plate system with a memory-type term
(as well as damping and non-conservative terms). In essence, this reduces the flow-plate dynamics to a
memory-type plate dynamics.

For the memory-type dynamical system corresponding to plate solutions we construct a compact global
attractor in Section 6. For this non-conservative dynamical system, we must explicitly construct the
absorbing ball (as in [17]), which is done via Lyapunov methods. We utilize the quasi-stability approach
to obtain asymptotic compactness (yielding the existence of the compact global attractor), and quasi-
stability on the absorbing ball provides finite dimensionality of the attractor in the state space as well as
additional smoothness.

Finally, in Section 7, we present the main result here on stabilization of the dynamics to the equilibria
set. Obtaining the result depends critically on all that has been established in the previous sections. After
showing that plate trajectories in fact converge to stationary points, we then lift this convergence to the
flow. This result utilizes: compactness of the attractor, finiteness of the dissipation integral, compactness
of the specific Neumann-to-Dirichlet map provided through the explicit solution representation discussed
above.

The main results in each of the above sections are stated precisely in their respective sections. Proofs
are provided in most cases, but where they are not, precise references are given.

1.5 Discussion of Results Herein and Relationship to the Literature

Let us discuss the previous mathematical work on this and closely related models. Early engineering
references address panel flutter (in the comparable formulation to (1.1)) as motivated by the paneling and
external layers on aircraft and projectiles [20,21]. We make special note of the work of Bolotin [4], whose
early work has the mathematical formulation of the flow-plate system here, as well as good mathematical
insight into a variety of qualitative features of the dynamics. Later, the work of Chueshov et al. began to
address flow-plate models in a modern PDE and dynamical systems sense [5-7]—indeed, Chueshov should
be given credit as a driving force for the analysis of this and other models of mathematical aeroelasticity.
More broadly, we mention other seminal works in mathematical aeroelasticity [3,26], as well as the
surveys [12,13] and the book chapter [27] which provide an overview of mathematical aeroelasticity,
including some modeling discussions for configurations other than that of a panel.

Specific to the models described in this treatment, we point to early work on the delay dynamical
system as it appears here can be found in [8,10]. Later, the works [5-7] consider the system presented
here as (1.1). Well-posedness is addressed through Galerkin constructions with good microlocal estimates
[33] applied by decoupling the flow-plate system. Later, stabilization-type results appeared for the flow-
plate system when beneficial thermal effects accounted for in the plate [34,35], in particular parabolic
dissipation. In [34], the thermoelastic plate takes o > 0 and the arguments utilize analyticity of the
underlying semigroup for the linearization; in [35], @ = 0 and only partial parabolic smoothing is available.
In fact, these papers provide a motivation for our stabilization work in Section 7, and these papers are
the closest in the literature to a complete description—as we provide here—of long-time behavior, albeit
in the thermoelastic case. In this work, we trade thermal effects for engineering-type mechanical damping
in the plate, not necessary in [34,35]. In the monograph [15], many results appeared for attractors for the
plate system, though not explicitly using the more recently developed quasi-stability theory. Convergence
to equilibrium for the model discussed here was outlined in both [11,15], without details, largely based on
the foundation laid in [34,35]. In the case without rotational inertia—namely o = O0—well-posedness was
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obtained for the first time in [38] using a semigroup approach, and later again with boundary dissipation
in [30]. The work [16] provides a well-posedness construction for « = 0 through the clever use of an
absorbing boundary condition for the flow. Attractors and determining modes for the associated delay
dynamical system when « = 0 are considered in [17] and the more recent [39]. Stabilization to equilibria
was considered in the o = 0 case (with only weak damping) in the sequence [31] and [32]; these results
are much more complicated, the nonlinearity is not principally that of von Karman, and the results are
in some sense partial. Specifically, convergence to equilibrium (as presented here) is obtained for & = 0 in
the following cases: (i) smooth initial data, with any imposed damping k > 0, for von Karman or Berger
type plate nonlinearities; (ii) finite energy data, with damping of the form k[w:+w], k > kmin, again for
von Karman or Berger nonlinearities; (iii) and finally, for finite energy data, with damping of the form
kwy, k > kmin, for the Berger plate.

We emphasize that stabilization to equilibria results of the sort presented here become much more
complicated via the inclusion of thermal effects, or when o = 0, hence the treatment here gives the simplest
picture of the underlying challenges and mechanisms for stabilizing the flow-plate system, despite the fact
that the aforementioned modifications are certainly more complex physical systems.

Thus, for the treatment at hand, we choose a physically relevant scenario where many results can be
presented in a clean and clear manner, utilizing the state of the art tools for modern dynamical systems
theory. The results here, in some cases, are not sharp (with respect to parameters, for instance), and not
every result is novel. In fact, many of the results presented here have appeared in disjointed publications
listed above over the past 30 years (with varying degrees of detail). Of the results here, those which have
appeared before are given here largely with novel proofs using recent dynamical systems technology.

The highlights of this treatment are:

A semigroup approach to well-posedness of strong and generalized solutions to the flow-plate system.

This is a recent treatment for these strongly coupled, non-dissipative dynamics, and takes the system

as a whole, exploiting cancellations through calculations performed on strong solutions rather than

relying on microlocal trace results for decoupled dynamics; we believe this to be an elegant and
instructive manner of obtaining solutions;

e A direct construction—without appealing to abstract theorems for second order evolutions—of an
absorbing ball for the plate dynamics (appropriately modified from [17]), required because of the
non-gradient structure of the reduced dynamics, making use of a non-standard Lyapunov approach
on the reduced plate dynamical system with memory;

e The use of modern quasi-stability theory [9] directly on the absorbing ball, yielding, all at once from
that powerful theory, a compact global attractor for plate dynamics that is smoother than the finite
energy space as well as having finite fractal dimensional;

e A complete proof of subsonic convergence to equilibrium, utilizing the compactness of the plate at-

tractor, finiteness of the mechanical dissipation integral, and the compactness of the plate-to-flow

lifting, without invoking any sort of thermoelastic smoothing or dissipation as in [34, 35].

2 Well-posedness and Boundedness of Solutions

In this section we will construct strong and generalized (and hence weak) solutions via a semigroup
approach. This approach was first utilized in the case « = 0 in [38] and some subsequent references
[18,27,30] based on it (also for o = 0). We provide here the abstract setup and semigroup generation
result for the model at hand, (1.1) when o > 0. We will re-write the linear problem abstractly on the
finite energy space, using appropriate constituent operators. The generator, then, for the underlying
linear flow-plate dynamics is w-dissipative [1] and maximal in the appropriate sense, yielding generation.
Then, exploiting the local-Lipschitz property of the von Karman nonlinearity, we will obtain local-in-time
solutions for the nonlinear problem. Lastly, a priori-estimates on solutions (which exploit the superlinear
nature of the nonlinearity) provide global solutions in Y; (as in (1.6)) on any [0,7]. Further energy
estimates ensure that the solution is uniformly bounded in time in the extended space Y as in (1.5).
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2.1 Operators and Abstract Restatement of the Linear Problem
Let A: 2(A) C L*(R) — L*(R3.) be the positive (recall: 0 < U < 1), self-adjoint operator
Af = =Af+ U f+nf 2(A) = {f € H*R3) : 0, f,,_o = 0},

where p > 0.2 It is clear, then, that 2(AY/2) = H*(R3) (in the sense of topological equivalence). The
corresponding Neumann map Ny : L?(£2) — L?*(R?) obtained through Green’s formula [29] is given by

Y =Now < (—A+UJ, +p)yp=0in R} with (’?71/}’9 = [W]ext- (2.1)
3

We have from [15,29] that A%47°N, : L*(R?) — L*(R%) is continuous. Moreover, we have the adjoint
identification of the Dirichlet trace

NeAf =91fl, f € H'(RY).

Introduce now the differential operator D(¢) = 2U ¢, defined on 2(A'/?) and the biharmonic operator
du = A%u, defined on 2(«/) = (H* N HEZ)(£2). In this case, & is a positive, self-adjoint operator on
L?(2) with D(&7'/?) = H2(82). Lastly, we define the operator M, = (1 — aA) with domain 2(M,) =
(H? N HY)(2) and 2(Mo'?) = HY(2) = L2(12).

Consider the above, we have the abstract formulation of the homogeneous linear version of (1.1):

¢ + A(p + No(ug + Uug,)) + pp + D(¢) =0, in [2(AV2)]
Mauss + kMaus + /= Ng Algr + U, ) = 0, in [2(e/1/2)) (2.2)
5(0) = b, 610) = b1, u(0) = oy 1a(0) = u.

The natural state space then becomes
Yo = Y1 X Yoo = 2(AY?) x LA(R3) x 2(#*/?) x 9(M?),
with natural inner product: y = (¢1, ¢o; u1, uz) and y' = (@}, ¢h; uj, uh)
9 )y =(01, 01) pa1/2) + (D2, 85) L2me ) + (W1, u1) g(ari/2) + (Uz’ulz)@(M;/’z)- (2.3)
For a > 0 fixed and any p > 0, we have immediately that Y,, = Y, in the sense of topological equivalence.

Writing (2.2) as a first order system for y = (¢1, ¢2,u1,u2)? leads to the overall dynamics operator
To: 2(Ty) C Yy — Y, expressed (in a distributional sense) by:

0 —I 0 0 o1
ne| A b v (o) o
~MUN;ABy, —M7INGA M7 et kI | \uy
with
9(Ta) = {y € [2(A2)]) x [2(*2)]: 61+ No(us + Ubyun) € F(A); (2.5)

MG 2/ w1 = NG A(g + U 61)] € L3(2) }.

In this case, the linearized, homogeneous version of (1.1), perturbed by p, is represented by the abstract
ODE

d
L+ Tay = 0 y(0) = o € Yo (2.6)

2 The perturbation g > 0 is introduced to dispense with the zero eigenvalue; later that this will be taken as a bounded
perturbation on Y and removed to obtain the problem as originally stated.
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2.2 Generation
In this section we use the Lumer-Philips theorem [1] to obtain:

Theorem 2.1 The operator Ty : D(Ty) : Yo — Y4 is w-accretive and mazimal, hence —T, is the
generator of a strongly continuous semigroup of bounded linear operators on Y, (and hence also on Yy ).

Proof (Proof Outline) To show that T, is w-accretive, we first consider a modified inner-product on Y:
For y= (¢17¢2;u17u2)T and y/ = ( /1»¢/2;u/17ul2)T

(v,9") = (W, ¥)va + U0z, ur, roy[91]) + U(0e, vy, mo¥[P1]l2) + M(Vur, Vi),

for A = A\(U) a parameter chosen to ensure positivity of the inner-product ((-,-)). It is a straightforward
exercise using the Sobolev embedding theorems and the Hardy inequality to check that ((-,-)) is in fact
an inner product on Y, whose topology is equivalent to that given by the original inner product (-,-)y, .

This inner-product ((-,-)) on Y, is built to produce a particular cancellation of trace terms in the

AU
accretivity calculation. Indeed, one my check that for w > %:

(Toy +wy,y)) 20, y € 2(T,),

and hence Ty, is w-dissipative in ((+,-)) on Y.
To show that T, is maximal, we need to show that Z(T, + nl) = Y, for some n > 0. Given x =
(1, 2; w1, we)T € Yy we must solve ny + Ty = x for y = (¢1, do; ur,u2)’ € D(T,):

N1 — G2 =1y € 9(AV/?)
N2 + Alpr + No(uz + Uz, u1)] + D(o2) =y € L*(RY) (2.7)
nuL — U =w; € 9(F?) ’
(0 + k)uz + M3 o/ur — NG A(¢2 + U0z, ¢1)] = w2 € L (£2).
Eliminating ¢; and u;, and applying M, to the last equation in (2.7), we obtain the operator
1 U
—A+D+nl ANo(I + —0d,)
g=| " " , (2.8)

U 1
n n
and the equation

1
b2 V2 — ;A% - %ANOC%UH
%( ) _ o & [AA)] x [P ). (2.9
U2 M we — ;,52711)1 + gNgAagjllﬁl

Taking V = 2(AY?) x 2(</'/?), and considering & : V — V', we obtain that ¢ is m-monotone and
coercive for appropriately chosen n(U), and hence a corollary to Minty’s theorem [15, Proposition 1.2.5]
ensures that ¢ surjective. Elliptic regularity for A and 7 then provide that y = (¢1, ¢2;u1, u2)? € 2(T,)
(with appropriate estimates), giving the solution to (2.7).

With generation accomplished on Y, taken with the topology induced by ((+,)), we obtain immediate
semigroup generation on Y, in the natural norm induced by (2.3), and again, via topological equivalence,
semigroup generation on Y.
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2.3 Locally Lipschitz Perturbation on Finite Time Intervals

Consider the perturbation operator & : Yy — Y; given by % (y) = ((), ud; 0, M po — fo (u)])T Then
the abstract system

d
ST =7 @), y0) =y e,

is equivalent to the main flow-plate system (1.1). As is shown in [15], the sharp regularity of the Airy
stress function provides the a local Lipschitz property for the von Karman nonlinearity:

Iy, v(w1)] = [uz, v(u2)]ll-s < C(urll3 + Jull2ll3) llur — uzll2-s, & € [0,2). (2.10)

Hence .# : Yy — Y is a locally Lipschitz perturbation.
Applying the standard perturbation semigroup argument [1], we obtain:

Lemma 1 With T, and % as above, the equation
dy P
o TTay=7(y), y(0) = yo € 2(T)

has a unique local-in-time strong solution on [0,tmas). When yo € Yy, we have a unique local-in-time
C(0,tymaz; Ys) mild solution. In both cases, when tma(Yo) < o0, we have that ||[y(t)|ly. — oo ast
tmaz(yo)-

Identifying the abstract ODE in (1) with the flow-plate system in (1.1), we obtain a local-in-time existence
and uniqueness result.

Corollary 1 Consider the system in (1.1) with U € [0,1), « > 0, and k > 0. Take py € L*(2) and
Fy € H3(2). Then, for yo = (¢o, ¢1;u0,u1) € Z(Ty) (resp. Ys) there exists a unique, local-in-time strong
(resp. generalized) solution (p(t), d+(t); u(t), us(t)) as defined in Section 1.5.

Remark 2.1 Energy methods and the direct estimate

t
o)l 2ms) < lldollr2rs) +/0 e (Tl L2 (R ) d, (2.11)

yield that the solutions in Corollary 1 are valid for ¢ € [0, T] for any T' > 0. This point will be superseded
by the following section.

Remark 2.2 The abstract setup above will obtain, mutatis mutandis, for o = 0—see [38], or see [16] for
an alternative viscosity approach.

2.4 Bounds in Energy Norm Y and Global Solutions

In this section we remark that in the norm of Y as defined in (1.5), solutions are global-in-time bounded.
This allows us to extend our result in Corollary 1 to be global in the sense of a solution for ¢ € [0, c0).
Such extension permits the analysis of long-time behavior of solutions.

The bounds in the following proposition are critical to obtaining the global-in-time boundedness
mentioned above.

Proposition 1 First, for ¢ € W1(R3):
Irev[dlllLz(e) < Coll Vol L2 ). (2.12)
Nezxt, the interactive enerqy Eint, as defined (1.7), is controlled in the following way:

| Eine(t)] < 0IVo()lIzs + CU,0)ua, (D5, 0> 0. (2.13)

Lastly, the nonlinear potential energy provides control of low frequencies:  for any n,e > 0 there exists
M. ., such that
lull3—, < elll Aull® + [|Av(W)|[*] + My,e, ¥ u & (H?* N Hy)(£2). (2.14)
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See [15,38] for detailed proofs of the above facts; here, we suffice to say that (2.12) follows from the
Hardy inequality, and from (2.12) the estimate (2.13) follows via Young’s; (2.14) is obtained through a
compactness uniqueness argument that exploits superlinearity of f,.

Now, let us define the positive part of the energy £ as:

1 1
Ec(t) = S [llwllZz o) + [14ull® + Sl Av(@)[* + [14]* + [ V&I *] (2.15)

Then, via Proposition 1, we obtain control of the unsigned energy by the positive part:

Lemma 2 For generalized solutions to (1.1), there exist positive constants ¢, C, and M that are positive,
and do not depend on the individual trajectory, such that:

&y (t) - Mmeo < g(t) < C&. (t) + Mmeo? (216)
The next lemma is the energy identity, as defined through (1.7):

Lemma 3 Weak (and hence generalized and strong) solutions to (1.1) satisfy the energy identity

t
£+ [l o = £0)

Synthesizing all of the above lemmata, we obtain:

Lemma 4 Any weak (and hence generalized or strong) solution to (1.1) will satisfy the bound
sup { 33 o) + 180l + ll0nl3s + IVl } < Cllwolly) < +oo. (2.17)

Thus, solutions are (Lyapunov) stable in time in the norm Y.

An immediate corollary from the energy identity (3) and the above boundedness is the finiteness of the
dissipation integral, which is used critically below.

Corollary 2 Any solution (1.1) satisfying the energy identity with k > 0 has the property

o0
/0 e (®)125 oy tt < K(llyolly) < .

Remark 2.3 We note that global-in-time boundedness of solutions cannot be obtained without accounting
for nonlinear effects. Also, we note that any generalized solution has the properties: y(t) € C([0,T];Y5s)
and y(t) € C(]0,00);Y). This is to say, on infinite time intervals we lose control of the quantity ||¢()||o-

Remark 2.4 In the case of a = 0, as examined in [35] for the thermoelastic plate, as well as in [31,32],
the dissipation integral is bounded, but its form is modified to the dissipation structure specific to those
cases.

3 Equilibria Set

Before moving on to discuss the long-time behavior of trajectories, it is worthwhile to discuss the equi-
librium/stationary solutions. Thus, in this section, we consider the stationary points of the dynamics
(S:,Y), i.e., stationary solutions for (1.1) corresponding to:

A%u+ f,(u) = po(x) + Uroy[0e,¢] x € 2

u=0,u=0 xel
252 3 (3.1)
A¢_Uam1¢:0 X€R+
6$3¢ = U[azlu]ext X € aRﬁ_
Below, Wa(R%) = {¢ € L} (R3) : D¢ € L?*(R}), |a| = 1,2}, and a weak solution to (3.1) is defined as

a pair (u, ) € Hzg(ﬁ) x W1(R%) such that
<Au7 Aw> - <[uvv(u) + FO] ,’LU> + U<7 [¢] ’8I1w> = <p0,w>

and
(v¢a Vﬁ’)Ri - U2(3331 d)? a:lhw)Ri + U<8:B1u7 7[¢}>-Q = O

We have the following theorem for the stationary problem as given in [15, Theorem 6.5.10]:
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Theorem 3.1 Suppose 0 < U < 1 with py € L?(£2) and Fy € H3(£2). Then a weak solution (u(x), $(x))
to (3.1) ewists and satisfies the additional regularity property

(u,¢) € (H* N H)(2) x Wa(RY).

Such solutions correspond to the extremal points of the potential energy functional

1 1 U?
P(u,§) = 5 || Aulf + I (u) + 5[ VoIRy — 510, 8l3s + U @s,u.trd))e,

considered for (u,¢) € HZ(£2) x Wy (R%).

We denote by N the set of stationary solutions from Theorem 3.1. In general, N has multiple elements.
The reference [15] provides an example (a choice of py and Fp) where there are multiple stationary points:
let po(z) = 0 and Fy = —f (23 + 23) . Then there exists 3 > 0 such that for 3 > By we have at least
three solutions: (0,0), (ug, ¢3) and (—ug, —¢p)—see also [19].

For given loads F{y and pg, the set of stationary solution is generically finite. This is to say that there is
an open dense set R C Lo(£2) x H*(£2) such that if (pg, Fy) € R then the corresponding set of stationary
solutions N is finite. This follows from the Sard-Smale theorem, as shown in [15, Theorem 1.5.7 and
Remark 6.5.11].

4 Flow with Given Neumann Plate Data
To perform the qualitative analysis below, it will be necessary to consider the flow equation with prescribed
Neumann data. This will allow us to explicitly compute the relevant Neumann-to-Dirichlet type map in

terms of the plate dynamics, among other quantities.
Consider the problem:

(0 + Ud, )2 = Ag in R x (to,T)
0y 8|, _o = h(x.1) in R? x (t,T) (4.1)
d(to) = ¢o; Pi(to) =¢1  in RY

We have the following theorem from [7,15,33]:

Theorem 4.1 Assume U > 0, U # 1; take (¢o, ¢1) € H'(R®) x L2(R3). If h € C ([to,00); H/*(R?))
then (4.1) is well-posed (in the weak sense) with

peC ([to, oo);Hl(]Ri)) , ¢preC ([to,oo);LQ(]Ri_)) )

Remark 4.1 In fact, a stronger regularity result is available. Finite energy H'(£2) x L?({2) solutions are
obtained with h € H'/3((0,T) x R?) [29, 36].

4.1 Flow Decomposition and Properties
We may decompose the flow problem from (4.1) into two pieces corresponding to zero Neumann data,

and zero initial data, respectively: ¢* solves (4.1) with h = 0, and ¢** solves (4.1) with ¢g = ¢1 = 0.
In line with our well-posedness result, Corollary 1, we will consider:

h(x,t) = [us + Uiz, Jext € C([0, T); H'(R?)). (4.2)
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4.2 Point-wise Formulae

In this section, we will look at ¢* and ¢** separately and establish results regarding each of them. These
results will be used to obtain useful estimates in the next section.

For the analysis of ¢* we use the tools developed in [5, 7], namely, the Kirchhoff type representation
for the solution ¢*(x,t) in R3 (see, e.g., [15, Theorem 6.6.12]). We conclude that if the initial data ¢g
and ¢; are localized in the ball K, = R3 N B,(R?), then by finite dependence on the domain of the signal
in 3-D (Huygen’s principle), one obtains for any p that ¢*(x,t) = 0 for all x € K; and ¢t > t;. Thus ¢*
tends to zero in the sense of the local flow energy, i.e.,

V6" (DN 2k, + 1107 )l L2(xc,) — 0, = 00, (4.3)
for all fixed p > 0. Also, in this case,
(O +Ud, V9] =0, x€, t>1; (4.4)

On the other hand, for ¢** as above, we have the following result taken from, for instance, [7, Theorem
3.3.]:

Theorem 4.2 Let
h(X, t) = [ut(‘rlv X2, t) + qul (xla Z2, t)]ezta

there exists a time t*(£2,U) such that, for all t > t*, we have the following representation for the weak
solution:

_ t* 2m
O™ (x,t) = _M/ / (uf (x,t,5,0) + Uull(x,t,s,ﬂ))dé’ds. (4.5)
™ xr3 0
where x(s) is the Heaviside function. The time t* is given by:
t* =inf{t : x(U,0,s) ¢ 2 for all (x1,22) € 2, 6 €[0,27], and s > t}, (4.6)

with
x(U,0,s) = (x1 — (U +sinf)s, x5 — scosf) C R? (4.7
(not to be confused with x = (z1,x2)).

The elementary formula below is of critical importance to the stabilization arguments here; it is
shown [6,7] and also appears critically in [34,35]:

S

|

Ot (x,t,5,0) = —d%hT(x,t,s,O) —Ud,, hi(x,t,5,0) —
S T3

MghT](X,t,S,G) (48)
where, My = sin 00,,, + cos 00, and

ul(x,t,5,0) = [U]ear (J:1 —Us+ /82 —a2sinf, o — /52 —x%cos@,t—s) , (4.9)

in computing partials of ¢**. For ¢;* we have:
1 2 2w
e t) =5 /0 dou (x,t,t",0) — /0 douf (x,t, x3,0)

" . (4.10)
/ dO[Myul](x,t, 3,9)}.
0

+/t*d i
o0
T3 \/82—{17%

Remark 4.2 We note that to use these formulae in a classical sense (i.e., to produce direct bounds), one
must have pointwise in time that u; € H*(£2), which critically depends on the presence of o > 0.
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Similarly, the spatial partials for ¢ = 1,2 are:

1 t* 2w 1 t* 2w
o (z,t) = —/ / 0 + U0y, Jul (x,t,s,0)d0ds = —/ / Udy,ul (2,t,5,0)d0ds  (4.11)
* 271' z3 0 ’ 27T T3 0 ’

1 t* p2mw :
— 0 t,s,0)dod
+ 27T LS /0 tuzi ({L‘7 S, ) S

Differentiation in x3 is direct, and so with cancellation, it yields:

02y ™" (x,t) = (0 + U0y, )u(xy — Uz, 2, t — x3) (4.12)

t* 2
o [ T | anl(o+ von ) ol o t.5.0) (4.13)
From these direct calculations, bounds on solutions can be obtained directly [34, Lemma 8] using
interpolation:
Lemma 5 For (4.1), taken with h(x,t) = (uy + Utly) ext, we have
IV O, + llor™ OI7 x,
< COIO oo rzoney + 18O e szt (4.14)
fors,n>0,0<s+n<1/2 andt>t*(U,§2).

From here, for smooth solutions, we can explicitly solve for the needed Dirichlet trace of the material
derivative appearing on the RHS of (1.1) in the plate equation in terms of the Neumann data h =
[ut + Uuy,]. Considering the term

r2Y[(0r +Ubs,) ¢ = roy (0 + Udx,) 6™

for t > t, by (4.4), where again p corresponds to the supp(¢o), supp(¢1) C K,. Using the above
expressions for 9;¢** (4.10) and 0., ¢** (4.11), we obtain

70 (0 + Uy, ) v 0™ = — (0 + Uy, )u — q(u'), (4.15)
for t > max{t*,t,} (t* as defined above in (4.6)) with

q(ut) = %/0 ds/o 7Td9 [M§ [, (x(U,0,s)], (4.16)

and x(U,6,s) as in (4.7).

The notation above for u! indicates the entire set {u(t+ s) : s € (—t*, 0)}7 where t* is the fixed delay
time given in (4.6) depending only on {2 and U; this notation is used in considerations with dynamical
systems with delay/memory [8,10,15].

5 Reduced Plate Dynamics
5.1 Plate Reduction Theorem

From all of the point-wise formulate of the previous section—including the calculation of the “Neumann-
to-material-derivative-trace in (4.16)—we obtain the theorem below by waiting a time t# = max{t* , t,}.
The result is as stated in [7, Theorem 2.2].

Theorem 5.1 Let k > 0, and (¢o, 15 uo, u1)” € HZ(£2) x L?(2) x HY(R3) x L?(R3.). Assume that there
exists an p such that ¢o(x) = ¢1(x) = 0 for outside K,. Then the there exists a time t#(p,U, 2) > 0
such that for all t > t# the plate solution u(t) to (1.1) satisfies the following equation (in a weak sense):

Mougs + A%u+ kEMaus + fo(u) = po — (0 + U0y, Ju — q(u') (5.1)
with
1 t* 27
q(ut) = 27/ ds/ dO[MZteyi] (21 — (U +sinf)s, 2o — scosf,t — s), (5.2)
T Jo 0

with My and t* as in the previous section.
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We then have the following direct estimates on the delay potential q(u') [5,7,15,17]:
Proposition 2 Let gq(u') be given by (5.2). Then

t
llg@uh)|2, < et* / fu(r)|2dr (5.3)
t—t*
for any w € L2(t — t*,t; HY(2)). If uw € LE (—t*,+o0; (H? N H})(£2)) we also have
t t t
llg@h)|? < et* / [u(r)|3dr, / g™ Pdr < cft*]? / u(r)|2dr, VE20.  (5.4)
t—t* —t*

5.2 Reduced Dynamical System (73, H)

With these estimates, the system given in (5.1)—(5.2) is independently well-posed [17] as plate equation
with memory [15,17]. Specifically, on the space for initial data

u(0) = ug € HS(Q% ug(0) = uy € H&(Q), u|te(—t*,0) =1n€ LQ(—t*,O;HS(Q))-

In application, we will consider an initial datum yy € Y corresponding to the full flow-plate dynamics
Si(yo) in (1.1). We wait a sufficiently long time ¢#(p, U, £2) and employ the reduction result Theorem
5.1, and we may consider the “initial time” (¢t = to > t#) for the delay dynamics. At such a time, the
data which is fed into (5.1) is zg = (u(to), us(to), u'), where this data is determined by the full dynamics
of (1.1) on (tg — t*,to). Thus, given a trajectory S;(yo) = y(t) = (¢(t), ¢ (t); u(t),us(t))T € Y, we may
analyze the corresponding delay evolution (T}, H), with H = HZ(£2) x L*(£2) x L? (—t*,0; H3(£2)) , with
given data zo € H. We then have that Ty(zo) = (u(t), us(t); ut) with zo = (ug, u1,n). The natural norm
is taken to be

0
(e, vs )l = [1Aul]? + |l +/ |1 An(t + s)[[*ds.
i

Using standard multiplier methods, along with the a priori boundedness in Lemma 4, we obtain via
Gronwall’s inequality the Lipschiz estimate below.

Lemma 6 Suppose u'(t) for i = 1,2 are solutions to (5.1) with different initial data and z = u* — u?.

Additionally, assume that ‘ ‘
luy ()72 () + |4’ (t)]]* < R?, i =1,2 (5.5)

for some R > 0 and allt € [0,T]. Then there exists C > 0 and ag = ar(t*) > 0 such that

0

(033,09 + 118201 < Cent{]| AGub — )| + lJud — 112 + / () = P()IRdr ) (56)
.

for allt €10,T7.

6 Smooth Global Attractor for Reduced Plate Dynamics

The main result in this section is that the plate dynamical system (7}, H) has a compact global attractor
which has additional nice properties.

We recall that (see, e.g., [2,15]) for a generic dynamical system (S, H), a compact global attractor
A CC H is an invariant set (i.e., S;A = A for all ¢ € R,) that uniformly attracts any bounded set
B CH: tligloo dp{S:B | A} =0, where dy corresponds to the Hausdorff semidistance. As we will see,

A will have finite fractal dimension in this case: dimyA < oco. The fractal dimension of a set is defined in
terms of minimal coverings, [9,15], and a set with finite fractal dimension can be included as a subset of
some higher dimensional Euclidean space.

Theorem 6.1 (Smooth, Finite Dimensional Global Attractor) Let k > 0, U # 1, py € L*(12),
and Fy € H3(2) in (1.1). Also assume the flow data ¢o,¢1 € Y are localized (with supports in K,, as
in Theorem 5.1). Then the corresponding delay system (Ty, H) has a compact global attractor A of finite
fractal dimension in H. Moreover, A has additional reqularity: any full trajectory y(t) = (u(t),u(t),u’) C
A, t >0, has the property that u € C,.(R; H3(2)NHZ(2)), u; € Cr.(R; HZ(£2)), and uy € C.(R; HL(£2)).
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This can be rephrased for the full system (S, Y) by projecting on the first two components of H:

Corollary 3 With the same hypotheses as Theorem 6.1, there exists a compact set % C HZ(£2) x H}(£2)
of finite fractal dimension such that for any weak solution (u,us; ¢, Ps) to (1.1) has

T dy, ((u(t), (), %) = Jiminf_(([u(t) — woll§ + [[ua(t) — wnl[F) =0.

t—00 (wo,w1)EU
We also have the additional reqularity 7 C (H?(£2) N HZ(£2)) x H3(£2).

The proof of Theorem (6.1) proceeds in two steps: the construction of an absorbing ball by Lyapunov
methods, followed by the attainment of the so called quasi-stability property on the absorbing ball.

6.1 Construction of Absorbing Ball

For the non-conservative plate dynamics given by (5.1), we explicitly construct the absorbing ball via a
Lyapunov approach which is a clear modification of that in [17]. Recalling the definition of E,; from (1.7)
and defining the quantities

1 1 1
1) = 5 (14wl + S A0(P], Blun, ) = 513 ) + ()

we consider the Lyapunov-type function (the relevant adaptation of that in [17])

V(Ti(x)) = Ep(u(t), us(t)) + v[(MY 2w, MY ?u) + k(MY ?u, MY?0)] + M/o 5 II,(u(T))drds,
(6.1)

where Ty (z) = z(t) = (u(t), u(t),u?) for t > 0,3 and pu, v are some small, positive numbers to be specified
below. Using the elementary inequality

/O [ meydras<e [ @)

t—t*
we establish the topological equivalence between V(Tt(m)) and F,, which is given by the following lemma.
Lemma 7 With (T;, H) defined in Section 5.2. and V' defined as in (6.1), we have that there exists vy > 0

such that for all 0 < v < vy there are co(1p), c1,c(vg), C >0

0
By —c <V(Ty(z)) < 1 Ey 4+ puCt* I (u(t + 7))dr + c. (6.2)

—t*

d
A careful but direct calculation of gV(Tt(x)), coupled with the estimates on the nonlinear potential

energy Lemma 2.14 and the estimate on g(u') at the L? level in Lemma 2, produces, for 0 < v <
min {vp, 1}, and for p sufficiently small, the following lemma:

Lemma 8 For all k > 0, there exist u,v > 0 sufficiently small, and c(p,v,t*, k), C(u, v, po, Fo) > 0 such

that
0

%V(Tt(x)) < €= e{Bu(u,u) + Ll m)dr}. (6.3)
From this lemma and the upper bound in (6.2), we have a §(k, u,v) > 0 and a C(u,v):
%V(Tt(x)) + 0V (Ty(x)) < C, t>0. (6.4)
The estimate above in (6.4) implies (via an integrating factor) that
V(T,(z)) < V(z)e % + %(1 — e, (6.5)

Hence, the set

%E{xEH: V(x)<1+§},
is a bounded forward invariant absorbing set for (T3, H). This, along with (6.2), gives that (73, H) is

ultimately dissipative in the sense of dynamical systems [2,37].

3 without loss of generality, take tg = 0
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6.2 Tools from Quasi-stability Theory

We now proceed by discussing the specific tool we use in the construction of the attractor: quasi-stability
[9,15].

Condition 6.1 Consider second order (in time) dynamics (S, H) where H = X XY x Z with X,Y,Z
Hilbert, and X compactly embedded into Y . Further, supposey = (xo, 1, 20) € H with Syy = (z(t), :(t), 2%)
where the function x € C([0,00), X) N C*([0,00),Y), z € L} (R4, Z), where again 2 = {z(t+7) : 7€
(=t*,0)} for some characteristic time t*.

Condition 6.1 restricts our attention to second order, hyperbolic-like evolutions.

Condition 6.2 Suppose the evolution operator Sy : H — H 1is locally Lipschitz, with Lipschitz constant
a(t) € L2 ([0, 00)):

loc

ISty = Seyallr < a(®)lyr — vl (6.6)

Definition 1 With Conditions 6.1 and 6.2 in force, suppose that the dynamics (S;, H) admit the fol-
lowing estimate for y1,y2 € B C H:

[1Seyr — Seelliy < e llyr — wellfr + Cq sup, Ja1 — zo%.,  for some ~,Cy >0, (6.7)
T7€[0,t

where X C Y, C Y, and the last embedding is compact. Then we say that (S, H) is quasi-stable on B.

We now run through a handful of consequences of the type of quasi-stability described by Definition 1
above for dynamical systems (S, H) satisfying Condition 6.1 [15, Proposition 7.9.4].

Theorem 6.2 If a dynamical system (S, H) satisfying Conditions 6.1 and 6.2 is quasi-stable on an
absorbing ball B C H, then there exists a compact global attractor A CC H.

sup {llze®)1% + llze ()2} < C,

where the constant C above depends on the “compactness constant” Cy in (6.7).

Elliptic regularity can then be applied to the equation itself generating the dynamics (S, H) to recover
regularity for z(t) in a norm higher than that of the state space X.

6.3 Quasi-stability on the Absorbing Ball

For the discussion of quasi-stability, we begin with the standard observability and energy inequalities
which follow from energy methods developed for the wave equation. The details presented for a = 0
in [17] are unaltered different here.

Let us utilize the notation that FE.(t) = ||Zt(t)||%i(9) + ||Az(t)]|?. We state the following estimates

without proof.
Lemma 9 (Preliminary Estimates) Let
u' € C(0,T; Hy (2)) N CH(0,T; L2 (£2)) N L*(—t*, T; H§ (£2))
solve (5.1) with appropriate initial conditions on [0,T] for i = 1,2, T > 2t*. Additionally, assume

(u'(t),ui(t)) € Br(Yp) for allt € [0,T). Then the following estimates on z holds for some & € (0,2]:

t S
Ez(t)Jr/ E.dr < ag (Ez(s)Jr/ ||z(7)|§_5d7) + C(T,R,6) sup ||2||3_s (6.8)
s s—t*

TE(s,t

—a / () — f(u2), z)dr.
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0

%[EZ(T) + /Tit* EZ(T)dT} < as (EZ(O) +/

_t*

WW@W>+aﬂR®SwIWi5 (6.9)
T€[0,T]

T T T
o [ [ ) = )z drds— o [ () - ), )
0 s 0
with the positive a; independent of T and R.
We note the elementary bound
[(f(uh) = f(u?), z)] < Cl[f(u') = f(u®)]25 + el |2]]3-

Utilizing the above bound directly, and invoking the locally Lipschitz nature of the von Karman nonlin-
earity in (2.10), we see (rescaling constants) that

/ [(f(u') = f(u?), z)|dr < 6/ Izl + Ce, R, 6, |t — Sl)?ug 12(T)I3-s- (6.10)

This yields the estimate from which the quasi-stability property of (73, H) can be deduced.

Lemma 10 Suppose z = u' — u? as before, with y'(t) = (u'(t),us(t)’,ut") and y'(t) € B (i.e., the
trajectories lie in the absorbing ball) for all t > 0. Also, let 6 > 0 and E,(t) be defined as above. Then
there exists a time T such that the following estimate holds:

@m+/

T—t*

T 0

12(7)[3dr < B(E-(0) + /_t* 12(7)ll3d) + C(R,T,t*,0) SEPT]HZ(T”'%"S (6.11)

with f < 1.
Proof (Proof of Lemma 10) Applying (6.10) to (6.8) and (6.9) with s =0 and ¢t = T, we obtain

0

E.(T) +/OT E.dr < ag (EZ(O) +/

—t*

IMﬂ@nw>+dﬂR%dswlm§n (6.12)

TE[s,t]

T
+6a1/ Hzt(T)Hde.
0

and
T

%[EZ(TH/T_“ EZ(T)dT} < ay <E2(0)+/

—t

0
0l ) + O R0 s (AR, (6.13)

T€[0,T]
T

+CT6/ 24(7) [2dr
0

for T > max{t*,1}. After adding (6.12) and (6.13) and invoking the Sobolev embeddings, we can drop
suitable terms to obtain

T T
sz(T) + [{ac, —€e(a1 + CT)}/ zt(T)Hde] (6.14)
0
r [ 2 0 2 2
+5 |2(7)[l2dT < A | E5(0) + [[2(T)|l3_sdT ) + C(T, R,d,¢) sup ||z|[3_5
T—t* —t* 7€[0,T]

where 0 < ¢ < 1 and ¢, is a Poincare constant. Scaling € small enough, and 7" large enough, we obtain
after simplifying
0

[2(n)|3dr) + C(R.T,#°,6) sup [l()[3_5  (6.15)
T€[0,T]

B+ [ 1kl < 5(m0)+

T—t* —t*

with 5 < 1.
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We note that the necessary Lipschitz estimate in (6.6) holds by Lemma 6. Via the semigroup property
for the evolution (T3, H) (iterating on intervals of size T'), we obtain from (6.15) in a standard way the
quasi-stability estimate in (6.7). Hence the dynamical system (73, H) is quasi-stable on the absorbing ball
2 in the sense of Theorem 6.2.

Remark 6.1 This is a critical point: when a = 0, it is not clear that the dynamical system generated by
solutions is quasi-stable on the absorbing ball (although this can be shown for large damping &k > kynin)-
Thus compensated compactness methods [15] must be invoked; this is one of many challenges associated
to the long-time behavior of the @ = 0 case which are circumvented when a > 0. See [17,27] for more
complete discussion.

6.4 Attractor and Its Properties

We conclude this section by pointing out the existence and discussing the regularity of the global attractor
for the decoupled plate system. We first observe that Theorem 6.2 applies to the dynamial system (73, H).
Hence, we have existence of the global attractor A CC H for the system (73, H) and the estimate:

2 2
sup { [ue(6) 330+ e )y )} < © (6.16)

Consequently, us(t) € HZ($2) and uy,(t) € HE(£2) for each t € R. Applying elliptic regularity to the
equation
A2U = *Mautt + kMaut + [u,v(u) + FO] + Do — ur — Uum - q(ut) € Hil(ﬂ)

point-wisedly in time, we obtain that u(t) € H3(£2) N HZ(£2). Therefore, A possesses better regularity
than H and we obtain the statement of Theorem 6.1.

7 Stabilization to Equilibria Set

Finally, in this section, we show that in the subsonic case, when any amount of damping is present k > 0,
that trajectories stabilize to the equilibrium set A/ as in Section 3. (This is in stark contrast to the case
when a = 0.) From an applied point of view, this means that for subsonic flows, physical panels do not
experience aerodynamic instability. Said differently: there is no subsonic panel flutter. The main theorem
proved in this section is presented below.

Theorem 7.1 Let a« > 0,0 < U < 1, k > 0, and the assumptions of Theorem 5.1 be in force. Then for
any weak solution (u(t); ¢(t)), with flow initial data ¢y and @1 localized to K,, we have

Jim it {Jfu(e) = 501+ eI +160) 60y + I6eDl o | =0 ()

for any p > 0.

This theorem is discussed concisely in [11,15].

By the generic finiteness of the stationary set discussed in Section 3, for most loads pg and Fp, the
set AV is finite. In which case, the equilibria set corresponding to Theorem 3.1 is discrete and isolated.
When this occurs, we can improve the result above.

Corollary 4 Assume that N is an isolated set. Let the hypotheses of Theorem 7.1 be in force; then for
any generalized solution (u, @) to (1.1) there exists a stationary point (4, d) satisfying (3.1) such that

Jim {llu(t) = @l + @2 + 190 = dll3rs iy + 16(8) 320y | = 0,
for any p > 0.

The proof of this theorem proceeds in steps, utilizing first the finiteness of the dissipation integral in
Lemma 2 (from uniform boundedness of trajectories in the norm Y in Lemma 4). These facts along with
the compactness of the attractor for (T3, H) allow us to conclude strong convergences for the plate. We
then “transfer” these strong convergences to the flow via the Neumann lift corresponding to the ¢** in
Theorem 4.2 and the resulting Neumann-to-Dirichlet expression for the material flow derivative (5.2).



Large Deflections of A Structually Damped Panel in A Subsonic Flow 19

7.1 Step 1: Plate Convergences

Proposition 3 Let u be a generalized solution to (1.1) with o > 0. Then Myu.(t) — 0 in H=1(2) as
t — oo.

Proof (Proof of Proposition 3) Multiplying the plate equation in (1.1) by a test function w € C§°(§2), we
obtain

(Mo, w) = —(Au, Aw) + (po, w) — k(Moup, w) + ([u(t), v + Fol, w) + (re[v(é: + Uds)|,w).  (7.2)

The first and second terms on the RHS of the equality are uniformly bounded in time by Lemma 4.
For the third term, we have

[F(Moug, w)] < k([[ue]] - |[w]]) + ka(([Vue][ - [[Vew]]). (7.3)

For the fourth term, Theorem 1.4.3 and Corollary 1.4.5 from [15] provides us with the following estimates
for f,:

[([u, v + Fol, w)| < [[[u, o} [lwll + | [u, Fo][| -1 [[w]lx

3 (7.4)
< Ciffullzllwll + Collull2 | Foll2llwl1-
To estimate the fifth term above in (7.2), recall that
72 (0 + Uda,) vy ()] = —(0; + Udx, Jult) — q(u'),
for t > ¢*, where t* and ¢q(u") are defined as in Theorem 5.1. Also,
[(re[v(ée(t) + Uga ()], w)| < Ira[v(¢:(t) + U @®))]|| - lwll
< (e + Ullua (@O + llau)1) wll (75)

< O (lue)lrg + Ullu(®)l2) + ct” /H* l[u(7)|l2dT (by (5.4)).

The right hand sides of (7.3), (7.4) and (7.5) are then uniformly bounded in time by Lemma 4. Hence,
by (7.2), [(Maus, w)| = |0 (Maus, w)| is uniformly bounded in time for each w € C§°(42).
Next we see that

/w’<Maut,w>’2dT g/Oo‘(ut’w>‘2d7+a/oo‘(Vut,Vw>‘2dT
0 0 0 (7.6)

o0
scwmnéwmmﬂ<m

by the finiteness of the dissipation integral given in Corollary 2. Hence by Barbalat’s lemma and density*,
we obtain
lim (Maus(t),w) = 0, Yw € H(£2). (7.7)
t—o0
A being the global attractor is the w-limit set of the absorbing ball and includes w-limit sets of all the
trajectories of the dynamical system (T3, H). Projecting onto the first two components of H, we obtain
the following proposition:

Proposition 4 Let % be as in Corollary 3 and u be a generalized solution to (1.1). Then, given any
sequence of moments of time converging to infinity, there is a subsequence {t,} and (4,u) € % C
HZ(2) x H}(2) (depending on {t,}) such that

i [luta) — a3 = Tim [Jus(t,) — a2 = 0.

4 Barbalat’s Lemma : Suppose f(t) € C'(a, c0) and tlim f(t) = a < c0. If f’(t) is uniformly continuous, then tlim @)=
— 00 —

2
0. In our case, we take f(t) = fot ‘(Maut,w)‘ dr
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Remark 7.1 From this point on till the end of Section 7.3, we will focus our attention on the subsequence
{tn}, as in Proposition 4. In these sections, we establish results pertaining to our solution (u, ¢) evaluated
on the time sequence {t, }. Finally, in Section 7.4 we will show (via a contradiction argument) how the
existence of such a subsequence can be used to prove the statement of the theorem.

Combining the fact that M; ' : H=1(2) — H{(£2) is continuous with Proposition 3, which states that
Muui(t) — 0 in  H=1(£2), we obtain immediately:

Proposition 5 Let u be a generalized solution to (1.1). Then

. . 2

Tim [lur (1)l = lim [[M ]| = 0.
Remark 7.2 We note, of course, that this convergence is substantially weakened to ||us(t)|| — 0 when
a = 0 which creates complications in the arguments that follow—see [31].
Now, given a sequence of moments in time that converges to infinity, from Proposition 4 we have that
there exists a subsequence {t,,} and a point @ € HZ({2) such that
l[u(t,) —al[3 — 0, as n — oo. (7.8)

Moreover, because

tn+T
lultn +7) —ultn)llr < / lue(s)[lhds <7 _max flu(s)]]1,
Se[tn:tn"l"r]

tn

and u; € C(Hg(2)) with u(t) — 0 in H}(£2), we conclude that

rnaX]||u(tn+7)fﬂ\|1%0asn%0 (7.9)

TE[—a,a

for every finite a > 0. By interpolation, for § > 0, we obtain

llu(tn) = allz—s < |[u(ta) = all3™" |lu(ta) — all3. (7.10)
Since ||u(t,) — @||2 is bounded, from equations 7.9 and 7.10, we have
n[lax | [lu(ty, +7) — @l|2—s,2 — 0 as n — oo. (7.11)
TE|—a,a

Using a simple contradiction argument, we can push the Sobolev index to 2.

Proposition 6 Let u be a generalized solution to (1.1). Then, for any sequence of times converging to
infinity, there exists a subsequence {t,} and a corresponding u € HZ({2) such that

max ||[u(t, +7) —@ll2 = 0 as n — .
TE[—a,a

Proof (Proof of Proposition 6) Given any sequence of times converging to infinity, we know there exists
a subsequence {t,} and a point @ such that (7.11) holds. Now, for any fixed a, consider a subsequence

o0
{ | max o, + 7)1k}
TE[—a,a] E—1
Since ¢t — ||u(t)||2 is continuous and [—a, a] is compact,
max [u(tny + 72 = l[ultn, +70)l2

TE€[—a,a

for some 7, € [—a,a]. From Corollary(3), we know that the sequence {u (¢, + 7x)}72; has a convergent
subsequence u(tn,, + Tk, ) = @ € HZ(£2), as well as in any lower Sobolev space; then

[utng, +7h) = Ulla—s — [ = dlla—s| < [Jultn,, + 7h) = @ll2—5 = 0. (7.12)

From (7.11) we know that
[ultn,, + 7r,) — ll2—5 < _nax | [u(tn,, +7) —all2—s — 0. (7.13)

—a,a
Substituting (7.13) in (7.12), we see ||@ — 4||2—s = 0 and we identify the limits.

Hence, any subsequence of { max | [|lu(ty+7)—al |2} has a further convergent subsequence that converges
TE|—a

)

to 0, yielding the result.
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7.2 Step 2: Lifting to Flow Convergences

We emphasize that this step where the assumption o > 0 is critical to the arguments presented here. To
bound each of the following terms and show ¢(t) € H'(K,), we need |u¢(t)|s — 0 and

max _||u(t, +7) —all2 = 0 as n — oo,
TE[—a,a]

where the second convergence in turn also requires ||u¢(t)||1 — 0. The manipulation of the classical flow
formulae in Section 4.2 to obtain estimates is much more difficult in the case when o = 0.

_ 1 t* 2
Let o(z,t) = %/ ds/ doUd,, a' (x,t,5,0).
xr3 0

For t > t,, ¢ = ¢**, thus we can replace ¢ with ¢** in (4.5); we then have the following estimates:

t* 2
/ dz|p(x, t,) — Q_S(x,tn)| = %/ dx / ds/ do(o, + U@xl)(uf(z,tn,sﬁ) - ﬂT(z,tn, 5,9))|
K TJK, z3 0

P

< t*( max ||us(7)|i +U max ||lu(t, +7)— u|1> / dx.
71—t Te[—t,t*] K,

(7.14)

For j =1,2:

t* 27 i
/ ds/ 409, (01 + U0~ ) (2. 1,5,0)
T3 0

_ 1
/ dm|8£]¢(x’tn) — 8Ij¢($;tn)| = % /K dx

K,

< t*< max_|u, (7)1 + U max. | llu(tn +7) — ﬁ|2> / dx

rSti—t re[—t*, :
(7.15)
and
[ delon,6(ta) ~ 0o ta)| < [ deltu = a)(or - Usg,za.t, — 22)
K, K,
. / d /t* 3 /%dG[M (B, + Uy, )(u — @) )(w, tn, 5, 0)
o T S5 z )\ — U s bny 9y .
2m Jk, s /5% — 22 Jo O\ (7.16)
< <||u —all1 + max |lug(T)||1 +U max Ju(t, +71)— ﬂ||2> / dzx.
T TE[—t*,t*] K,
Also, from equation(4.10), we obtain
I¢e(a, )k, < max fu(7)][1 {2 +17}. (7.17)

By Proposition 5 and 6, all terms on the right hand side of estimates (7.14)—(7.17) approach zero. Hence,
we obtain the convergence

l¢(tn) = é(tn)ll1x, + 62 (tn)llzc, — 0, n — oo

7.3 Step 3: Weak Solution

In this step, we show that (i; @), as constructed in the previous Steps, is a weak solution to (3.1). We
multiply the plate equation in (1.1) by smooth function w € C§°(£2) in L?({2), integrate from ¢, to t,, +a
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for some a > 0, and integrate by parts to obtain

tn+a +a

<ut7 U)>

t
tn tn

tnta n tnta
+/ (Au, Aw) + (aVug, Vw) + k/ (ue(t), w)dt
¢ ¢

n n

tnta tn+ta tnta
+ ka/ (Vuy, Vw)dt — / ([, v + Fol,w) + / (po, w)dt
¢ ¢ ¢

n n n

tn+a
- / (ra[v(de + Us,)], w)dt = 0.

n

Each term may be estimated:

tn+a
[ (au - a0 Aw)d] < alldw] max flu(ts +7) - a(r)]
b 7€(0,a

tnt+a
k /
tn

() )t < alfuw]] ma. et + 7).

tn+a
<ut7 w> +

1
< 2ljwl] max_[ue(r)]l. (7.18)

n

nta
(aVuy, Vw)

t
tn

< .
< 20l )l

tn+a
ka/ [(Vug, Vw)| dt < kaa||Vw|  max  |Jug(7)]1-
t TE[tn,tn+al

n [ nstn

We substitute z3 = 0 in (4.11) and (4.10) to obtain the pointwise expression for (rg[v(¢¢ + Uga, )], w),
which is then used to obtain the following estimate:

tn+a
/ |(7"Q ['y((,zbt + Uqbzl)],w)dt — Uy [8m1q_5] ,w>‘ <({t*+24Ut") max [lwee (7)1
tn Tt (7.19)

+ U* max |ju(t, +7) — .
TE[—t*,a]

As we have noted, f,(u) = [u,v(u) + Fp] is locally lipschitz for each Fy € H?(2), yielding

([u, v(u) + Fo] = [u, v(w) + Fol, w)| < [[{[u, v(u) + Fo] — [, v(@) + Fo| - [lw]

g (7.20)
< C(llull, lwllz, | Foll) llw — alla-

Each term on the right hand side of (7.18)—(7.20) goes to zero as n — oo by Propositions 5 and 6. Hence,
by density, we obtain the following relation for all w € HZ(£2):

(Au, Aw) — ([u,v(a) + Fy] ,w) +U <’y[q_5],811w> = (po, w). (7.21)

Similarly, multiplying the fluid part of equation 1.1 with ¢ € C§°(R3.) and integrating from t,, to ¢, + a,
we get

tn+a tn+a tn+a tn+a
/ (60, )t + / U282, 6, ) dt + / (2U D, 6, )t — / (Ad,0)dt.  (7.22)
t t t t

n n n n

This implies

tn+a

((rbt? w)

tn+a tn+a tn+a
—/ U%(0y, ¢, 8m11/1)dt—2U/ (¢t,8rlw)dt+/ (Vo,Vip)dt
b b b (7.23)

tn+a
+ / (@ + Uy, Y, []) = 0.

n

in
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We now estimate each term. Recall that K, CC Ri contain the support of 1. Then:

tn+a
[72/
t

n

(92,6 = 02,6.0,,0)|dt < U210, 0] i [6(tn +7) = Tl
tn+a
oU / (60, 00y )| dt < 200700, p]| e [|1(tn + 7)1
tn T€[0,a]
o ) ) (7.24)
[ |90~ v6.vu)|ar < al Vol max [6(tn +7) Bl
tn T ,a

tn+a
/ (s + Uds, Ju = Uy u, v [¥])] < amax|fuy (7)1 +a max, [u(tn +7) — al|2.
t T>ln T ,a

n

Applying (7.14)—(7.17) to (7.24), and again straightforwardly invoking Propositions 5 and 6, we see that
each term on the right hand side of (7.24) approaches zero. Whence we obtain

(V), V) = U026, 02,¥) + U {0, y[¢]) = 0 (7.25)

for any ¢ € H'(R%). Thus (u; ¢) satisfies (7.21) and (7.25) and is hence a weak solution.

7.4 Step 4: Final Result

We therefore have shown that any sequence of time converging to infinity contains a subsequence {¢,} for
which (u(t,); ¢¢(tn)) converges to some stationary solution. We conclude by improving this convergence
to the set \V.

Proposition 7 For (u,$) o generalized solution to (1.1) where ¢g, 1 have localized support in K,, we

have:
. . — (12 2 T2 2 _
gim int{ju(t) = 501+ (1 + 160 = 300 i iy + 10O e} =0, (7.26)
for any p > 0.

Proof (Proof of Proposition 7) Assume the statement is not true. Then there is a sequence t,, — oo and
some € > 0 so that for all m sufficiently large

inf tm) — W(tm)|13.0 + [[uetm)|3.0 + [|[6Em) — Em)||3 5.y + 16t (Em)||72 > e
oint lltm) = altm) . + ()l + 119(m) = Sltm) i) + 16t | > €

But for any such sequence {t,,}, we have shown that there exists a subsequence {¢,,, } such that

dimint ) =, .o e 1) = 0t e 1161, § = 0.

which is a contradiction. Hence

Jim it {Jhu(e) = 503+ llue(®I3+ 168) = 60 s, + llon(® o | = 0.

With the above claim, we conclude the proof of Theorem 7.1. In the case that .4 is isolated (e.g., finite),
(7.26) collapses to the result of Corollary 4.
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