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Abstract

A recent large deflection cantilever model is considered. The principal nonlinear effects come through
the beam’s inextensibility—local arc length preservation—rather than traditional extensible effects
attributed to fully restricted boundary conditions. Enforcing inextensibility leads to: nonlinear stiff-
ness terms, which appear as quasilinear and semilinear effects, as well as nonlinear inertia effects,
appearing as nonlocal terms that make the beam implicit in the acceleration.

In this paper we discuss the derivation of the equations of motion via Hamilton’s principle
with a Lagrange multiplier to enforce the effective inextensibility constraint. We then provide the
functional framework for weak and strong solutions before presenting novel results on the existence
and uniqueness of strong solutions. A distinguishing feature is that the two types of nonlinear terms
present independent challenges: the quasilinear nature of the stiffness forces higher topologies for
solutions, while the nonlocal inertia requires the consideration of Kelvin-Voigt type damping to
close estimates. Finally, a modal approach is used to produce mathematically-oriented numerical
simulations that provide insight into the features and limitations of the inextensible model.
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1 Introduction

This paper considers a recent partial differential equation (PDE) model for the large deflections of a
clamped-free, elastic beam (a cantilever). Motivated by aeroelastic applications described below, we
consider, physically, a thin, narrow plate with an aspect ratio such that the large deflections predom-
inantly exhibit 1-D features—though future work will address fully 2-D plate models. The cantilever
model of interest is distinguished by its derivation from an inextensibility constraint: the enforcement
of arc-length preservation. This inextensible cantilever model was recently derived in [16], though inex-
tensibility has been treated in a similar fashion for the past 30 years [44,48,54]. Enforcing inextensibility
in the beam leads to both nonlinear stiffness effects, as well as nonlinear inertial effects. The former
yields quasilinear and semilinear terms in the equation of motion, and the latter contributes nonlocal
terms that prevent the equation from being written as a traditional second-order-in-time evolution.
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Grappling with these (independent) nonlinear effects is at the heart of the mathematical and numerical
challenge for large deflection cantilever dynamics.

In the engineering literature, as well as the PDE and control literature, beam theory is well studied.
Mathematically, the linear theory of Euler-Bernoulli, Rayleigh, shear, and Timoshenko beams—across
all boundary configurations—has been established for some time (see, for instance, the nice survey
[22]). Nonlinear beam models, such as Kirchhoff or Krieger-Woinowsky beams, have been considered,
typically based on the property of extensibility—see [5,12,24,57] for some older references, as well
as the more recent [25,26,38]. Extensible beams are characterized by a nonlinear restoring force that
accounts for the effects of stretching on bending; these are often cubic-type semilinear models. A clear
extensible modeling discussion is given in [32], where a nonlinear beam system (accounting for in-axis
and out of axis dynamics) is studied from a semigroup and boundary control point of view, permitting
the possibility of the cantilevered configuration. (This model is the beam equivalent of the so called
full von Karman plate model—see [30].) Based on the model in [32], the paper [26] studied the well-
posedness and long-time behavior of a reduced, scalar version in the cantilevered configuration with
a nonconservative loading. Further numerical work appearing in [25] addressed unstable extensible
beams across all physical configurations.

To the knowledge of the present authors, no mathematical theory of solutions, akin to the above ref-
erences has been attempted for the nonlinear inextensible beam, and the body of simulations performed
using this model have appeared strictly in the engineering literature. Therefore we:

e recall the derivation of the equations of motion,

e prescribe a functional setup for the dynamics,

e present the first well-posedness results for strong solutions,

e give a discussion of the associated energy estimates and construction techniques,
e and provide mathematically-oriented numerical investigations of the dynamics.

It is worthwhile to mention that the theory of (possibly) inextensible rods (both shearable and unshear-
able) is well-developed in the mathematical literature (see e.g., [1,46]), though the underlying spatial
dynamics are second order. The treatise [1] provides thorough discussion of the modeling hypotheses
and rigorous construction of solutions, as well as other well-posedness considerations.

Cantilever models are often utilized in situations where a dynamic driver appears through one of the
boundary conditions, or via some distributed forcing function. The primary motivation in this paper
comes from aeroelasticity [15], where non-conservative distributed forcing represents aerodynamical
pressure differentials across the beam. Follower forces—maintained tangential forces at the free end—
have also recently studied numerically [33,40]. These non-conservative terms can lead to structural
bifurcation and associated large deflections through limit cycles oscillations (LCOs) or even chaos
[24,25]. More specifically, cantilevers in an axial' airflow can experience an instability known as flutter,
even at low flow velocities. Beyond critical flow parameters, the system enters an LCO of persistent,
flapping motions that can be on the order of the beam’s length [52,54]. It has been shown, for instance,
that such dynamics can generate power from which energy can be harvested [17,20]. To effectively and
efficiently do this one must understand the qualitative properties of the LCO [17,37], and hence a
proper PDE analysis must treat a nonlinear, large-deflection cantilever model.

In order to provide some visual context, Figure 1 above shows temporal snapshots of a cantilever
LCO in actual wind-tunnel experiments. Figure 2 shows simulated snapshots of the first and second
Euler-Bernoulli cantilever modes (in vacuo eigenfunctions).

Lthe unperturbed flow runs along the principal axis, as opposed to the more common normal configuration, where the
flow is orthogonal to the beam’s span [4,49]



Figure 1: Temporal snapshots of post onset LCOs; a small amplitude LCO (left) and a large-amplitude
LCO (right) for a cantilever. Captured from wind-tunnel experiments [52,54].
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Figure 2: In vacuo linear dynamics; temporal snapshots of the the first two Euler-Bernoulli cantilever
modes (left) and (right).

1.1 Applications and Background

The principal fluid-structure phenomenon associated with nonlinear cantilever deflections is that of
aeroelastic flutter: structural self-destabilization brought about by a surrounding flow. Flutter occurs
in many scenarios: elastic structures in wind; aircraft components [15]; pipes conveying fluid [44];
and in human respiration [27]. From a design point of view, it cannot be overlooked due to large
amplitude structural response. Until about 15 years ago, interest in cantilevers in axial flow had been
minimal [27]2. On the other hand, interest in airfoil and panel flutter has been immense for 75 years
(see the monograph [15]). In the most prominent cases, flutter is undesirable, with a design goal to
prevent it.

Recently, the axial flow flutter of a beam or plate has been a topic of great interest in the engineering
literature [33,44,52,55], as well as, very recently, the mathematical literature [26,49]. This interest is
predominantly due to piezoelectric energy harvesting applications [50,51]. The general idea for large
displacement harvesters, realized in recent experiments [17,37,53], is to capture mechanical energy in
LCOs via piezoelectric laminates or patches (for which oscillating strains induce current [20,23,43]).

As with all flutter problems, the onset of instability can be studied from the point of view of a linear
structural theory [13,27]—typically as an eigenvalue problem (see [25,50,56] for recent discussions).
However, if one wishes to study dynamics in the post-flutter regime, the analysis will require some non-
linear restoring force that will keep solutions bounded in time [8,26]. From [13]: “To assess the amount
of electrical power that can efficiently be extracted, nonlinear effects are important to provide the satu-

2Here we make the distinction with flapping flags—mnot typically modeled via fourth order equations with stiffness—
which have been a topic of interest for hundreds of years; see [2].



ration amplitude of the self-sustained oscillations.” The choice of nonlinear restoring force(s) dictate(s)
the qualitative LCO properties. Additionally, power generation considerations require predicting total
LCO energy to determine extractable electrical power [17,20,51,53]. Thus, an understanding of non-
linear cantilever deflections, determined from intrinsic parameters, is of critical importance for energy
harvesting applications. For this, we must have a robust cantilever model, accommodating the place-
ment of sensors/actuators/piezo devices [23], which translates to spatially localized inertia, stiffness,
and damping effects [16,23]. See also the papers [44, 58] for further discussions of the need for, and
effects of, implementing the inextensibility constraint in the context of tubes conveying fluid.

With the above applications in mind, the central challenge is to capture, analyze, and predict
cantilever large deflections; this translates to a viable theory of PDE solutions for the inextensible
clamped-free beam, as well as robust and efficient associated computational methods.

1.2 Equations of Motion

We relegate a modeling discussion to the section that follows, but to conclude the introduction, let us
state the equations of interest. Consider the (non-dimensionalized) quantities of interest:

e D > 0, L > 0: beam stiffness and length, resp.;
e ky > 0: ky is Kelvin-Voigt type [7,47] damping®
e p(z,t) is the distributed loading across the beam span.

Now, let w : [0,L] x [0,T7] —+ R and w : [0,L] x [0,7] — R correspond (respectively) to the in-
axis (longitudinal) and out-of-axis (transverse) Lagrangian deflections. Then the dynamic equations of
motion for the inextensible cantilever are:

wy + DOYw + kyOtw, + A(w) = p(z,t) in (0,L) x (0,7)
w(t =0) = wo(z), w(t =0) = wi(x) (1.1)
w(z =0) =we(xz=0)=0; wye(x =L) = wege(x=L)=0.

The nonlinear, nonlocal operator A given by
L
A(w) =— Do, [(wm)2wm] + Dy ['wm (wi)] + 0, [wr/ ug (€, t)df] (1.2)
xr

u(z) = —% A ’ [we (€, )] dE. (1.3)

With reference to the above system: after providing a discussion of the modeling in Section 2 (which
includes comparisons against other cantilever models appearing in the applied PDE /control literature),
we prescribe a functional setup for the problem in Sections 4.2 and 4.3, with definitions of strong and
weak solutions in Section (4.4).

2 Cantilever Large Deflections

Perhaps the most important distinction for large deflection models of cantilevered structures versus
fully clamped or hinged structures (completely restricted along the boundary) is that of extensibility.

3We choose ks to denote Kelvin-Voigt type damping, since, in general standard beam damping could be written
Dw; = [ko k102 + kaO2]w:, indicating weak (frictional), square root-like, and strong damping, respectively. See Section
2.3.



In the case of extensible beams, transverse deflection necessarily leads to local stretching, which is a
principal contributor to the nonlinear elastic restoring force—see the discussion after (2.2); in the case
of clamped-free conditions, for instance, the engineering literature indicates that the beam should be
taken to be inextensible [16,44,48]. This includes recent aerodynamic experiments [52,54] suggesting
that extensibility (stretching on bending) is not the dominant nonlinear effect in cantilevers.

The property of inextensibility is best characterized as local arc length preservation throughout de-
flection. Letting u(x, t) and w(x,t) correspond, as before, to the longitudinal and transverse Lagrangian
deflections, the condition manifests itself in the requirement:

w2+ (1+ug)? = 1.

We note that, if both w(x = 0) and w(z = L) are zero, then the beam must be extensible in order to
deflect. In the diagrams below, we consider a cantilever in an axial flow, with given unperturbed flow
field U = (U, 0).

z

u(L)

2.1 Extensible Cantilevers

The first model we describe, for context, is a baseline linear model in w—the cantilevered Rayleigh
beam [22]:
(1 — ad?)wyy + DOw + [ko — k102 + k02w = p(x,t)
w(t=0)=wy; w(t=0)=w (2.1)
w(0) = wy(0) = 0; wee(L) =0, Oy [awtt — Dwgy + kywy — kgagwt] =0.

r=L
This model is predicated on traditional Kirchoff-Love hypotheses, accounting for rotational inertia in
the beam filaments.

Above, we have (after a traditional non-dimensionalization [22,32]) the additional physical quanti-
ties:

e o > 0: rotary inertia coefficients in beam filaments; o = 0 gives the traditional Euler-Bernoulli
beam:;

e k; > 0 damping coefficients; ko represents weak damping, ki represents square root-like damping,
and ko (as before) is Kelvin-Voigt type damping.

Remark 2.1. Note that when o = k1 = ko = 0, the traditional Euler-Bernoulli cantilever is recovered.
If « = k1 = 0 but k2 > 0, the third order boundary condition becomes (for smooth solutions) a first
order ODE in wyy.(L,t), and hence

Dwmzx(Lat) + k2[wxa:x]t(Lat) =0 = wzxx(L,t) =0V t>0,
hence Kelvin-Voigt damping can be considered with traditional free end boundary conditions of

Wez (L) = Wy (L) = 0.



In the Rayleigh (o > 0) or Euler-Bernoulli (a« = 0) beams above, there is no evolution for the in-
axis (longitudinal) displacement wu(z,t). The extensible cantilever system found in [32], in addition
to standard elasticity assumptions, invokes a quadratic strain-displacement law. As a system, it is
nonlinearly coupled in u and w. More specifically, the evolutions in w and u employ nonlinear restoring
forces resulting from the beam’s extension:

uy — D10, [Um + %(wx)2] =0

(1 — ad?)wy + D203w — D10, [ww(uw + ;wi)} = p(x,t)

u(0) = 0; [ug(L) + qwi(L)] =0 (2.2)
w(0) = w,(0) = 0;
Wez(L) =0, —adywy + Dowyer(L) =0

Lu(t =0) =uo; u(t=0)=u; w(t=0)=mwo w(t=0)=w.

This Lagnese-Leugering system is the beam analog of the so called full von Karman plate equations [30].
Above, D1, Dy > 0 are two independent stiffness parameters, and we have taken the beam without
damping effects.

E ET
Remark 2.2. In the unscaled version of the equations D1 = —, a = 1 and Dy = L

p p
mass density (per unit volume) of the beam, I is the beam’s moment of inertia w.r.t. the y-axis, F is
the Young’s modulus, and A is the cross-sectional area of the beam at rest.

where p is the

One further consideration can be made as a simplification of the above system when we take in-axis
accelerations to be negligible, u; =~ 0. Then we have

L
u(L) ~ u(0) = e(t)L ~ /O w?(€)de.

We can impose the assumption that the in-axis displacements at the free end of the beam must remain
fixed: u(0,t) = 0, and u(L,t) = C, where C' > 0 represents initial longitudinal stretching, and C' < 0

c. 1 [F
compression. As a result, we see that ¢ = T tor w2 (€)d¢. Plugging this back into (2.2), we obtain
0
a scalar extensible cantilever, as studied in [26]:
D,C D
(1 — ad?)wy + D20tw + (ko — k102)wy — [ z + 27[1/"%5”2 Wey = pla, t)
w(t =0) =we; w(t=0)=uw (2.3)

w(0) = w,(0) = 0; wyy, = 0;
— a0 [wy + k1wy] + DO3w + (b1 — bal|we||*)w, =0 at x = L.
In the reference [26], a principal component of the analysis is whether a > 0 or @ = 0. In the case

where a > 0, the results are strong, but stabilization estimates require the damping strength to be
tailored to the inertia, i.e., when « > 0, then k; > 0.

2.2 The Inextensible Cantilever

In each of the models in the previous section, the beam is permitted to be extensible, with nonlinear
effects measured in terms of the beam’s (local) extension. In contrast, let us now consider inextensibility.
Let £(z) denote the azial strain along the beam centerline. Then, classically, we have the relation [48,54]:

[1+e()? =1+ ug)? +w? (2.4)



Since we are considering an inextensible beam, the arc length is preserved throughout deflection
and thus we should consider £(z) = 0. Hence the full inextensibility condition can be written as:

1= (1+u,)*+w (2.5)

Now, let us define the potential energy (Ep) with ¢(x) = 0 via beam curvature x and stiffness D
(flexural rigidity) [48] in the standard way:

Ep = 5 ; k2dx.

(For a more rigorous derivation of the potential energy, see [10,33,40].) The familiar expression for
curvature gives, in this instance:
(1 + uz)wxz — WglUgy

((1+ue)? +wd)™

Invoking the inextensibility constraint(2.5), we obtain:

K= (14 Uup)Wpp — Wyllyy.
Via (2.5), we can simplify x to an expression only in w:
K= e[l — w?] V2, (2.6)

It is at this point we invoke simplifications in both the inextensibility constraint (2.5) and the curvature
K.
First, in the inextensibility constraint, we retain the term w2, but drop the term u2 in (2.5). This

is justified through order considerations, since, if w, ~ €, then by (2.5), we have 2u, + u2 ~ w?; hence

u? ~ €*. This results in the effective inextensibilty constraint:

1
Uy = —iw?g. (2.7)
Now, as is standard in elasticity theory, we approximate the curvature k via a Taylor expansion.
In line with the above order considerations (for consistency with (2.7) [16,48]), we retain terms up to
order w?, yielding:

K2 = wfm[l — wg]fl ~ wfm(l + fwg)

Remark 2.3. Note that this is the key point which distinguishes various theories of nonlinear elasticity;
in linear elasticity x &~ wqy.

With this analysis, the the potential energy becomes:

D [t , 2
Ep:2/ w, (1+w}) de.
0

The kinetic energy (Fk) is defined in the standard way as:

1rr 2 2
EK:— (ut+wt)dm
2 Jo
To derive the equations of motion and the associated boundary conditions, Hamilton’s Principle is
utilized [16]. To enforce the inextensibility constraint, we utilize a Lagrange multiplier A(z,t). Indeed,



taking f = u, + (1/2)w? = 0 as the “constraint”, it is enforced by appending A to the system and
expressing the Lagrangian in the usual way:

L
L=Ex—Ep+ / Afdz. (2.8)
0

After taking the first variation of £ and performing the necessary integration by parts with respect
to time and space, Hamilton’s principle yields the Euler-Lagrange equations of motion and associated
boundary conditions (1.1)—(1.3). We note that, remarkably, the standard linear clamped-free boundary
conditions are obtained.

2.3 Discussion of Damping

For nonlinear hyperbolic-like problems, the regularity of w; is at issue; this is especially true for our
results here. Additionally, damping provides many useful features, beyond regularization, for non-
conservative problems. Discussion of beam damping types goes far back in both the engineering liter-
ature [6] and the mathematical literature [45,47].

Let us refer to (2.1): weak damping has the form kowy, providing no velocity regularization and a
damping effect which is uniform in modes [6]. In the elasticity context, Kelvin-Voigt damping k202w,
is strain-rate type, and mirrors the principal operator; such damping lifts w; € H?, while transmuting
the underlying linear dynamics to be of parabolic type [7]. Square root-like damping, —k;9%w; [21],
yields w; € H', and interpolates between the previous two damping types.

Let us elaborate on square root-like damping: the damping term 92w, roughly corresponds to half
the order of the principal stress operator 92, if we ignore the boundary conditions encoded into A. (We
note that for the cantilever configuration, A2 # —92 [47].) The fractional damping concept can be
generalized to powers [A]%w; for 6 € [0,1], which at the two extremes yield the usual weak damping for
6 = 0 and strong (Kelvin-Voigt/visco-elastic) damping at § = 1. The square root scenario § = 1/2 for
a system of elastic type was discussed in earlier work [7,47], as this feedback turns out to reproduce
energy decay rates empirically observed in elastodynamics. Fractional damping was investigated in [7]
for the abstract system

Wt + Aewt + Aw = O,

demonstrating, in particular, that the ensuing evolution semigroup is analytic if and only if 6 > %

We note that square root damping corresponds to modal damping models [15], as one finds fre-
quently in the engineering literature [6,40,41]. However, the boundary conditions for a given problem
affect the physical interpretation of fractional damping for certain values of #, and in [47] it is noted that
6 = 1/2 has a questionable physical interpretation for a cantilevered configuration. The square root-like
damping 92w, also arises naturally in other beam models. Consider, for instance, the Mead-Markus
model [42] for a sandwich beam [21].

In what follows below, the presence of damping—its strength and affect on the regularity of w,—
will be critical to the main theoretical results concerning existence and uniqueness for the inextensible
dynamics. This is discussed further in the results Section 4.6 and Section 6.1.



3 PDE Model Studied Here

With the derivation mentioned above (following [16]), we recall the equations of motion, allowing for
Kelvin-Voigt damping ko > 0:

wyt + DOw + koOtwy + A(w) = p(x,t) in (0,L) x (0,T)
w(t=0)=wo(z), ws(t =0) = wi(x) (3.1)
w(rz =0) =wz(x =0) =0; wgz(x =L) =wgae(z=L)=0.

with the nonlinear, nonlocal A given through

L
A(w)=—0D0, [(wm)wa} + 0Dy [We (wi)] + 10y [wx/ utt(f)dé] (3.2)
ww) = =5 [ o) de (33

The underlying linear model is that of an Euler-Bernoulli cantilever (no linear rotary inertia effects
have been included). Indeed, the model above does not take into account any shear effects, as are
included in [1,46].

Remark 3.1. As shown in detail in [16], the standard linear clamped-free (cantilever) boundary con-
ditions are recovered in the variational procedure. This is somewhat remarkable, noting that we have
allowed for broad nonlinear and nonlocal effects. We also point out that when boundary forces are
enacted at x = L, not only are the free end boundary conditions altered for w and w, but the relation-
ship between w and wu in (1.3) is impacted through the Lagrange multiplier A in (2.8) (itself having
boundary conditions). See [40].

To simplify terminology, we use the following language from here on:
[NL Stiffness] = — DO, [(wes)*ws]| + DOy [(w05) w4y

as the nonlinear stiffness terms, while we refer to

L
[NL Inertia] = 0, {wx/ utt(f)df]

xX
as the nonlinear inertial term (which is nonlocal, when written in w). We have introduced flags,
t,o =0 or 1, in (3.2), in order to easily turn particular nonlinear effects on or off. This is to say, when
¢ = 0, we say that [NL Inertia] is turned off.

Remark 3.2. For convenience, we note two expansions. First:
[NL Stiffness] = — D3, [(wm)me] + DOyy [(wx)me] = D[w?,, + 4w WepWeze + W2Werrs),

which highlights the quasilinear nature of the PDE (with high order semilinearity).
Second:

L

L T
[NL Inertia] = 0, [wm / Uttdf} = Wgg / ud€ — wpug, with uy = — / [W2; + Wawae] dE.
x 0

T

This expansion highlights the fact that the system can be closed in w, as well as the high velocity
regularity required to interpret the strong form of the PDE.



4 Theory of Solutions

4.1 Notation

For a given domain D, its associated L?(D) norm will be denoted as || - ||p (or simply || - || when the
context is clear). Inner products in a Hilbert space are written (-, )z (or simply (-,-) when H = L?(D)
and the context is clear). We will also denote pertinent duality pairings as (-, -) y, /, for a given Hilbert
space X. The space H*(D) will denote the standard Sobolev space of order s, defined on a domain
D, and H{(D) denotes the closure of C§°(D) in the H*(D)-norm || - || zs(p), also written as || - ||s. For
I' € 0D, boundary restrictions u‘F are taken in the sense of the trace theorem for u € H'/?*%(D),
with ¢ > 0.

4.2 Energies

With reference to Section 2.2, we have the following energies:

E(t) = Ex(t) + Ep(t) = 5 [llwel[* + el [ *] + g (lwaz| | + ollwswasl 7] (4.1)

N | —

Note that the energies include the flags, which are the same as in (3.2).
As we suppress the u variable here via the effective inextensibility constraint (2.7), we can write

the energetic terms in w along, with separated by linear and nonlinear designations:
9 D 9 oD 2
||| +§me’| +7’ . (4.2)

B(t) = Bolt) + Bx(t) = el 4 5 | [ et

In the unforced situation with p(x,t) = 0, we note that the formal energy identity is obtained by the
velocity multiplier w; on (1.1) and

t
E(t) + kz/ ||waatl 720,y dm = E(s).

In what follows we will define higher order energies corresponding to the topology of smooth
solutions. This will be done in the corresponding sections.

4.3 Spaces

The principal displacement state space for cantilevered beam dynamics takes into account the clamped
conditions:

H? = {ve H*0,L) : v(0) =0, v,(0)=0}.

This space is equipped with an H? equivalent inner product
(v, w) g2 = D(Vez, Waz)- (4.3)
Denoting R as the Riesz isomorphism H? — [H2]', it is given by:
R(v)(w) = (v,w) 2 - (4.4)
This framework is conveniently induced by the generator of the linear cantilever dynamics:

A:D(A) c L*(0,L) — L*(0,L), Af = Dolf,

10



D(A) = {w € HY0,L) : w(0) = wz(0) = 0, wee(L) = Wepe(L) = 0}. (4.5)

From this we have in a standard fashion:
D(AY?) = H2, DA ?) =[H?Y and AY?=R (asin (4.4)).

Then (u, -) 2 is the extension of (Au,-) from D(A) to HZ which gives (4.3).
Remark 4.1. We note that, despite the topological equivalence of D(.Al/ 2) and H2, it is not the case

* 9

that A'/2 can be identified with —92 on H2 [47]. This relates to a deep discussion connected to square
root-like damping, as described below in Section 2.3.

Using the above spaces we can define the appropriate state space(s) for our dynamics. The finite
energy space will be denoted as:
A = H? x L*(0,L),

with the inner product: y = (y1,¥2), ¥ = (91,92) € A

(yvg)jf = (ylagl)HZ + (yZa QQ)LQ- (46)
We note that the norm in 47 topologically corresponds to the energy functional

D
Er(t) = gllwa:xl\2 + 5| lwl [

In our discussions, we will also require a stronger state space (corresponding to strong solutions):

D(A) x D(AY?), 1 =ky =0,
A = (4.7)
D(A) x D(A),  t=1,ky>0.

The norm in H* is taken (equivalent to the natural operator-induced norm) to be:

H H2 Haéy1”%2+”a$$y2”%27 L:k2:07
Yllys =
10zw1l172 + 11029272, ¢ =1,k2 > 0.

4.4 Definition of Solutions

We provide the natural setting for the weak formulation of the problem; this will yield the appropriate
starting point for our numerical (modal) methods, as well as provide the appropriate abstract setting
for analysis of the equations of motion. Ultimately, we will construct weak solutions that possess
additional regularity; these will turn out to be strong solutions.

Then, the associated weak form of (1.1) has the form:

%[(wt,qs)ﬂ( /0 " wptoneds, /0 ' wp,d€) | = o /0 " W, /0 ' W) (4.8)
+ ko (Waat, Gzz) + D(Wazs Gzz) + 0D (WagWs, Wezhy) + 0D (WezWe, draws) = (p, @),

for ¢ € H2, and where the d/dt above is interpreted in the sense of 2/(0,T). When o > 0, the [NL
Stiffness] is in force; similarly, when ¢ > 0, [NL Inertia] is in force. When k2 > 0, Kelvin-Voigt damping
is imposed.

We now give precise definitions of solutions making reference to the weak form (4.8) above:
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Definition 1. We say a weak solution to (1.1), with ko =1 =0 and o =1 is a function w, with
we L*(0,T;HZ(0,L)); w, € L? (0,75 L*(0,L)) ; wy € L* (0,T; [HZ(0,L)])

that satisfies (4.8).
Moreover, for any x € H2, ¢ € L?(0, L), we require

(w’X)HZ‘tﬁoJr = (wO’X)va (wtﬂ!))‘tﬁ(ﬁ = (’U)l,T/))- (4'9)
Definition 2. A weak solution to (1.1) with ks > 0 and . = 0 =1 is a function w, with
we L2 (0,T; H(0,L)) ; wy € L? (0,T; HZ(0, L)) ; wy € L? (0, T; [H(0, L)]') ,

such that (4.8) holds.
Moreover, for any x € H?, 1 € L*(0, L), we require

= (w07X)H37 (wt’/l/))‘t*)0+ = (wl’d))‘ (410)

Remark 4.2. For ko > 0 and ¢ > 0, the definition of weak solution is self-consistent; this is to say, for
such a function w, all terms in (4.8) are well-defined. We note that for ko = 0, there are issues with
the a priori regularity of wy € L%(0,T; L?(0, L)) and the interpretation of the [NL Inertia] terms.

(w) X)Hf

Now, for strong solutions:

Definition 3. A strong solution to (1.1) with ko =+ =0 and 0 = 1 is a weak solution (as in Definition
1) with the additional regularity

we L*(0,T;D(A)); wy € L*(0,T; HZ(0,L)); wy € L* (0,T;L*(0, L))

Definition 4. A strong solution to (1.1) with ko > 0, t = 0 = 1 is a weak solution (as in Definition
2) with the additional regularity

we L*(0,T;D(A)); wy € L*(0,T5D(A))); wye € L? (0,T; HY) .

4.5 Well-posedness Results

In this section we state recent theoretical results about strong solutions to (1.1). The proofs of these
theorems appear in [11], with an effort to have a streamlined presentation of the underlying modeling
and theory supporting the numerical simulations below.

We begin with a simple well-posedness result for the nonlinear stiffness portion of the model.

Theorem 4.1. Take 0 = 1 with t = kg = 0, and consider p € H?,(0,00; L?(0, L)). For smooth data
wo € D(A), wy € H2, strong solutions exist up to some time T*(wo, w1, p). For all t € [0,T*), the

solution w is unique and obeys the energy identity:

E@zE@+A@mmm@m

Solutions depend continuously on the data in the sense of C([0,T];5) for any T < T*, with an

estimate on the difference of two trajectories, z = w' — w?:

o [l (| < (I (), wi(O) e, T) || (2(0), 26(O) | ¥ T € 0,7,
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Now, we consider the entire model, namely + = 1 and ko > 0.

Theorem 4.2. Take 0 = 1 = 1 and ko > 0, and consider p € H} (0,00; L%(0,L)). For initial data
wo, w1 € D(A?), strong solutions exist up to some time T*(wo, w1, p). For all t € [0,T] with T < T*,

the solution obeys the energy identity:

t t
B+ ks [ sl = BO) + [ (o

Note that we make no claims of uniqueness above when ¢ = 1.

Remark 4.3. The dependence T™(wq, wi,p) = T*(H(wo,wl)HD(Az)z, ||p\|H3(07T;L2(07L))), indicates that
the time of existence depends on the size of the initial data in a strong norm.

4.6 Previous Results and Discussion

In Section 2 above, we provided a discussion of the modeling and previous mathematical analyses of
cantilevers and cantilever large deflections. Section 2.2 provides a discussion of inextensibility, along
with early references towards its modeling and recent engineering-oriented numerical references. Finally,
Section 2.3 provides a discussion of damping mechanisms in beams, with a focus on cantilevers. Now,
in this section, we provide a brief discussion of the remaining relevant literature from the point of view
of the results presented above.

The earliest modeling and computational work concerning inextensibility seems to come from
Paidoussis et al. [44,48] in the context of pipes conveying fluid. Regularizing higher order Kelvin-
Voigt (k2 > 0) damping was included in these structural models when producing numerical results.
The recent paper [16] provides the Lagrange multiplier derivation of the inextensible beam (3.1)—(3.3)
(which we follow in our modeling discussions here); [16] also produces the so called Rayleigh-Ritz
modal equations of motion, which are studied as a nonlinear ODE system. These approaches are con-
sidered and modified in the presence of non-conservative forces in latter papers, such as the nonlinear
piston theory [41] or non-conservative follower forces [33,40]. Apart from their modeling aspects, these
papers are primarily numerical in nature, focusing on the onset and qualitative properties of dynamic
instability. The very recent [10] provides a thorough review of modern nonlinear beam theories, taken
from the engineering point of view (of a similar ilk as the earlier [22]). The engineering literature shows
that the inextensible model described in this paper performs well [37,52, 54, 58] when compared to
experiments.

Moving on to the mathematical literature, we assert that—to the knowledge of the authors—no
PDE or control-theoretical work has treated the inextensible beam. This is to say, there seems to be no
available existence and uniqueness theory for (3.1)—(3.3). We attempt to remedy this with our results
above. Our results in Section 4.5 provide local well-posedness for the case of nonlinear stiffness only
(o0 =1, ¢+ = 0), without the need for damping. On the other hand, to obtain a local well-posedness
result for the case where nonlinear inertia is present (¢ = 1, ¢« = 1), we must add strong (Kelvin-Voigt
type) damping, k2 > 0, and adjust the state-space accordingly [36].

First, we note that our well-posedness results are consistent with what is to be expected for quasi-
linear beams and plates (see, e.g., [34,35]), owing to the fact that the [NL Stiffness] is quaslinear
in nature. Moreover, the uniqueness in Theorem 4.1 is nontrivial, based on exploiting the particular
polynomial structure of the [NL Stiffness] term. Although these results may seem weaker than one
might expect, we note that these represent the first such existence and uniqueness type results for
the inextensible cantilever. Moreover, it is clear (and explained below) that without damping of the
form A%w; (for @ > 0 sufficiently large), there is no hope of closing energy estimates when ¢ = 1. So
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although the need for damping ks > 0 in our second existence result seems odd, it is precisely because
of the nonlocal quasilinear nature of [NL Inertia] terms. Indeed the effective inextensibility constraint
provides a relation between u and w, and when this is expanded—see Remark 3.2—it is clear that
higher regularity of w; is necessary to interpret the solution. This can also be seen from the weak form
(4.8). The [NL Inertia] term prevents the equations of motion in (3.1)—(3.3) from being written as
a traditional second order evolution in time (for w), and truly distinguish this model from previous
beam models.

It is worth emphasizing that, although there is extensive literature for nonlinear beams (and plates),
to the best of the authors’ knowledge, there is very little mathematical discussion of nonlinear can-
tilevered beams at all. One can consult the aforementioned paper [32] on semigroup well-posedness and
stabilizability of extensible beam systems, along with the related (simplified) models in [26] and [38].

Numerically, we utilize a dynamic modal approach, akin to what is standard in the aeroelasticity
literature (for instance, [56]). Via this approach, a fully nonlinear (implicit) system of ODEs is ob-
tained by expanding the solution in in-vacuo mode shapes and implementing a Galerkin procedure
to determine time-dependent Fourier coefficients. Owing to the complex nature of the nonlinearities
for the inextensible beam model, finite difference methods are not developed here, as are used, for
instance, in the beam study [25], which compares modal methods and spatially discretized methods.

4.7 A Priori Estimates and Comments on Well-Posedness Proofs

In this section we remark briefly on the a priori estimates associated with (3.1)—(3.3), and the cor-
responding construction of solutions. Full details appear in the mathematically-oriented paper [11];
we suffice here to provide an overview of the well-posedness strategy and accompanying scheme for
construction of solutions and energy estimates.

4.7.1 Stiffness Only

The strategy we follow for obtaining well-posedness, is to firstly establish existence for the quasilinear
[NL Stiffness] component (0 = 1, © = ko = 0). Following a standard tack, we utilize a Galerkin
procedure, taking the standard spatial Fourier basis for the linear, in vacuo beam dynamics on H2.
Upon implementing the Galerkin procedure, we obtain approximate solutions that satisfy the finite
dimensional analog of (4.8). The baseline energy identity at the finite energy level H2 x L2(0, L)
yields associated weak limit points. The 1-D Sobolev embedding for H2 provides w, € L*, which is

ni2,,,n

adequate to identify weak limits for the term ([wx] wi, m) in (4.8), with ¢ € H2; however, the

term ([w;}xpwg, x) is more delicate. One obtains a limiting measure as the *-weak limit point via

the Alaoglu Theorem, but additional compactness is needed to identify it in H2 and associate it with
a weak solution. (In this setting, direct use of the Dunford-Pettis criterion is not amenable.) Hence,
to obtain the needed compactness, we work with smooth solutions, in line with standard quaslinear
theory.

Specifically, we employ energy methods for higher order (differentiated) equations and exploit the
polynomial structure of the nonlinear terms associated with [NL Stiffness]. Careful use of a sequence of
multipliers, along with delicate estimation of nonlinear terms via interpolation and Sobolev theorems,
yields the necessary energy estimates which we now describe.

Let us define B
*waxHQ + E||wzwm||2v

1
Eo(t) = 5 |lw|[* +
2 2
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corresponding to the identity obtained by the velocity multiplier w; in the equations (3.1)—(3.3) with
t = ko = 0. We have the corresponding estimate immediately:

t
Ey(t) = Ep(0) +/ (p,wy) dr for all ¢ > 0. (4.11)
0

Remark 4.4. Note that the above estimate is the same one presented in 4.2, omitting the nonlinear
inertial part.

Now, letting
Eq(t) = ||wttH2 + ||wmt‘|2 + ”wmwwt||2 + ||wmth||2

be the energy corresponding to the time differentiated version of the stiffness-only equation (¢ = 0),
and taking the wy multiplier, we obtain:

EﬁﬂSf(mJ%@%&@D+f%nEM®ﬁ+CA%ﬁﬁMﬂ (4.12)

where ¢ > 0 and the f; are smooth, real-valued functions of their arguments. By dependence on p we
mean dependence on the norm ||p||z2( +12(0,r)) (mutatis mutandis for derivatives of p, such as py, pyz).
Using a standard nonlinear version of Gronwall’s lemma [18] we obtain a local-in-time estimate:

Ji+ fot
PO S T+

From (4.13) we can deduce that the Galerkin approximations satisfy a local-in-time bound, pro-
viding boundedness in the associated norms of Ey and F4 for some finite time depending on the initial
data*. Unlike standard semilinear theory, we cannot obtain the needed regularity on 9w through the
equation with the additional regularity of wy € L>(0,7*; L?(0, L)). To obtain the final a priori bound
for the [NL Stiffness], we define

0<t<T* where T* =sup {c [flt + f2t2] < 1} . (4.13)
t

V(t) = Ha;:1w||2 + wa@iHQ + Hwazwwmx||2a

corresponding to the conserved quantity associated to two space differentiations, taken with the wy;
multiplier. This yields the inequality:

/Ot V(s)ds < f(Eo(0), E1(0), Br(t), paa), (4.14)

where f here is increasing in its arguments.

Two space derivatives are utilized, as they constitute a convenient fractional power of AY2; we
observe that the energy identities associated with one space differentiation result in problematic trace
terms that cannot be controlled by the conservative energetic terms. Moreover, (4.14) highlights the
necessity of firstly having a closed estimate for higher time derivatives of the solution.

The combination of (4.11), (4.13) and (4.14) yields the final energy estimate for boundedness of

llwllzz0,7+pa));  Nweel| e 0,1+;22(0,1))5

among others, in terms of initial data FEy(0), F1(0),V (0). With additional compactness coming from
smooth data, we obtain weak solution with the appropriate limit point identification. Subsequently,

“Or, conversely, given any time T, there is a ball of initial data sufficiently small in the sense of F;(0) for which
solutions exist up to 7.
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with our higher order a priori estimates, we utilize the regularity of the solution to infer that the weak
solution is in fact strong. It is an exercise to show that the strong solution satisfies (3.1)—(3.3) (with
o =1,:=0) in a point-wise sense.

Uniqueness is a nontrivial issue here (of course related to the aforementioned problem of limit point
identification). However, we can exploit the polynomial structure of the [NL Stiffness] terms to obtain
a continuous dependence estimate on the initial data, so long as the previous energy estimates hold;
from this, uniqueness follows. To that end, we define

N(w) = 07 (wiwgy) — 0y (wiwy) .

Let w! and w? be two strong solutions of the problem (3.1) on ¢t € [0,7*) with ¢ = 1, ¢ = ky = 0
1 _ w?. Then, decomposing the energy multiplier, as applied to the nonlinear difference, we
obtain through simple but non-obvious algebraic manipulations:

and z = w

N (w) = N(v), 2) =

[(wfm,zg) + (wi,zgx)] - (wmwmt,zz) — (wxth,zix)

DN |

+ ('U:c {wwz + U:z:a:} 5 szzmt) + (U:m: {ww + Ua:} az:czsczrt) .

Estimating the above inner-products can be done directly with the help of Cauchy-Schwarz and Young’s
inequality, invoking the earlier a priori estimates on individual trajectories. This results in a nice
energy estimate on z (using the multiplier z;) of the form of the standard (linear-type) Gronwall
inequality. Proceeding as is standard, yields continuous dependence in the finite energy topology .7
of the trajectories (and associated uniqueness) for smooth solutions emanating from data in .527%.

Remark 4.5. Note that no damping was needed to obtain uniqueness here.

4.7.2 With Inertia

Treating the [NL Inertia] term perturbatively is challenging, owing to the presence of the term wqy
in the w-expanded form of uy—see Remark 3.2. Hence, we proceed to estimate this term, making use
of velocity smoothing associated to the presence of strong (Kelvin-Voigt) type damping with ko > 0.
We again utilize a Galerkin procedure, though now taking o =1, ¢ = 1, and k2 > 0.

As one immediately sees from (4.8), the weak form peels a time derivative off of all inertial terms;
for weak solutions in this situation, we see “standard” beam requirements for the functions wy, wy, Wey
( [26] and references therein). As shown in Section 4.2, ||u|| 72 is part of the formally conserved energy
Ex + Ep, and thus the inextensibility condition provides control of the quantity

/ wpwgdé € L(0,T; L2(0,L)).
0

Yet the weak form (4.8) makes clear that some additional reqularity of wy is required for appropriately
interpreting (4.8), namely, so w,; is well-defined.

Moreover, the strategy utilized to close estimates for stiffness calls for a time differentiation of the
equations, followed by an application of AL/2 (and associated estimation). For inertial terms, we need
to verify that the additional terms are compatible with the aforementioned estimation procedures.
Thus, following the prescribed scheme, we cannot “avoid” differentiating [NL Inertia] terms in time.
This however, showcases the lack of necessary w; regularity again:

Utt(CC) = —/ [w:%t + wxtht] d§7
0
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whence we can already see control over the term w, is necessary even at the undifferentiated equa-
tions. To achieve this control, one can attempt to differentiate further in time, but this is ineffective,
since every time differentiation boosts the requisite time regularity of w,. Hence, differentiation in time
will not provide closed estimates for inertial terms. Repeated spatial differentiation is incompatible with
closing the estimates from the earlier [NL Stiffness].

Hence, owing to the above discussion, regularity for w; must be “borrowed” from some other
term in the equation. Some standard regularizations to resolve these sort of issues include the use of
linear (Rayleigh-type) rotational inertia wy — (1 — @0zz)wy (as in (2.1)), which is not helpful for
the inextensible model, owing to incompatibility between the [NL Stiffness] terms and the cantilever
boundary conditions. One might consider utilizing square root-like damping of the form —k;02w; (as
in (2.1) and (2.3)), yet for cantilevers, this requires modifying the higher-order boundary conditions;
there is some discussion of the physical interpretation of damping mechanisms weak kg > 0, square
root-like k1 > 0, and strong k2 > 0 in [47]. Here, we proceed with the addition of linear Kelvin—Voigt
damping by taking ko > 0 [7,47]. This is a physically viable form of damping for cantilevers, and it
is also used in the engineering literature [48]. This choice does not require modification of the higher
order beam boundary conditions.

Remark 4.6. Tt may be the case that a weaker form of A%w; damping is sufficient to obtain estimates;
we discuss this later in Section 6.

With the inclusion of strong damping, we may run the procedures corresponding to: a differentia-
tion, a multiplication of the equation, and a set of integrations. We describe these in shorthand:

{at/ tht//ot/OL} ; {azm/ met//ot/OL}

on (3.1) to obtain two additional energy estimates, which close, thanks to ko > 0. In this case, the final
a priori estimate becomes:

E(t) + I(t) + Dhlwe] < f1(€(0),Z(0)) + fg(Eo(O))/o (E(s) +Z(s))*ds (4.15)

for smooth functions f;, increasing in their arguments, with:
2

7

E(t) = Eo(®) + Bs()) + V(D),  T() = [[uell® + el ? + st ® + H | e
0

and .
¢ _ 2 2 4112
Dylwi] —C(’fz)/o waat|[* + [[weate [ + [|0zwe] [*] dr.

(For clarity, we have above suppressed the dependence on the RHS forcing function p and its deriva-
tives.) This estimate should be contrasted with the estimates for [NL Stiffness] only in (4.13) and
(4.14), which do not depend on the presence of damping. Note that with the addition of damping
we obtain a better estimate for V(¢); namely, the “stability-type” multiplier w,, is replaced by the
“energetic” multiplier wy.¢, which is permitted owing to the presence of damping. Then, similar to
(4.12), a nonlinear version of Gronwall is utilized as well, providing the final a priori estimates for
t=1, ka > 0.

Once a priori estimates are in hand, limit passage obtains as before and identification of limits is
as in the previous stiffness-only case. We can again use the solution regularity (corresponding to a
priori estimates and data requirements in .7°%) to infer that the weak solution is in fact strong, and
satisfies the full PDE (with 0 = 1 and ¢ = 1) in a point-wise sense. We highlight here that no claims
for uniqueness are made for the [NL Inertia] case ¢ = 1.
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5 Simulation of Inextensible Cantilever Dynamics

This section is devoted to numerically simulating the inextensible cantilever dynamics. In Sections 5.1
and 5.2 we describe the method and approach to producing dynamic (modal) simulations. Subsequently,
in Section 5.3, we show our numerical results and provide a detailed discussion. Finally, in Section 5.4,
we provide an overview of numerical conclusions drawn from our simulations here.

We focus on (3.1)-(3.3) and make clear distinctions between linear dynamics ¢ = ¢ = 0, [NL
Stiffness| only dynamics (0 = 1, ¢ = 0), and fully nonlinear dynamics—with [NL Stiffness] and [NL
Inertia] (0 = =1).

We are interested in dynamical stability properties, as well as long-time, qualitative responses of
the dynamics, to: distributed pressures (via piston theory, described in the next section), and varying
initial conditions. We will measure displacements of the cantilever, and we will track things like the
free end displacement curves (u(L, t),w(L, t)), the arc-length of the beam as a function of time, and
energies (see Section 4.2) as a function of time.

5.1 Dynamical Driver: Piston Theory

In our simulations, we seek a simple way to test the model, affect beam stability, and “drive” the
dynamics. In line with the applications relevant to cantilever large deflections, we consider a rudimen-
tary means for simulating the flow of gas around the cantilever. Though there are various ways to
consider flow-beam coupling, the simplest is to eliminate the fluid dynamic variables altogether. This
has the benefit of reducing the flow-beam system to a single non-conservative beam dynamics. Such a
reduction is a dramatic simplification of complex, multi-physics phenomena, but, focusing on a simple,
un-coupled model allows us to perform a thorough numerical study that can be exposited straight-
forwardly. (More sophisticated related, flow-structure models are certainly explored in the rigorous
mathematical literature—see, e.g., [8,9].)

We consider beam dynamics interacting with a potential flow. For certain flow conditions, the
dynamic pressure on the surface of the beam, p(x,t), can be approximated point-wise in x by an
expression written in the down-wash of the fluid W = (9; + Ud,)w, where w(z,t) is the transverse
displacement of the beam, and U is the unperturbed axial flow velocity. This results in a nonlinear
expression [3] in W that is linearized to produce the piston-theoretic pressure p(x,t) on the beam [56]:

p(x,t) = po(x) — Blws + Uwa]. (5.1)

Above, po(z) is a static pressure on the surface of the beam (for the numerical portion of this paper
we will take pg(x) = 0). The parameter 3 > 0 is a fluid density parameter.” We consider both positive
and negative values for U, corresponding to axial flow from clamped to free end (U > 0—flag-like
configuration [2,27]), as well as from free to clamped end (U < O—inverted flag configuration [29,49]).
Note that the presence of aerodynamics provides both a stabilizing term—weak damping—scaled by
B > 0, as well a destabilizing non-conservative term scaled by SU. (See [25] for more discussion.)

With (5.1) providing our dynamic driver, we can consider a simple non-conservative dynamics that
can give rise to instability in our model, resulting in large deflections that “test” the inextensible
nonlinear effects.

®See [56] for a discussion of the flow non-dimensionalization, and further discussion of characteristic parameter values.
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5.2 Modal Dynamics

Modal analysis, here, refers to a Galerkin method, based on the above weak formulation (4.8), whereby
solutions are approximated by in vacuo structural eigenfunctions (modes) (e.g., [16,28,56]). Since the
eigenfunctions of standard elasticity operators form a basis for the state space, a good well-posedness
result for the full system justifies this type of approximation. This type of approximation can be
dynamic, as in reducing an evolutionary PDE to a finite dimensional system of ODEs by truncation,
or it can be stationary, reducing the problem of dynamic instability (for linear dynamics) to an algebraic
equation.

5.2.1 Cantilever Modes

Critical to any modal analysis—see, for instance, [28]—are the in vacuo modes (eigenfunctions) asso-
ciated to the configuration. We are working with the linear Euler-Bernoulli cantilever as our approxi-
mants in H2, and the modes and associated eigenvalues can be computed in an elementary way. These
functions are complete and orthonormal in L?(0, L), as well as complete and orthogonal in H2(0, L)
(with respect to (-,-)p2)-

The cantilever mode shapes of interest are:

sn(z) = cp(cos(kpz) — cosh(kpz)) + Cp(sin(kpx) — sinh(k,x)),

where the C), are obtained by solving the associated characteristic equation: cos(k,L) cosh(k,L) = —1.
We have
—cn(cos(kp L) + cosh(k, L))

Cn = )
sin(kp, L) + sinh(k, L)

and the ¢, values are chosen to normalize the functions in the L?(0, L) sense.
The mode numbers k, L are obtained by numerically solving the characteristic equation.

ke
1.8751
4.6941
7.8548
10.9955
14.1372
17.2788

o U A WS

Table 1: First 6 mode numbers for the cantilever (Clamped-Free, CF) configuration.
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First Three in vacuo Shape Functions
I

—s,
—s,(X)

55

s, (x)

5.2.2 Calculating the Flutter Point: Reduction to Perturbed Eigenvalue Problem

Let us consider the Galerkin procedure for the full linear beam equation with linear piston theory and
the possibility of imposed weak damping kg > 0:

Wit + Dwmzxw + (kO + B)wt = _BUwa: (52)

on (0, L), with cantilever boundary conditions. We expand the solution via the in vacuo mode functions
{s;} as w(t,x) = > q;(t)s;j(x). The {qg;} represent smooth, time-dependent coefficients. Plugging this
representation into the (5.2), multiplying by s,,, and integrating over (0, L) for each n we obtain:

Z [[qu(t) + (8 + kO)Q;n(t) + Dk?n‘]m(t)] (8m> 8n) + BU(Ozsm, Sn)Qm(t)] =0, (5.3)

m

with ” indicating 0;.

Orthonormality of the eigenfunctions can be invoked to produce diagonal terms, whereas the terms
scaled by SU(0ySm, sn) are off-diagonal and give rise to the instability of the ODE system.

To simply determine the stability of the problem as a function of the given parameters, we can
invoke a standard engineering ansatz [15,56] (and references therein): assume simple harmonic motion
according to some dominant (perturbed) frequency w; we allow possible contribution from all functions
sp for n =1,2,..., N via coefficients labeled a,:

N
w(t,z) ~ e ™ Z a;sj(x), (5.4)
j=1

where NN is a chosen dimensional truncation. We multiply the modal equation by s,, and then inte-
gration produces an eigenvalue problem in the perturbed frequency w. With the off-diagonal entries
(03Sm, Sn) in hand (for 1 < m,n < N with m # n), we compute diagonal terms

Qj(@) = —w* —i(B+ ko)w + Dkj, j=1,2,..,N,
and we create the matrix for 1 < n,m < N:

QO for m=n

A= A®) = [amn), Wwith am, =
BU (0zSn, sm)  for m # n.
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For chosen parameter values of D, kg, 8, U, L, we enforce the zero determinant condition for non-
trivial solutions in w:

det(A(@)) =0,

and solve for @ = [y, ...,wn]T. The associated complex roots allows us to track the stability response
of the natural modes to the perturbation terms. This method is explored in-depth in [25] for beams
across multiple configurations. In [25], however, this method is shown to be an accurate predictor of the
onset of instability due to non-conservative piston-theoretic terms. Specifically, for the flow parameter
U, we can define U, as a critical bifurcation parameter, such that for all other coefficients fixed, when
U < Ugit the linear dynamics exhibit bounded for-all-time trajectories; when U > U, trajectories for
the linear dynamics will exhibit unbounded growth (in time). We refer to this as the onset of instability
due to the flow U.

In the simulations below, the modal method described above allows us to determine that for D =
L = ky = 8 = 1, the onset of instability corresponding to the linear cantilever is Ug &~ 135.9; this
figure will arise repeatedly in our simulations below. We note that for U > U, the linear dynamics
have destabilized eigenvalue(s), and the linear dynamics (with no nonlinear elastic restoring force) will
accordingly grow exponentially in time.

5.2.3 Nonlinear Modal Simulations

Now, as in Section 5.2.2, let us expand the solution to the nonlinear problem (3.1) as w = Z SiQi,

7
where again s;(z) are the in vacuo cantilever mode shapes, with and ¢;(t) being smooth functions
of time. Plugging the solution into the weak form (4.8) gives us a corresponding “matrix” system in
{q:(t)} by subsequently testing with ¢ = s;.

We define the following four-tensors (corresponding respectively to [NL Stiffness] and [NL Inertia]):

Sijkl = ¢z xxd)j xz7¢k z¢la¢ (56)

T = ( / biabia / mmm). (5.7)

Remark 5.1. The following calculation for the inertial tensor connects Z;;,; back to the weak form

(4.8):

T = ([ 6uati [ or0nc)
- /0 (o / / st isteads ) [ ovonsde] do
-/ L[( / /0 01060625 ) G061

Employing Einstein notation, so that ¢;s; is interpreted as the sum, we have the following separated
form of (3.1)—(3.3) taken with the piston-theoretic RHS (5.1):

a/ (si,85) + [af' (@)® + (4)°@i] Ziii + Bai(si, 55) + Dai [k (56, 5))] + D@} [Siij + Sjiil = BU (051, 55)-  (5.8)
This form, (5.8), constitutes the bi-infinite modal form of (4.8) with t = ¢ =1 and ks = 0.

Remark 5.2. Note the temporally quasilinear term ¢’ (qi)QImj, which may slow down time-stepping
computations, as the equations are algebraically implicit in ¢”. The spatial nonlinearity—cubic type,
and quasilinear—can be seen in the terms involving the tensor S.
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The summation in equation (5.8) is truncated to include just N mode functions after which we
conduct a reduction of order. The resulting 2N x 2N system of ODEs is solved using the ode151 function
in MATLAB, which requires the ODE to be in the form f(y, y:) = 0. To expand the summations, we use
a Mathematica script and then a Python script to convert the output to valid MATLAB syntax. For the
computation of the stiffness tensor components S;;z;, the inbuilt function integral is used. The inertial
tensor components of Z;jx, fom SizSjz f(;v SkxSl,2, are computed using the inbuilt integral function
and the final integral for the inner product is taken using Simpson’s Rule. Once the ODE system is
numerically solved, the final solution is computed by taking the corresponding linear combinations of
the mode functions. Visual/graphical output can be produced as (X,Y) = (u(z,t), w(x,t)), where u
is obtained from w through the effective inextensibility relation (3.3).

5.3 Qualitative Analysis of Numerical Simulations
For the simulations presented in this section we take the following conventions:
e The flags ¢, o take values of 0 or 1, depending on what is being discussed.
e Non-central parameters are taken to unity: L =0 =D = 1.
e The stationary pressure, po(x) in (5.1), is taken identically zero.
e Imposed damping is taken to be zero, i.e., kg = ko = 0.
e Unless stated otherwise, the number of modes used in each simulation was N = 6.

For these conventions, we mention that [25] and [26] discuss piston-theoretic and structural pa-
rameter values in more depth. It is worth commenting that, even when ¢ = 1, we do not invoke any
damping in our simulations below. In our theoretical results, we recall that ko > 0 is necessary for the
existence proof to obtain when ¢+ = 1 (Theorem 4.2). We choose to focus these preliminary numerical
simulations on the undamped case to understand the essence of the nonlinear effects. In particular,
these results below indicate precisely how the [NL Inertia] effects produce issues.

Lastly, we now specify our initial data repository for simulations below:

e [1st Mode ID] w(0,z) = s1(z) = [cos(k12) —cosh(k12)] —C; [sin(k12) —sinh(k1z)], w(0,z) = 0,

where k1 ~ 1.8751 is the first Euler-Bernoulli cantilevered mode number (with L = 1) and
Cl ~ 0.7341.

¢ [2nd Mode ID] w(0,x) = sa(x) = [cos(kax)—cosh(kaz)] —Calsin(kex) —sinh(kaz)], wi(0,x) = 0,

where k2 ~ 4.6941 is the second Euler-Bernoulli cantilevered mode number (with L = 1) and
Co ~ 1.0185.

e [Polynomial ID] w(0,z) = —42° + 15z* — 2023 + 1022, w;(0,2) = 0;

e [Linear IV] w(0,z) =0, w(0,z) = ax, where the parameter a > 0 will be increased in size
as a mechanism to increase the “size” of the initial data (in the sense of L?(0,1)).
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5.3.1 Conservation of Arc Length in Numerical Simulations

Since the inextensible dynamics are predicated on enforcing the inextensibility constraint, we posit
that arc length should be approximately conserved throughout dynamic deflections. However, as we
are enforcing an effective inextensibility constraint (3.3), we expect that approximation of the full
constraint (2.5) produces errors that can be exaggerated by larger and larger deflections.

First, in Figure 3, we demonstrate that arc-length is faithfully conserved throughout deflection,
across the varying initial conditions for the in vacuo case (U = 0, f = 0). These plots take active
stiffness and inertia—: = ¢ = 1. In these simulations, the initial velocity multiplier a is set to 1.

Computed Beam Length
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time
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Figure 3: In vacuo computed arc length, varying initial conditions.

However, for [Linear IV] initial conditions, increasing values of the initial velocity multiplier a
(with zero initial displacement) yields the degradation of arc-length conservation, as seen in Figure 4.
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Figure 4: In vacuo computed arc length, varying initial velocity multiplier a.

We also see degradation in the conservation of arc length when the piston-theoretic flow is active.
Figure 5 gives the computed arc length for the full nonlinear beam ¢ = ¢ = 1 for varying values of
U > 0. The initial condition is [Linear IV] with a = 1.
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Computed Beam Length, Varying U, Nonlinear Model
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Figure 5: Full nonlinear model computed arc length, varying U, g = 1.

We note that as U increases, beam deflections are larger (owing to a stronger forcing), resulting in
observed degradation. All flow velocities U here are below the linear onset critical value of Uy = 135.9.
The reason for this will become clear in the discussions that follow.

5.3.2 Computed Total Energies

In a similar capacity to the previous section, we compute the total (nonlinear) energies associated
to various situations. We are interested in tracking the temporal evolution of E(t): when in vacuo
dynamics are considered (U = 0), we expect conservation of energy. When U # 0, we expect that
energies will evolve, owing to the non-conservative flow effects of (5.1).

We first examine the computed total energies for the in vacuo, fully nonlinear beam (v = o = 1),
with varying initial velocity size in Figure 6.

Computed Energies, Varying Initial Velocities
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Figure 6: In vacuo total energies with [Linear IV] varying a.

When the size of the initial data is sufficiently small, we see near perfect conservation of energy,
E(t) = E(0), perhaps with slight periodic effects. However, when the initial data size is large, we see
that energy conservation is lost.
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For the linear model, with stiffness and inertia turned off (¢ = ¢ = 0), the in vacuo critical value is
Uerit = 135.9. Figure 7 gives the computed energies for varying U values below and above Ugp;;.

Total Energy, Varying U, Inertia without Stiffness
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Figure 7: Total energies for the beam, varying U, 8 = 1, linear model.

We note that for U > Uy, we observe exponential growth in time of energies, as expected [25].
Below Uiy we see exponential decay, as a function of the presence of damping in linear piston theory
(5.1). We contrast this picture with the same simulations, with active nonlinear restoring forces. (See
[25] and [26] for more in-depth study and discussion when an extensible beam is being considered.)

First, we include stiffness only (¢ = 1, ¢ = 0). The energy is modified accordingly—Section (4.2).
Figure 8 shows that the nonlinear stiffness effect is enough to provide stability in the sense that for
U > Ui, the energy plateaus. Indeed, these post-onset dynamics converge to limit cycle oscillations.

Below Uy, the trajectories which were stable in Figure 7 remain so here.

Total Energy, Varying U, Stiffness without Inertia
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time

10710
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Figure 8: Energies for the beam, varying U, with 5 =1, 0 =1, and ¢ = 0.

We demonstrate a limit cycle oscillation in the post-onset regime U > Uy for stiffness only
dynamics (o =1, ¢+ = 0) when U = 140. Figure 9 shows the beam vertical end point displacement for

U = 140.
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Figure 9: Limit Cycle Oscillation of beam vertical displacement, stiffness only, U = 140, 5 = 1.

The next question which naturally arises is: What happens to these stability (energy or displace-
ment) plots when [NL Inertia] is present in the model? More specifically, we can ask two questions:
(i) Does the presence of [NL Stiffness] and/or [NL Inertia] affect the linear critical onset value Ucyi?
(ii) In the post-onset regime, what do fully nonlinear (¢ = ¢ = 1) dynamics look like? For (i), we
defer this complex question to future work, but we note that it does appear that the presence of [NL
Inertia] does affect—lower—the critical value for instability, however this affect is highly dependent
upon initial configuration; an interesting, if not wholly surprising, observation.

Indeed, with ¢ = 1, no consistent limit cycle oscillation behavior could be observed through the
linear piston-theoretic RHS. This is consistent with engineering literature [39,41]. Again, outcomes are
highly dependent on initial configuration. In Figure 10, both the stiffness and inertia terms are included
in the model (0 = ¢ = 1). Note that the [NL Inertia] term clearly destabilizes the computation after a
sufficient amount of time, and as a result, we observe blowup of total energy for a range of U values,
even those well below the linear critical onset value Uyt .
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Figure 10: Total energies for the beam, varying U, 8 = 1, stiffness with inertia.
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5.3.3 Inverted Flag Simulations

Interesting questions arise when the flow direction is inverted U < 0, yielding the so called inverted
flag configuration [29]. With flow from free to clamped end, we can ask about critical values of U, as
well as possible end behaviors.

In principle, the structural model is robust enough to support limit cycle oscillations in this con-
figuration, but we were unable to observe this. Convergence to non-trivial steady states, however, was
observed—sometimes referred to as buckling.

As —U increases, the final steady state of the system transitions from equilibrium to a nontrivial
deflected state, occurring around U,y = —6.3. Figure 11 shows a nontrivial steady state for the inverted
flag configuration when U = —10.

Nontrivial Steady State, Inverted Flag, U=10
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Figure 11: Nontrivial steady state displacement for the inverted flag, U = —10, g = 1.

Correspondingly, Figure 12 shows the different energy contributions for the inverted flag when
U = —10. Note the steady decay in energy associated to [NL Inertia]. As we observe convergence to
a steady state, it is clear that the energy E(t) — const.
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Figure 12: Nontrivial steady state energies for the inverted flag, U = —10, 8 = 1.
Figure 13 tracks the values of the coefficients ¢; corresponding to each s; for i = 1,2,3,4 in the
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inverted flag dynamics for U = —10. Note that there is a contribution from both the first and second
modes to the nontrivial steady state shown in Figure 11, however there is minimal contribution from
the higher modes with decay evident from the aerodynamic damping coming from (5.1).

Contributions to Inverted Flag Dynamics by Mode, U=-10
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Figure 13: Modal coefficients, U = —10, 8 = 1.

Figure 14 shows how the U value, ranging from —6 to —7, influences the terminal modal coefficients
at T'= 20. Around U = —6.3 we see the deflected steady state emerge.
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Figure 14: Modal coefficients, Varying —6 > U > -7, 5 = 1.

We note that the static end behavior of the piston-theoretic inverted flag has been noted for some
time [14], but this conclusion was obtained via a linear elastic model. Hence, to our knowledge, this
is the first confirmation that the presence of inextensible nonlinearity does not alter the established
result.

5.3.4 Influence of Number of Modes on Simulations

Below is a plot of the total energy for U = 130, fully nonlinear model (v = o = 1) as we increase the
number of modes in the simulation. From the plot it is clear that varying the number of modes does
effect the onset of instability, as the energy remains bounded for only 3 modes, but we see exponential
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growth with 6 modes. As far as we can tell, for this nonlinear model, U is around 130, which means
the presence of nonlinearity has decreased the onset of instability as compared to the linear model
(which had Ugit &~ 135.9). We note that for semilinear models (such as the extensible model in (2.3)
analyzed in [25]) the presence of nonlinearity does not affect Ueyit.

Computed Total Energies, Varying Number of Simulation Modes, U=130
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Figure 15: Energies for the fully nonlinear model, U = 135.9, 5 = 1.

For the inverted flag system (U < 0), the number of modes influences where the beam begins to
transition to a deflected steady state, as shown in Figure 16.
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Figure 16: Final z = L displacement, inverted flag, varying U and number of modes, 5 = 1.

5.4 Numerical Conclusions

We briefly provide conclusions drawn from the previous section.

e Arc length and energy conservation are reasonably satisfied for the inextensible beam dynam-
ics, at least for solutions with small enough deflections. Both breakdown when deflections are
sufficiently large, and we expect this is due to the violation of the assumption u, << 1.

e [NL Stiffness] provides a strong enough (quasilinear) restoring force to bounded post-critical
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trajectories and provide limit cycles. This is similar to the situation for extensible beams, where
the nonlinearity is semilinear (as in Krieger or von Karman type); see [9,25].

e [NL Inertia] is the challenging term. With inertia in force, large deflections become problematic.
Specifically, simulations break or become unphysical (for instance, with the beam bending back
on itself or kinking.) Considering piston-theoretic pressures, no consistent prediction of onset of
instability can be given when ¢ = 1. Moreover, no consistent post-critical behavior was found;
specifically, no stable limit cycles were observed when ¢ = 1.

e For the full nonlinear model of the inextensible beam, we see many effects in the qualitative
behavior that depend on the initial data size and type. Noting that our results in Section 4.5 are
local results, this is not surprising. Moreover, the quasilinear (in time and space) nature of the
model seems to suggest that dependence on data is unavoidable for theoretical and numerical
results.

e For the inverted flag configuration U < 0, non-trivial steady states were obtained in a post-critical
regime. Again, no limit cycles were observed when ¢ = 1, regardless of the value of ¢.

e The number of modes used in simulating the dynamics affects stability and qualitative properties.
This is atypical, by engineering standards, where for structures that are non cantilevers, so called
modal convergence, is observed fairly uniformly for N ~ 4. Owing the highly nonlinear nature of
this model, as well as the large deflection nature and free boundary condition, modal convergence
is not observed for such low mode numbers, and eventual behavior is dependent on N.

6 Open Questions and Future Work

Future work, extending from the results presented here and in [11], includes a variety of challenging
modeling, analysis, and numerical problems.

6.1 Optimal Damping

As alluded to in Sections 2.3 and 4.7.2, many types of abstract interior damping are possible for the
beam dynamics. Specifically, here, we look at damping of the form A%wy,, as described in Section 2.3. For
general 6 € (0,1) this is a nonlocal operator that can depend on the boundary conditions. For 6§ = 0, we
have weak damping (ko > 0 in earlier sections) and for # = 1 we have the strong damping of the form
utilized here (k2 > 0). Independent of the physical/engineering considerations discussed earlier about
the physical interpretation of, for instance, AY2wy, one can ask the following mathematical question:

What strength of damping (what power 6 € (0, 1)) is sufficient to obtain energy estimates
resulting in well-posedness for the inextensible beam that allows [NL Inertia]?

Obviously 6 = 1 is sufficient for our purposes here—taking ko > 0—Dbut is this the optimal power? We
conjecture, in fact, that # = 1/2 corresponding to square root damping is sufficient to obtain estimates.
Secondly, what we must address is the non-equality between A'Y/?w; and —0%w; (k1 > 0 in (2.1)), as
per [47]. It is clear that weak damping—Fko > 0—is not sufficient.

We also mention that in [21,47] so-called indirect damping mechanisms are introduced that ef-
fectively operate as square-root type damping and do not have the issues with physical interpreta-
tion/boundary conditions in the cantilever configuration. Such damping is of interest here for providing
control of the nonlinear inertia terms.
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6.2 Global Solutions and Stability

In line with [35] and other papers on quasilinear beam and plate equations, we seek global solutions
when damping is present. Indeed, since damping is—rather oddly—necessary for us to obtain existence
for the full system (o = ¢ = 1) when inertia is present, we may ask what sort of stability for the system is
gained as a byproduct. We expect that, the stiffness only dynamics (¢« = 0) will have typical quasilinear
behavior when strong damping is present (ke > 0). Specifically, we anticipate that the time of existence
can be taken to be T* = oo if the initial data is confined to a ball in the sense of J#%. Such a proof
depends on Lyapunov methods to show exponential decay for sufficiently small data, or sufficiently
large damping coefficient ks. When ¢« = 1 and ko > 0, this question is more delicate. At present,
it is unclear whether a global-existence-with-small-data/exponential decay result will hold when [NL
Inertia] is active.

6.3 Uniqueness of Strong Solutions with =1

As we allude to above, no claims are made about uniqueness of strong solutions when [NL Inertia] is
active. We simply do not have the regularity needed—even with ks > 0—to obtain closed estimates on
the difference of trajectories when ¢ = 1. It is clear that higher regularity of trajectories is necessary,
precipitating the need to close estimates in higher topologies. This corresponds to highly complex
polynomial-type differentiated versions of (3.1)—(3.3), and the associated energetic approaches.

6.4 Other Non-Conservative Models

From the modeling point of view, there are other beam configurations and models of interest which
are of interest in engineering. These include the free-free beam, as well as cantilevers driven by piston-
theoretic forces and non-conservative follower forces. The former represent linear or nonlinear aerody-
namic forces that are distributed across the beam—see [3,25,41,56]; the latter represent forces that are
purely tangential at a free end, throughout deflection (making the boundary force necessarily nonlinear,
since it depends on the deflected state)—see [40] and references therein. In these situations, the model-
ing presented here (consistent with [16]) is possibly altered via the handling of the Lagrange multiplier
A that enforces inextensibility. Moreover, well-posedness in these situations becomes an open question
once again, since the non-conservative, typically lower order terms, interact with both quasilinear and
nonlocal effects resulting from inextensibility.

Beyond existence and uniqueness theory, the question of global stability or at least global existence
when damping is present, is of course altered by the presence of these non conservative terms. It is
then natural to ask how nonlinear effects owing to inextensibility respond to non-conservative and
perhaps nonlinear effects such as piston theory or follower forces. As we see from the use of linear
piston theory in Section 5.3 as a driver of inextensible dynamics, many behaviors are possible. This
leads to deep questions about the effect of such non-conservative terms on stability properties of the
model, including time of existence, perhaps even when strong damping is present. In line with the
long-time behavior analysis in [26], as well as the qualitative numerical analyses in [25], future studies
will address the stability and time of existence for the inextensible cantilever dynamics when damping
size, initial data, and non-conservative coefficients are varied.

6.5 Obtaining Limit Cycle Oscillations for Full Inextensible Dynamics

In line with the work in the engineering literature making use of follower forces and higher order piston
theory, we hope to produce limit cycle oscillations for the dynamics when inertia is active. The first
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set of numerical tests to be run involve the impact of strong damping ko > 0 on controlling the “bad”
behaviors of [NL Inertia]. Beyond the effect of damping (perhaps to permit limit cycles), we will
attempt to simulate limit cycles by involving the more sophisticated nonlinear piston theory; recent
work [39,41] has indicated that large deflection piston theory produces such limit cycle oscillations.
Future work will also tackle the problem of determining Uit with nonlinear effects active; specifically,
how the linear Ugis ~ 135.9 would lower when ¢ = 1 and/or ¢ = 1. Even formulating this problem is
difficult, as the effect of nonlinearity here on stability seems to be highly dependent on initial conditions.

6.6 Inextensible Cantilevered Plates

Another topic of interest is the development of a 2-D inextensible theory for plates (akin to extensible
von Karman theory for plates [9,30,31]) defined on Q2 C R?. We note that the expression of the free
boundary conditions, as well as the operator theoretic setup associated with free boundary conditions,
are much more complex for plates. Stability problems and numerical analyses for cantilevered plates in
axial flow have appeared in the engineering literature for some time [19,52,54], but, as with the beam,
no mathematical theory seems to exist.

To provide some 2-D modeling insight, let u = (u',u?) represent in plane displacements; then,
inextensibility implies that in-axis strains are zero, from which we approximate:

1

| 1
0= O, +§([Uslcj}2+ [uij]2+ [wxj]Q) = Opu’ = _§[wx2]27 Opyu” = _§[w$1}27 Vo= —wz, W,

The potential energy, in this case, is given by
Ep = ||(1+ |Vl 2 Aw|[2q).

From these identities, equations of motion can be derived via the same variational technique described
in Section 2.2.

In the case of rectangular plates, 2-D mode functions can be taken, roughly, as products of 1-D
cantilever modes along with free-free modes. Yet more robust theoretical and computational approaches
are called for. Numerically, the development of spectral and FEM methods seem particularly relevant.
Analytically, the loss of the Sobolev embedding (H*(2) < C([0, L])) is critical for energy methods
described here (in the analysis of differentiated equations), and thus presents a dimensionally-dependent
challenge.
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