NetLock: Fast, Centralized Lock Management
Using Programmable Switches

Zhuolong Yu Yiwen Zhang Vladimir Braverman
Johns Hopkins University University of Michigan Johns Hopkins University
Mosharaf Chowdhury Xin Jin

University of Michigan
ABSTRACT

Lock managers are widely used by distributed systems. Traditional
centralized lock managers can easily support policies between mul-
tiple users using global knowledge, but they suffer from low perfor-
mance. In contrast, emerging decentralized approaches are faster
but cannot provide flexible policy support. Furthermore, perfor-
mance in both cases is limited by the server capability.

We present NetLock, a new centralized lock manager that co-
designs servers and network switches to achieve high performance
without sacrificing flexibility in policy support. The key idea of
NetLock is to exploit the capability of emerging programmable
switches to directly process lock requests in the switch data plane.
Due to the limited switch memory, we design a memory manage-
ment mechanism to seamlessly integrate the switch and server
memory. To realize the locking functionality in the switch, we de-
sign a custom data plane module that efficiently pools multiple
register arrays together to maximize memory utilization We have
implemented a NetLock prototype with a Barefoot Tofino switch
and a cluster of commodity servers. Evaluation results show that
NetLock improves the throughput by 14.0-18.4%, and reduces the
average and 99% latency by 4.7-20.3x and 10.4-18.7X over DSLR,
a state-of-the-art RDMA-based solution, while providing flexible
policy support.

CCS CONCEPTS

« Networks — Programmable networks; Cloud computing;
In-network processing; Data center networks.

KEYWORDS

Lock Management, Programmable Switches, Centralized, Data plane

ACM Reference Format:

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury,
and Xin Jin. 2020. NetLock: Fast, Centralized Lock Management Using
Programmable Switches. In Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication (SSIGCOMM °20), August 1014,
2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3387514.3405857

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °20, August 10-14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7955-7/20/08....$15.00
https://doi.org/10.1145/3387514.3405857

126

Johns Hopkins University
1 INTRODUCTION

As more and more enterprises move their workloads to the cloud,
they are increasingly relying on databases provided by public cloud
providers, such as Amazon Web Services [4], Microsoft Azure [8],
and Google Cloud [7]. Performance and policy support are two
important considerations for cloud databases. Specifically, cloud
databases are expected to provide high performance for many ten-
ants and enable rich policy support to accommodate tenant-specific
performance and isolation requirements, such as starvation free-
dom, service differentiation, and performance isolation.

Lock managers are a critical building block of cloud databases.
They are used by multiple concurrent transactions to mediate ac-
cess to shared resources in order to achieve high-level transactional
semantics such as serializability. With recent advancements that
exploit fast RDMA networks and in-memory databases to signifi-
cantly improve the performance of distributed transactions [18, 46]
(i.e., decrease think time), the overhead of acquiring and releasing
locks is now a major component in the end-to-end performance of
cloud-based enterprise software [49].

Existing lock manager designs (both centralized and decentral-
ized) face a trade-off between performance and policy support
(Figure 1). The traditional centralized approach uses a server as a
central point to grant locks [3, 23]. With the global view of all lock
operations in the server, this approach can easily support various
policies, such as starvation freedom and fairness [23, 24, 29, 48].
The drawback is that the lock server, especially its CPU, becomes
the performance bottleneck as transaction throughput increases.

To mitigate the CPU bottleneck, recent decentralized solutions
leverage fast RDMA networks to achieve high throughput and low
latency [17, 40, 46, 49]. Clients acquire and release locks by updating
the lock information on the lock server through RDMA, without
involving the server’s CPU. However, since the locking decisions
are made by the clients in a decentralized manner, it is hard to
support and enforce rich policies [49].

We present NetLock, a new approach to design and build lock
managers that sidesteps the trade-off and achieves both high per-
formance and rich policy support. We observe that compared to the
actual data stored in a database, the lock information is only a small
amount of metadata. Nonetheless, the metadata requires high-speed,
concurrent accesses. Network switches are specifically designed and
optimized for high-speed, concurrent data input-output workloads,
making them a natural place to accelerate lock operations.

The key idea of NetLock is to leverage this observation and
co-design switches and servers to build a fast, centralized lock
manager. Switches provide orders-of-magnitude higher through-
put and lower latency than servers. By using switches to process
lock requests in the switch data plane, NetLock avoids the CPU

https://doi.org/10.1145/3387514.3405857
https://doi.org/10.1145/3387514.3405857
https://doi.org/10.1145/3387514.3405857

SIGCOMM ’20, August 10-14, 2020, Virtual Event, NY, USA

bottleneck of server-based centralized approaches, and achieves
high performance. By using a centralized design, NetLock avoids
the drawback of decentralized approaches and can support many
essential policies.

Realizing this idea is challenging for at least two reasons. First,
switches only have limited on-chip memory. Although the size of
lock information is orders-of-magnitude smaller than that of the
actual storage data, it can still exceed the switch memory size for
large-scale cloud databases. While previous work [31] has proposed
the idea of extending the switch memory with the server memory,
it does not consider the characteristics of locking and does not
provide a concrete solution for memory management. To address
this challenge, we design a mechanism to seamlessly integrate
the switch and server memory to store and process lock requests.
NetLock only offloads the popular locks to the switch and leaves
other locks to servers. We formulate the problem as an optimization
problem and design an optimal algorithm for memory allocation.

Second, switches only have limited functionalities in the data
plane and cannot process lock requests. Prior work [27] has shown
how to build a key-value store in switches and solved the fault-
tolerance problem, but a key-value store is not a fully functional
lock manager that can support different types of locks and support
policies. To address this challenge, we leverage the capability of
emerging programmable switches to design a data plane module to
implement necessary features required by NetLock. To maximize
memory utilization and avoid memory fragmentation, we design a
shared queue data structure to pool the register arrays in multiple
data plane stages together and allocate it to the locks. Each lock
owns an adjustable, continuous region in the shared queue to store
its requests. We design custom match-action tables in the data plane
to support both shared and exclusive locks with common policies.

NetLock is incrementally deployable and compatible with exist-
ing datacenter networks. It is well-suited for cloud providers that
have dedicated racks for database services. It only needs to aug-
ment the Top-of-Rack (ToR) switches of these database racks with
a custom data plane module for processing lock requests. Since the
custom module is only invoked by lock messages, other packets are
processed by switches as before. NetLock does not change other
switches in the network, and it is compatible with existing routing
protocols and network functions.

Recently there is a surge of interest in in-network computing.
While it is arguable whether applications should be moved to the
network and to what extent, NetLock takes a modest approach to
make the network more application-aware. Assisting locking in
the network is not a radical deviation from traditional network
functionalities. We emphasize that the application (i.e., transaction
processing) is still running on servers. NetLock provides locks with
switches to resolve contentions and enforce policies for concurrent
transactions, which is similar to using switch-based signals like Ran-
dom Early Detection (RED) and Explicit Congestion Notification
(ECN) to resolve congestion and enforce fairness for concurrent
flows, but in a more application-aware way for databases. Further-
more, compared to changing all NICs and redesigning applications
to leverage RDMA, replacing only the switch and transparently
updating the lock manager provides a competitive alternative to
high-performance database applications. NetLock can provide bet-
ter performance and lower the cost by reducing the lock servers.

127

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

Lock Manager
|

[
Centralized
Global knowledge;

Flexible policy support;
Server involved

Decentralized
No global knowledge;
Cooperative environment;

Often RDMA-based so
little server involvement

Server-only
Higher server CPU usage;
Always, latency > RTT

Blind retry
Higher client CPU usage

Exponential back-off
Switch + Server Relatively lower client
Significantly lower server CPU usage
CPU'usage; Emulated queue
Additional RTTs;

Server CPU involved

Server involvement
Client coordination
mechanisms

Often, latency < RTT

Figure 1: Design space for lock management.

In summary, we make the following contributions.

e We propose NetLock, a new centralized lock manager archi-
tecture that co-designs programmable switches and servers to
achieve high performance and flexible policy support.

e We design a memory management mechanism to seamlessly
integrate the switch and server memory, and a custom data plane
module for switches to store and process lock requests.

e We implement a NetLock prototype on a Barefoot Tofino switch
and commodity servers. Evaluation results show that NetLock
improves transaction throughput by 14.0-18.4x, and reduces the
average and 99% latency by 4.7-20.3X and 10.4-18.7X over the
state-of-the-art DSLR, while providing flexible policy support.

2 BACKGROUND AND MOTIVATION

In this section, we first provide background on the design of lock
managers. Then we motivate the usage of programmable switches
to design lock managers, by identifying potential benefits and dis-
cussing its feasibility.

2.1 Background on Lock Management

Lock managers are used by distributed systems to mediate con-
current access to shared resources over the network, where locks
are typically held in servers. There are two main approaches for
accessing locks, i.e., centralized and decentralized, as shown in
Figure 1.

Centralized lock management. A centralized lock manager uses
a server as a central point to grant locks [3, 23]. Because the server
has the global view of all lock requests and grant decisions, it can
easily enforce policies to provide many strong and useful properties,
such as starvation-freedom and fairness [23, 24, 29, 48].

A centralized lock manager can be distributed across multiple
servers, by having each server be responsible for a subset of lock
objects. There is a distinction between distributed and decentral-
ized. Centralized and decentralized approaches differ in how the
decisions to grant locks are made, i.e., whether they are made by the
central lock manager or by the clients in a decentralized manner.
Both approaches can be made distributed to scale out.

The lock manager can either be co-located with the storage
server that actually stores the objects or be in a separate server.
In the former case, the lock manager daemon would consume the
resources of the storage server, which can be otherwise used to

NetLock: Fast, Centralized Lock Management
Using Programmable Switches

process storage requests such as transactions. In the latter case,
lock managers for multiple storage servers can be consolidated to
a few dedicated servers.

Decentralized lock management. Centralized lock managers
suffer from low performance, as the server CPUs become the bot-
tleneck to handle a large number of lock requests from clients [49].
Decentralized lock managers often leverage fast RDMA networks
to address the performance problem [17, 40, 46, 49]. A decentralized
lock manager still has a designated server to maintain necessary in-
formation for each lock in a lock table, e.g., the current transaction
ID that holds the lock and whether the lock is shared or exclusive.
Different from centralized ones, a decentralized lock manager relies
on clients to make decisions in a distributed manner. The lock table
at the lock server is updated by the clients using RDMA verbs,
such as SEND, RECV, READ, WRITE, CAS, and FA. This approach
reduces CPU utilization at the lock server.

There are a few different strategies for the clients to acquire
locks in this approach. The simplest one is blind fail-and-retry,
where each client tries to acquire a lock independently, and retries
after a timeout if not succeed [46]. This strategy has high client
CPU usage, and can cause starvation and hence long tail latencies.
Exponential back-off can be used to reduce the CPU usage, but
it further increases latencies. More advanced ones use distributed
queues to emulate centralized lock managers [17]. Such strategies,
while avoiding starvation, incur extra network round-trips and lose
the benefit of high performance. The most recent solution in this
category, DSLR [49], adapts Lamport’s bakery algorithm [32] to
order lock requests and guarantees first-come-first-serve (FCFS)
scheduling; this reduces starvation and achieves high throughput.

Decentralized lock managers typically use advisory locking, where
clients cooperate and follow a distributed locking protocol. This
is because the clients use RDMA verbs to interact with the lock
table in the lock server without involving the server’s CPU. It is
different from mandatory locking used by centralized lock man-
agers that can enforce a locking protocol, as the lock manager is
solely making locking decisions. Besides the difficulty to enforce
a protocol, decentralized lock managers cannot flexibly support
various policies such as isolation, without significantly degrading
performance using an expensive distributed protocol.

2.2 Exploiting Programmable Switches

Providing both high performance and policy support. Tradi-
tional server-based approaches make a trade-off between perfor-
mance and policy support. Centralized approaches provide flexi-
ble policy support, but have low performance; decentralized ap-
proaches achieve the opposite. The goal of this paper is to design a
solution that sidesteps the trade-off and provides both high perfor-
mance and policy support. Our key idea is to design a centralized
solution with fast switches, which can benefit from switches to
achieve high performance while still providing flexible policy sup-
port as being a centralized approach. Moreover, since switches
provide orders-of-magnitude higher throughput and lower latency
than servers, this solution is even faster than decentralized, RDMA-
based approaches. This is especially important for emerging fast
transaction systems based on RDMA networks and in-memory
storage [18, 46]. In these systems, the transactions themselves are

128

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Clients }

NetLock Server
Lock Table
L2/L3 Lock
Routing Table Server
ToR Switch | Lock Table |
Database
Servers

Figure 2: NetLock architecture.

executed in memory, and thus the execution cost is comparable to
the locking and unlocking cost, meaning that the system needs to
spend a considerable amount of server resources for lock managers
as for the storage servers themselves. Leveraging switches to build
faster lock managers can both improve the transaction performance
and reduce the system cost.

Building lock managers with programmable switches. While
traditional switches are fixed-function, emerging programmable
switches, such as Barefoot Tofino [9], Broadcom Trident [5] and
Cavium XPliant [1], make it feasible to design, build and deploy
switch-based lock managers. Leveraging programmable switches
provides orders-of-magnitude higher performance than FPGA-based
(e.g., SmartNICs) or NPU-based solutions. While this paper focuses
on programmable switches, the mechanisms designed for NetLock
can also be applied to programmable NICs.

Programmable switches allow users to develop custom data plane
modules, which can parse custom packet headers, perform user-
defined actions, and access the switch on-chip memory for stateful
operations [12, 13]. With this capability, we can program the switch
data plane to parse lock information embedded in a custom header
format, to perform lock and unlock actions, and to store the lock
table in the switch on-chip memory.

3 NETLOCK ARCHITECTURE

In this section, we first give the design goals of NetLock, and then
provide a system overview of NetLock.

3.1 Design Goals

NetLock is a fast, centralized lock manager. It is designed to meet

the following goals.

e High throughput. State-of-the-art distributed transaction sys-
tems can process hundreds of millions of transactions per second
(TPS) with a single rack [18, 30, 45], and each transaction can
involve a few to tens of locks. To avoid being the performance
bottleneck of fast distributed transaction systems, the lock man-
ager should be able to process up to a few billion lock requests
per second (RPS).

e Low latency. Given the tens of microseconds transaction latency
enabled by fast networks and in-memory databases [18, 30, 45],

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

NetLock
Client Switch Server
_ Lock Lock
TXN 1. acquire lock Table Table
- 2. grant lock
® —
3. release lock

Figure 3: Lock request handling in NetLock. The switch di-
rectly processes most lock requests.

the lock manager should provide low latency to process lock
requests, in the range of a few to tens of microseconds.

e Policy support. For a cloud environment, the lock manager
should provide flexible policy support to accommodate tenant-
specific requirements. Specifically, we consider common policies
including starvation freedom, service differentiation, and perfor-
mance isolation.

3.2 System Overview

A NetLock lock manager consists of one switch and multiple servers
in the same rack (as shown in Figure 2), where the round-trip time
(RTT) between machines within the same switch is typically single-
digit microsecond. The switch is the ToR switch of a dedicated
database rack that is specifically provisioned for database services,
which is common in public clouds. Different database racks have
their own NetLock instances. Besides adding a new data plane
module for NetLock to the ToR switch, no other changes are made to
the datacenter network. The ToR switch only invokes the NetLock
module to process lock requests, and it processes other packets as
usual. NetLock does not affect existing network functionalities.
At a high level, clients send lock requests to NetLock without
knowing whether the requests will be processed by a switch or
a server. Behind the scene, NetLock processes lock requests with
a combination of switch and servers. It integrates the switch and
server memory to store and process lock requests. When a lock
request arrives at the switch, the switch checks whether it is re-
sponsible for the lock. If so, it invokes the data plane module to
process the lock; otherwise, it forwards the lock requests to the
server. The switch only stores and processes the requests on pop-
ular locks, while the lock servers are responsible for the requests
on unpopular locks. The lock servers also buffer the requests on
popular locks when the queues in the switch are overflowed.

4 NETLOCK DESIGN

In this section, we describe the design of NetLock that exploits
programmable switches for fast, centralized lock management.

4.1 Lock Request Handling

As shown in Figure 3, to acquire a lock for a transaction, the client
first sends a lock request to NetLock and waits for NetLock to grant
the lock. NetLock directly processes most lock requests with the

129

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

Algorithm 1 ProcessLockRequest(req)

1: if req.lock € switch.locks() then
2 if req.type == acquire then
3 if switch.CanGrant(req) then
4: Grant req.lock to req.client
5: else if switch.CanQueue(req) then
6: Queue req at switch
7 else
8 Forward req to server
9: else
10: Release req.lock, and grant it to pending requests

else
Forward regq to server

11:
12:

lock switch and only leaves a small portion to the lock servers. After
the lock is granted, the client executes its transaction and sends a
release notification to NetLock if the lock is no longer needed.

Algorithm 1 shows the pseudocode of the switch. Since the
switch is the ToR switch of the database rack and is on the path for
a request to reach the lock servers, the switch can always process
the request first. If the switch is responsible for the corresponding
lock object (line 1), it checks the lock availability and policy. If
the lock can be granted, the switch directly responds to the client
(line 3-4). If the lock cannot be granted immediately, the switch
queues the request if it has enough memory (line 5-6). If the switch
is not responsible for the lock object or does not have sufficient
memory, it forwards the request to the lock server based on the
destination IP (line 8 and 12). The locks are partitioned between
the lock servers. The client obtains the partitioning information
from an off-the-shelf directory service in datacenters [20, 25], and
sets the destination IP to that of the server responsible for the lock.
After the client releases the lock, NetLock can further grant the
lock to other requests (line 10). The performance benefit of NetLock
comes from that most requests can be directly processed by the
switch, without the need to visit a lock server.

One-RTT transactions. In the basic mode, a client gets a grant
from NetLock (taking 0.5 RTT by the lock switch or 1 RTT by
the lock server) and then issues another request to fetch the data
from a database server (taking 1 RTT) to finish the transaction,
which takes 1.5-2 RTTs in total. Some recent distributed transaction
systems (e.g., DITM [46], FARM [19] and FaSST [30]) combine lock
acquisition and data fetching in a single request to a database server,
and thus are able to finish a transaction in 1 RTT. NetLock can
apply the same idea to achieve one-RTT transactions. Specifically,
after a lock is granted, instead of replying to the client, NetLock
forwards the request to the corresponding database server to fetch
the item, making lock acquisition and data fetching in one RTT.
More importantly, unlike existing solutions (e.g., Dr'TM, FARM and
FaSST) that rely on fail-and-retry which may lead to low throughput
and high latency, all requests to the database servers can successfully
fetch data, because the locks have already been granted by NetLock.
This is critical under high-contention scenarios to reduce overhead
at both clients and database servers, and achieve high throughput
and low latency. For locks not in the switch, the lock server is
combined with the database server as existing solutions to achieve
one-RTT transactions. For requests with payloads such as writes,
the switch forwards the data if the lock can be granted, and drops the
data, otherwise. Some transactions that involve read-modify-write

NetLock: Fast, Centralized Lock Management
Using Programmable Switches

Match-Action RSN Pkt.lid== pkt.lid==B | pkt.lid==C
Table IXe:(o oMl process_A()| process_B() | process_C()
. Queue A Queue B Queue C
Register
aray (NI RRRNNN T
A
r A
1 2 3 4 5 6 7
Queue
A | | req0 | reqi |req2 | req3 | req4 |req5 | |

t t

head [(mode, transaction ID, client IP)] tail

Figure 4: Basic data plane design for lock management.

operations cannot fundamentally be done in one RTT because the
client has to do some compute and the current design does not push
compute to the lock and database servers. In addition to its high
performance, NetLock also supports flexible policies that cannot
be implemented by existing decentralized solutions.

4.2 Switch Data Plane

Programmable switches expose stateful on-chip memory as register
arrays to store user-defined data. NetLock leverages register arrays
to store and process lock requests in the switch. Figure 4 shows a
basic data plane design. The design allocates one array for each lock
to queue its requests. A special UDP destination port is reserved
for NetLock. A lock request contains several fields: action type
(acquire/release), lock ID, lock mode, transaction ID, and client IP.
The match-action table maps a lock ID (i.e., lid) to its corresponding
register array, and the action in the table performs operations on
the register array to grant and release locks.

Because register arrays can only be accessed based on a given
index, they do not natively support queue operations such as en-
queue and dequeue. We implement circular queues based on register
arrays to support necessary operations for NetLock. Specifically,
we allocate extra registers to keep the head and tail pointers. The
pointers are looped back to the beginning when they reach the
end of the array. For example, queue A in Figure 4 has six queued
requests, and the head and tail are index 1 and 6, respectively.

Each slot in a queue stores three important pieces of information,
i.e., mode, transaction ID, and client IP. Mode indicates whether the
request is for a shared or exclusive lock. Transaction ID identifies
which transaction the lock is requested for. Client IP stores the IP
address from which the lock request is sent. The IP address is used
by the switch when it generates a notification to grant the lock to
the client. Additional metadata such as timestamp and tenant ID
can also be stored together.

Optimize switch memory layout. Because the memory for each
register array is pre-allocated and the size is fixed after the data
plane program is compiled and loaded into the switch, the basic
design cannot flexibly change the queue size at runtime. When the
workload changes, the set of locks in the switch and the size of each
queue would need to change according to the memory allocation
algorithm to maximize the performance. Allocating a large queue
to accommodate the maximum possible contentions for each lock

130

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

RX?!?;WHHHHE\HHHHEHHH\H
e S S— ——
auese I T T T T T T]

Queue A Iiﬁﬁ? Queue B r|gh1tZB Queue C

Figure 5: Combine multiple register arrays to a shared queue
for locks with different queue sizes.

is undesirable because it would cause memory fragmentation and
result in low memory utilization, especially given that the switch
on-chip memory is limited.

To address this problem, we design a shared queue to pool multi-
ple register arrays together and enable the queue size to be dynam-
ically adjusted at runtime (Figure 5). Instead of statically binding
each register array to a lock, we combine these arrays together to
build a large queue shared by all the locks. Accessing a slot in the
shared queue with an index can be mapped to accessing the register
arrays by appropriately setting the index, e.g., accessing slot 10 in
the shared queue can be mapped to accessing slot 10-8=2 in array
1. Each lock is allocated with a continuous region in the shared
queue to store its requests. We allocate extra registers to store the
boundaries of each queue, e.g., 10 and 14 for queue B. Since the
boundaries are stored in registers, they can be modified at runtime.
Another benefit of this design is that the individual register arrays
do not have to be in the same stage, which allows NetLock to pool
memory from multiple stages together to build a large queue that
exceeds the memory limit of a single stage.

Handle shared and exclusive locks. The shared queue design
solves the storage problem of how to store the requests, but it
does not solve the computation problem of how to process them.
The challenge comes from the limitation that the data plane can
only perform one read/write operation to a register array when it
processes a packet.

This limitation brings two issues. First, when a lock release notifi-
cation arrives at the switch, the switch dequeues the corresponding
request from the queue, and the lock could be granted to the next
request in the queue. This requires two operations: one is to de-
queue the head, and the other is to read the new head. Second,
when a request to acquire a shared lock is granted, if the following
requests in the queue are also for a shared lock, then these requests
can also be granted. This requires multiple read operations until an
exclusive lock request or the end of the queue. We leverage a feature
called resubmit available in programmable switches to overcome
the limitation. The resubmit feature allows the switch data plane
to resubmit the packet to the beginning of the packet processing
pipeline, so that the packet can go through and be processed by
the pipeline again, obviating the need to send another packet to
the switch from servers. Note that the use of resubmit here does
not cause extra overhead, because the servers in the traditional
server-based lock managers also need to send a packet to grant
each shared lock to the corresponding client. Figure 6 illustrates
how to handle the four cases for shared and exclusive locks.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Resubmit
v
Release One ‘ S ‘ ‘ ‘ ‘ ‘ ‘ ‘
Shared Lock
Release One ‘ ! ‘ ‘ ‘ ‘ ‘ ‘ ‘ Grant One
Shared Lock 11T Exclusive Lock
—
Release One ‘ 0mye ‘ ‘ ‘ ‘ ‘ Grant Two
Exclusive Lock PIY Shared Locks

Release One
Exclusive Lock

‘EE

‘ Grant One
Exclusive Lock

Figure 6: Handle shared and exclusive locks.

e Shared — Shared. When a shared lock is released, the switch
dequeues the head, and uses resubmit to check the new head.
If the new head is a shared lock request, the processing stops,
because the shared lock has already been granted with the old
head when it entered the queue.

e Shared — Exclusive. This case differs from the first case on
that the new head is an exclusive lock request, which has not
been granted yet. As such, after the shared lock is released, the
lock becomes available, and the switch sends a notification to the
client to grant the lock.

o Exclusive — Shared. When an exclusive lock is released, the
packet is resubmitted to grant the next lock request in the queue.
The resubmit action is repeated by multiple times until an exclu-
sive request or the end of the queue.

e Exclusive — Exclusive. When an exclusive lock is released and
the next request is also exclusive, the next request is granted.
Because the lock is exclusive and cannot be shared, the switch
does not need to resubmit it again.

Algorithm 2 shows the pseudocode of the switch that covers the
above four cases. If the request is to acquire a lock, it is enqueued
(line 1-2). The request is directly granted if the queue is empty,
or if all requests in the queue are shared and the request is also
shared (line 3-5). If the request is to release a lock, the current
head in the queue is removed, and the lock is resubmitted to grant
the following request (line 7-12). For case “shared — shared”, no
further processing is needed. For case “shared — exclusive” and
“exclusive — exclusive”, the new head is granted the lock (line
15-16). For case “exclusive — shared”, multiple subsequent shared
locks are granted (line 17-27). The nuance in the lock processing
is that when there are multiple transactions holding a shared lock,
these transactions may not release their locks in the order that the
requests are enqueued. Because the switch can only release locks
at the head of the queue, it does not check the transaction ID when
releasing locks. This design does not affect the correctness, because
only one transaction can hold an exclusive lock, and the operations
for releasing shared locks are commutative.

131

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

Algorithm 2 SwitchDataPlane(pkt)

if pkt.op == acquire then

queue.enqueue(pkt)

if queue.is_empty() or

(queue.is_shared() and pkt.mode == shared) then
grant_lock(pkt.tid, pkt.cip)

: else
if meta.flag == 0 then

(mode, tid, cip) « queue.dequeue()

1:
2
3
4:
5:
6
7
8:
9: meta.flag «— 1

10: meta.mode «— mode

11: meta.pointer < queue.head()

12: resubmit()

13: else if meta.flag == 1 then

14: (mode, tid, cip) < queue[meta.pointer]
15: if mode == exclusive then

16: grant_lock(tid, cip)

17: else if meta.mode == exclusive then

18: grant_lock(tid, cip)

19: meta.pointer « meta.pointer.next()
20: meta.flag « 2

21: resubmit()

22: else

23: (mode, tid, cip) < queue[meta.pointer]
24: if mode == shared then

25: grant_lock(tid, cip)

26: meta.pointer < meta.pointer.next()
27: resubmit()

Pipeline layout. A switch may have several pipelines, and the
pipelines do not share state. In NetLock, the lock tables and their
register arrays are placed in the egress pipes that connect to their
corresponding lock servers. This placement avoids unnecessary re-
circulation across pipelines. Specifically, when a request arrives, it
is sent to the egress pipe that either owns the lock or connects to a
lock server that has the lock. If the request is granted, it is mirrored
to the upstream port to the client or the database server to finish
the transaction (Section 4.1). Otherwise, it is enqueued either at the
egress pipe or in a lock server.

4.3 Switch-Server Memory Management

Since the switch on-chip memory is limited, NetLock co-designs the
switch and servers and stores only the popular locks to the switch
memory. The switch control plane is responsible for creating and
deleting locks, and assigning memory for locks between the switch
and lock servers. The key challenge in memory allocation is that it
requires us to consider the contentions from multiple requests to
the same lock. When a lock is granted to a client, other requests
are queued in the switch and occupy memory space until the lock
is released.

Memory allocation mechanism. We first analyze the amount of
switch memory required to support a certain throughput. Let the
rate of lock requests to object i be r;. Let the maximum contention
for object i be c;, which means that there are at most ¢; concurrent
requests for object i. We assume c; is known based on the knowledge
of how many clients may need this lock, and we use a counter to
measure r;. Let the queue size for object i in the switch be s;. If
i > c¢;, then the switch can guarantee to process all requests for
object i, without queueing requests in the server. The memory
allocation is to decide which locks to assign to the switch, and for
each assigned lock, how much switch memory to allocate for it.

NetLock: Fast, Centralized Lock Management
Using Programmable Switches

Algorithm 3 MemoryAllocation(locks)

1: Sort locks by r;/c; in decreasing order

2: forlock i in locks do

3 s; < min(switch.available, c;)

4: switch.available « switch.available — s;
5 Allocate s; for lock i in switch memory

6: Allocate remaining locks to the servers

Let the switch memory size be S. We formulate the problem as the
following optimization problem.

maximize Z risi/ci (1)
i

s.t. Zsi <S (2)
i

si < ¢ (3)

The goal is to process as many lock requests in the switch as
possible, reducing the number of servers we need for NetLock. For
object i, because in the worse case the lock requests for i always
achieve the maximum contention c;, only a portion (s; /c;) of lock
requests can be queued at the switch, and the other portion (1-s;/c;)
have to be sent to the server. Therefore, the optimization objective,
which is the request rate the switch can guarantee to process, is
>.; risi/ci. The constraint is that the total memory allocated to the
locks cannot exceed the switch memory size S, i.e., }; s; < S. The
switch does not need to allocate more than ¢; memory slots to
object i, thus we have s; < ¢;.

This problem is similar to the fractional knapsack problem, which
can be solved with an optimal solution in polynomial time. Algo-
rithm 3 shows the pseudocode. Specifically, the value of allocating
one slot to object i in the switch is r; /c;. To maximize the objective,
the algorithm allocates the switch memory based on the decreasing
order of rj /c;.

The rate r; and contention c; for each lock are obtained by mea-
suring the workload. NetLock maintains two counters to track r;
and c; for each lock respectively, and updates the memory alloca-
tion based on Algorithm 3 when the workload changes. During
the update, NetLock first drains the requests of the locks that are
to be swapped out from the switch, and then allocates the switch
memory to more popular locks. Note that, for inserting a new lock
object, the new lock queue is first added to a lock server, and then
would be moved to the switch if the lock becomes popular.

THEOREM 1. The memory allocation algorithm (Algorithm 3) is
optimal for the optimization problem (1-3).

Proor. We consider the situation where }}; ¢; > S; otherwise,
there is enough memory for all the locks. Let there be n locks in total.
Without loss of generality, let % > Z—z > > Z—Z Algorithm 3
allocates as much memory as possible (min(switch.available, c;))
for locks sorted by r;/c;. Assume this is not the optimal strategy.
Let the optimal strategy be sf, s;, ...,Sy. Because)}; ¢; > S, there
exists at least one lock i such that s;‘ < ¢;. Let the lock with the
smallest ID be j, i.e., for any i < j, s;‘ = ¢, and s;f < ¢j. If for
any k > j, SZ = 0, the optimal strategy would be the same as
Algorithm 3. Therefore, there exists at least one lock k such that

. * 1o o ro_ ok I Tk
k >]andsk > O.Letsj = sj+1 andsk = s 1. Because = > 5o we

132

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Switch Server
Lock Lock
ra=100req/s | Table Table

Client 1a
Client 1b

100 req/s
1 >

B ——
rip, = 100 req/s
—_—

r, =10 req/s
_

Client 2
(a) Naive memory allocation.
Switch Server
Lock Lock
Client 1a ria=100req/s | Table Table
—_—
Client 1b "= 100 req/s
—_—
Client 2 r, =10 req/s 10 reqg/s R

(b) Optimal memory allocation.

Figure 7: By allocating two slots in the switch to lock 1, the
optimal allocation can process all lock requests to lock 1 in
the switch, minimizing the server load.

have ; risj/ci > X; risj/c;. This contradicts that the allocation
87,55, ..., Sp, is optimal. So Algorithm 3 is optimal. O

Example. Figure 7 illustrates the key idea of the algorithm. There
are two concurrent clients that acquire exclusive locks for object 1
with a rate of 100 requests per second each. The queue needs two
slots to accommodate the contentions from the two clients. There
is only one client that acquires exclusive locks for object 2, with
a rate of 10 requests per second. The queue only needs one slot
for one client. Suppose the switch memory only has two slots. The
allocation in Figure 7(a) allocates one slot to each lock object. Since
the switch cannot queue requests for two clients for object 1, in
the worse case where the clients are highly synchronized, half of
the requests are sent to the server. On the other hand, the optimal
allocation in Figure 7(b) allocates two slots to object 1, minimizing
the load on the server.

Performance guarantee. Since servers have plenty of memory
to queue requests, servers are CPU-bounded, and the bottleneck is
on the number of requests that can be processed by a server per
second. Let the workload be W = {(r;, ¢;)}, and the solution to the
optimization problem be S = {(s;)}. Let rs and re be the request
rates that can be supported by a switch and a server, respectively.
We assume that the switch is not the bottleneck, ie., rg > X; ri,
so the switch is always able to support the request rate };; ris;/c;.
This assumption is reasonable, because if rs < }}; r;, then the ToR
switch is congested. In such a case, not all lock requests can even
be received by the database rack in the first place, and the workload
would not be meaningful. Since the switch can process the request
rate); risi/ci, it requires [(3; ri — 2,; risi/ci)/re] servers to serve
the remaining request rate. In other words, with one switch and
[(Xiri — 2irisi/ci)/re] servers, NetLock guarantees to support
the workload W = {(r;,¢i)}.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Handling overflowed requests. It is possible that the queues in
the switch can be overflowed, because the switch cannot allocate
enough memory for the last object it handles or the estimation
of maximum contention for an object is inaccurate. For lock i,
we denote its switch queue as qi[i], and its server queue as gz[i].
When q[i] is full, the switch forwards the overflowed requests to
the server. The overflowed requests are only buffered in g;[i] in
the server, not processed. Note that this is different from the locks
that are not allocated to the switch and only have queues in the
servers—the requests of those locks are both buffered and processed
by the servers. The switch puts a mark on the packets to distinguish
between these two cases.

As both g1[i] and g2[i] may contain requests, we need to ensure
that the requests are processed as they would in a single queue. To
achieve this, the requests are only granted and dequeued by g¢;[i]
in the switch, and new requests are only enqueued at gz[i] in the
server. When g [i] becomes empty, the switch sends a notification
to the server, and the server pushes some requests from g[i] to q1 [i].
The number of requests that can be pushed is no bigger than the
number of available slots in g1 [i] to ensure g1[i] is not overflowed.
When g3[i] becomes empty and q;[i] is not full, NetLock enters the
normal mode, i.e., new requests can directly be enqueued at q;[i]
in the switch. Because q3[i] is empty, enqueueing at g;[i] would
ensure the same order as a single queue.

Moving locks between the switch and lock servers. When the
popularity of a lock changes, the lock will be moved from the
switch to a lock server or from its lock server to the switch. When
moving a lock, NetLock pauses enqueuing new requests of this lock
and waits until the queue is empty to ensure consistency. Memory
fragmentation caused by moving locks between the switch and lock
servers would reduce the memory that can be actually used to store
lock requests. The memory layout on the switch is periodically
reorganized to alleviate memory fragmentation.

4.4 Policy Support

NetLock is a centralized lock manager that can support and enforce
policies. We consider the following three representative policies.

Starvation-freedom. Decentralized lock managers use partial in-
formation to grant locks, which can easily lead to lock starvation.
Lock starvation happens when the lock manager allows later lock
requests to acquire a lock before earlier lock requests, making some
requests wait indefinitely to get the lock. Lock starvation is typically
avoided by using a first-come-first-serve (FCFS) policy. The FCFS
policy stores lock requests in a first-in-first-out (FIFO) queue, and
always grants locks to the head of the queue. This policy is natively
supported by the circular queue we design for the switch data plane.
With this, NetLock supports request (lock) level starvation-freedom.
Note that, there can still be starvation if some transactions do not
complete because of deadlock, which is discussed in Section 4.5.

Service differentiation with priorities. It is challenging to sup-
port priority-based policies in the switch, as a register array can
only be accessed once when processing a packet and a priority
queue cannot be directly implemented with a register array. We
leverage the multi-stage structure of the switch data plane to sup-
port priorities. Specifically, we allocate one queue in each stage

133

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

for one priority. Since the packet is processed stage by stage, the
high-priority requests in earlier stages are granted first. The re-
quest processing with priorities in the switch data plane follows
Algorithm 2 with some tweaks. For a lock request with i-th prior-
ity, it is directly granted if all queues are empty, or if there is no
exclusive lock request holding the lock or queued in the same or
higher priority queues and the request itself is also for a shared
lock. After the lock is released, NetLock will first grant the lock to
the queue with the highest priority. Note that a priority can have a
large queue spanning multiple stages to expand its queue size. The
limitation of this solution is that the number of priorities is limited
to the number of stages, which is usually 10-20 in today’s switches.
This limitation can be alleviated by approximation, e.g., grouping
multiple fine-grained priorities into a single coarse-grained priority.
Moreover, only high-priority requests need to be processed in the
switch. Low-priority requests do not need fast processing, and can
always be offloaded to the lock servers.

Performance isolation with per-tenant quota. Cloud databases
often have multiple tenants and need to enforce fairness between
them. Without a centralized lock manager, a tenant can generate
requests and acquire locks at a faster rate than another tenant, and
thus occupies most of the resources. While an FCFS policy can avoid
starvation of the slower tenant, it cannot enforce the tenants to stay
within their shares. It requires the lock manager to use rate limiters
to enforce per-tenant quota. Rate limiters can be implemented in
the switch data plane with either meters that can automatically
throttle a tenant, or counters that count the tenants’ requests and
compare with their quotas.

4.5 Practical Issues

Switch memory size. We examine whether the switch memory
is sufficient for a lock manager from two aspects.

Think time. The think time affects the maximum turnover rate of
a memory slot. Let T be the duration of a request occupying a slot,
which includes the round trip time of sending the grant and release
messages and that of executing the transaction (i.e., think time). A
slot can be reused by 1/T times per second (i.e., the turnover rate),
providing a throughput of 1/T RPS. With S slots, the switch can
achieve S/T RPS. Given fast networks and low-latency transactions,
T can be a few tens of microseconds. As a switch has tens of MB
memory, 100K slots with 20B slot size only consume 2 MB memory,
which is a small portion of the total memory. Assuming T = 20 ps
and S = 100K, the switch can support S/T = 5 BRPS, which is
sufficient for the database servers the same rack. On the other hand,
if T = 1 ms, the switch needs 1M slots to achieve S/T = 1 BRPS.

Memory allocation. The memory allocation mechanism affects
the utilization of the switch memory. It determines whether the
switch can achieve the maximum rate S/T. If the switch memory is
allocated to unpopular locks, the switch would only process a small
portion of the total locks. Even when a memory slot is available,
it may not be used to process a new request for its lock as there
are no pending requests for this unpopular lock. If the memory
slots are empty for half of the time, then the switch needs to double
its memory slots in order to achieve the maximum rate. NetLock
uses an optimal knapsack algorithm to efficiently allocate switch
memory to popular locks to maximize the memory utilization. This

NetLock: Fast, Centralized Lock Management
Using Programmable Switches

handles skewed workload distributions. For uniform workload dis-
tributions, we combine multiple locks into one coarse-grained lock
to increase the memory utilization.

In summary, the think time determines the maximum turnover
rate of a memory slot and thus the maximum throughput the switch
can support with a given amount of memory, and the memory
allocation mechanism determines whether the system can achieve
the maximum turnover rate. Experimental results in Section 6.4
illustrate the relationship.

Scalability. We focus on rack-scale database systems in this paper.
Based on the above analysis on switch memory size and the experi-
mental results in Section 6.4, the memory of one switch is sufficient
for most rack-scale workloads, and the ToR switch can be naturally
used as the lock switch. In the cases where more memory is needed,
additional lock switches can be attached to the rack as specialized
accelerators for lock processing. For large-scale database systems
that span multiple racks, each rack runs an instance of NetLock to
handle the lock requests of its own rack.

Failure handling. We describe how to handle different types of
failures in NetLock.

o Transaction failure. Transaction failures can be caused by network
loss, application crashes, and client failures. When a transaction
fails without releasing its acquired locks, other transactions that
request for the same locks cannot proceed. NetLock uses a com-
mon mechanism, leasing [21], to handle transaction failures. It
stores a timestamp together with each lock, and a transaction
expires after its lease. The switch control plane periodically polls
the data plane to clear expired transactions.

Deadlock. Deadlocks are caused by multiple transactions waiting
for locks held by others, and no transaction can make progress.
It is resolved in the same way as for transaction failures. Clients
retry when the leases expire until they succeed. In addition, dead-
locks can be avoided if priority-based policies are employed.
NetLock failure. When a lock server fails, the locks allocated to
this server is assigned to another lock server. Clients resubmit
their requests to the new server, and the server waits for the
leases to expire before granting the locks. A switch failure is
handled in the same way by assigning the locks to a backup
switch. After the original switch restarts, the lock requests are
queued into the original switch. When releasing a lock, we only
grant locks from the backup switch until the queue in the backup
switch gets empty. After all the queues in the backup switch get
empty, the backup switch is no longer useful. When the switch
restarts, it also synchronizes its states with the lock servers and
waits for the overflowed requests that are buffered at the lock
servers to drain before the switch starts processing new requests
on the corresponding locks. The unpopular locks stored in lock
servers are not affected by switch failures.

5 IMPLEMENTATION

We have implemented a prototype of NetLock, including the lock
switch, the lock server, and the client.

The lock switch is implemented with 1704 lines of code in P4,
and is compiled to Barefoot Tofino ASIC [9]. The lock table has a
shared queue with a total of 100K slots. With 20B slot size, it only
consumes 2MB, which is a small portion of tens of MB on-chip

134

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

memory. The switch control plane is implemented with 750 lines
of code in Python, which allocates the memory in the shared queue
to different locks.

The lock server is implemented with 2807 lines of code in C. It
handles lock requests that cannot be directly processed by the lock
switch. To maximize the efficiency of multi-core processing and
improve the performance, it uses Intel DPDK [2], and leverages
Receive Side Scaling (RSS) to partition the lock requests between
cores and dispatch the lock requests to the appropriate RX queues
by the NIC for each core. With these optimizations, a lock server
can achieve up to 18 MRPS with a 40G NIC in our testbed.

The client is implemented with 3176 lines of code in C. It is used
to generate lock requests to measure the performance in the exper-
iments. It also uses Intel DPDK and RSS to optimize performance,
and one client server can generate up to 18 MRPS with a 40G NIC
in our testbed.

6 EVALUATION
6.1 Methodology

Testbed. The experiments of NetLock are conducted on our testbed
consisting of one 6.5 Tbps Barefoot Tofino switch and 12 servers.
Each server has an 8-core CPU (Intel Xeon E5-2620 @ 2.1GHz) and
one 40G NIC (Intel XL710).

Comparison. We compare NetLock with the state-of-the-art lock
manager DSLR [49] and DrTM [46]. Since DSLR and DrTM re-
quire RDMA, the experiments on DSLR and DrTM are conducted
in the Apt cluster of CloudLab [6]. The configuration is comparable
to our own testbed. Each server is equipped with an 8-core CPU
(Intel Xeon E5-2450 @ 2.1GHz) and a 56G RDMA NIC (Mellanox
ConnectX-3). We also compare NetLock with a recently proposed
switch-based solution NetChain [27]. NetChain is not a fully func-
tional lock manager, as it only supports exclusive locks. Therefore,
requests for shared locks are treated as exclusive locks. NetChain
handles concurrent requests with client-side retry. Since NetChain
only stores items in the switch, we adapt the lock granularity
based on the switch memory size and the number of locks, so that
NetChain can handle all the requests in the switch. We emphasize
that DSLR, DrTM and NetChain do not support flexible policies.

Workloads. We use two workloads. The first workload is a mi-
crobenchmark, which simply generates lock requests to a set of
locks. It is useful to measure the basic performance of lock pro-
cessing. The second workload is TPC-C [10]. It generates trans-
actions based on TPC-C, and each transaction contains a set of
lock requests. It is useful to measure the application-level perfor-
mance. We use two settings for TPC-C, which is the same as DSLR:
a low-contention setting with ten warehouses per node, and a
high-contention setting with one warehouse per node. We use
throughput, in terms of lock requests granted per second (RPS)
and transactions per second (TPS), and latency as the evaluation
metrics.

6.2 Microbenchmark

We use microbenchmark experiments to measure the basic through-
put and latency of the lock switch to process lock requests. We cover
both shared and exclusive locks.

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

3 3
10 10 7
—&— 99.9% tail latency —#— 99.9% tail latency
. —&— 99% tail latency . —4— 99% tail latency
§102 —4— Med. latency §102 —4— Med. latency
> Avg. latency > Avg. latency
[$) o
c f =
L 1| e ———t— L 1| B—a— g 28
1 Oe———— e D SV
®© 10 =10
0 0
10 5 Q 1 2 3 10 5 Q 1 2
10 10 10 10 10 10 10 10 10 10

Throughput (MRPS) Throughput (MRPS)

(a) Shared locks. (b) Exclusive locks w/o contention.

Throughput (MRPS)

3

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

150 200 —8— 99.9% tail latency
n —&— 99% tail latency
100 g 150 —&— Med. latency
= Avg. latency
> 3
9 100
9]
50 ®
- 50
—=— NetlLock

gOO 2000 4000 6000 8000 10000
Number of locks

goo 2000 4000 6000 8000 10000
Number of locks

(c) Exclusive locks w/ contention. (d) Exclusive locks w/ contention.

Figure 8: Microbenchmark results of switch performance on handling lock requests.

Shared locks. We first evaluate the performance for shared locks.
We use all 12 servers in the testbed to generate requests to the
lock switch. Since the requests are for shared locks, there are no
contentions and the locks can be directly granted. Figure 8(a) shows
the relationship between latency and throughput. The median (av-
erage) latency is 8 ys (7.1 ps), and the 99% (99.9%) latency is 12 s (14
us). We emphasize that the latency is dominated by the processing
latency at the client software and NIC; the processing latency at the
switch is under 1 ps. The latency is not affected by the throughput,
because even we use all 12 servers to generate requests, they can
still not saturate the switch. The switch can handle the lock request
at line rate, and the Barefoot Tofino switch used in the experiment
is able to process more than 4 billion packets per second.

Exclusive locks. We then evaluate the performance for exclusive
locks. Similar to the previous experiment, we use 12 servers to
generate requests for exclusive locks. To measure the baseline per-
formance, the requests are sent to different locks and there are no
contentions. Figure 8(b) shows the results, which are similar to
those for shared locks. This is because in both cases, the requests
are directly granted by the switch and processed at line rate.

To show the impact of contention on exclusive locks, we let
the servers send lock requests to the same set of locks, and vary
the number of locks in the set. The level of contention decreases
as the number of locks increases. Figure 8(c) shows the impact of
contention on the throughput. Under high contention (i.e., when
the number of locks is small), the throughput is very limited. This is
because the requests for the same lock have to be processed one by
one, even though the switch still has spare capacity. The throughput
increases as the contention decreases. Under low contention, the
throughput is maximized by the speed of the 12 servers to generate
lock requests. Figure 8(d) shows the latency results. The latency is
more than 100 ys under high contention, and decreases to a few pus
under low contention.

Comparison with lock server. We also compare the performance
of a lock switch with a lock server. We use 10 servers to generate re-
quests, and the workloads are similar to the previous experiments:
shared locks, exclusive locks without contention, and exclusive
locks with contention (5000 locks). The lock server is implemented
with the same functionality and is configured with a different num-
ber of cores (1~8) in this experiment. Figure 9 shows the throughput
of a lock switch and a lock server. The lock switch outperforms
the lock server by 7x as the lock server easily gets saturated by a
large number of requests. We emphasize that the lock switch is not

135

200
==+ NetLock, Shared lock
0160 NetLock, Exclusive lock w/o contention
S 120 NetLock, Exclusive lock w/ contention
= —=— Lock server, Shared lock
2 —4— Lock server, Exclusive lock w/o contention
'§1 20 —— Lock server, Exclusive lock w/ contention
<]
2
<
=
0

4 5 6
Number of cores

7 8
Figure 9: Comparison between a lock switch and a lock
server with various number of cores. Ten servers are used
to generate requests. The lock switch is not saturated. The
lock switch can support a few billion requests per second.

saturated by the ten clients in this experiment. The performance
gap would be even larger if there are more clients sending requests:
the switch can process a few billion requests per second and can
potentially replace hundreds of servers for the same functionality.

6.3 Benefits of NetLock

We show the benefits of NetLock on its performance improvement
and flexible policy support. The experiments use the TPC-C work-
load to show application-level performance.

Performance improvement over DSLR, DrTM and NetChain.
We show the performance improvement of NetLock over the state-
of-the-art solutions DSLR, DrTM and NetChain. We show two sce-
narios, and each is conducted under two TPC-C workload settings
(high-contention and low-contention). Figure 10 shows the through-
put and latency of the first scenario, where we use ten machines as
clients to generate requests, and two machines as lock servers that
run NetLock, DSLR or DrTM; NetChain only uses the switch, and
does not use any servers for lock processing. Because NetChain
treats both shared and exclusive locks as exclusive locks, it has
many fail-and-retry operations which degrade its performance.
With the co-design of the switch and lock servers, NetLock avoids
a large number of fail-and-retry operations caused by contentions
compared to NetChain. The clients only need to retry when there
is a packet loss or deadlock. By offloading using a fast switch to
process most requests and avoiding most of retries, NetLock im-
proves the transaction throughput by 14.9x (28.6X, 3.5x) and 18.4X
(33.5%, 4.4X) in low and high contention settings respectively com-
pared with DSLR (DrTM, NetChain). Besides throughput, NetLock
also reduces both the average and tail latencies, by up to 20.3x
(66.8%, 5.4%X) and 18.4% (653.9%, 23.1X) respectively compared with

NetLock: Fast, Centralized Lock Management
Using Programmable Switches

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

9 150 —~ 9 160
» 8 1 . == DSLR J %) l == DSLR J' g 8 J == DSLR . J — J == DSLR . J
s 7 = DITM 21.25 | [—— S 7)1 mmpm 2120 = DM
S 3 = NetChain = = NetChain § 31 mm NetChain > 10 W NetChain
s . NetLock 5 04 . NetLock o . NetLock § B Netlock
a 2 a K 2 o}
= = -
E 2 02 5 2 s
3 1 o o K
= S o [
£ E 2
Low contention High contention Low contention High contention Low contention High contention Low contention High contention
(a) Lock Throughput. (b) Transaction Throughput. (c) Average latency. (d) Tail latency.
Figure 10: System comparison under TPC-C with ten clients and two lock servers.
7 12 & 6 90
[i == DSLR J D10 i == DSLR J J == DSLR J . 80 1 == DSLR . J
2 s [| = DM Sos | [——— £ 4 L == DM | 2 70 L mmorm
s 2 = NetChain S 04 = NetChain & 1.07 == NetChain < 67 == NetChain
= . NetLock z . NetLock 3 = NetLock) . Netlock
- c

£ £ 2 g 4
9 1 9 02 g 05 ©
) 2 g T 2
= £ e .

0.0 < 00 0

Low contention High contention Low contention High contention

(a) Lock Throughput. (b) Transaction Throughput.

Low contention Low contention

High contention High contention

(c) Average latency. (d) Tail latency.

Figure 11: System comparison under TPC-C with six clients and six lock servers.

DSLR (DrTM, NetChain). Figure 11 shows the results of the second
scenario, where we use six machines as clients and six machines
as lock servers for NetLock, DrTM and DSLR, and NetChain only
uses the switch for lock processing. While in this scenario the lock
servers are less loaded than they are in the previous scenario, Net-
Lock still achieves significant improvement. Compared to DSLR
(DrTM, NetChain), it improves the transaction throughput by up to
17.5% (33.1X%, 5.5%), and reduces the average and tail latency by up
to 11.8X (65.6X, 7.7X) and 10.5X (602.8X, 34.4X) respectively.

Policy support. Besides performance, another benefit of NetLock
is its flexible policy support. The default policy is starvation-freedom
which helps reduce tail latency and is shown in the previous exper-
iment. Here we show the other two representative policies men-
tioned in Section 4.4. Figure 12(a) shows how NetLock provides
service differentiation with priorities. There are two tenants with
five clients each. Without service differentiation, both tenants have
similar performance when the high-priority tenant begins to send
requests. With service differentiation, the high-priority tenant is
prioritized over the low-priority tenant.

Figure 12(b) shows how NetLock enforces performance isolation.
Different from the service differentiation experiment, we assign
seven clients to tenant 1 and three clients to tenant 2. Because tenant
1 has more clients to generate requests at a faster rate than tenant
2, when there is no performance isolation, tenant 1 starves tenant 2
and achieves higher throughput. With performance isolation, each
tenant can only obtain the tenant’s own share, which is half of the
resources here, and two tenants achieve similar performance.

6.4 Memory Management

We evaluate the efficiency of the memory allocation algorithm and
the impact of the switch memory size on system performance. The
experiments are conducted with ten clients and two lock servers
under TPC-C workload (ten warehouses per node).

Memory allocation. NetLock uses an optimal knapsack algorithm
to efficiently pack popular locks into limited switch memory to
maximize system performance. We compare it with a strawman

136

g;"’j 82 1 == Low priority = = = = High priority

D& 04

8302 :

£700 - o Tenant1

= 0 5 10 15 20 Time (s) a0 B Tenant2
(i) w/o differentiation s

S _.0.8;— Low priority * =+ High priorit 3

£906 o s

=04 e E

8302 : 2 l

£

Fo00TTE T 15 20 Tme(s) - 0.0
(ii) w/ differentiation w/o isolation w/ isolation

(a) Service differentiation. (b) Performance isolation.

Figure 12: Policy support of NetLock.

algorithm that randomly divides locks between the switch and the
servers. Figure 13(a) shows the lock request throughput and its
breakdown on the lock switch and the servers. Because the ran-
dom approach does not allocate the switch memory to the popular
locks, the switch only processes a small number of lock requests.
On the other hand, NetLock efficiently utilizes the limited switch
memory to process as many requests as possible, and improves the
total throughput by 2.95x. Figure 13(b) shows the latency CDF of
the two algorithms. Because the random approach processes most
lock requests in the lock servers, it incurs high latency, especially
at the tail. In comparison, because of the efficient memory alloca-
tion, NetLock processes many requests directly in the switch and
significantly reduces the transaction latency.

Switch memory size. As discussed in Section 4.5, the impact of
switch memory size on the system performance depends on the
think time and the memory allocation mechanism. Figure 14(a)
shows the impact of memory size on throughput under different
think times. The think time determines the maximum turnover rate
of a memory slot, which limits the maximum throughput the switch
can support with a given amount of memory. From the figure, we
can see that when the think time is zero, the throughput quickly
grows up with more memory slots and achieves 8.64 MRPS at the
maximum. As the think time increases, the throughput is smaller
and also grows more slowly. When the think time is 100 ys, the
system can only achieve 0.60 MRPS because the memory in the

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

10

- Server (random) 1.0
%] 8 I Switch (random)
& B Total (random) 0.8
w '

= Server (knapsack) 5 /
= 6 1 mm Switch (knapsack) 006 /
3 B Total (knapsack) : / — Knapsack
-CC» 4 5 0.4 : * Random
3 ©
= 2 |
= 0.2

0 0.0

random knapsack 0 100 200 300 400

Memory allocation

Transaction latency (us)
a) Throughput. b) Latency.
ghp Yy

Figure 13: Impact of memory allocation mechanisms.

10 10
0 ' o .
o
é 6 —#— Thinktime = Ous =
5 —— Thinktime = 5us s 6 —=— Knapsack
o —a4— Thinktime = 10us g_ —4— Random
-§, 4 —— Thinktime = 100us 5 4
=}
2 3
E 2 v £ 2
= 2 o 6 6 06066 L
P A S . . 0. .4 0
0 1 2 3 4 0 10 20 30 40

Switch memory size (X 1073) Switch memory size (x103)

(a) Think time. (b) Memory allocation.

Figure 14: Impact of memory size under different memory
allocation mechanisms and think times.

switch is not efficiently utilized. Thus, NetLock is more suitable for
low-latency transactions.

Figure 14(b) shows the impact of memory size on throughput un-
der different memory allocation mechanisms. Because the knapsack
algorithm used by NetLock can efficiently utilize switch memory,
the throughput increases quickly with more memory slots, and
reaches the maximum throughput of 8.61 MRPS with 3000 slots.
We emphasize that the maximum throughput is bottlenecked by
the speed of generating requests from the clients and the intrinsic
contentions between the transactions, not the switch. On the other
hand, because the random algorithm allocates the switch memory
to a random set of locks, it utilizes the switch memory poorly. As a
result, more memory slots does not help improve the transaction
throughput of the system under the inefficient memory allocation
algorithm. Under this workload, NetLock can achieve significant
improvement with 5 X 10® memory slots (160KB), which is only a
small fraction of the switch memory (tens of MB).

6.5 Failure Handling

We finally evaluate how NetLock handles failures. We manually
stop the switch to inject a switch failure, and then reactivate the
switch. Figure 15 shows the throughput time series. At time 10
s, we let the NetLock switch stop processing any packets. The
system throughput drops to zero immediately upon the switch
“failure”. Then we reactivate the switch to process lock requests.
The switch retains none of its former state or register values. During
the switch failure, the client keeps retrying and requesting locks
for their transactions. Upon reactivation, some lock requests of a
transaction can be processed by the new (reactivated) switch while
others may be lost. NetLock uses leasing to handle this situation.
After reactivation, the system throughput returns to the pre-failure

137

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

5 10 stop switch
25 8
Ny
oL 6
3 4 .)
_g =g reactivate switch
'_

O0 5 10 15 20

Time (s)

Figure 15: Failure handling result.

level instantly. NetChain can be applied to chain several NetLock
switches to further reduce the temporary downtime.

7 RELATED WORK

Lock management. Today’s centralized lock managers are im-
plemented on servers [3, 23, 24, 29, 48]. While they are flexible
to support various policies, they suffer from limited performance.
Recent work has exploited decentralized lock managers for high
performance [17, 40, 46, 49]. These decentralized solutions achieve
high performance at the cost of limited policy support. Compared
to them, NetLock is a centralized lock manager that provides both
high performance and the flexibility to support rich policies.

Fast distributed transactions. There is a long line of research
on fast distributed transaction systems [11, 14, 19, 30, 34, 39, 44,
45, 47, 50, 51]. These systems use a variety of techniques to im-
prove performance, from designing new transaction algorithms
and protocols, to exploiting new hardware capabilities like RDMA
and hardware transactional memory. NetLock can be used as a
fast lock manager to improve general transactions without any
modifications to transaction protocols.

In-network processing. Recently there have been many efforts
exploiting programmable switches for distributed systems, such as
key-value stores [28, 36-38], coordination and consensus [15, 16, 27,
35, 41, 52], network telemetry [22, 26], machine learning [42, 43],
and query processing [33]. Kim et al. [31] proposes to extend switch
memory with server memory using RDMA. NetLock provides a new
solution for lock management, does not rely on RDMA, and includes
an optimal memory allocation algorithm to integrate switch and
server memory for the lock manager.

8 CONCLUSION

We present NetLock, a new centralized lock management archi-
tecture that co-designs programmable switches and servers to si-
multaneously achieve high performance and rich policy support.
NetLock provides orders-of-magnitude higher throughput than ex-
isting systems with microsecond-level latency, and supports many
commonly-used policies on performance and isolation. With the
end of Moore’s law, we believe NetLock exemplifies a new genera-
tion of systems that leverage network programmability to extend
the boundary of networking to IO-intensive workloads.

Ethics. This work does not raise any ethical issues.

Acknowledgments. We thank our shepherd Kun Tan and the
anonymous reviewers for their valuable feedback on this paper.
This work is supported in part by NSF grants CCF-1629397, CRII-
1755646, CNS-1813487, CNS-1845853, and CCF-1918757, a Facebook
Communications & Networking Research Award, and a Google
Faculty Research Award.

NetLock: Fast, Centralized Lock Management
Using Programmable Switches

REFERENCES

(1]
(2]

[13

[14]

[15]

[16

(18]

[19]

[20

[21]
[22]

[23

[24]

[25

[26]

[27

[28]

[29

[30

[31]

2018. Cavium XPliant. https://www.cavium.com/.

2018. Intel Data Plane Development Kit (DPDK). http://dpdk.org/.

2018. Teradata: Business Analytics, Hybrid Cloud & Consulting. http://www.
teradata.com/.

2019. Amazon Web Services. https://aws.amazon.com/.

2019. Broadcom Ethernet Switches and Switch Fabric Devices. https://www.
broadcom.com/products/ethernet-connectivity/switching.

2019. CloudLab. https://www.cloudlab.us.

2019. Google Cloud. https://cloud.google.com/.

2019. Microsoft Azure. https://azure.microsoft.com/.

2020. Barefoot Tofino. https://www.barefootnetworks.com/technology/#tofino.
2020. TPC-C. http://www.tpc.org/tpce/.

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2015. Coordination avoidance in database systems. In Proceedings
of the VLDB Endowment.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM CCR (2014).

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth
Wang, and Dale Woodford. 2012. Spanner: Google’s globally distributed database.
In USENIX OSDL

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
made switch-y. SSGCOMM CCR (2016).

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at network speed. In ACM SOSR.

Ananth Devulapalli and Pete Wyckoff. 2005. Distributed queue-based locking
using advanced network features. In IEEE ICPP.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No compro-
mises: Distributed transactions with consistency, availability, and performance.
In ACM SOSP.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No compro-
mises: distributed transactions with consistency, availability, and performance.
In ACM SOSP.

Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor Von Laszewski, Warren
Smith, and Steven Tuecke. 1997. A directory service for configuring high-
performance distributed computations. In IEEE HPDC.

Cary Gray and David Cheriton. 1989. Leases: An Efficient Fault-tolerant Mecha-
nism for Distributed File Cache Consistency. In ACM SOSP.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry. In
ACM SIGCOMM.

Andrew B Hastings. 1990. Distributed lock management in a transaction pro-
cessing environment. In Symposium on Reliable Distributed Systems.

Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, and Thomas F Wenisch.
2017. A top-down approach to achieving performance predictability in database
systems. In ACM SIGMOD.

Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In USENLX ATC.
Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. QPipe: Quan-
tiles Sketch Fully in the Data Plane. In ACM CoNEXT.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In USENIX NSDIL

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In ACM SOSP.

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. 2008.
Deadlock immunity: Enabling systems to defend against deadlocks. In USENIX
OSDIL

Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs..
In USENIX OSDL

Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srinivasan Seshan.
2018. Generic External Memory for Switch Data Planes. In ACM SIGCOMM
HotNets Workshop.

138

@
=)

'@
&

S
=

[42

[43

N
=t

=
&

~
&

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

Leslie Lamport. 1974. A new solution of Dijkstra’s concurrent programming
problem. CACM (1974).

Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux, and U eXascale Infolab.
2019. The Case for Network Accelerated Query Processing.. In CIDR.

Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-Free Consis-
tent Transactions Using In-Network Concurrency Control. In ACM SOSP.

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R.K. Ports.
2016. Just say NO to Paxos overhead: Replacing consensus with network ordering.
In USENIX OSDIL

Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G. Andersen, and Michael J.
Freedman. 2016. Be Fast, Cheap and in Control with SwitchKV. In USENIX NSDL
Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and Kishore
Atreya. 2017. IncBricks: Toward In-Network Computation with an In-Network
Cache. In ACM ASPLOS.

Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019.. DistCache: Provable Load Balancing
for Large-Scale Storage Systems with Distributed Caching. In USENIX FAST.
Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting
More Concurrency from Distributed Transactions.. In USENIX OSDL

Sundeep Narravula, A Marnidala, Abhinav Vishnu, Karthikeyan Vaidyanathan,
and Dhabaleswar K Panda. 2007. High performance distributed lock management
services using network-based remote atomic operations. In IEEE CCGrid.

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. 2015. Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks. In USENIX NSDI.

Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-network computation is a dumb idea whose time has come. In
ACM SIGCOMM HotNets Workshop.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and
Peter Richtarik. 2019. Scaling distributed machine learning with in-network
aggregation. arXiv preprint arXiv:1903.06701 (2019).

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In ACM SIGMOD.

Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!. In USENIX OSDL
Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In ACM SOSP.
Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,
Lorenzo Alvisi, and Prince Mahajan. 2014. Salt: Combining ACID and BASE in a
Distributed Database.. In USENIX OSDIL

Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve OLTP
application performance. In Proceedings of the VLDB Endowment.

Dong Young Yoon, Mosharaf Chowdhury, and Barzan Mozafari. 2018. Distributed
Lock Management with RDMA: Decentralization without Starvation. In ACM
SIGMOD.

Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The end of a
myth: Distributed transactions can scale. In Proceedings of the VLDB Endowment.
Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and
Jinyang Li. 2013. Transaction chains: achieving serializability with low latency
in geo-distributed storage systems. In ACM SOSP.

Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan Ports, Ion Stoica, and Xin Jin.
2019. Harmonia: Near-Linear Scalability for Replicated Storage with In-Network
Conflict Detection. In Proceedings of the VLDB Endowment.

https://www.cavium.com/
http://dpdk.org/
http://www.teradata.com/
http://www.teradata.com/
https://aws.amazon.com/
https://www.broadcom.com/products/ethernet-connectivity/switching
https://www.broadcom.com/products/ethernet-connectivity/switching
https://www.cloudlab.us
https://cloud.google.com/
https://azure.microsoft.com/
https://www.barefootnetworks.com/technology/#tofino
http://www.tpc.org/tpcc/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background on Lock Management
	2.2 Exploiting Programmable Switches

	3 NetLock Architecture
	3.1 Design Goals
	3.2 System Overview

	4 NetLock Design
	4.1 Lock Request Handling
	4.2 Switch Data Plane
	4.3 Switch-Server Memory Management
	4.4 Policy Support
	4.5 Practical Issues

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Microbenchmark
	6.3 Benefits of NetLock
	6.4 Memory Management
	6.5 Failure Handling

	7 Related Work
	8 Conclusion
	References

