
NetLock: Fast, Centralized Lock Management
Using Programmable Switches

Zhuolong Yu
Johns Hopkins University

Yiwen Zhang
University of Michigan

Vladimir Braverman
Johns Hopkins University

Mosharaf Chowdhury
University of Michigan

Xin Jin
Johns Hopkins University

ABSTRACT

Lock managers are widely used by distributed systems. Traditional

centralized lock managers can easily support policies between mul-

tiple users using global knowledge, but they suffer from low perfor-

mance. In contrast, emerging decentralized approaches are faster

but cannot provide flexible policy support. Furthermore, perfor-

mance in both cases is limited by the server capability.

We present NetLock, a new centralized lock manager that co-

designs servers and network switches to achieve high performance

without sacrificing flexibility in policy support. The key idea of

NetLock is to exploit the capability of emerging programmable

switches to directly process lock requests in the switch data plane.

Due to the limited switch memory, we design a memory manage-

ment mechanism to seamlessly integrate the switch and server

memory. To realize the locking functionality in the switch, we de-

sign a custom data plane module that efficiently pools multiple

register arrays together to maximize memory utilization We have

implemented a NetLock prototype with a Barefoot Tofino switch

and a cluster of commodity servers. Evaluation results show that

NetLock improves the throughput by 14.0ś18.4×, and reduces the

average and 99% latency by 4.7ś20.3× and 10.4ś18.7× over DSLR,

a state-of-the-art RDMA-based solution, while providing flexible

policy support.

CCS CONCEPTS
· Networks → Programmable networks; Cloud computing;

In-network processing; Data center networks.

KEYWORDS
LockManagement, Programmable Switches, Centralized, Data plane

ACM Reference Format:

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury,

and Xin Jin. 2020. NetLock: Fast, Centralized Lock Management Using

Programmable Switches. In Annual conference of the ACM Special Interest

Group on Data Communication on the applications, technologies, architectures,

and protocols for computer communication (SIGCOMM ’20), August 10ś14,

2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3387514.3405857

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’20, August 10ś14, 2020, Virtual Event, NY, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405857

1 INTRODUCTION

As more and more enterprises move their workloads to the cloud,

they are increasingly relying on databases provided by public cloud

providers, such as Amazon Web Services [4], Microsoft Azure [8],

and Google Cloud [7]. Performance and policy support are two

important considerations for cloud databases. Specifically, cloud

databases are expected to provide high performance for many ten-

ants and enable rich policy support to accommodate tenant-specific

performance and isolation requirements, such as starvation free-

dom, service differentiation, and performance isolation.

Lock managers are a critical building block of cloud databases.

They are used by multiple concurrent transactions to mediate ac-

cess to shared resources in order to achieve high-level transactional

semantics such as serializability. With recent advancements that

exploit fast RDMA networks and in-memory databases to signifi-

cantly improve the performance of distributed transactions [18, 46]

(i.e., decrease think time), the overhead of acquiring and releasing

locks is now a major component in the end-to-end performance of

cloud-based enterprise software [49].

Existing lock manager designs (both centralized and decentral-

ized) face a trade-off between performance and policy support

(Figure 1). The traditional centralized approach uses a server as a

central point to grant locks [3, 23]. With the global view of all lock

operations in the server, this approach can easily support various

policies, such as starvation freedom and fairness [23, 24, 29, 48].

The drawback is that the lock server, especially its CPU, becomes

the performance bottleneck as transaction throughput increases.

To mitigate the CPU bottleneck, recent decentralized solutions

leverage fast RDMA networks to achieve high throughput and low

latency [17, 40, 46, 49]. Clients acquire and release locks by updating

the lock information on the lock server through RDMA, without

involving the server’s CPU. However, since the locking decisions

are made by the clients in a decentralized manner, it is hard to

support and enforce rich policies [49].

We present NetLock, a new approach to design and build lock

managers that sidesteps the trade-off and achieves both high per-

formance and rich policy support. We observe that compared to the

actual data stored in a database, the lock information is only a small

amount of metadata. Nonetheless, the metadata requires high-speed,

concurrent accesses. Network switches are specifically designed and

optimized for high-speed, concurrent data input-output workloads,

making them a natural place to accelerate lock operations.

The key idea of NetLock is to leverage this observation and

co-design switches and servers to build a fast, centralized lock

manager. Switches provide orders-of-magnitude higher through-

put and lower latency than servers. By using switches to process

lock requests in the switch data plane, NetLock avoids the CPU

126

https://doi.org/10.1145/3387514.3405857
https://doi.org/10.1145/3387514.3405857
https://doi.org/10.1145/3387514.3405857

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

bottleneck of server-based centralized approaches, and achieves

high performance. By using a centralized design, NetLock avoids

the drawback of decentralized approaches and can support many

essential policies.

Realizing this idea is challenging for at least two reasons. First,

switches only have limited on-chip memory. Although the size of

lock information is orders-of-magnitude smaller than that of the

actual storage data, it can still exceed the switch memory size for

large-scale cloud databases. While previous work [31] has proposed

the idea of extending the switch memory with the server memory,

it does not consider the characteristics of locking and does not

provide a concrete solution for memory management. To address

this challenge, we design a mechanism to seamlessly integrate

the switch and server memory to store and process lock requests.

NetLock only offloads the popular locks to the switch and leaves

other locks to servers. We formulate the problem as an optimization

problem and design an optimal algorithm for memory allocation.

Second, switches only have limited functionalities in the data

plane and cannot process lock requests. Prior work [27] has shown

how to build a key-value store in switches and solved the fault-

tolerance problem, but a key-value store is not a fully functional

lock manager that can support different types of locks and support

policies. To address this challenge, we leverage the capability of

emerging programmable switches to design a data plane module to

implement necessary features required by NetLock. To maximize

memory utilization and avoid memory fragmentation, we design a

shared queue data structure to pool the register arrays in multiple

data plane stages together and allocate it to the locks. Each lock

owns an adjustable, continuous region in the shared queue to store

its requests. We design custommatch-action tables in the data plane

to support both shared and exclusive locks with common policies.

NetLock is incrementally deployable and compatible with exist-

ing datacenter networks. It is well-suited for cloud providers that

have dedicated racks for database services. It only needs to aug-

ment the Top-of-Rack (ToR) switches of these database racks with

a custom data plane module for processing lock requests. Since the

custom module is only invoked by lock messages, other packets are

processed by switches as before. NetLock does not change other

switches in the network, and it is compatible with existing routing

protocols and network functions.

Recently there is a surge of interest in in-network computing.

While it is arguable whether applications should be moved to the

network and to what extent, NetLock takes a modest approach to

make the network more application-aware. Assisting locking in

the network is not a radical deviation from traditional network

functionalities. We emphasize that the application (i.e., transaction

processing) is still running on servers. NetLock provides locks with

switches to resolve contentions and enforce policies for concurrent

transactions, which is similar to using switch-based signals like Ran-

dom Early Detection (RED) and Explicit Congestion Notification

(ECN) to resolve congestion and enforce fairness for concurrent

flows, but in a more application-aware way for databases. Further-

more, compared to changing all NICs and redesigning applications

to leverage RDMA, replacing only the switch and transparently

updating the lock manager provides a competitive alternative to

high-performance database applications. NetLock can provide bet-

ter performance and lower the cost by reducing the lock servers.

Lock Manager

Decentralized

No global knowledge;

Cooperative environment;

Often RDMA-based so
little server involvement

Centralized

Global knowledge;

Flexible policy support;

Server involved

Server-only

Higher server CPU usage;

Always, latency > RTT

Switch + Server

Significantly lower server
CPU usage;

Often, latency < RTT

Blind retry

Higher client CPU usage

Exponential back-off

Relatively lower client
CPU usage

Emulated queue

Additional RTTs;

Server CPU involved

C
li
e

n
t

c
o

o
rd

in
a

ti
o

n

m
e

c
h

a
n

is
m

s

S
e

rv
e

r
in

v
o

lv
e

m
e

n
t

Figure 1: Design space for lock management.

In summary, we make the following contributions.

• We propose NetLock, a new centralized lock manager archi-

tecture that co-designs programmable switches and servers to

achieve high performance and flexible policy support.

• We design a memory management mechanism to seamlessly

integrate the switch and server memory, and a custom data plane

module for switches to store and process lock requests.

• We implement a NetLock prototype on a Barefoot Tofino switch

and commodity servers. Evaluation results show that NetLock

improves transaction throughput by 14.0ś18.4×, and reduces the

average and 99% latency by 4.7ś20.3× and 10.4ś18.7× over the

state-of-the-art DSLR, while providing flexible policy support.

2 BACKGROUND AND MOTIVATION

In this section, we first provide background on the design of lock

managers. Then we motivate the usage of programmable switches

to design lock managers, by identifying potential benefits and dis-

cussing its feasibility.

2.1 Background on Lock Management

Lock managers are used by distributed systems to mediate con-

current access to shared resources over the network, where locks

are typically held in servers. There are two main approaches for

accessing locks, i.e., centralized and decentralized, as shown in

Figure 1.

Centralized lockmanagement. A centralized lock manager uses

a server as a central point to grant locks [3, 23]. Because the server

has the global view of all lock requests and grant decisions, it can

easily enforce policies to provide many strong and useful properties,

such as starvation-freedom and fairness [23, 24, 29, 48].

A centralized lock manager can be distributed across multiple

servers, by having each server be responsible for a subset of lock

objects. There is a distinction between distributed and decentral-

ized. Centralized and decentralized approaches differ in how the

decisions to grant locks are made, i.e., whether they are made by the

central lock manager or by the clients in a decentralized manner.

Both approaches can be made distributed to scale out.

The lock manager can either be co-located with the storage

server that actually stores the objects or be in a separate server.

In the former case, the lock manager daemon would consume the

resources of the storage server, which can be otherwise used to

127

NetLock: Fast, Centralized Lock Management

Using Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

process storage requests such as transactions. In the latter case,

lock managers for multiple storage servers can be consolidated to

a few dedicated servers.

Decentralized lock management. Centralized lock managers

suffer from low performance, as the server CPUs become the bot-

tleneck to handle a large number of lock requests from clients [49].

Decentralized lock managers often leverage fast RDMA networks

to address the performance problem [17, 40, 46, 49]. A decentralized

lock manager still has a designated server to maintain necessary in-

formation for each lock in a lock table, e.g., the current transaction

ID that holds the lock and whether the lock is shared or exclusive.

Different from centralized ones, a decentralized lock manager relies

on clients to make decisions in a distributed manner. The lock table

at the lock server is updated by the clients using RDMA verbs,

such as SEND, RECV, READ, WRITE, CAS, and FA. This approach

reduces CPU utilization at the lock server.

There are a few different strategies for the clients to acquire

locks in this approach. The simplest one is blind fail-and-retry,

where each client tries to acquire a lock independently, and retries

after a timeout if not succeed [46]. This strategy has high client

CPU usage, and can cause starvation and hence long tail latencies.

Exponential back-off can be used to reduce the CPU usage, but

it further increases latencies. More advanced ones use distributed

queues to emulate centralized lock managers [17]. Such strategies,

while avoiding starvation, incur extra network round-trips and lose

the benefit of high performance. The most recent solution in this

category, DSLR [49], adapts Lamport’s bakery algorithm [32] to

order lock requests and guarantees first-come-first-serve (FCFS)

scheduling; this reduces starvation and achieves high throughput.

Decentralized lockmanagers typically use advisory locking, where

clients cooperate and follow a distributed locking protocol. This

is because the clients use RDMA verbs to interact with the lock

table in the lock server without involving the server’s CPU. It is

different from mandatory locking used by centralized lock man-

agers that can enforce a locking protocol, as the lock manager is

solely making locking decisions. Besides the difficulty to enforce

a protocol, decentralized lock managers cannot flexibly support

various policies such as isolation, without significantly degrading

performance using an expensive distributed protocol.

2.2 Exploiting Programmable Switches

Providing both high performance and policy support. Tradi-

tional server-based approaches make a trade-off between perfor-

mance and policy support. Centralized approaches provide flexi-

ble policy support, but have low performance; decentralized ap-

proaches achieve the opposite. The goal of this paper is to design a

solution that sidesteps the trade-off and provides both high perfor-

mance and policy support. Our key idea is to design a centralized

solution with fast switches, which can benefit from switches to

achieve high performance while still providing flexible policy sup-

port as being a centralized approach. Moreover, since switches

provide orders-of-magnitude higher throughput and lower latency

than servers, this solution is even faster than decentralized, RDMA-

based approaches. This is especially important for emerging fast

transaction systems based on RDMA networks and in-memory

storage [18, 46]. In these systems, the transactions themselves are

Clients

L2/L3

Routing

Lock

Table

Lock Table

Server

Database
Servers

ToR Switch Lock Table

Server

NetLock

Figure 2: NetLock architecture.

executed in memory, and thus the execution cost is comparable to

the locking and unlocking cost, meaning that the system needs to

spend a considerable amount of server resources for lock managers

as for the storage servers themselves. Leveraging switches to build

faster lock managers can both improve the transaction performance

and reduce the system cost.

Building lockmanagers with programmable switches.While

traditional switches are fixed-function, emerging programmable

switches, such as Barefoot Tofino [9], Broadcom Trident [5] and

Cavium XPliant [1], make it feasible to design, build and deploy

switch-based lock managers. Leveraging programmable switches

provides orders-of-magnitude higher performance than FPGA-based

(e.g., SmartNICs) or NPU-based solutions. While this paper focuses

on programmable switches, the mechanisms designed for NetLock

can also be applied to programmable NICs.

Programmable switches allow users to develop custom data plane

modules, which can parse custom packet headers, perform user-

defined actions, and access the switch on-chip memory for stateful

operations [12, 13]. With this capability, we can program the switch

data plane to parse lock information embedded in a custom header

format, to perform lock and unlock actions, and to store the lock

table in the switch on-chip memory.

3 NETLOCK ARCHITECTURE

In this section, we first give the design goals of NetLock, and then

provide a system overview of NetLock.

3.1 Design Goals

NetLock is a fast, centralized lock manager. It is designed to meet

the following goals.

• High throughput. State-of-the-art distributed transaction sys-

tems can process hundreds of millions of transactions per second

(TPS) with a single rack [18, 30, 45], and each transaction can

involve a few to tens of locks. To avoid being the performance

bottleneck of fast distributed transaction systems, the lock man-

ager should be able to process up to a few billion lock requests

per second (RPS).

• Low latency.Given the tens of microseconds transaction latency

enabled by fast networks and in-memory databases [18, 30, 45],

128

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

Client

NetLock

Switch Server

Lock
Table1. acquire lock

2. grant lock

3. release lock

Lock
TableTXN

Figure 3: Lock request handling in NetLock. The switch di-

rectly processes most lock requests.

the lock manager should provide low latency to process lock

requests, in the range of a few to tens of microseconds.

• Policy support. For a cloud environment, the lock manager

should provide flexible policy support to accommodate tenant-

specific requirements. Specifically, we consider common policies

including starvation freedom, service differentiation, and perfor-

mance isolation.

3.2 System Overview

ANetLock lock manager consists of one switch andmultiple servers

in the same rack (as shown in Figure 2), where the round-trip time

(RTT) between machines within the same switch is typically single-

digit microsecond. The switch is the ToR switch of a dedicated

database rack that is specifically provisioned for database services,

which is common in public clouds. Different database racks have

their own NetLock instances. Besides adding a new data plane

module for NetLock to the ToR switch, no other changes are made to

the datacenter network. The ToR switch only invokes the NetLock

module to process lock requests, and it processes other packets as

usual. NetLock does not affect existing network functionalities.

At a high level, clients send lock requests to NetLock without

knowing whether the requests will be processed by a switch or

a server. Behind the scene, NetLock processes lock requests with

a combination of switch and servers. It integrates the switch and

server memory to store and process lock requests. When a lock

request arrives at the switch, the switch checks whether it is re-

sponsible for the lock. If so, it invokes the data plane module to

process the lock; otherwise, it forwards the lock requests to the

server. The switch only stores and processes the requests on pop-

ular locks, while the lock servers are responsible for the requests

on unpopular locks. The lock servers also buffer the requests on

popular locks when the queues in the switch are overflowed.

4 NETLOCK DESIGN

In this section, we describe the design of NetLock that exploits

programmable switches for fast, centralized lock management.

4.1 Lock Request Handling

As shown in Figure 3, to acquire a lock for a transaction, the client

first sends a lock request to NetLock and waits for NetLock to grant

the lock. NetLock directly processes most lock requests with the

Algorithm 1 ProcessLockRequest(req)

1: if r eq .lock ∈ switch .locks() then
2: if r eq .type == acquire then
3: if switch .CanGrant (r eq) then
4: Grant r eq .lock to r eq .client
5: else if switch .CanQueue(r eq) then
6: Queue r eq at switch
7: else
8: Forward r eq to server

9: else
10: Release r eq .lock , and grant it to pending requests

11: else
12: Forward r eq to server

lock switch and only leaves a small portion to the lock servers. After

the lock is granted, the client executes its transaction and sends a

release notification to NetLock if the lock is no longer needed.

Algorithm 1 shows the pseudocode of the switch. Since the

switch is the ToR switch of the database rack and is on the path for

a request to reach the lock servers, the switch can always process

the request first. If the switch is responsible for the corresponding

lock object (line 1), it checks the lock availability and policy. If

the lock can be granted, the switch directly responds to the client

(line 3-4). If the lock cannot be granted immediately, the switch

queues the request if it has enough memory (line 5-6). If the switch

is not responsible for the lock object or does not have sufficient

memory, it forwards the request to the lock server based on the

destination IP (line 8 and 12). The locks are partitioned between

the lock servers. The client obtains the partitioning information

from an off-the-shelf directory service in datacenters [20, 25], and

sets the destination IP to that of the server responsible for the lock.

After the client releases the lock, NetLock can further grant the

lock to other requests (line 10). The performance benefit of NetLock

comes from that most requests can be directly processed by the

switch, without the need to visit a lock server.

One-RTT transactions. In the basic mode, a client gets a grant

from NetLock (taking 0.5 RTT by the lock switch or 1 RTT by

the lock server) and then issues another request to fetch the data

from a database server (taking 1 RTT) to finish the transaction,

which takes 1.5ś2 RTTs in total. Some recent distributed transaction

systems (e.g., DrTM [46], FARM [19] and FaSST [30]) combine lock

acquisition and data fetching in a single request to a database server,

and thus are able to finish a transaction in 1 RTT. NetLock can

apply the same idea to achieve one-RTT transactions. Specifically,

after a lock is granted, instead of replying to the client, NetLock

forwards the request to the corresponding database server to fetch

the item, making lock acquisition and data fetching in one RTT.

More importantly, unlike existing solutions (e.g., DrTM, FARM and

FaSST) that rely on fail-and-retry whichmay lead to low throughput

and high latency, all requests to the database servers can successfully

fetch data, because the locks have already been granted by NetLock.

This is critical under high-contention scenarios to reduce overhead

at both clients and database servers, and achieve high throughput

and low latency. For locks not in the switch, the lock server is

combined with the database server as existing solutions to achieve

one-RTT transactions. For requests with payloads such as writes,

the switch forwards the data if the lock can be granted, and drops the

data, otherwise. Some transactions that involve read-modify-write

129

NetLock: Fast, Centralized Lock Management

Using Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

0 1 2 3 4 5 6 7

req0 req1 req2 req3 req4 req5

Register
Array

Match-Action
Table

Match pkt.lid==A pkt.lid==B pkt.lid==C

Action process_A() process_B() process_C()

Queue A Queue B Queue C

Queue
A

(mode, transaction ID, client IP)head tail

Figure 4: Basic data plane design for lock management.

operations cannot fundamentally be done in one RTT because the

client has to do some compute and the current design does not push

compute to the lock and database servers. In addition to its high

performance, NetLock also supports flexible policies that cannot

be implemented by existing decentralized solutions.

4.2 Switch Data Plane

Programmable switches expose stateful on-chip memory as register

arrays to store user-defined data. NetLock leverages register arrays

to store and process lock requests in the switch. Figure 4 shows a

basic data plane design. The design allocates one array for each lock

to queue its requests. A special UDP destination port is reserved

for NetLock. A lock request contains several fields: action type

(acquire/release), lock ID, lock mode, transaction ID, and client IP.

The match-action table maps a lock ID (i.e., lid) to its corresponding

register array, and the action in the table performs operations on

the register array to grant and release locks.

Because register arrays can only be accessed based on a given

index, they do not natively support queue operations such as en-

queue and dequeue. We implement circular queues based on register

arrays to support necessary operations for NetLock. Specifically,

we allocate extra registers to keep the head and tail pointers. The

pointers are looped back to the beginning when they reach the

end of the array. For example, queue A in Figure 4 has six queued

requests, and the head and tail are index 1 and 6, respectively.

Each slot in a queue stores three important pieces of information,

i.e., mode, transaction ID, and client IP. Mode indicates whether the

request is for a shared or exclusive lock. Transaction ID identifies

which transaction the lock is requested for. Client IP stores the IP

address from which the lock request is sent. The IP address is used

by the switch when it generates a notification to grant the lock to

the client. Additional metadata such as timestamp and tenant ID

can also be stored together.

Optimize switch memory layout. Because the memory for each

register array is pre-allocated and the size is fixed after the data

plane program is compiled and loaded into the switch, the basic

design cannot flexibly change the queue size at runtime. When the

workload changes, the set of locks in the switch and the size of each

queue would need to change according to the memory allocation

algorithm to maximize the performance. Allocating a large queue

to accommodate the maximum possible contentions for each lock

Array 0

Register
Array

Shared
Queue

Array 1 Array 2

Queue A Queue B Queue C
left_B
= 10

right_B
= 14

Figure 5: Combinemultiple register arrays to a shared queue

for locks with different queue sizes.

is undesirable because it would cause memory fragmentation and

result in low memory utilization, especially given that the switch

on-chip memory is limited.

To address this problem, we design a shared queue to pool multi-

ple register arrays together and enable the queue size to be dynam-

ically adjusted at runtime (Figure 5). Instead of statically binding

each register array to a lock, we combine these arrays together to

build a large queue shared by all the locks. Accessing a slot in the

shared queue with an index can be mapped to accessing the register

arrays by appropriately setting the index, e.g., accessing slot 10 in

the shared queue can be mapped to accessing slot 10-8=2 in array

1. Each lock is allocated with a continuous region in the shared

queue to store its requests. We allocate extra registers to store the

boundaries of each queue, e.g., 10 and 14 for queue B. Since the

boundaries are stored in registers, they can be modified at runtime.

Another benefit of this design is that the individual register arrays

do not have to be in the same stage, which allows NetLock to pool

memory from multiple stages together to build a large queue that

exceeds the memory limit of a single stage.

Handle shared and exclusive locks. The shared queue design

solves the storage problem of how to store the requests, but it

does not solve the computation problem of how to process them.

The challenge comes from the limitation that the data plane can

only perform one read/write operation to a register array when it

processes a packet.

This limitation brings two issues. First, when a lock release notifi-

cation arrives at the switch, the switch dequeues the corresponding

request from the queue, and the lock could be granted to the next

request in the queue. This requires two operations: one is to de-

queue the head, and the other is to read the new head. Second,

when a request to acquire a shared lock is granted, if the following

requests in the queue are also for a shared lock, then these requests

can also be granted. This requires multiple read operations until an

exclusive lock request or the end of the queue. We leverage a feature

called resubmit available in programmable switches to overcome

the limitation. The resubmit feature allows the switch data plane

to resubmit the packet to the beginning of the packet processing

pipeline, so that the packet can go through and be processed by

the pipeline again, obviating the need to send another packet to

the switch from servers. Note that the use of resubmit here does

not cause extra overhead, because the servers in the traditional

server-based lock managers also need to send a packet to grant

each shared lock to the corresponding client. Figure 6 illustrates

how to handle the four cases for shared and exclusive locks.

130

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

S S
Release One

Shared Lock

Grant One

Exclusive Lock

Resubmit

S E

E S S E

Release One

Shared Lock

Release One

Exclusive Lock

Grant Two

Shared Locks

E E
Release One

Exclusive Lock

Grant One

Exclusive Lock

Figure 6: Handle shared and exclusive locks.

• Shared → Shared. When a shared lock is released, the switch

dequeues the head, and uses resubmit to check the new head.

If the new head is a shared lock request, the processing stops,

because the shared lock has already been granted with the old

head when it entered the queue.

• Shared → Exclusive. This case differs from the first case on

that the new head is an exclusive lock request, which has not

been granted yet. As such, after the shared lock is released, the

lock becomes available, and the switch sends a notification to the

client to grant the lock.

• Exclusive → Shared. When an exclusive lock is released, the

packet is resubmitted to grant the next lock request in the queue.

The resubmit action is repeated by multiple times until an exclu-

sive request or the end of the queue.

• Exclusive→ Exclusive. When an exclusive lock is released and

the next request is also exclusive, the next request is granted.

Because the lock is exclusive and cannot be shared, the switch

does not need to resubmit it again.

Algorithm 2 shows the pseudocode of the switch that covers the

above four cases. If the request is to acquire a lock, it is enqueued

(line 1-2). The request is directly granted if the queue is empty,

or if all requests in the queue are shared and the request is also

shared (line 3-5). If the request is to release a lock, the current

head in the queue is removed, and the lock is resubmitted to grant

the following request (line 7-12). For case łshared → sharedž, no

further processing is needed. For case łshared → exclusivež and

łexclusive → exclusivež, the new head is granted the lock (line

15-16). For case łexclusive → sharedž, multiple subsequent shared

locks are granted (line 17-27). The nuance in the lock processing

is that when there are multiple transactions holding a shared lock,

these transactions may not release their locks in the order that the

requests are enqueued. Because the switch can only release locks

at the head of the queue, it does not check the transaction ID when

releasing locks. This design does not affect the correctness, because

only one transaction can hold an exclusive lock, and the operations

for releasing shared locks are commutative.

Algorithm 2 SwitchDataPlane(pkt)

1: if pkt .op == acquire then
2: queue .enqueue(pkt)
3: if queue .is_empty() or
4: (queue .is_shared() and pkt .mode == shared) then
5: дrant_lock(pkt .t id, pkt .cip)

6: else
7: if meta .f laд == 0 then
8: (mode, t id, cip) ← queue .dequeue()
9: meta .f laд ← 1
10: meta .mode ←mode
11: meta .pointer ← queue .head ()
12: r esubmit ()
13: else if meta .f laд == 1 then
14: (mode, t id, cip) ← queue[meta .pointer]
15: if mode == exclusive then
16: дrant_lock(t id, cip)
17: else if meta .mode == exclusive then
18: дrant_lock(t id, cip)
19: meta .pointer ←meta .pointer .next ()
20: meta .f laд ← 2
21: r esubmit ()

22: else
23: (mode, t id, cip) ← queue[meta .pointer]
24: if mode == shared then
25: дrant_lock(t id, cip)
26: meta .pointer ←meta .pointer .next ()
27: r esubmit ()

Pipeline layout. A switch may have several pipelines, and the

pipelines do not share state. In NetLock, the lock tables and their

register arrays are placed in the egress pipes that connect to their

corresponding lock servers. This placement avoids unnecessary re-

circulation across pipelines. Specifically, when a request arrives, it

is sent to the egress pipe that either owns the lock or connects to a

lock server that has the lock. If the request is granted, it is mirrored

to the upstream port to the client or the database server to finish

the transaction (Section 4.1). Otherwise, it is enqueued either at the

egress pipe or in a lock server.

4.3 Switch-Server Memory Management

Since the switch on-chip memory is limited, NetLock co-designs the

switch and servers and stores only the popular locks to the switch

memory. The switch control plane is responsible for creating and

deleting locks, and assigning memory for locks between the switch

and lock servers. The key challenge in memory allocation is that it

requires us to consider the contentions from multiple requests to

the same lock. When a lock is granted to a client, other requests

are queued in the switch and occupy memory space until the lock

is released.

Memory allocation mechanism.We first analyze the amount of

switch memory required to support a certain throughput. Let the

rate of lock requests to object i be ri . Let the maximum contention

for object i be ci , which means that there are at most ci concurrent

requests for object i .We assume ci is known based on the knowledge

of how many clients may need this lock, and we use a counter to

measure ri . Let the queue size for object i in the switch be si . If

si ≥ ci , then the switch can guarantee to process all requests for

object i , without queueing requests in the server. The memory

allocation is to decide which locks to assign to the switch, and for

each assigned lock, how much switch memory to allocate for it.

131

NetLock: Fast, Centralized Lock Management

Using Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

Algorithm 3 MemoryAllocation(locks)

1: Sort locks by ri /ci in decreasing order
2: for lock i in locks do
3: si ←min(switch .available, ci)
4: switch .available ← switch .available − si
5: Allocate si for lock i in switch memory

6: Allocate remaining locks to the servers

Let the switch memory size be S . We formulate the problem as the

following optimization problem.

maximize
∑

i

risi/ci (1)

s .t .
∑

i

si ≤ S (2)

si ≤ ci (3)

The goal is to process as many lock requests in the switch as

possible, reducing the number of servers we need for NetLock. For

object i , because in the worse case the lock requests for i always

achieve the maximum contention ci , only a portion (si/ci) of lock

requests can be queued at the switch, and the other portion (1−si/ci)

have to be sent to the server. Therefore, the optimization objective,

which is the request rate the switch can guarantee to process, is∑
i risi/ci . The constraint is that the total memory allocated to the

locks cannot exceed the switch memory size S , i.e.,
∑
i si ≤ S . The

switch does not need to allocate more than ci memory slots to

object i , thus we have si ≤ ci .

This problem is similar to the fractional knapsack problem, which

can be solved with an optimal solution in polynomial time. Algo-

rithm 3 shows the pseudocode. Specifically, the value of allocating

one slot to object i in the switch is ri/ci . To maximize the objective,

the algorithm allocates the switch memory based on the decreasing

order of ri/ci .

The rate ri and contention ci for each lock are obtained by mea-

suring the workload. NetLock maintains two counters to track ri
and ci for each lock respectively, and updates the memory alloca-

tion based on Algorithm 3 when the workload changes. During

the update, NetLock first drains the requests of the locks that are

to be swapped out from the switch, and then allocates the switch

memory to more popular locks. Note that, for inserting a new lock

object, the new lock queue is first added to a lock server, and then

would be moved to the switch if the lock becomes popular.

Theorem 1. The memory allocation algorithm (Algorithm 3) is

optimal for the optimization problem (1-3).

Proof. We consider the situation where
∑
i ci > S ; otherwise,

there is enoughmemory for all the locks. Let there ben locks in total.

Without loss of generality, let r1
c1
>

r2
c2
> ... >

rn
cn
. Algorithm 3

allocates as much memory as possible (min(switch.available, ci))

for locks sorted by ri/ci . Assume this is not the optimal strategy.

Let the optimal strategy be s∗1 , s
∗
2 , ..., s

∗
n . Because

∑
i ci > S , there

exists at least one lock i such that s∗i < ci . Let the lock with the

smallest ID be j, i.e., for any i < j, s∗i = ci , and s∗j < c j . If for

any k > j, s∗
k
= 0, the optimal strategy would be the same as

Algorithm 3. Therefore, there exists at least one lock k such that

k > j and s∗
k
> 0. Let s ′j = s

∗
j +1 and s

′
k
= s∗

k
−1. Because

r j
c j
>

rk
ck

, we

Switch Server

Lock

Table

1

r1a = 100 req/s
100 req/s

r1b = 100 req/s

r2 = 10 req/s
2

Lock

Table

1

Client 2

Client 1a

Client 1b

(a) Naive memory allocation.

Switch Server

Lock

Table

1

r1a = 100 req/s

10 req/s

r1b = 100 req/s

r2 = 10 req/s
2

Lock

Table

Client 2

Client 1a

Client 1b 1

(b) Optimal memory allocation.

Figure 7: By allocating two slots in the switch to lock 1, the

optimal allocation can process all lock requests to lock 1 in

the switch, minimizing the server load.

have
∑
i ris

′
i /ci >

∑
i ris

∗
i /ci . This contradicts that the allocation

s∗1 , s
∗
2 , ..., s

∗
n is optimal. So Algorithm 3 is optimal. □

Example. Figure 7 illustrates the key idea of the algorithm. There

are two concurrent clients that acquire exclusive locks for object 1

with a rate of 100 requests per second each. The queue needs two

slots to accommodate the contentions from the two clients. There

is only one client that acquires exclusive locks for object 2, with

a rate of 10 requests per second. The queue only needs one slot

for one client. Suppose the switch memory only has two slots. The

allocation in Figure 7(a) allocates one slot to each lock object. Since

the switch cannot queue requests for two clients for object 1, in

the worse case where the clients are highly synchronized, half of

the requests are sent to the server. On the other hand, the optimal

allocation in Figure 7(b) allocates two slots to object 1, minimizing

the load on the server.

Performance guarantee. Since servers have plenty of memory

to queue requests, servers are CPU-bounded, and the bottleneck is

on the number of requests that can be processed by a server per

second. Let the workload beW = {(ri , ci)}, and the solution to the

optimization problem be S = {(si)}. Let rs and re be the request

rates that can be supported by a switch and a server, respectively.

We assume that the switch is not the bottleneck, i.e., rs ≥
∑
i ri ,

so the switch is always able to support the request rate
∑
i risi/ci .

This assumption is reasonable, because if rs <
∑
i ri , then the ToR

switch is congested. In such a case, not all lock requests can even

be received by the database rack in the first place, and the workload

would not be meaningful. Since the switch can process the request

rate
∑
i risi/ci , it requires ⌈(

∑
i ri −

∑
i risi/ci)/re ⌉ servers to serve

the remaining request rate. In other words, with one switch and

⌈(
∑
i ri −

∑
i risi/ci)/re ⌉ servers, NetLock guarantees to support

the workloadW = {(ri , ci)}.

132

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

Handling overflowed requests. It is possible that the queues in

the switch can be overflowed, because the switch cannot allocate

enough memory for the last object it handles or the estimation

of maximum contention for an object is inaccurate. For lock i ,

we denote its switch queue as q1[i], and its server queue as q2[i].

When q1[i] is full, the switch forwards the overflowed requests to

the server. The overflowed requests are only buffered in q2[i] in

the server, not processed. Note that this is different from the locks

that are not allocated to the switch and only have queues in the

serversÐthe requests of those locks are both buffered and processed

by the servers. The switch puts a mark on the packets to distinguish

between these two cases.

As both q1[i] and q2[i] may contain requests, we need to ensure

that the requests are processed as they would in a single queue. To

achieve this, the requests are only granted and dequeued by q1[i]

in the switch, and new requests are only enqueued at q2[i] in the

server. When q1[i] becomes empty, the switch sends a notification

to the server, and the server pushes some requests fromq2[i] toq1[i].

The number of requests that can be pushed is no bigger than the

number of available slots in q1[i] to ensure q1[i] is not overflowed.

When q2[i] becomes empty and q1[i] is not full, NetLock enters the

normal mode, i.e., new requests can directly be enqueued at q1[i]

in the switch. Because q2[i] is empty, enqueueing at q1[i] would

ensure the same order as a single queue.

Moving locks between the switch and lock servers.When the

popularity of a lock changes, the lock will be moved from the

switch to a lock server or from its lock server to the switch. When

moving a lock, NetLock pauses enqueuing new requests of this lock

and waits until the queue is empty to ensure consistency. Memory

fragmentation caused by moving locks between the switch and lock

servers would reduce the memory that can be actually used to store

lock requests. The memory layout on the switch is periodically

reorganized to alleviate memory fragmentation.

4.4 Policy Support

NetLock is a centralized lock manager that can support and enforce

policies. We consider the following three representative policies.

Starvation-freedom. Decentralized lock managers use partial in-

formation to grant locks, which can easily lead to lock starvation.

Lock starvation happens when the lock manager allows later lock

requests to acquire a lock before earlier lock requests, making some

requests wait indefinitely to get the lock. Lock starvation is typically

avoided by using a first-come-first-serve (FCFS) policy. The FCFS

policy stores lock requests in a first-in-first-out (FIFO) queue, and

always grants locks to the head of the queue. This policy is natively

supported by the circular queue we design for the switch data plane.

With this, NetLock supports request (lock) level starvation-freedom.

Note that, there can still be starvation if some transactions do not

complete because of deadlock, which is discussed in Section 4.5.

Service differentiation with priorities. It is challenging to sup-

port priority-based policies in the switch, as a register array can

only be accessed once when processing a packet and a priority

queue cannot be directly implemented with a register array. We

leverage the multi-stage structure of the switch data plane to sup-

port priorities. Specifically, we allocate one queue in each stage

for one priority. Since the packet is processed stage by stage, the

high-priority requests in earlier stages are granted first. The re-

quest processing with priorities in the switch data plane follows

Algorithm 2 with some tweaks. For a lock request with i-th prior-

ity, it is directly granted if all queues are empty, or if there is no

exclusive lock request holding the lock or queued in the same or

higher priority queues and the request itself is also for a shared

lock. After the lock is released, NetLock will first grant the lock to

the queue with the highest priority. Note that a priority can have a

large queue spanning multiple stages to expand its queue size. The

limitation of this solution is that the number of priorities is limited

to the number of stages, which is usually 10-20 in today’s switches.

This limitation can be alleviated by approximation, e.g., grouping

multiple fine-grained priorities into a single coarse-grained priority.

Moreover, only high-priority requests need to be processed in the

switch. Low-priority requests do not need fast processing, and can

always be offloaded to the lock servers.

Performance isolationwith per-tenant quota.Cloud databases

often have multiple tenants and need to enforce fairness between

them. Without a centralized lock manager, a tenant can generate

requests and acquire locks at a faster rate than another tenant, and

thus occupies most of the resources. While an FCFS policy can avoid

starvation of the slower tenant, it cannot enforce the tenants to stay

within their shares. It requires the lock manager to use rate limiters

to enforce per-tenant quota. Rate limiters can be implemented in

the switch data plane with either meters that can automatically

throttle a tenant, or counters that count the tenants’ requests and

compare with their quotas.

4.5 Practical Issues

Switch memory size. We examine whether the switch memory

is sufficient for a lock manager from two aspects.

Think time. The think time affects the maximum turnover rate of

a memory slot. Let T be the duration of a request occupying a slot,

which includes the round trip time of sending the grant and release

messages and that of executing the transaction (i.e., think time). A

slot can be reused by 1/T times per second (i.e., the turnover rate),

providing a throughput of 1/T RPS. With S slots, the switch can

achieve S/T RPS. Given fast networks and low-latency transactions,

T can be a few tens of microseconds. As a switch has tens of MB

memory, 100K slots with 20B slot size only consume 2 MB memory,

which is a small portion of the total memory. Assuming T = 20 µs

and S = 100K , the switch can support S/T = 5 BRPS, which is

sufficient for the database servers the same rack. On the other hand,

if T = 1ms , the switch needs 1M slots to achieve S/T = 1 BRPS.

Memory allocation. The memory allocation mechanism affects

the utilization of the switch memory. It determines whether the

switch can achieve the maximum rate S/T . If the switch memory is

allocated to unpopular locks, the switch would only process a small

portion of the total locks. Even when a memory slot is available,

it may not be used to process a new request for its lock as there

are no pending requests for this unpopular lock. If the memory

slots are empty for half of the time, then the switch needs to double

its memory slots in order to achieve the maximum rate. NetLock

uses an optimal knapsack algorithm to efficiently allocate switch

memory to popular locks to maximize the memory utilization. This

133

NetLock: Fast, Centralized Lock Management

Using Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

handles skewed workload distributions. For uniform workload dis-

tributions, we combine multiple locks into one coarse-grained lock

to increase the memory utilization.

In summary, the think time determines the maximum turnover

rate of a memory slot and thus the maximum throughput the switch

can support with a given amount of memory, and the memory

allocation mechanism determines whether the system can achieve

the maximum turnover rate. Experimental results in Section 6.4

illustrate the relationship.

Scalability. We focus on rack-scale database systems in this paper.

Based on the above analysis on switch memory size and the experi-

mental results in Section 6.4, the memory of one switch is sufficient

for most rack-scale workloads, and the ToR switch can be naturally

used as the lock switch. In the cases where more memory is needed,

additional lock switches can be attached to the rack as specialized

accelerators for lock processing. For large-scale database systems

that span multiple racks, each rack runs an instance of NetLock to

handle the lock requests of its own rack.

Failure handling. We describe how to handle different types of

failures in NetLock.

• Transaction failure. Transaction failures can be caused by network

loss, application crashes, and client failures. When a transaction

fails without releasing its acquired locks, other transactions that

request for the same locks cannot proceed. NetLock uses a com-

mon mechanism, leasing [21], to handle transaction failures. It

stores a timestamp together with each lock, and a transaction

expires after its lease. The switch control plane periodically polls

the data plane to clear expired transactions.

• Deadlock. Deadlocks are caused by multiple transactions waiting

for locks held by others, and no transaction can make progress.

It is resolved in the same way as for transaction failures. Clients

retry when the leases expire until they succeed. In addition, dead-

locks can be avoided if priority-based policies are employed.

• NetLock failure.When a lock server fails, the locks allocated to

this server is assigned to another lock server. Clients resubmit

their requests to the new server, and the server waits for the

leases to expire before granting the locks. A switch failure is

handled in the same way by assigning the locks to a backup

switch. After the original switch restarts, the lock requests are

queued into the original switch. When releasing a lock, we only

grant locks from the backup switch until the queue in the backup

switch gets empty. After all the queues in the backup switch get

empty, the backup switch is no longer useful. When the switch

restarts, it also synchronizes its states with the lock servers and

waits for the overflowed requests that are buffered at the lock

servers to drain before the switch starts processing new requests

on the corresponding locks. The unpopular locks stored in lock

servers are not affected by switch failures.

5 IMPLEMENTATION

We have implemented a prototype of NetLock, including the lock

switch, the lock server, and the client.

The lock switch is implemented with 1704 lines of code in P4,

and is compiled to Barefoot Tofino ASIC [9]. The lock table has a

shared queue with a total of 100K slots. With 20B slot size, it only

consumes 2MB, which is a small portion of tens of MB on-chip

memory. The switch control plane is implemented with 750 lines

of code in Python, which allocates the memory in the shared queue

to different locks.

The lock server is implemented with 2807 lines of code in C. It

handles lock requests that cannot be directly processed by the lock

switch. To maximize the efficiency of multi-core processing and

improve the performance, it uses Intel DPDK [2], and leverages

Receive Side Scaling (RSS) to partition the lock requests between

cores and dispatch the lock requests to the appropriate RX queues

by the NIC for each core. With these optimizations, a lock server

can achieve up to 18 MRPS with a 40G NIC in our testbed.

The client is implemented with 3176 lines of code in C. It is used

to generate lock requests to measure the performance in the exper-

iments. It also uses Intel DPDK and RSS to optimize performance,

and one client server can generate up to 18 MRPS with a 40G NIC

in our testbed.

6 EVALUATION

6.1 Methodology

Testbed. The experiments of NetLock are conducted on our testbed

consisting of one 6.5 Tbps Barefoot Tofino switch and 12 servers.

Each server has an 8-core CPU (Intel Xeon E5-2620 @ 2.1GHz) and

one 40G NIC (Intel XL710).

Comparison. We compare NetLock with the state-of-the-art lock

manager DSLR [49] and DrTM [46]. Since DSLR and DrTM re-

quire RDMA, the experiments on DSLR and DrTM are conducted

in the Apt cluster of CloudLab [6]. The configuration is comparable

to our own testbed. Each server is equipped with an 8-core CPU

(Intel Xeon E5-2450 @ 2.1GHz) and a 56G RDMA NIC (Mellanox

ConnectX-3). We also compare NetLock with a recently proposed

switch-based solution NetChain [27]. NetChain is not a fully func-

tional lock manager, as it only supports exclusive locks. Therefore,

requests for shared locks are treated as exclusive locks. NetChain

handles concurrent requests with client-side retry. Since NetChain

only stores items in the switch, we adapt the lock granularity

based on the switch memory size and the number of locks, so that

NetChain can handle all the requests in the switch. We emphasize

that DSLR, DrTM and NetChain do not support flexible policies.

Workloads. We use two workloads. The first workload is a mi-

crobenchmark, which simply generates lock requests to a set of

locks. It is useful to measure the basic performance of lock pro-

cessing. The second workload is TPC-C [10]. It generates trans-

actions based on TPC-C, and each transaction contains a set of

lock requests. It is useful to measure the application-level perfor-

mance. We use two settings for TPC-C, which is the same as DSLR:

a low-contention setting with ten warehouses per node, and a

high-contention setting with one warehouse per node. We use

throughput, in terms of lock requests granted per second (RPS)

and transactions per second (TPS), and latency as the evaluation

metrics.

6.2 Microbenchmark

We use microbenchmark experiments to measure the basic through-

put and latency of the lock switch to process lock requests. We cover

both shared and exclusive locks.

134

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

10
−1

10
0

10
1

10
2

10
3

Throughput (MRPS)

10
0

10
1

10
2

10
3

La
te

nc
y

(μ
s)

99.9% tail latency
99% tail latency
Med. latency
Avg. latency

(a) Shared locks.

10
−1

10
0

10
1

10
2

10
3

Throughput (MRPS)

10
0

10
1

10
2

10
3

La
te

nc
y

(μ
s)

99.9% tail latency
99% tail latency
Med. latency
Avg. latency

(b) Exclusive locks w/o contention.

500 2000 4000 6000 8000 10000
Number of locks

0

50

100

150

Th
ro

ug
hp

ut
 (M

R
P

S
)

NetLock

(c) Exclusive locks w/ contention.

500 2000 4000 6000 8000 10000
Number of locks

0

50

100

150

200

La
te

nc
y

(μ
s)

99.9% tail latency
99% tail latency
Med. latency
Avg. latency

(d) Exclusive locks w/ contention.

Figure 8: Microbenchmark results of switch performance on handling lock requests.

Shared locks. We first evaluate the performance for shared locks.

We use all 12 servers in the testbed to generate requests to the

lock switch. Since the requests are for shared locks, there are no

contentions and the locks can be directly granted. Figure 8(a) shows

the relationship between latency and throughput. The median (av-

erage) latency is 8 µs (7.1 µs), and the 99% (99.9%) latency is 12 µs (14

µs). We emphasize that the latency is dominated by the processing

latency at the client software and NIC; the processing latency at the

switch is under 1 µs. The latency is not affected by the throughput,

because even we use all 12 servers to generate requests, they can

still not saturate the switch. The switch can handle the lock request

at line rate, and the Barefoot Tofino switch used in the experiment

is able to process more than 4 billion packets per second.

Exclusive locks. We then evaluate the performance for exclusive

locks. Similar to the previous experiment, we use 12 servers to

generate requests for exclusive locks. To measure the baseline per-

formance, the requests are sent to different locks and there are no

contentions. Figure 8(b) shows the results, which are similar to

those for shared locks. This is because in both cases, the requests

are directly granted by the switch and processed at line rate.

To show the impact of contention on exclusive locks, we let

the servers send lock requests to the same set of locks, and vary

the number of locks in the set. The level of contention decreases

as the number of locks increases. Figure 8(c) shows the impact of

contention on the throughput. Under high contention (i.e., when

the number of locks is small), the throughput is very limited. This is

because the requests for the same lock have to be processed one by

one, even though the switch still has spare capacity. The throughput

increases as the contention decreases. Under low contention, the

throughput is maximized by the speed of the 12 servers to generate

lock requests. Figure 8(d) shows the latency results. The latency is

more than 100 µs under high contention, and decreases to a few µs

under low contention.

Comparisonwith lock server.We also compare the performance

of a lock switch with a lock server. We use 10 servers to generate re-

quests, and the workloads are similar to the previous experiments:

shared locks, exclusive locks without contention, and exclusive

locks with contention (5000 locks). The lock server is implemented

with the same functionality and is configured with a different num-

ber of cores (1∼8) in this experiment. Figure 9 shows the throughput

of a lock switch and a lock server. The lock switch outperforms

the lock server by 7× as the lock server easily gets saturated by a

large number of requests. We emphasize that the lock switch is not

120

160

200

Th
ro

ug
hp

ut
 (M

R
P

S
) NetLock, Shared lock

NetLock, Exclusive lock w/o contention
NetLock, Exclusive lock w/ contention

1 2 3 4 5 6 7 8
Number of cores

0

20

Lock server, Shared lock
Lock server, Exclusive lock w/o contention
Lock server, Exclusive lock w/ contention

Figure 9: Comparison between a lock switch and a lock

server with various number of cores. Ten servers are used

to generate requests. The lock switch is not saturated. The

lock switch can support a few billion requests per second.

saturated by the ten clients in this experiment. The performance

gap would be even larger if there are more clients sending requests:

the switch can process a few billion requests per second and can

potentially replace hundreds of servers for the same functionality.

6.3 Benefits of NetLock

We show the benefits of NetLock on its performance improvement

and flexible policy support. The experiments use the TPC-C work-

load to show application-level performance.

Performance improvement over DSLR, DrTM and NetChain.

We show the performance improvement of NetLock over the state-

of-the-art solutions DSLR, DrTM and NetChain. We show two sce-

narios, and each is conducted under two TPC-C workload settings

(high-contention and low-contention). Figure 10 shows the through-

put and latency of the first scenario, where we use ten machines as

clients to generate requests, and two machines as lock servers that

run NetLock, DSLR or DrTM; NetChain only uses the switch, and

does not use any servers for lock processing. Because NetChain

treats both shared and exclusive locks as exclusive locks, it has

many fail-and-retry operations which degrade its performance.

With the co-design of the switch and lock servers, NetLock avoids

a large number of fail-and-retry operations caused by contentions

compared to NetChain. The clients only need to retry when there

is a packet loss or deadlock. By offloading using a fast switch to

process most requests and avoiding most of retries, NetLock im-

proves the transaction throughput by 14.9× (28.6×, 3.5×) and 18.4×

(33.5×, 4.4×) in low and high contention settings respectively com-

pared with DSLR (DrTM, NetChain). Besides throughput, NetLock

also reduces both the average and tail latencies, by up to 20.3×

(66.8×, 5.4×) and 18.4× (653.9×, 23.1×) respectively compared with

135

NetLock: Fast, Centralized Lock Management

Using Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

7
8
9

Th
ro

ug
hp

ut
 (M

R
P

S
)

Low contention High contention
0

1

2

3

DSLR
DrTM
NetChain
NetLock

(a) Lock Throughput.

1.25

1.50

Th
ro

ug
hp

ut
 (M

R
P

S
)

Low contention High contention
0.0

0.2

0.4

DSLR
DrTM
NetChain
NetLock

(b) Transaction Throughput.

7
8
9

A
ve

ra
ge

 la
te

nc
y

(m
s)

Low contention High contention
0

1

2

3

DSLR
DrTM
NetChain
NetLock

(c) Average latency.

120

160

Ta
il

la
te

nc
y

(m
s)

Low contention High contention
0

5

10

DSLR
DrTM
NetChain
NetLock

(d) Tail latency.

Figure 10: System comparison under TPC-C with ten clients and two lock servers.

5
6
7

Th
ro

ug
hp

ut
 (M

R
P

S
)

Low contention High contention
0

1

2

DSLR
DrTM
NetChain
NetLock

(a) Lock Throughput.

0.8
1.0
1.2

Th
ro

ug
hp

ut
 (M

R
P

S
)

Low contention High contention
0.0

0.2

0.4

DSLR
DrTM
NetChain
NetLock

(b) Transaction Throughput.

4

6

A
ve

ra
ge

 la
te

nc
y

(m
s)

Low contention High contention
0.0

0.5

1.0

DSLR
DrTM
NetChain
NetLock

(c) Average latency.

70
80
90

Ta
il

la
te

nc
y

(m
s)

Low contention High contention
0

2

4

6

DSLR
DrTM
NetChain
NetLock

(d) Tail latency.

Figure 11: System comparison under TPC-C with six clients and six lock servers.

DSLR (DrTM, NetChain). Figure 11 shows the results of the second

scenario, where we use six machines as clients and six machines

as lock servers for NetLock, DrTM and DSLR, and NetChain only

uses the switch for lock processing. While in this scenario the lock

servers are less loaded than they are in the previous scenario, Net-

Lock still achieves significant improvement. Compared to DSLR

(DrTM, NetChain), it improves the transaction throughput by up to

17.5× (33.1×, 5.5×), and reduces the average and tail latency by up

to 11.8× (65.6×, 7.7×) and 10.5× (602.8×, 34.4×) respectively.

Policy support. Besides performance, another benefit of NetLock

is its flexible policy support. The default policy is starvation-freedom

which helps reduce tail latency and is shown in the previous exper-

iment. Here we show the other two representative policies men-

tioned in Section 4.4. Figure 12(a) shows how NetLock provides

service differentiation with priorities. There are two tenants with

five clients each. Without service differentiation, both tenants have

similar performance when the high-priority tenant begins to send

requests. With service differentiation, the high-priority tenant is

prioritized over the low-priority tenant.

Figure 12(b) shows how NetLock enforces performance isolation.

Different from the service differentiation experiment, we assign

seven clients to tenant 1 and three clients to tenant 2. Because tenant

1 has more clients to generate requests at a faster rate than tenant

2, when there is no performance isolation, tenant 1 starves tenant 2

and achieves higher throughput. With performance isolation, each

tenant can only obtain the tenant’s own share, which is half of the

resources here, and two tenants achieve similar performance.

6.4 Memory Management

We evaluate the efficiency of the memory allocation algorithm and

the impact of the switch memory size on system performance. The

experiments are conducted with ten clients and two lock servers

under TPC-C workload (ten warehouses per node).

Memory allocation.NetLock uses an optimal knapsack algorithm

to efficiently pack popular locks into limited switch memory to

maximize system performance. We compare it with a strawman

0 5 10 15 20 Time (s)
0.0
0.2
0.4
0.6
0.8

Th
ro

ug
hp

ut
 (M

TP
S

)

(i) w/o differentiation

Low priority High priority

0 5 10 15 20 Time (s)
0.0
0.2
0.4
0.6
0.8

Th
ro

ug
hp

ut
 (M

TP
S

)

(ii) w/ differentiation

Low priority High priority

(a) Service differentiation.

w/o isolation w/ isolation
0.0

0.5

1.0

Th
ro

ug
hp

ut
 (M

TP
S

) Tenant1
Tenant2

(b) Performance isolation.

Figure 12: Policy support of NetLock.

algorithm that randomly divides locks between the switch and the

servers. Figure 13(a) shows the lock request throughput and its

breakdown on the lock switch and the servers. Because the ran-

dom approach does not allocate the switch memory to the popular

locks, the switch only processes a small number of lock requests.

On the other hand, NetLock efficiently utilizes the limited switch

memory to process as many requests as possible, and improves the

total throughput by 2.95×. Figure 13(b) shows the latency CDF of

the two algorithms. Because the random approach processes most

lock requests in the lock servers, it incurs high latency, especially

at the tail. In comparison, because of the efficient memory alloca-

tion, NetLock processes many requests directly in the switch and

significantly reduces the transaction latency.

Switch memory size. As discussed in Section 4.5, the impact of

switch memory size on the system performance depends on the

think time and the memory allocation mechanism. Figure 14(a)

shows the impact of memory size on throughput under different

think times. The think time determines the maximum turnover rate

of a memory slot, which limits the maximum throughput the switch

can support with a given amount of memory. From the figure, we

can see that when the think time is zero, the throughput quickly

grows up with more memory slots and achieves 8.64 MRPS at the

maximum. As the think time increases, the throughput is smaller

and also grows more slowly. When the think time is 100 µs, the

system can only achieve 0.60 MRPS because the memory in the

136

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin

random knapsack
Memory allocation

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

R
P

S
) Server (random)

Switch (random)
Total (random)
Server (knapsack)
Switch (knapsack)
Total (knapsack)

(a) Throughput.

0 100 200 300 400
Transaction latency (μs)

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

C
D

F

Knapsack
Random

(b) Latency.

Figure 13: Impact of memory allocation mechanisms.

0 1 2 3 4
Switch memory size (×10^3)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

R
P

S
)

Thinktime = 0μs
Thinktime = 5μs
Thinktime = 10μs
Thinktime = 100μs

(a) Think time.

0 10 20 30 40
Switch memory size (×10^3)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

R
P

S
)

Knapsack
Random

(b) Memory allocation.

Figure 14: Impact of memory size under different memory

allocation mechanisms and think times.

switch is not efficiently utilized. Thus, NetLock is more suitable for

low-latency transactions.

Figure 14(b) shows the impact of memory size on throughput un-

der different memory allocation mechanisms. Because the knapsack

algorithm used by NetLock can efficiently utilize switch memory,

the throughput increases quickly with more memory slots, and

reaches the maximum throughput of 8.61 MRPS with 3000 slots.

We emphasize that the maximum throughput is bottlenecked by

the speed of generating requests from the clients and the intrinsic

contentions between the transactions, not the switch. On the other

hand, because the random algorithm allocates the switch memory

to a random set of locks, it utilizes the switch memory poorly. As a

result, more memory slots does not help improve the transaction

throughput of the system under the inefficient memory allocation

algorithm. Under this workload, NetLock can achieve significant

improvement with 5 × 103 memory slots (160KB), which is only a

small fraction of the switch memory (tens of MB).

6.5 Failure Handling

We finally evaluate how NetLock handles failures. We manually

stop the switch to inject a switch failure, and then reactivate the

switch. Figure 15 shows the throughput time series. At time 10

s, we let the NetLock switch stop processing any packets. The

system throughput drops to zero immediately upon the switch

łfailurež. Then we reactivate the switch to process lock requests.

The switch retains none of its former state or register values. During

the switch failure, the client keeps retrying and requesting locks

for their transactions. Upon reactivation, some lock requests of a

transaction can be processed by the new (reactivated) switch while

others may be lost. NetLock uses leasing to handle this situation.

After reactivation, the system throughput returns to the pre-failure

0 5 10 15 20
Time (s)

0
2
4
6
8

10

Th
ro

ug
hp

ut
(M

R
P

S
) stop switch

reactivate switch

Figure 15: Failure handling result.

level instantly. NetChain can be applied to chain several NetLock

switches to further reduce the temporary downtime.

7 RELATED WORK

Lock management. Today’s centralized lock managers are im-

plemented on servers [3, 23, 24, 29, 48]. While they are flexible

to support various policies, they suffer from limited performance.

Recent work has exploited decentralized lock managers for high

performance [17, 40, 46, 49]. These decentralized solutions achieve

high performance at the cost of limited policy support. Compared

to them, NetLock is a centralized lock manager that provides both

high performance and the flexibility to support rich policies.

Fast distributed transactions. There is a long line of research

on fast distributed transaction systems [11, 14, 19, 30, 34, 39, 44,

45, 47, 50, 51]. These systems use a variety of techniques to im-

prove performance, from designing new transaction algorithms

and protocols, to exploiting new hardware capabilities like RDMA

and hardware transactional memory. NetLock can be used as a

fast lock manager to improve general transactions without any

modifications to transaction protocols.

In-network processing. Recently there have been many efforts

exploiting programmable switches for distributed systems, such as

key-value stores [28, 36ś38], coordination and consensus [15, 16, 27,

35, 41, 52], network telemetry [22, 26], machine learning [42, 43],

and query processing [33]. Kim et al. [31] proposes to extend switch

memory with server memory using RDMA. NetLock provides a new

solution for lockmanagement, does not rely on RDMA, and includes

an optimal memory allocation algorithm to integrate switch and

server memory for the lock manager.

8 CONCLUSION

We present NetLock, a new centralized lock management archi-

tecture that co-designs programmable switches and servers to si-

multaneously achieve high performance and rich policy support.

NetLock provides orders-of-magnitude higher throughput than ex-

isting systems with microsecond-level latency, and supports many

commonly-used policies on performance and isolation. With the

end of Moore’s law, we believe NetLock exemplifies a new genera-

tion of systems that leverage network programmability to extend

the boundary of networking to IO-intensive workloads.

Ethics. This work does not raise any ethical issues.

Acknowledgments. We thank our shepherd Kun Tan and the

anonymous reviewers for their valuable feedback on this paper.

This work is supported in part by NSF grants CCF-1629397, CRII-

1755646, CNS-1813487, CNS-1845853, and CCF-1918757, a Facebook

Communications & Networking Research Award, and a Google

Faculty Research Award.

137

NetLock: Fast, Centralized Lock Management

Using Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] 2018. Cavium XPliant. https://www.cavium.com/.
[2] 2018. Intel Data Plane Development Kit (DPDK). http://dpdk.org/.
[3] 2018. Teradata: Business Analytics, Hybrid Cloud & Consulting. http://www.

teradata.com/.
[4] 2019. Amazon Web Services. https://aws.amazon.com/.
[5] 2019. Broadcom Ethernet Switches and Switch Fabric Devices. https://www.

broadcom.com/products/ethernet-connectivity/switching.
[6] 2019. CloudLab. https://www.cloudlab.us.
[7] 2019. Google Cloud. https://cloud.google.com/.
[8] 2019. Microsoft Azure. https://azure.microsoft.com/.
[9] 2020. Barefoot Tofino. https://www.barefootnetworks.com/technology/#tofino.
[10] 2020. TPC-C. http://www.tpc.org/tpcc/.
[11] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,

and Ion Stoica. 2015. Coordination avoidance in database systems. In Proceedings
of the VLDB Endowment.

[12] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM CCR (2014).

[13] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth
Wang, and Dale Woodford. 2012. Spanner: Google’s globally distributed database.
In USENIX OSDI.

[15] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
made switch-y. SIGCOMM CCR (2016).

[16] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at network speed. In ACM SOSR.

[17] Ananth Devulapalli and Pete Wyckoff. 2005. Distributed queue-based locking
using advanced network features. In IEEE ICPP.

[18] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No compro-
mises: Distributed transactions with consistency, availability, and performance.
In ACM SOSP.

[19] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No compro-
mises: distributed transactions with consistency, availability, and performance.
In ACM SOSP.

[20] Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor Von Laszewski, Warren
Smith, and Steven Tuecke. 1997. A directory service for configuring high-
performance distributed computations. In IEEE HPDC.

[21] Cary Gray and David Cheriton. 1989. Leases: An Efficient Fault-tolerant Mecha-
nism for Distributed File Cache Consistency. In ACM SOSP.

[22] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry. In
ACM SIGCOMM.

[23] Andrew B Hastings. 1990. Distributed lock management in a transaction pro-
cessing environment. In Symposium on Reliable Distributed Systems.

[24] Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, and Thomas F Wenisch.
2017. A top-down approach to achieving performance predictability in database
systems. In ACM SIGMOD.

[25] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In USENIX ATC.

[26] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. QPipe: Quan-
tiles Sketch Fully in the Data Plane. In ACM CoNEXT.

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In USENIX NSDI.

[28] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In ACM SOSP.

[29] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. 2008.
Deadlock immunity: Enabling systems to defend against deadlocks. In USENIX
OSDI.

[30] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs..
In USENIX OSDI.

[31] Daehyeok Kim, Yibo Zhu, ChanghoonKim, Jeongkeun Lee, and Srinivasan Seshan.
2018. Generic External Memory for Switch Data Planes. In ACM SIGCOMM
HotNets Workshop.

[32] Leslie Lamport. 1974. A new solution of Dijkstra’s concurrent programming
problem. CACM (1974).

[33] Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux, and U eXascale Infolab.
2019. The Case for Network Accelerated Query Processing.. In CIDR.

[34] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-Free Consis-
tent Transactions Using In-Network Concurrency Control. In ACM SOSP.

[35] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R.K. Ports.
2016. Just say NO to Paxos overhead: Replacing consensus with network ordering.
In USENIX OSDI.

[36] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G. Andersen, and Michael J.
Freedman. 2016. Be Fast, Cheap and in Control with SwitchKV. In USENIX NSDI.

[37] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and Kishore
Atreya. 2017. IncBricks: Toward In-Network Computation with an In-Network
Cache. In ACM ASPLOS.

[38] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019.. DistCache: Provable Load Balancing
for Large-Scale Storage Systems with Distributed Caching. In USENIX FAST.

[39] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting
More Concurrency from Distributed Transactions.. In USENIX OSDI.

[40] Sundeep Narravula, A Marnidala, Abhinav Vishnu, Karthikeyan Vaidyanathan,
and Dhabaleswar K Panda. 2007. High performance distributed lock management
services using network-based remote atomic operations. In IEEE CCGrid.

[41] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishna-
murthy. 2015. Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks. In USENIX NSDI.

[42] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-network computation is a dumb idea whose time has come. In
ACM SIGCOMM HotNets Workshop.

[43] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and
Peter Richtárik. 2019. Scaling distributed machine learning with in-network
aggregation. arXiv preprint arXiv:1903.06701 (2019).

[44] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In ACM SIGMOD.

[45] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!. In USENIX OSDI.

[46] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
in-memory transaction processing using RDMA and HTM. In ACM SOSP.

[47] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,
Lorenzo Alvisi, and Prince Mahajan. 2014. Salt: Combining ACID and BASE in a
Distributed Database.. In USENIX OSDI.

[48] Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve OLTP
application performance. In Proceedings of the VLDB Endowment.

[49] Dong Young Yoon, Mosharaf Chowdhury, and Barzan Mozafari. 2018. Distributed
Lock Management with RDMA: Decentralization without Starvation. In ACM
SIGMOD.

[50] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The end of a
myth: Distributed transactions can scale. In Proceedings of the VLDB Endowment.

[51] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera, and
Jinyang Li. 2013. Transaction chains: achieving serializability with low latency
in geo-distributed storage systems. In ACM SOSP.

[52] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan Ports, Ion Stoica, and Xin Jin.
2019. Harmonia: Near-Linear Scalability for Replicated Storage with In-Network
Conflict Detection. In Proceedings of the VLDB Endowment.

138

https://www.cavium.com/
http://dpdk.org/
http://www.teradata.com/
http://www.teradata.com/
https://aws.amazon.com/
https://www.broadcom.com/products/ethernet-connectivity/switching
https://www.broadcom.com/products/ethernet-connectivity/switching
https://www.cloudlab.us
https://cloud.google.com/
https://azure.microsoft.com/
https://www.barefootnetworks.com/technology/#tofino
http://www.tpc.org/tpcc/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background on Lock Management
	2.2 Exploiting Programmable Switches

	3 NetLock Architecture
	3.1 Design Goals
	3.2 System Overview

	4 NetLock Design
	4.1 Lock Request Handling
	4.2 Switch Data Plane
	4.3 Switch-Server Memory Management
	4.4 Policy Support
	4.5 Practical Issues

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Microbenchmark
	6.3 Benefits of NetLock
	6.4 Memory Management
	6.5 Failure Handling

	7 Related Work
	8 Conclusion
	References

