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ABSTRACT: We present examples of 5d SCFTs that serve as counter-examples to a
recently actively studied conjecture according to which it should be possible to obtain
all 5d SCF'Ts by integrating out BPS particles from 6d SCFTs compactified on a circle.
We further observe that it is possible to obtain these 5d SCFTs from 6d SCFTs if one
allows integrating out BPS strings as well. Based on this observation, we propose a
revised version of the conjecture according to which it should be possible to obtain
all 5d SCFTs by integrating out both BPS particles and BPS strings from 6d SCFTs
compactified on a circle. We describe a general procedure to integrate out BPS strings
from a 5d theory once a geometric description of the 5d theory is given. We also discuss
the consequences of the revised conjecture for the classification program of 5d SCFTs.
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1 Introduction and Discussion

Recent work on the classification of 5d SCFTs was initiated by [1, 2. In particular, [2]
provided significant evidence in support of a conjecture which formed the foundation
for the subsequent work on the classification of 5d SCFTs [3-9]'. According to this
conjecture, it should be possible to obtain all 5d SCFTs by performing RG flows on
6d SCFTs compactified on a circle. More specifically, it was assumed that these RG
flows take the form of integrating out BPS particles from the 5d theories obtained by
compactifying 6d SCFTs on circle (often called 5d KK theories).

To understand the motivation behind the proposal of this conjecture, consider
the example of a 5d N' = 1 pure gauge theory with gauge algebra g. Taking the
strong coupling limit of this theory leads us to the conformal point of a 5d SCFT.
This theory can be obtained by integrating out the adjoint hypermultiplet from 5d
N =1 gauge theory with gauge algebra g and a hypermultiplet transforming in adjoint
representation. The latter 5d gauge theory can be obtained by compactifying a 6d
N = (2,0) SCFT on a circle of finite radius R with the radius controlling the gauge
coupling of the 5d gauge theory. The BPS particles being integrated out under this RG
flow are the ones produced by the hyper in the adjoint representation once we move
onto the Coulomb branch of the gauge theory.

In this work, we will present several examples of 5d SCF'Ts which cannot be ob-
tained from 5d KK theories by integrating out BPS particles alone. The mass deforma-
tions of these 5d SCF'Ts admit certain Coulomb branch phases that can be described
in terms of the following 5d N/ = 1 gauge theories (deformed by their mass parameters
and Coulomb branch moduli):

1See [10-20] for other related recent work on 5d SCFTs and 5d gauge theories.



e f, with 1 <mn < 3 hypers in “fundamental” representation, that is, the irreducible
representation of dimension 26.

e ¢g with 1 < n <4 hypers in “fundamental” representation, that is, the irreducible
representation of dimension 27.

e ¢; with 1 < n < 6 half-hypers in “fundamental” representation, that is, the
irreducible representation of dimension 56.

These gauge theories can be constructed by compactifying M-theory on a Calabi-Yau
threefold. We will show in Section 2 that there is a point in the Kahler moduli space of
the Calabi-Yau threefold where all of the compact 2-cycles and 4-cycles of the Calabi-
Yau threefold shrink simultaneously to zero volume, thus giving rise to a bd SCFT
decoupled from gravity and other stringy physics. This argument establishes the exis-
tence of the above mentioned 5d SCFTs.

We claim that these 5d SCFTs cannot be obtained by integrating out BPS particles
from a 5d KK theory. The argument proceeds in two steps:

1. Let us first argue that for a 5d SCFT admitting a description as a 5d gauge the-
ory, integrating in a BPS particle always corresponds to integrating in a matter
hypermultiplet into the corresponding gauge theory.

For this argument, we use the M-theory construction of the 5d SCFT2?. A BPS
particle being integrated into this 5d SCF'T arises as a compact 2-cycle C' living in
a non-compact 4-cycle N and intersecting all the compact 4-cycles S; transversely.
The flop of C' corresponds to the process of integrating in the BPS particle into
the 5d SCFT, whereas decompactifying C' inside N completely integrates it out.
On the other hand, the Coulomb branch phase transitions of 5d SCFT are im-
plemented by flopping compact 2-cycles living inside compact 4-cycles S; in the
Calabi-Yau threefold. Thus, the flops corresponding to addition of a BPS parti-
cle and the flops corresponding to Coulomb branch phase transitions commute.
Consequently, the addition of a BPS particle into any phase of the 5d SCF'T can
always be thought as the addition of a BPS particle into a gauge-theoretic phase
of the 5d SCF'T described by the corresponding 5d gauge theory.

From the point of view of the gauge-theoretic phase, the compact 2-cycle C' can
be combined with the compact 2-cycles f; (living inside S;) corresponding to
W-bosons of the gauge algebra g. Together, these form the BPS particles cor-
responding to a hypermultiplet charged in a representation R of g. The Dynkin
coefficients of the highest weight of R are identified with the intersection numbers

C-S,.

2This argument is applicable to any general 5d theory, not just to 5d SCFTs.




2. We can now use the results of [1] according to which a 5d gauge theory obtained
after adding a hypermultiplet to any of the following 5d gauge theories

4 + 3F (1.1)

e + 4F (12)

er + 3F (13)
5

(where F denotes a full hyper in fundamental representation) cannot describe a
5d SCFT or a bd KK theory. Similarly, a 5d gauge theory obtained after adding
a hypermultiplet in a representation other than the fundamental representation
to any of the following 5d gauge theories

fs +nF forn <3
¢¢ +nF forn <4 (1.6)

e7+gF forn <5 (1.7)

cannot describe a bd SCF'T or a 5d KK theory.

We note that the above argument applies irrespective of whether the classification of
6d SCFTs [21, 22]* is complete or not.

We will show in Section 2 that the theories (1.1-—1.7) can be obtained from 5d
KK theories if one allows RG flows integrating out BPS strings as well. Such RG flows
correspond to decompactifying compact 4-cycles in the Calabi-Yau threefold used in
the corresponding M-theory construction. The BPS strings being integrated out during
this process are the ones produced by compactifying M5 branes on the 4-cycles being
decompactified. We will discuss the general geometric conditions under which such a
decompactification process can consistently take place in Section 3.

The theories (1.1—1.7) can be obtained via such a decompactification process ap-
plied to 5d KK theories obtained by untwisted compactification of following 6d SCFTs*:

fs on —k curve with 2 < k£ <5 (1.8)
eg on —k curve with 2 < k <6
¢7 on —k curve with 2 <k <8 (1.10)

We are thus led to the conjecture that:

3See [23-27] for other work related to the classification of 6d SCFTs.
4Here we are denoting the 6d SCFTs by the data of their F-theory construction.



Conjecture 1: All 5d SCFTs can be obtained (on their mass-deformed Coulomb
branch) by consistently integrating out BPS particles and BPS strings from the

mass-deformed Coulomb branches of 5d KK theories.

The above revised conjecture has a negative consequence for the program of clas-
sifying 5d SCF'Ts based on the analysis of RG flows of 5d KK theories. To understand
this, let us notice that the RG flows corresponding to removal of BPS particles are
rank-preserving, that is they do not change the rank of the 5d theory, which can be
identified with the number of fundamental BPS strings® found on the mass-deformed
Coulomb branch of the 5d theory. On the other hand, the RG flows corresponding to
removal of BPS strings are rank-lowering. If all 5d SCF'Ts could be obtained by only
integrating out BPS particles from 5d KK theories, one would only need to analyze
RG flows of 5d KK theories of rank n in order to fully classify 5d SCFTs of rank n.
This was the logic behind the classification of 5d SCFTs upto rank three pursued in
2, 9]. However, since we also need to integrate out BPS strings, we need to actually
analyze RG flows of 5d KK theories of ranks greater than or equal to n in order to fully
classify 5d SCFTs of rank n. For example, we might encounter the situation in which
a 5d SCFT of rank n only arises by removal of a BPS string from a 5d SCF'T of rank
n + 1, which only arises by removal of a BPS string from a 5d SCFT of rank n + 2,
and so on until we reach a 5d SCF'T of rank n 4 p which only arises by removal of a
BPS string from a 5d KK theory of rank n 4+ p 4+ 1. Thus, rank is no longer a good
notion to organize the classification of 5d SCFTs. To remedy the situation, we make
the following conjecture:

Conjecture 2: A rank n 5d SCFT can be obtained either by successively integrating

out BPS particles from a rank n 5d KK theory, or by successively integrating out
BPS particles after integrating out a BPS string from a rank n + 1 5d KK theory.

Evidence for this conjecture will be provided in [28] where it will be shown that every
5d gauge theory (with a simple gauge algebra) that is expected to arise on the mass-
deformed Coulomb branch of a 5d SCFT (based on the analysis of [1] and a few other
conditions) can be obtained from a 5d KK theory by using only the RG flows mentioned
in Conjecture 2.

It would be an interesting future direction to explore if Conjecture 2 leads to an
extension of the classification of 5d SCFTs presented in [9]. This would require studying

SWe define fundamental BPS strings to be those BPS strings that do not arise as bound states of
other BPS strings.



all the possible decompactifications of a single 4-cycle in the Calabi-Yau threefolds
associated to 5d KK theories upto rank four. The general criteria for decompactifying
a compact 4-cycle in a Calabi-Yau threefold is discussed in Section 3.

2 Construction of the counter-examples

In this section, we will show that the 5d SCFTs described by the 5d gauge theories
(1.1-—1.7) can be obtained by integrating out a BPS string from the 5d KK theories
obtained by untwisted compactification of 6d SCFTs (1.8—1.10). This construction
will also allow us to exhibit the existence of a ray in the space of normalizable Kahler
parameters for the Calabi-Yau threefolds associated to the theories (1.1—1.7), such
that all of the compact 2-cycles and 4-cycles have non-negative volumes along the ray,
and moreover at least one of the 4-cycles has strictly positive volume. The existence
of such a ray implies that these Calabi-Yau threefolds describe 5d SCFTs [2], with the
ray becoming a part of the Coulomb branch of the 5d SCF'Ts, and the origin of the ray
becoming the conformal point.

We will use the notation detailed in Section 5.2.1 of [8] to describe Calabi-Yau
threefolds throughout this paper.

Let us start by recalling the Calabi-Yau threefold associated to the untwisted com-
pactification of 6d SCFT carrying f4 on —k curve [3, 4, 8]

Ox—2
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for 2 <k <5, and
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(2.2)
for £ = 1. These Calabi-Yau threefolds admit a special ray in the space of normalizable
Kahler parameters where the Kahler form J can be written as

J = ¢ (So+ 254+ 355 +25,+5) (2.3)



with ¢ > 0. The coefficients of .S; in this ray are actually dual Coxeter labels associated
to roots of the affine algebra ffll). Along this ray, all of the compact 2-cycles have non-
negative volume and all the compact 4-cycles have zero volume, as the reader can
explicitly check.

Now, let us send the volume of the curve f in Sy of (2.1) to infinity, while keeping
the volume of e curve in Sy finite. This decompactifies Sy and we obtain the Calabi-Yau
threefold

© 341 2h e-Y T~y i 2é5_k)+(5_k) h+ > (f-yi), f-zi 6k 6'Zyi»f-xi1(5—k)+(5—k)
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(2.4)
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44 x

which describes the 5d gauge theory §, + (5 — k)F for 2 < k <5.

Since (2.4) is a limit of (2.1), and (2.1) describes a theory which is UV complete
without coupling to dynamical gravity, (2.4) should also describe a theory which is UV
complete without coupling to dynamical gravity. In fact, we claim that (2.4) describes
a 5d SCFT. To show this, we study the Calabi-Yau threefold (2.4) along the ray

J = ¢ (25, + 353+ 25+ S1) (2.5)

which is the ray (2.3) with Sy deleted. First of all, the volume of any 2-cycle or 4-cycle
not intersecting Sy will remain unchanged. Thus only the volumes of 2-cycles e, f in Sy
and the volume of the 4-cycle Sy will change. It can be checked that both the 2-cycles
attain non-negative volume and S, attains strictly positive volume along (2.5). As a
consequence, we have shown that f4 + (5 — k)F describes a 5d SCFT for 2 < k <5 as
claimed in Section 1.

On the other hand, an analogous RG flow is not possible for the £ = 1 case shown
in (2.2). Decompactifying f of Sy while keeping e of Sy compact in (2.2) necessarily
decompactifies h of Sy which is glued to e of Sy, thus decompactifying Sy in the process
as well®>. Thus, we are unable to obtain an f, gauge theory from (2.2). This was as
expected, since according to the analysis of [1], f4 + 4F does not describe a 5d SCFT
or a bd KK theory. Thus f, + 4F either cannot be UV completed or requires coupling
to dynamical gravity for consistent UV completion. We would find a contradiction if
we were able to decompactify Sy while keeping the rest of the Calabi-Yau threefold
compact.

A similar argument works for e and e; theories. For eg theories, we start with
the Calabi-Yau threefold for untwisted compactification of 6d SCF'T carrying e on —k

In fact, following this reasoning, we can see that this process will decompactify all the other
surfaces as well.
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for 2 < k < 6. The dual Coxeter labels for eél) provide us with the ray
J=¢(So+ S1+ S5+ 25y + 25, + 25 + 353) (2.7)

For k > 2, it is possible to decompactify Sy while keeping other S; compact by decom-
pactifying f of Sp. We obtain

54f
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which describes the 5d gauge theory e¢g + (6 — k)F for 2 < k < 6. The ray
J=0¢(S1+ 55+ 25 + 25, + 255 + 353) (2.9)

which implies that the Calabi-Yau threefold (2.8) describes a 5d SCFT for 2 < k < 6,
thus establishing that (1.2) and (1.6) are indeed 5d SCFTs.
For e; + nF theories, we start with the Calabi-Yau threefold for the untwisted



compactification of 6d SCFT carrying ¢; on —k curve

4—m
767m

(2.10)
for k = 2m and 1 < m < 4. Decompactifying f of Sy leads to the Calabi-Yau threefold

(2.11)
which describes the 5d gauge theory e; + (4 — m)F for 1 < m < 4. The dual Coxeter
labels for egl) suggest studying the Calabi-Yau threefold along

J=20¢ (Sl + 285 + 2S¢ + 257 + 353 + 355 + 454) (212)

where we find that the Calabi-Yau threefold describes a 5d SCFT for all 1 < m < 4.
For e;+ (n + %) F theories, we start with the Calabi-Yau threefold for the untwisted



compactification of 6d SCFT carrying ¢; on —k curve
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(2.13)
for K = 2m — 1 and 2 < m < 4. Decompactifying f of Sy leads to the Calabi-Yau
threefold

y1-y2,f-x \

h
44~ 4-
62m-5 d2m-7 — L 45 7 S 3% m)+2 h c 25 mh+(5m . 130 5 m
f-zi f-y1- y27f x; /
fif-zi
(2.14)

which describes the 5d gauge theory e; + (— — m) F for 2 < m < 4. Studylng the
Calabi-Yau threefold along the direction (3.5), we find that it describes a 5d SCFT for
2<m <4.



3 Criterion for surface decoupling

In this section, we will discuss a general procedure for decompactifying a compact
surface” S; in a Calabi-Yau threefold X. We would like to decompactify S; such that
the rest of the Calabi-Yau threefold remains compact. This means that the gluing
curves Cf% in S; which glue S; to S; must remain compact for all j # ¢ and for all «.
In addition to these curves, we might also consider keeping some other curves C{* in 5;
compact during the decompactification process.

Let M be the Mori cone of S; and let Cy be the sub-cone generated by non-negative
linear combinations of the curves C7; and Cy*. Now, consider a curve C in Cp. It will
in general admit multiple decompositions of the form

C=>n0C, (3.1)

where C), are generators of the Mori cone of S; and n, > 0. Since the volume of all C,
must remain non-negative throughout the process and the volume of C' must remain
finite, it follows that the volume of any C), appearing in any of the above decompositions
of C' (with n, # 0) must remain finite. In this way, considering all C' € Cy, we find a
set Sy of Mori cone generators which must remain compact but which are not in Cj.

Let C; be the sub-cone of M generated by the curves in Cy and Sy. We again study
decompositions of the form (3.1) for every curve C' € C;. This leads us to a set of Mori
cone generators S; which must remain compact but are not in C;. Joining C; and Sy,
we obtain another sub-cone Cy of the Mori cone. This process will converge at some
step r where S, will be empty. Then, C, C M is the sub-cone containing all the curves
that must remain compact during the decompactification process.

If C. = M, then it is not possible to decompactify S; while keeping the rest of the
Calabi-Yau threefold compact. If C, is a proper subset of M, then we can decompactify
the curves in M — C, thus decompactifying the surface .S;.

3.1 Examples

Let us study some examples of decoupling surfaces using the above criteria:

1. First, let us consider decoupling Sy in (2.2) whose Mori cone is generated by e
and f. The only gluing curve is h which can be written as

h=e+f (3.2)

implying that both the generators must remain compact, and thus it is impossi-
ble to decompactify Sy while keeping the rest of the Calabi-Yau threefold (2.2)
compact.

“From now on, we will refer to 2-cycles as curves and 4-cycles as surfaces.

— 10 —



2. Now, let us consider the Calabi-Yau threefold associated to the untwisted com-
pactification of the 6d SCFT carrying sp(1) on —1 curve

2e+f 2h—2 Ti 110
% Ly (3.3)
Flop n blowups in S; to obtain
n Qe—l—f—ZJJi 2h—Zwi 10—n
0 Ly (3.4)

We claim that we cannot decouple Sy until n > 4. To see this, notice that we can
write the gluing curve as

26+f—2:ci:e+(e+f—2xi) (3.5)

Since )

(e+ f— le) > —1 (3.6)
forn <4, e+ f — > x; exists in the Mori cone and hence (3.5) is a valid decom-
position, from which we learn that e must remain compact. Now notice that

for all blowups z;, implying that e — z; and x; must remain compact. For n = 3,
we can also write the gluing curve as

2e+f—=> z;=(e—mz)+ (e —x2) + (f — x3) (3.8)

We can also permute x1,x9, 23 on the right hand side of the above equation.
Thus, f — x; for all x; must also remain compact. Similarly, the reader can show
that all f — x; must remain compact for the n = 1,2 cases as well, and f must
remain compact for the n = 0 case. This exhausts all the generators of the Mori
cone and we find that it is impossible to decouple Sy for n < 4.

For n = 4, we must keep e + f — x; — x; — x;, compact for any three distinct
blowups z;, x;, ;. We must also keep e — x; compact for all ;. But there are no

restrictions on f — x; or x; and we can decompactify all of them. This leads us

to the Calabi-Yau threefold

13 (3.9)

which describes the 5d gauge theory su(2) + 6F. The compact curves e+ f —z; —
xj; — x and e — x; do not intersect the gluing curve 2e + f — 3 x;. Thus they

- 11 -



are infinitely far separated from the su(2) + 6F theory®. That is, they give rise to
some decoupled massive states.

This decompactification process can also be understood as the ungauging of a
gauge algebra. To see this, notice that the Calabi-Yau threefold (3.4) for n = 4
admits an isomorphic description® as

a4 f [ w244
% 1o (3.10)

which describes the 5d gauge theory with gauge algebra su(2) @ su(2), a hyper in
bifundamental and four hypers in fundamental of each su(2). Then the decom-
pactification process discussed above is simply the tuning of the gauge coupling
of the su(2) described by Sy to zero, and the BPS string being decoupled is the
BPS monopole associated to su(2). The decoupled massive BPS states can be
identified with the four hypers of the su(2) which is being ungauged.

Thus, according to our analysis, we cannot obtain su(2)+ (10 —n)F for 0 <n < 3
by integrating out a BPS string from the 5d KK theory obtained by an untwisted
compactification of the 6d SCFT carrying sp(1) on —1 curve. This is consistent
since it is known that su(2) + mF is UV complete only for m < 8.

3. In our final example, we will discuss a 5d KK theory which can flow to other
5d KK theories upon integrating out BPS strings. In the above two examples,
the theory obtained after the flow was a 5d SCF'T rather than a 5d KK theory.
The 5d KK theory we will discuss arises via untwisted compactification of the 6d
SCFT carrying s0(7) on —1 curve. The associated Calabi-Yau threefold (in one
of its flop frames) is

1$+2
€
2 6
fx/ . \xz
2 6
01 — — 21 o7 — 36

(3.11)

8More concretely, the curves connecting the decoupled compact curves and the gluing curve go to
infinite volume. For example, z; connects 2ef — " x; to e — x; since it intersects both at a single point.
9Gee [9, 18] for more details on such isomorphisms.
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We would like to decompactify Sy, which is not possible in this flop frame. To
see it, notice that the sum of the gluing curves e, f — x;, f — y; is

htf=> wi=> == z—> )+ /f (3.12)

which implies that the curves h — Y z; — > y; and f must remain compact. The
compactness of f implies that all of the f —x; and z; must remain compact. Thus
all the Mori cone generators must remain compact, and the surface S; cannot be
decompactified. This is good because if S; could be decompactified, we would
obtain the Calabi-Yau threefold

0

6
e e 21 2h e 36

(3.13)

which describes the 5d gauge theory so(7)+2F+6S [18] (where S denotes a hyper
in spinor representation). However, this 5d gauge theory exceeds the bounds
presented in [1] and hence cannot describe a 5d SCEFT or a 5d KK theory.

However, if we flop an z; living in S3 of (3.11) to obtain

15+2+2
7

2 6
fa:/ I of Nﬁf
2 5
01 — — 21 o — 36

(3.14)

then we can decompactify S; by decompactifying all x;,v;, z; living in S; and
obtain
0

5
e e 21 2h e 36

(3.15)

which describes the 5d gauge theory so(7) + 2F + 5S which should be a 5d KK
theory according to [1]. Indeed, it is shown in [28] that the KK theory obtained
by untwisted compactification of 6d SCFT carrying g, on —1 curve is described
by the 5d gauge theory so0(7) + 2F + 5S.

—13 —



We can also flop an z; living in Sy of (3.11) to obtain

16+1+2
7
f—y,f-Z/Zi . fx
2 6
f—w,/ htof \Iz
0l 2 36
toe o o ¢ (3.16)
in which we can decompactify S; to obtain
0l 2 36
toe T ¢ (3.17)

which describes the 5d gauge theory so(7) + F + 6S which is equivalent to the 5d
KK theory obtained by twisting the 6d SCFT carrying su(4) on —1 curve by the
outer automorphism of su(4) [28].
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