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Abstract: We present examples of 5d SCFTs that serve as counter-examples to a

recently actively studied conjecture according to which it should be possible to obtain

all 5d SCFTs by integrating out BPS particles from 6d SCFTs compactified on a circle.

We further observe that it is possible to obtain these 5d SCFTs from 6d SCFTs if one

allows integrating out BPS strings as well. Based on this observation, we propose a

revised version of the conjecture according to which it should be possible to obtain

all 5d SCFTs by integrating out both BPS particles and BPS strings from 6d SCFTs

compactified on a circle. We describe a general procedure to integrate out BPS strings

from a 5d theory once a geometric description of the 5d theory is given. We also discuss

the consequences of the revised conjecture for the classification program of 5d SCFTs.
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1 Introduction and Discussion

Recent work on the classification of 5d SCFTs was initiated by [1, 2]. In particular, [2]

provided significant evidence in support of a conjecture which formed the foundation

for the subsequent work on the classification of 5d SCFTs [3–9]1. According to this

conjecture, it should be possible to obtain all 5d SCFTs by performing RG flows on

6d SCFTs compactified on a circle. More specifically, it was assumed that these RG

flows take the form of integrating out BPS particles from the 5d theories obtained by

compactifying 6d SCFTs on circle (often called 5d KK theories).

To understand the motivation behind the proposal of this conjecture, consider

the example of a 5d N = 1 pure gauge theory with gauge algebra g. Taking the

strong coupling limit of this theory leads us to the conformal point of a 5d SCFT.

This theory can be obtained by integrating out the adjoint hypermultiplet from 5d

N = 1 gauge theory with gauge algebra g and a hypermultiplet transforming in adjoint

representation. The latter 5d gauge theory can be obtained by compactifying a 6d

N = (2, 0) SCFT on a circle of finite radius R with the radius controlling the gauge

coupling of the 5d gauge theory. The BPS particles being integrated out under this RG

flow are the ones produced by the hyper in the adjoint representation once we move

onto the Coulomb branch of the gauge theory.

In this work, we will present several examples of 5d SCFTs which cannot be ob-

tained from 5d KK theories by integrating out BPS particles alone. The mass deforma-

tions of these 5d SCFTs admit certain Coulomb branch phases that can be described

in terms of the following 5d N = 1 gauge theories (deformed by their mass parameters

and Coulomb branch moduli):

1See [10–20] for other related recent work on 5d SCFTs and 5d gauge theories.
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• f4 with 1 ≤ n ≤ 3 hypers in “fundamental” representation, that is, the irreducible

representation of dimension 26.

• e6 with 1 ≤ n ≤ 4 hypers in “fundamental” representation, that is, the irreducible

representation of dimension 27.

• e7 with 1 ≤ n ≤ 6 half-hypers in “fundamental” representation, that is, the

irreducible representation of dimension 56.

These gauge theories can be constructed by compactifying M-theory on a Calabi-Yau

threefold. We will show in Section 2 that there is a point in the Kahler moduli space of

the Calabi-Yau threefold where all of the compact 2-cycles and 4-cycles of the Calabi-

Yau threefold shrink simultaneously to zero volume, thus giving rise to a 5d SCFT

decoupled from gravity and other stringy physics. This argument establishes the exis-

tence of the above mentioned 5d SCFTs.

We claim that these 5d SCFTs cannot be obtained by integrating out BPS particles

from a 5d KK theory. The argument proceeds in two steps:

1. Let us first argue that for a 5d SCFT admitting a description as a 5d gauge the-

ory, integrating in a BPS particle always corresponds to integrating in a matter

hypermultiplet into the corresponding gauge theory.

For this argument, we use the M-theory construction of the 5d SCFT2. A BPS

particle being integrated into this 5d SCFT arises as a compact 2-cycle C living in

a non-compact 4-cycle N and intersecting all the compact 4-cycles Si transversely.

The flop of C corresponds to the process of integrating in the BPS particle into

the 5d SCFT, whereas decompactifying C inside N completely integrates it out.

On the other hand, the Coulomb branch phase transitions of 5d SCFT are im-

plemented by flopping compact 2-cycles living inside compact 4-cycles Si in the

Calabi-Yau threefold. Thus, the flops corresponding to addition of a BPS parti-

cle and the flops corresponding to Coulomb branch phase transitions commute.

Consequently, the addition of a BPS particle into any phase of the 5d SCFT can

always be thought as the addition of a BPS particle into a gauge-theoretic phase

of the 5d SCFT described by the corresponding 5d gauge theory.

From the point of view of the gauge-theoretic phase, the compact 2-cycle C can

be combined with the compact 2-cycles fi (living inside Si) corresponding to

W-bosons of the gauge algebra g. Together, these form the BPS particles cor-

responding to a hypermultiplet charged in a representation R of g. The Dynkin

coefficients of the highest weight of R are identified with the intersection numbers

C · Si.

2This argument is applicable to any general 5d theory, not just to 5d SCFTs.
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2. We can now use the results of [1] according to which a 5d gauge theory obtained

after adding a hypermultiplet to any of the following 5d gauge theories

f4 + 3F (1.1)

e6 + 4F (1.2)

e7 + 3F (1.3)

e7 +
5

2
F (1.4)

(where F denotes a full hyper in fundamental representation) cannot describe a

5d SCFT or a 5d KK theory. Similarly, a 5d gauge theory obtained after adding

a hypermultiplet in a representation other than the fundamental representation

to any of the following 5d gauge theories

f4 + nF for n < 3 (1.5)

e6 + nF for n < 4 (1.6)

e7 +
n

2
F for n < 5 (1.7)

cannot describe a 5d SCFT or a 5d KK theory.

We note that the above argument applies irrespective of whether the classification of

6d SCFTs [21, 22]3 is complete or not.

We will show in Section 2 that the theories (1.1—1.7) can be obtained from 5d

KK theories if one allows RG flows integrating out BPS strings as well. Such RG flows

correspond to decompactifying compact 4-cycles in the Calabi-Yau threefold used in

the corresponding M-theory construction. The BPS strings being integrated out during

this process are the ones produced by compactifying M5 branes on the 4-cycles being

decompactified. We will discuss the general geometric conditions under which such a

decompactification process can consistently take place in Section 3.

The theories (1.1—1.7) can be obtained via such a decompactification process ap-

plied to 5d KK theories obtained by untwisted compactification of following 6d SCFTs4:

f4 on −k curve with 2 ≤ k ≤ 5 (1.8)

e6 on −k curve with 2 ≤ k ≤ 6 (1.9)

e7 on −k curve with 2 ≤ k ≤ 8 (1.10)

We are thus led to the conjecture that:

3See [23–27] for other work related to the classification of 6d SCFTs.
4Here we are denoting the 6d SCFTs by the data of their F-theory construction.
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Conjecture 1: All 5d SCFTs can be obtained (on their mass-deformed Coulomb

branch) by consistently integrating out BPS particles and BPS strings from the

mass-deformed Coulomb branches of 5d KK theories.

The above revised conjecture has a negative consequence for the program of clas-

sifying 5d SCFTs based on the analysis of RG flows of 5d KK theories. To understand

this, let us notice that the RG flows corresponding to removal of BPS particles are

rank-preserving, that is they do not change the rank of the 5d theory, which can be

identified with the number of fundamental BPS strings5 found on the mass-deformed

Coulomb branch of the 5d theory. On the other hand, the RG flows corresponding to

removal of BPS strings are rank-lowering. If all 5d SCFTs could be obtained by only

integrating out BPS particles from 5d KK theories, one would only need to analyze

RG flows of 5d KK theories of rank n in order to fully classify 5d SCFTs of rank n.

This was the logic behind the classification of 5d SCFTs upto rank three pursued in

[2, 9]. However, since we also need to integrate out BPS strings, we need to actually

analyze RG flows of 5d KK theories of ranks greater than or equal to n in order to fully

classify 5d SCFTs of rank n. For example, we might encounter the situation in which

a 5d SCFT of rank n only arises by removal of a BPS string from a 5d SCFT of rank

n + 1, which only arises by removal of a BPS string from a 5d SCFT of rank n + 2,

and so on until we reach a 5d SCFT of rank n + p which only arises by removal of a

BPS string from a 5d KK theory of rank n + p + 1. Thus, rank is no longer a good

notion to organize the classification of 5d SCFTs. To remedy the situation, we make

the following conjecture:

Conjecture 2: A rank n 5d SCFT can be obtained either by successively integrating

out BPS particles from a rank n 5d KK theory, or by successively integrating out

BPS particles after integrating out a BPS string from a rank n + 1 5d KK theory.

Evidence for this conjecture will be provided in [28] where it will be shown that every

5d gauge theory (with a simple gauge algebra) that is expected to arise on the mass-

deformed Coulomb branch of a 5d SCFT (based on the analysis of [1] and a few other

conditions) can be obtained from a 5d KK theory by using only the RG flows mentioned

in Conjecture 2.

It would be an interesting future direction to explore if Conjecture 2 leads to an

extension of the classification of 5d SCFTs presented in [9]. This would require studying

5We define fundamental BPS strings to be those BPS strings that do not arise as bound states of

other BPS strings.
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all the possible decompactifications of a single 4-cycle in the Calabi-Yau threefolds

associated to 5d KK theories upto rank four. The general criteria for decompactifying

a compact 4-cycle in a Calabi-Yau threefold is discussed in Section 3.

2 Construction of the counter-examples

In this section, we will show that the 5d SCFTs described by the 5d gauge theories

(1.1—1.7) can be obtained by integrating out a BPS string from the 5d KK theories

obtained by untwisted compactification of 6d SCFTs (1.8—1.10). This construction

will also allow us to exhibit the existence of a ray in the space of normalizable Kahler

parameters for the Calabi-Yau threefolds associated to the theories (1.1—1.7), such

that all of the compact 2-cycles and 4-cycles have non-negative volumes along the ray,

and moreover at least one of the 4-cycles has strictly positive volume. The existence

of such a ray implies that these Calabi-Yau threefolds describe 5d SCFTs [2], with the

ray becoming a part of the Coulomb branch of the 5d SCFTs, and the origin of the ray

becoming the conformal point.

We will use the notation detailed in Section 5.2.1 of [8] to describe Calabi-Yau

threefolds throughout this paper.

Let us start by recalling the Calabi-Yau threefold associated to the untwisted com-

pactification of 6d SCFT carrying f4 on −k curve [3, 4, 8]:

44−k 36−k 2
(5−k)+(5−k)
6

e

e

h
1

(5−k)+(5−k)
8

e 2h

0k−2

e -
∑

xi-
∑

yi e-
∑

yi, f -xi

5 − k

xi yi

h +
∑

(f -yi), f -xi
6 − k

5 − k

xi yi

(2.1)

for 2 ≤ k ≤ 5, and

43 35 24+4

6

h e h
14+4

8

e 2h
01

e -
∑

xi-
∑

yi e-
∑

yi, f -xi

4

xi yi

h +
∑

(f -yi), f -xi
5

4

xi yi

(2.2)

for k = 1. These Calabi-Yau threefolds admit a special ray in the space of normalizable

Kahler parameters where the Kahler form J can be written as

J = φ (S0 + 2S4 + 3S3 + 2S2 + S1) (2.3)
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with φ ≥ 0. The coefficients of Si in this ray are actually dual Coxeter labels associated

to roots of the affine algebra f
(1)
4 . Along this ray, all of the compact 2-cycles have non-

negative volume and all the compact 4-cycles have zero volume, as the reader can

explicitly check.

Now, let us send the volume of the curve f in S0 of (2.1) to infinity, while keeping

the volume of e curve in S0 finite. This decompactifies S0 and we obtain the Calabi-Yau

threefold

44−k 36−k 2
(5−k)+(5−k)
6

h
1

(5−k)+(5−k)
8

e 2h e -
∑

xi-
∑

yi e-
∑

yi, f -xi

5 − k

xi yi

h +
∑

(f -yi), f -xi
6 − k

5 − k

xi yi

(2.4)

which describes the 5d gauge theory f4 + (5 − k)F for 2 ≤ k ≤ 5.

Since (2.4) is a limit of (2.1), and (2.1) describes a theory which is UV complete

without coupling to dynamical gravity, (2.4) should also describe a theory which is UV

complete without coupling to dynamical gravity. In fact, we claim that (2.4) describes

a 5d SCFT. To show this, we study the Calabi-Yau threefold (2.4) along the ray

J = φ (2S4 + 3S3 + 2S2 + S1) (2.5)

which is the ray (2.3) with S0 deleted. First of all, the volume of any 2-cycle or 4-cycle

not intersecting S0 will remain unchanged. Thus only the volumes of 2-cycles e, f in S4

and the volume of the 4-cycle S4 will change. It can be checked that both the 2-cycles

attain non-negative volume and S4 attains strictly positive volume along (2.5). As a

consequence, we have shown that f4 + (5 − k)F describes a 5d SCFT for 2 ≤ k ≤ 5 as

claimed in Section 1.

On the other hand, an analogous RG flow is not possible for the k = 1 case shown

in (2.2). Decompactifying f of S0 while keeping e of S0 compact in (2.2) necessarily

decompactifies h of S0 which is glued to e of S4, thus decompactifying S4 in the process

as well6. Thus, we are unable to obtain an f4 gauge theory from (2.2). This was as

expected, since according to the analysis of [1], f4 + 4F does not describe a 5d SCFT

or a 5d KK theory. Thus f4 + 4F either cannot be UV completed or requires coupling

to dynamical gravity for consistent UV completion. We would find a contradiction if

we were able to decompactify S0 while keeping the rest of the Calabi-Yau threefold

compact.

A similar argument works for e6 and e7 theories. For e6 theories, we start with

the Calabi-Yau threefold for untwisted compactification of 6d SCFT carrying e6 on −k

6In fact, following this reasoning, we can see that this process will decompactify all the other

surfaces as well.
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curve

0k−2 6k−4 36−k

54

e eh e

xi-yi

h

6 − k

h

46−k

8−k

26−k

8−k 1
(6−k)+(6−k)
10−k

6 − k

6 − k

e

h

e

xi

f -x
i

f

e

h-
∑

xi

e

f -xi

f -xi

(2.6)

for 2 ≤ k ≤ 6. The dual Coxeter labels for e
(1)
6 provide us with the ray

J = φ (S0 + S1 + S5 + 2S2 + 2S4 + 2S6 + 3S3) (2.7)

For k ≥ 2, it is possible to decompactify S0 while keeping other Si compact by decom-

pactifying f of S0. We obtain

6k−4 36−k

54

ee

xi-yi

h

6 − k

h

46−k

8−k

26−k

8−k 1
(6−k)+(6−k)
10−k

6 − k

6 − k

e

h

e

xi

f -x
i

f

e

h-
∑

xi

e

f -xi

f -xi

(2.8)

which describes the 5d gauge theory e6 + (6 − k)F for 2 ≤ k ≤ 6. The ray

J = φ (S1 + S5 + 2S2 + 2S4 + 2S6 + 3S3) (2.9)

which implies that the Calabi-Yau threefold (2.8) describes a 5d SCFT for 2 ≤ k ≤ 6,

thus establishing that (1.2) and (1.6) are indeed 5d SCFTs.

For e7 + nF theories, we start with the Calabi-Yau threefold for the untwisted
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compactification of 6d SCFT carrying e7 on −k curve

62m−4 52m−6 44−m

4−m 14−m

18−3me h e
34−m

6−m 24−m

8−mh e he
02m−2 e-

∑

xi

h

eh

74−m

6−m

h+(4-m)f e

e

f -xi

4 − m 4 − m
4 − m

f -xi

f -xi

xi

f -xi

f -xi

f -xi
xi

f -xi

f -xi

4 − m

4 − m

(2.10)

for k = 2m and 1 ≤ m ≤ 4. Decompactifying f of S0 leads to the Calabi-Yau threefold

62m−4 52m−6 44−m

4−m 14−m

18−3me
34−m

6−m 24−m

8−mh e he e-
∑

xi

h

eh

74−m

6−m

h+(4-m)f e

e

f -xi

4 − m 4 − m
4 − m

f -xi

f -xi

xi

f -xi

f -xi

f -xi
xi

f -xi

f -xi

4 − m

4 − m

(2.11)

which describes the 5d gauge theory e7 + (4 − m)F for 1 ≤ m ≤ 4. The dual Coxeter

labels for e
(1)
7 suggest studying the Calabi-Yau threefold along

J = φ (S1 + 2S2 + 2S6 + 2S7 + 3S3 + 3S5 + 4S4) (2.12)

where we find that the Calabi-Yau threefold describes a 5d SCFT for all 1 ≤ m ≤ 4.

For e7+
(

n + 1
2

)

F theories, we start with the Calabi-Yau threefold for the untwisted
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compactification of 6d SCFT carrying e7 on −k curve

62m−5 52m−7 44−m

5−m 14−m

20−3me h e 3
(4−m)+2

6−m
24−m

8−mh e he
02m−3 e-

∑

xi

h

eh

74−m

7−m

h+(5-m)f e

e

f -xi

5 − m 4 − m
4 − m

f -xi

f -xi

xi

f ,f -xi

y1-y2,f -xi

f -xi
xi

f ,f -xi

f -y1-y2,f -xi

5 − m

4 − m

(2.13)

for k = 2m − 1 and 2 ≤ m ≤ 4. Decompactifying f of S0 leads to the Calabi-Yau

threefold

62m−5 52m−7 44−m

5−m 14−m

20−3me 3
(4−m)+2

6−m
24−m

8−mh e he e-
∑

xi

h

eh

74−m

7−m

h+(5-m)f e

e

f -xi

5 − m 4 − m
4 − m

f -xi

f -xi

xi

f ,f -xi

y1-y2,f -xi

f -xi
xi

f ,f -xi

f -y1-y2,f -xi

5 − m

4 − m

(2.14)

which describes the 5d gauge theory e7 +
(

9
2

− m
)

F for 2 ≤ m ≤ 4. Studying the

Calabi-Yau threefold along the direction (3.5), we find that it describes a 5d SCFT for

2 ≤ m ≤ 4.
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3 Criterion for surface decoupling

In this section, we will discuss a general procedure for decompactifying a compact

surface7 Si in a Calabi-Yau threefold X. We would like to decompactify Si such that

the rest of the Calabi-Yau threefold remains compact. This means that the gluing

curves Cα
ij in Si which glue Si to Sj must remain compact for all j 6= i and for all α.

In addition to these curves, we might also consider keeping some other curves Cα
i in Si

compact during the decompactification process.

Let M be the Mori cone of Si and let C0 be the sub-cone generated by non-negative

linear combinations of the curves Cα
ij and Cα

i . Now, consider a curve C in C0. It will

in general admit multiple decompositions of the form

C =
∑

nµCµ (3.1)

where Cµ are generators of the Mori cone of Si and nµ ≥ 0. Since the volume of all Cµ

must remain non-negative throughout the process and the volume of C must remain

finite, it follows that the volume of any Cµ appearing in any of the above decompositions

of C (with nµ 6= 0) must remain finite. In this way, considering all C ∈ C0, we find a

set S0 of Mori cone generators which must remain compact but which are not in C0.

Let C1 be the sub-cone of M generated by the curves in C0 and S0. We again study

decompositions of the form (3.1) for every curve C ∈ C1. This leads us to a set of Mori

cone generators S1 which must remain compact but are not in C1. Joining C1 and S1,

we obtain another sub-cone C2 of the Mori cone. This process will converge at some

step r where Sr will be empty. Then, Cr ⊆ M is the sub-cone containing all the curves

that must remain compact during the decompactification process.

If Cr = M, then it is not possible to decompactify Si while keeping the rest of the

Calabi-Yau threefold compact. If Cr is a proper subset of M, then we can decompactify

the curves in M − Cr thus decompactifying the surface Si.

3.1 Examples

Let us study some examples of decoupling surfaces using the above criteria:

1. First, let us consider decoupling S0 in (2.2) whose Mori cone is generated by e

and f . The only gluing curve is h which can be written as

h = e + f (3.2)

implying that both the generators must remain compact, and thus it is impossi-

ble to decompactify S0 while keeping the rest of the Calabi-Yau threefold (2.2)

compact.

7From now on, we will refer to 2-cycles as curves and 4-cycles as surfaces.
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2. Now, let us consider the Calabi-Yau threefold associated to the untwisted com-

pactification of the 6d SCFT carrying sp(1) on −1 curve

110

1

2e+f 2h-
∑

xi00 (3.3)

Flop n blowups in S1 to obtain

110−n

1

2e+f -
∑

xi 2h-
∑

xi0n

0 (3.4)

We claim that we cannot decouple S0 until n ≥ 4. To see this, notice that we can

write the gluing curve as

2e + f −
∑

xi = e +
(

e + f −
∑

xi

)

(3.5)

Since
(

e + f −
∑

xi

)2
≥ −1 (3.6)

for n < 4, e + f −
∑

xi exists in the Mori cone and hence (3.5) is a valid decom-

position, from which we learn that e must remain compact. Now notice that

e = (e − xi) + xi (3.7)

for all blowups xi, implying that e − xi and xi must remain compact. For n = 3,

we can also write the gluing curve as

2e + f −
∑

xi = (e − x1) + (e − x2) + (f − x3) (3.8)

We can also permute x1, x2, x3 on the right hand side of the above equation.

Thus, f − xi for all xi must also remain compact. Similarly, the reader can show

that all f − xi must remain compact for the n = 1, 2 cases as well, and f must

remain compact for the n = 0 case. This exhausts all the generators of the Mori

cone and we find that it is impossible to decouple S0 for n < 4.

For n = 4, we must keep e + f − xi − xj − xk compact for any three distinct

blowups xi, xj , xk. We must also keep e − xi compact for all xi. But there are no

restrictions on f − xi or xj and we can decompactify all of them. This leads us

to the Calabi-Yau threefold
16

1 (3.9)

which describes the 5d gauge theory su(2) + 6F. The compact curves e + f − xi −

xj − xk and e − xi do not intersect the gluing curve 2e + f −
∑

xi. Thus they
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are infinitely far separated from the su(2) + 6F theory8. That is, they give rise to

some decoupled massive states.

This decompactification process can also be understood as the ungauging of a

gauge algebra. To see this, notice that the Calabi-Yau threefold (3.4) for n = 4

admits an isomorphic description9 as

12+4

0

f f -
∑

xi

04

0 (3.10)

which describes the 5d gauge theory with gauge algebra su(2) ⊕ su(2), a hyper in

bifundamental and four hypers in fundamental of each su(2). Then the decom-

pactification process discussed above is simply the tuning of the gauge coupling

of the su(2) described by S0 to zero, and the BPS string being decoupled is the

BPS monopole associated to su(2). The decoupled massive BPS states can be

identified with the four hypers of the su(2) which is being ungauged.

Thus, according to our analysis, we cannot obtain su(2)+(10−n)F for 0 ≤ n ≤ 3

by integrating out a BPS string from the 5d KK theory obtained by an untwisted

compactification of the 6d SCFT carrying sp(1) on −1 curve. This is consistent

since it is known that su(2) + mF is UV complete only for m ≤ 8.

3. In our final example, we will discuss a 5d KK theory which can flow to other

5d KK theories upon integrating out BPS strings. In the above two examples,

the theory obtained after the flow was a 5d SCFT rather than a 5d KK theory.

The 5d KK theory we will discuss arises via untwisted compactification of the 6d

SCFT carrying so(7) on −1 curve. The associated Calabi-Yau threefold (in one

of its flop frames) is

16+2

7

21 36

6

f -xi

e

h + 2f

e2h

f -xi

02

1 e e

62

f -xi

f -yi

(3.11)

8More concretely, the curves connecting the decoupled compact curves and the gluing curve go to

infinite volume. For example, xi connects 2ef −
∑

xi to e−xi since it intersects both at a single point.
9See [9, 18] for more details on such isomorphisms.
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We would like to decompactify S1, which is not possible in this flop frame. To

see it, notice that the sum of the gluing curves e, f − xi, f − yi is

h + f −
∑

xi −
∑

yi = (h −
∑

xi −
∑

yi) + f (3.12)

which implies that the curves h −
∑

xi −
∑

yi and f must remain compact. The

compactness of f implies that all of the f −xi and xj must remain compact. Thus

all the Mori cone generators must remain compact, and the surface S1 cannot be

decompactified. This is good because if S1 could be decompactified, we would

obtain the Calabi-Yau threefold

21 36

6e2h
02

1 e e (3.13)

which describes the 5d gauge theory so(7)+2F+6S [18] (where S denotes a hyper

in spinor representation). However, this 5d gauge theory exceeds the bounds

presented in [1] and hence cannot describe a 5d SCFT or a 5d KK theory.

However, if we flop an xi living in S3 of (3.11) to obtain

15+2+2

7

21 35

6

f -xi, f -
∑

zi

e

h + 2f

e2h

f -xi, f

02

1 e e

62

f -xi

f -yi

(3.14)

then we can decompactify S1 by decompactifying all xi, yi, zi living in S1 and

obtain
21 35

6e2h
02

1 e e (3.15)

which describes the 5d gauge theory so(7) + 2F + 5S which should be a 5d KK

theory according to [1]. Indeed, it is shown in [28] that the KK theory obtained

by untwisted compactification of 6d SCFT carrying g2 on −1 curve is described

by the 5d gauge theory so(7) + 2F + 5S.

– 13 –



We can also flop an xi living in S0 of (3.11) to obtain

16+1+2

7

21 36

6

f -xi

e

h + 2f

e2h

f -xi

01

1 e e

62

f -x, f

f -y, f -
∑

zi

(3.16)

in which we can decompactify S1 to obtain

21 36

6e2h
01

1 e e (3.17)

which describes the 5d gauge theory so(7) + F + 6S which is equivalent to the 5d

KK theory obtained by twisting the 6d SCFT carrying su(4) on −1 curve by the

outer automorphism of su(4) [28].
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