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Abstract

Assembly line balancing (ALB) allocates individual tasks to work stations while respecting the physical, safety, and quality constraints. Two-
sided assembly lines are generally used in the production of medium or large-sized products (e.g. automotive, household appliance). We
considered several characteristics including zoning constraints, the task to task relationships, tooling and station dependent constraints to offer
the real-world environment. The most common two objectives for the ALB are minimizing the number of workers (type-1) and minimizing the
cycle time (type-2). This article presents an integer programming formulation for both type-1 and type-2 ALB problems and metaheuristics to
solve this complex problem. Even if ALB gives better results than the current line balance that our industry partner applied, it cannot be guaranteed
that the amount of daily production will increase due to randomness in the line. We simulate the proposed line balances to provide a testing

platform for line balancing results and to help identify inefficiencies and bottlenecks in the system.
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1. Motivation

Assembly line balancing (ALB) is a production efficiency
improvement strategy that assigns predetermined tasks to work
stations while respecting the precedence order and problem-
specific constraints. The main objective of ALB is to distribute
workload evenly among workers and to increase the output rate.
Some mandatory steps to achieve this objective are as follows:

e Determine tasks and task properties
Determine the precedence relationship among tasks
Estimate (observe) task times
Assign tasks to the stations
Calculate efficiency

We assign tasks with one of two points of view: either
minimize the number of workers subject to the amount of time
allowed per station (cycle time) or minimize the cycle time
subject to the number of workers available.

Mid-sized products like major household appliances are
generally produced in two-sided assembly lines. The two-sided

2351-9789 © 2020 The Authors. Published by Elsevier B.V.

assembly line can perform tasks on both sides where there are
sequential stations. Unlike multi-manned assembly lines that
produce large-sized products, such as cars, two-sided assembly
lines allow only one person to work on either side of the line.
Parallel stations facing each other are called mated-stations.

The analytical statement of ALB was first introduced by
Bryton (1954) [1] and there has been an enormous increase in
the number of articles on this subject ever since. As the
competition increased among the companies and they attempt
to cut costs, manufacturers that do not apply ALB become
unable to survive. Since ALB is so important for mass
production, various mathematical formulation and exact
solution methods have been presented over the last decades. It
is well-known that ALB is an NP-hard problem as it is a
reduction of the partition problem [2]. Because it is often
difficult to find an optimal solution, especially for larger data
sets, many heuristic and metaheuristic methods have been
developed to solve the ALB problem (ALBP).
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This project is intended to provide a method for ALB for a
company making products like washing machines. The current
techniques, as described in the literature review, may be
inappropriate for the case study because the exact scenario we
have is not represented. We investigate the appropriateness of
these approaches.

We present an integer programming formulation and a hill-
climbing algorithm to solve two-sided ALBP (TALBP) with
real-world constraints, such as zoning, tooling, adjacency, and
station dependent constraints. These supplementary constraints
are explained in detail in Section 3. Finally, we present a
simulation model to provide information about the future
possible reactions of the production system against various
situations, according to arranged scenarios.

The remaining of this paper organized as follows. Related
literature is given in Section 2. We define the problem
environment and real-world constraints in Section 3. An integer
programming formulation and a metaheuristic algorithm are
proposed in Section 4 and Section 5, respectively. Section 6
involves simulation modeling. The results obtained with this
project presented in Section 7. Lastly, the discussion about the
process of problem solving and implementation is shared in
Section 8.

2. Literature Review

The very first study that might be considered as line
balancing was in Bryton’s MS thesis but the first published
study came from Salveson who formulated a simple assembly
line balancing problem (SALBP) [3]. SALBP is based on a set
of limitations [4]:

1.  Mass-production of one homogeneous product.
2. All tasks are processed in a predetermined mode.
3. Paced line with fixed common cycle time according

to market demand.

4.  The line is considered to be serial with no feeder lines

or parallel elements.

5. The processing sequence of tasks is subject to

precedence restrictions.

6.  Deterministic task times.

7.  No assignment restrictions of

precedence constraints.

8. No task can be split among two or more stations.

9.  All stations are equally equipped with concerning

machines and workers.

SALB problems differ according to objectives. Scholl
categorized SALB problems into four categories [5]:

e  SALBP-1 minimizes the number of stations for a given

cycle time (type-1 objective).

e  SALBP-2 minimizes the cycle time for a given number

of stations (type-2 objective).

e  SALBP-E minimizes the cycle time and the number of

stations (minimizes the line efficiency).

e SALBP-F finds a balance for a given number of stations

and a given cycle time.

Limitations (7) and (9) do not hold in our problem.
Variations of these limitations are called as general ALB
(gALB). Real-life problems have additional restrictions to the
precedence constraints like tooling, zoning, worker skill,
resource, and equipment. Sivasankaran and Shahabudeen

tasks besides

distinguished the ALB problems based on three main features
to present a well-structured review [6]:
e  Number of models produced in the line
o Single model
o Multi model/Mixed model
e  The variation of task times
o Deterministic task times
o  Stochastic task times
e  The variation of flow
o Straight type
o Utype

Our problem is considered as a single model with
deterministic task times and straight type ALB with both type-
1 and type-2 objectives, thus we highly focus on this type of
problem in the literature. Since the ALBP is an NP-hard
problem [7], a large number of exact and heuristic algorithms
have been proposed to solve the ALB problems in the literature.

The first mathematical formulation of SALBP, introduced
by Bowman, used linear programming [8]. White presented a
modified version of Bowman’s formulation [9]. Thangavelu
and Shetty presented a revised version of the Bowman-White
zero-one integer programming formulation so that certain steps
in Geoffrion’s 0-1 integer programming algorithm can be
simplified or eliminated to solve SALBP-1 [10]. The historical
development of the SALBP mathematical models is given by
Salama et al. [11]. Exact solution methods for SALBP-1 can
be separated into branch and bound approaches and dynamic
programming processes [12]. In the literature, there are many
studies that applied branch and bound methods to find an exact
solution for the applied SALBP [13-20]. Various dynamic
programming methods have been used to solve SALBP,
especially with stochastic task times [21-25].

Heuristic solution methods for SALBP mostly depend on
ranked positional weight (RPW) algorithms [26]. The RPW
method takes into account all task times and the precedence
relationship. It is designed for fixed cycle time problems
(SALBP-1). The first step is to draw a precedence diagram.
Then, sort the tasks according to the positional weight, which
is equal to the task duration plus the total duration of all of its
successor tasks. Once the tasks are ranked in descending order
of positional weight, assign the tasks to the first station as the
cycle time allows. Then continue with the next station by
following precedence constraints. Fathi et al. compared 20
different heuristics on 100 problems and the results showed that
the RPW heuristic undoubtedly produced better results for the
straight-line configuration [27]. Kim et al. used a modified
version of RPW to find an initial solution and used a genetic
algorithm to solve TALBP [28].

Simulation models help management by showing how post-
change production will flow. Implementing a balanced line
without applying simulation can cause millions of dollars in
damage. Therefore, it is a must to see the results of the
assembly line balancing by simulation model as many
researchers did before in diverse industries [29-34].

Two-sided assembly lines consist of two connected serial
lines in parallel. The products are worked concurrently at both
sides of the line. This is generally the case when the product is
mid-sized or larger. Studies mostly focus on one-sided ALB,
with few studies targeting two-sided ALB. This type of ALBP
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Figure 1. Distances used for MTM time estimation

was addressed and solved firstly by Bartholdi [35]. Baykasoglu
and Dereli suggested the first study on the two-sided ALB with
zoning constraints and they proposed an ant-colony-based
heuristic algorithm to solve the problem [36]. A genetic
algorithm was created by Kim et al. to solve two-sided ALB
and they also presented a mathematical formulation to lead the
future works on this area [37]. Gansterer and Hartl suggested
SALBP and TALBP formulations with real-world constraints
like task or machine incompatibilities and they provided
feasible test instances for two-sided ALB [38].

Other characteristics of gALB have been considered
recently. Pearce et al. presented an integer programming model
and a combined heuristic of RPW, last-fit-increasing
improvement and iterative blocking scheme for a complex two-
sided ALB model of automotive production. They included
several additional constraints for task-to-task relationships,
work-station characteristics and parallel worker zoning
interactions [39]. Chen et al. proposed a two-phased genetic
algorithm and a mathematical formulation to solve ALBP
including multi-skilled worker constraints [40]. Bautista et al.
study the SALBP-1 with additional incompatibilities between
tasks. They improved a greedy randomized adaptive search
procedure and genetic algorithm to solve the problem [41].

3. Problem environment and supplementary constraints

The field of this study is a major household appliance
industry and the washing machine is considered a
representative product. Because it is a medium-sized product
and appropriate for two people to work at the same time, it is
produced on two-sided lines. There are some different types of
characteristics listed below to ensure that the real-world system
requirements are met. Additionally, the time estimation method
we used is explained below.

3.1. Time Estimation

The individual task times are required to solve a real-world
problem. Collecting task times with traditional times study
methods requires so much time when the number of tasks is
large. Thus, we used a validated technique for assembly time
estimation called Methods Time Measurement (MTM). MTM

is a time estimation method commonly used in both industry
and academia [42,43]. MTM times were used for the estimation
of common tasks like “get” and “place”. To ensure the time
estimations are accurate as possible, a series of distances to key
points on the machine were collected using the remaining body
from the machine teardown. These distances were collected
using a laser measure in several different machine orientations
and station layout scenarios, as shown in Figure 1. Another
advantage of using the MTM approach is that times can be
adjusted based on the size and handling difficulty of parts, the
body motions needed to perform assembly in hard-to-reach
areas, and general fluctuations in assembly times. The
remaining assembly tasks in the task model that could not be
accurately estimated using MTM were collected using
traditional time study techniques.

3.2. Zoning constraints

Zoning restrictions are introduced because the size of the
work-piece may cause some restrictions. The washing
machines are produced in two-sided lines means that parallel
stations face the opposite side of the machine. Thus, we should
consider different available working zones for sides of the line.
A worker in a station cannot reach all the locations of the
machine. For example, if a worker works on the front lower
area of the machine, it is impossible to work on the back of the
machine at the same time and also it is not ergonomic for the
worker to work on the front upper side of the machine. Some
stations have platforms to let workers work on the upper side
of the machine. The zoning constraints were also used for
ergonomic reasons to prevent excessive bending and reaching.

Each task is required to be done on a specific area of the
machine. The product is divided into 16 pieces as shown in
Figure 2 and the list of the product zones is defined as
Z={DRBO, DRBI, DRFO, DRFI, DLBO, DLBI, DLFO, DLFI,
URBO, URBI, URFO, URFI, ULBO, ULBI, ULFO, ULFI,
URBT, ULBT, URFT, ULFT, URMT, ULMT}. Four letter
product zone codes correspond to down (D) or up (U), right (R)
or left (L), front (F) or back (B), inside (I) or outside (O) or top
(T), respectively as shown in Figure 2. Tasks usually require
access to more than one product zone and all these product
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Figure 2. The product zone directions and work zones of machine

zones should be covered (accessible) by the station to assign
the task to the station.

Each station is capable to reach different work zones
depending on the configuration of the machine. Washing
machines travel down the line in one of four configurations
(front leading, back leading, right leading and left leading),
which impacts where the workers can access the product. For
example, if the machine is right leading, the front and back of
the machine is accessible. Moreover, the presence of a platform
may either hinder or facilitate access to certain product zones.
The combination of machine orientation, platform and product
zones are required to determine if a task can be assigned to a
station. Work zones and their product zone coverages are given
in Table 1. For example, if the machine is back-facing and there
is no platform (NP) at a station, then a worker at that station
can access the DRBO product zone.

Table 1: Work zone coverages

Front Back Right Left

Product
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o
Z
o
el
Z
o
o
Z
o
o

Zones
DRBO
DRBI
DRFO
DRFI
DLBO
DLBI
DLFO
DLFI
URBO
URBI
URFO
URFI
ULBO
ULBI
ULFO
ULFI
URBT
ULBT
URFT
ULFT
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S 00000000 —~0 —~0 0000 = O —
S - O - 0 0000 —~0 —~0 0000 oo o
S 0O 000 —~O0 -0 0000 —~0 -0 o o O
—_ 0 - 0O 0~ O - 0O 0 00000 oo oo O

URMT 0 1 0 1 0 1 0 0
ULMT 0 1 0 1 0 0 0 1

3.3. Tooling and station dependent constraints

There are two types of tasks that require special tools or
equipment. The first task set requires tools that are available at
more than one station. Thus, tool required tasks are not fixed to
the station with tools. The second task set is the fixed tasks
which require special equipment that is available at only one
station. Thus, fixed tasks are pre-assigned to the fixed stations.
These tool and equipment requirements are added to the model
as set of constraints in addition to the precedence and zoning
constraints.

3.4. Adjacency Constraints

Some tasks are required to be processed consecutively by
the same worker. These tasks are called adjacent tasks.
Consider that task A is to get an object and task B is to install
that object to the washing machine. In that case, task B needs
to be done right after task A since the worker’s hands will be
unavailable to accomplish any other tasks. These tasks are
modelled separately because their standard times differ based
on aspects independently, such as part location on the side of
the line.

4. Integer programming

We present integer programming formulation for both type-
1 and type-2 gALBs to meet the demand of our industry
partner. In our specific problem, it is observed that most of the
tasks are required to be assigned to the front face of the
machine. So, the probability of a task and its immediate
predecessor task to be assigned to a mated station is low. Thus,
the problem is formulated as a one-sided gALB problem for the
integer programming and precedence check for the mated
stations is done as a post-processing step. These formulations
are extensions of formulations such those proposed by Pearce
et al. [39] but include exactly the characteristics we want. As
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exact models, our benchmark for the
metaheuristic.

The constraints mentioned in section 3 are included in the
formulation. The sets and input parameters used in the

formulation are given in Table 2 and Table 3, respectively.

they serve as

Table 2: Sets

Symbol Description Index
Set of tasks

Set of stations

Set of fixed stations

Set of non-machinery fixed stations
Set of machinery fixed stations

Set of tasks fixed at station k, Vk € F
Set of all predecessors of task 7

Set of all successors of task i

A IIATz R~
—-_— R R~

Table 3: Input Parameters

Symbol  Description
c Cycle time (sec) Note: Parameter for only model
type-1
Number of work locations i\}llgtec_:zParamctcr for only model

Duration of task i

&t

E; Earliest station that task i can be assigned
L; Latest station that task / can be assigned
o Total duration of tasks in P;

i Total duration of tasks in S;

Ty Total duration of fixed tasks assigned to station &, Vk € F
{1, if task i is an immediate predecessor of task j

Py 0, otherwise
@ {1, if tasks i and j are adjacency tasks
Y 0, otherwise
{1, if task i has to be assigned to station k
i 0, otherwise
1,if task i can be assigned to station k due to
Sik I work zone accessibility
0, otherwise
1,if task i is able to assigned to station k
eix I due to equipment necessity
0, otherwise
- {1,if Sik» € equal 1 and fixed station constraints allow
ik 0, otherwise

4.1. Decision variables

The decision variables for both models are given in Table 4.
Note that ¢, and ¢4, are variables for the only type-2 model,
while x;;, and y,, are for both models. To eliminate unnecessary
decision variables x;, is defined only if r;, equals one. The
factors that affect the formation of r;, are explained in the pre-
processing section.

Table 4: Decision Variables

Symbol  Description Valid for type

1,if task i is assigned to station k

Xix Tand II
0, else
1, if station k is active

Vi {O, else Tand II

Cy Cycle time of station k Only IT

Cmax max{c, | k € K} Only II

4.2. Pre-processing

Commercial solvers (e.g. GUROBI, CPLEX) have
improved drastically in recent years with the development of
advanced integer programming solution methods. Depending
on the size and nature of the problem, these commercial solvers
are even able to solve NP-hard problems in a reasonable time.
We reduced the number of variables in two ways; by computing
the earliest and latest available stations for each task [44] and
using environment restrictions.

The earliest and latest stations of tasks are computed as
follows:

E, = max{(max {k} | Vie B,Vk e F,q, =1)[z/ /C]} (1)
1, =min{min{k} | Vi e S, ¥k € Fq, =L[|K|+1-2'/ ]} 2)

To find the earliest station of task i, t¥ is divided by the
cycle time and rounded up. The resulting number is compared
with the station number k& which is the largest station ID among
the stations that any fixed task in P; is fixed to. E; equals to the
maximum of these two numbers. To find the latest station of
task 7, T7 is divided by the cycle time and rounded up, then it is
subtracted from the total number of stations plus one. The
resulting number is compared with the station number & which
is the smallest station ID among the stations that any fixed task
in P; is fixed to. L; equals to the minimum of these two
numbers.

A parameter matrix 7y is used to decide which variables to
define. We can think of two groups of tasks: fixed tasks, and
unfixed tasks. If task 7 is a fixed task and in set Ty, 1;;, equals
zero for all stations except the station k. If task 7 is an unfixed
task, then 7y, equals one when s;;, ey =1 and E; <k < L;.
There is a special case for fixed stations. If station £ is in the
set M or k is in the set N and 1, < C, then 1y, equals zero for
all the tasks except the tasks in Tj,. This pre-processing method
allows us to eliminate the fixed resource constraints, work-zone
constraints, and station interval constraints. As the variable x;;
is only defined when 1y, equals one, this condition is not
written for each constraint that includes variable x.

4.3. Formulation

Objective functions and distinctive constraints of type-1 and
type-2 gALB are given in Table 5 and Table 6, respectively.
Subsequently, the common constraints for the models are given
in Table 7. Types of constraints and objectives are grouped into
three categories. “T1” is only for the model type-1, “T2” is only
in the model type-2, and “C” constraints are the common
constraints involved in both models.

Table 5: Mathematical Model of Type-1 gALB

Constraint Formula Quantification and Condition Set

Min Yyex Vi (™)
Vk € K,Vk & F or Vk €

Yier(tixy) < Cyy Frt, <C (T1.1)

The objective of the type-1 model (T1) is to minimize the
total number of active work locations with given cycle time.
Constraints (T1.1) imply that the workload assigned to each
work station cannot exceed the cycle time.
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Table 6: Mathematical Model of Type-2 gALB

Constraint Formula Quantification and Condition Set
Min cpqy (T2)
Zkek Yk =W (T2.1)
Dier(tixu) = ¢ vk €K (T2.2)
Ck = Cmax vk €K (T2.3)
e (tiXy) < Ny vk €K (T2.4)

The objective of the type-2 model (T2) is to minimize the
cycle time with a given total available number of work
locations. Constraints (T2.1) guarantee that the number of
active work-stations is less than or equal to the number of
available work locations. Constraints (T2.2) impose that the
cycle time of a workstation equals the total duration of the tasks
assigned to that station. Constraint set (T2.3) helps the ¢ qy
variable to be larger than or equal to the longest cycle time.
Constraints (T2.4) ensure that a station with an assigned task
becomes active.

Table 7: Common Constraints for Type-1 and Type-2 Models

Constraint Formula Quantification and Condition Set
Yrex X =1 viel (C1)
Xy S1— vi,jjel, Vo =1..|K| - 2
PP Lifp;=1
Xk = Xjk Vi,j€l, Vk €K, if a;; =1 (C3)
xy € {0,1} Viel, VkeK (C4)
v, €{0,1} vk €K (C5)

Constraint set (C1) ensures that all regular tasks are assigned
to exactly one work station. Set (C2) enforces precedence
constraints. Constraint set (C3) guarantees that the adjacency
tasks are assigned to the same stations. Some tasks require
fixed resources in exact stations since it is costly to change the
location of some equipment and machines. Constraints (C4)
and (C5) ensure that all decision variables are binary.

4.4. Post-processing

The problem is formulated in a way that the order of the
tasks inside stations is not addressed. Once the tasks are
assigned to stations, we run an algorithm to order the tasks
inside the station according to precedence and adjacency
constraints for each station. Likewise, the precedence
relationship inside the mated stations is not included in the
formulation. A post-process is used to check this issue. In the
case of mated station precedence violation, extra constraints to
block this violation is added and run the integer program again.
Consider a result in which we solved the problem and task A is
the immediate predecessor of task B and they are at the same
mated group. If the cycle time and the orders of tasks inside
mated stations do not allow task B to be done after task A, then
there is a violation. We add a constraint not to allow task A and
task B to be assigned these mated stations at the same time. In
this way, we keep the integer programming as small as
possible.

5. Metaheuristic

Metaheuristics are often used to solve large assembly line
balancing problems because they can solve problems more

quickly than integer programs even though they do not
guarantee an optimal solution. This was developed to minimize
the number of stations required for the production line, and the
constraints from the integer program were incorporated into the
metaheuristic.

5.1. Initial solution

To use this metaheuristic, first a feasible line balance needs
to be created. For this project, the ranked positional weight
technique was used [26]. First, it creates an order for the tasks
to be assigned in by using precedence and task time to weight
how carly the tasks should be placed, 1+ (tf /C) gives the
earliest station due to task times. Because precedence is
preserved, the balance is always feasible. In order of their
ranked positional weight, tasks are placed in stations where
precedence, station attributes, and cycle time allow. After all
the tasks have been allocated, a count of how many stations
were used is obtained. Algorithm 1 is a pseudocode to create
the initial solution.

Algorithm 1: Assignment order using RPW

1 function RPW

2 assign fixed tasks to appropriate stations
3 for each task in task list do

4 for each station in model do

5 if all requirements are met then

6: place task in selected station
7

8

9

0

end if
next
next
end function

—_

5.2. Hill climbing algorithm

Using the initial solution, the hill climbing algorithm selects
the station that has the smallest allotted time. It attempts to
move each task to different feasible stations and closes stations
with no tasks in them. If the station cannot be closed, it is added
to the tabu list, the remaining station with the shortest allotted
time is selected, and the process is repeated. Pseudocode is
given in Algorithm 2.

Algorithm 2: Hill Climbing with Tabu List

1:  function HillClimbing

2 while fewer than 10 failed attempts do

3 select station with shortest time

4 for cach task assigned to the station do
S: for each station in use do
6.

7

8

9

if all requirements are met then
move task to new station

end if

: next
10: next
11: if all tasks in shortest station are moved then
12: close station
13: else
14: add shortest station to tabu list to prevent looping
15: end if
16: if no tasks were moved then
17: add an additional failed attempt
18: end if
19: loop

20: end function
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5.3. Abandoned hill climbing algorithm with tabu list

From this baseline, the hill climbing algorithm starts, and
switches the position of tasks in the order. If the resulting order
will satisfy precedence, it will run through the check to allocate
tasks. Ifthe new balance is feasible and requires fewer stations
than the previous, it is adopted as the new balance. By
checking multiple swaps, many possible solutions were
sampled. The algorithm was abandoned because little
improvement was seen between the initial solution and the final
solution. It is believed that this lack of improvement was
because the line balance was similar even when tasks were
swapped. Algorithm 3 is a pseudocode to create the initial
solution.

Algorithm 3: Abandoned Hill Climbing

1:  function AbandonedHillClimbing

2 for each task in list do

3 for each task after previous task do
4: switch the previous two tasks

5: test for precedence
6.
7
8

if precedence can be met then
using new order create new balance
if fewer stations are needed then

9: replace original balance
10: end if
11: end if
12: next
13: next

14:  end function

6. Simulation modeling

A simulation model is developed in Arena (a commercial
simulation software product) to (1) understand and represent
the current-state processes, (2) track metrics that help identify
inefficiencies in the system, and (3) provide a validation tool
for testing wvarious throughput improvement scenarios
developed by the research team and the project sponsors.

6.1. Methodology

The simulation project follows a standard template
involving problem formulation, identifying objectives,
collecting input data, developing a base model, verifying the
processes, validating the current-state operations, developing
pertinent metrics to measure the objectives, developing
scenarios to be tested, conducting simulation runs, collecting
and analyzing output, and documenting results.

6.1.1. Objective

The objective is to validate the expected throughput increase
of the assembly line after incorporating the results from the
line-balancing exercise. The output of the line-balancing
exercise is the optimal number and cycle times of tasks at each
workstation, which serves as the input to the simulation model.

6.1.2. Inputs required

The primary inputs require, which are the number of tasks
at each workstation and the process time for each task, are
organized in a spreadsheet in Excel. Flexibility in changing
various input parameters — add new tasks at a workstation, edit
task data, remove a task from a workstation, or move a task
within or between workstations — is built into the input file
using VB macros.

6.1.3. Developing base model and metrics

Initially, a base model is developed along with relevant
metrics to validate the current state of operations for the
machining section of one of the assembly lines. These metrics
includes total units produced in a shift, hourly throughput, and
station utilization. Once the processes in the machining section
are validated, the model is used as the standard for building the
remaining sections — assembly, inspection, and final.

6.1.4. Incorporating variability in task times

After the initial model is created, an option to conduct
simulations with or without variability in task times is
incorporated, resulting in two scenarios:

* Ideal task-times scenario — The workstations in the
model used the most likely time specified for each task,
thus eliminating variability due to process times.

»  Stochastic task-times scenario — The workstations in the
model used a triangular distribution of the times for
each task (i.e., a minimum time, a most likely time, and
a maximum time) in order to account for actual
variability in processing times for workstations where
an operator is assigned to complete tasks. Note that the
workstations with machines are expected to have far
less variability than the workstations where operators
performs manual tasks.

6.1.5. Incorporating loss in production time

After analyzing data for loss in production time recorded
over the past six months, the following reasons are identified
and incorporated into the model:

*  Machine breakdowns

* Internal material shortages and material defects

*  Process unbalance

The model simulates lost production time in the form of
mean time between failures (MTBF) and the mean time to
repair (MTTR), which are calculated based on the received
input data. The MTBF is computed by dividing the total
scheduled production time by the total number of breakdowns
for each reason for loss. The MTTR is computed by dividing
the total downtime by reason for loss by the total number of
breakdowns for each reason for loss. Both the MTBF and
MTTR are exponentially distributed. Further, since the
analyzed data only captured lost time if it is greater than five
minutes, an additional five minutes is added to the MTTR.

6.2. Simulation scenarios based on downtime
Simulations can be conducted with or without incorporating

downtimes, with further flexibility in choosing any
combination of reasons for loss in production time. One
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Figure 3. Comparison of observed and simulated hourly throughput for data from May to August 2019

example would be to test only the effect of machine
breakdowns on the throughput of the lines. The locations on the
line that cause a loss in time are identified from meetings with
subject matter experts at the plant. It is determined that process
unbalance is most likely to occur at one of two specific
locations, while material defect and internal material shortage
is most likely to occur at six other locations. The machines that
are most likely to breakdown are not known with certainty, so
three machines in different sections of the line are selected
initially. At first, the likelihood that a downtime would occur is
equally distributed between these locations. After further
discussions with the subject matter experts, an option to test the
effect of downtime occurring at a specific machine on the
throughput of the line is incorporated. Functionality that allows
the user to alter the percentage of time a breakdown occurred
at any given machine is also added.

6.3. Model validation

The above scenarios are simulated with ideal and stochastic
task times for five replications of 20 shifts each with five-
hundred and eighty minutes of available production time. The
results are collected after a warm-up period of three hours,
introduced to achieve stable running conditions. Output
statistics, including total units produced in a shift, hourly
throughput, and station utilization, are collected for each of the
scenarios. For validating the model, the results are compared
with the actual production data collected over the same time
period. The model produces comparable production levels over
the time period from May to August 2019. Figure 3 reports the
observed hourly throughput for the 100 simulated shifts and the
average simulated hourly throughput.

7. Numerical Results

Two integer programs, type-1 and type-2 objective, and a
metaheuristic have been developed to offer various solutions to
our industrial partner. Although the integer program provides
better results than the metaheuristic in terms of the number of
stations used, it requires a commercial solver to be bought and

has a longer running time. The results are presented by
comparing the integer program and metaheuristic to show the
application advantages and disadvantages of the methods.

There are 315 individual tasks and 175 available work
stations in our problem. The number of available work stations
is more than twice the number of currently active stations - 73
stations are active presently.

7.1. Integer program and metaheuristic results

The integer program is modeled in Python 3.7.1 and solved
through GUROBI 7.0.1 solver. Finding the optimal solution for
the type-1 integer programming model takes around ten
minutes on a 64 bit Intel Core 17-8550U CPU (1.80 GHz) with
32 GB of RAM computer. The runtime and the optimality gap
for each type-2 integer program scenario are given in Table 8.
Although Python is an open-source programming language,
GUROBI is not free for non-academic purposes.

The metaheuristic algorithm is coded and solved in Visual
Basic for Applications (VBA). The runtime to find the best
solution takes approximately 1.5 seconds on a 64 bit Intel Core
17-8565U CPU with 16 GB of RAM computer. VBA is not an
open-source programming language. However, most
companies have access to the Microsoft Office including our
partner. Therefore, there is no need to purchase a software to
run the ALB metaheuristic regularly. The metaheuristic could
have been written in another open-source programming
language other than VBA, however, our partner has already
Microsoft Office access and it is a plus that the engineers who
will implement the balanced assembly line are familiar with
VBA.

Focusing on the type-1 objective, the integer program has
found the optimal solution as 59 work stations and the best
objective found by the metaheuristic is 67 work stations. While
the integer program decreases the number of required stations
by nearly 19%, metaheuristic decreases around 8%, compared
to the current implemented solution. In companies where the
rate of the absentee is low, a 19% decrease in the need for
workers can provide large long-term profit. It should be noted
that the integer program may not find the optimal solution for
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Figure 4. Comparison of IP and metaheuristic results

larger problems. The integer program will be able to provide a
worthy solution unless the problem size increases drastically.
The metaheuristics are more reliable in terms of generating
feasible solutions for larger problems, since the integer
program may run of out memory before a feasible solution is
found.

Focusing on the type-2 objective, we executed the integer
program with a given maximum number of stations ranging
from 59 to 69, resulting in the minimum cycle time for each
scenario; the integer program was given 30 minutes of solving
time, resulting in optimality gaps. After solutions were
gathered from the type-2 integer program, each cycle time was
used as a parameter for the metaheuristic. Formally, the results
of the metaheuristic were compared with the input parameters
of the integer program in Figure 4. Furthermore, for better
understanding of the optimality of the type-2 integer program
and the runtime comparison with metaheuristic is summarized
in Table 8.

Table 8: Comparison between Integer Program and Metaheuristic

Cycle Time  GapinIP  IP Run Time (s) MH Run Time (s)
12.42 0.00% 102.74 1.9
12.50 0.70% 1810.28 1.75
12.62 1.64% 1811.98 1.77
13.00 4.50% 1811.81 1.33
13.17 4.89% 1811.03 1.36
13.40 5.73% 1811.13 1.75
13.83 7.88% 1810.62 1.35
13.95 7.17% 1811.23 1.81
14.30 8.57% 1811.34 1.64
14.67 9.79% 1810.74 1.35

7.2. Simulation results

Results were gathered for six scenarios:
e Current-state — with and without
downtime

incorporating

|
([ ° ®
®e
e °
13.5 14 14.5 15
* Balanced line — with and without incorporating

downtime

* Balanced line with air-driver adjustments — with and
without incorporating downtime

Note:

* The balanced line refers to task allocations at
workstations obtained using the integer program and
the metaheuristic.

*  The task times for all scenarios utilized the MTM times.

*  “Air-driver adjustments” imply that air-driver tools
could be installed at any of the workstations on the line,
thus eliminating some of the restrictions on task
allocations resulting in cycle time reduction.

Table 9 summarizes these results along with expected
improvement. The hourly throughput results achieved in
simulations using the integer program and the metaheuristic
were the same despite different task allocations because both
methods were constrained by the same bottleneck workstation
that drove throughput. In other words, a single work station task
allocations set the cycle time for the entire line and is the
slowest station, and results in being the bottleneck.

Table 9: Simulation Results

Simulated Hourly Throughput
. Throughput Improvement

Scenarios .,

No With Per Per shift

Downtime Downtime hour

Current-state 178 168 - -
Balanced line 211 196 28 215
Balanced line with 237 216 48 368

air-driver adjustments

8. Conclusion

This paper is conducted to balance a major household
appliance assembly line and washing machine is selected as
representative product. We balance a TALBP with additional
environment constraints in two different ways: integer program
and metaheuristic. The real world environment requirements
for the washing machine assembly line are introduced. The
mathematical formulation for IP and the algorithm for hill
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climbing with tabu list are proposed. Since the task distribution
allows, integer program is modeled as one-sided assembly line
balancing problem. In this way, we are able to solve the
problem in optimal way with post-processing to ensure that the
results generally do not have mated station precedence
violations. The main contribution of this paper is solving a case
study with the real-world environment requirements by
comparing integer programming and a metaheuristics with the
detailed pros and cons of these two methods. Additionally, the
size of the integer programming formulation is reduced by
applying some problem specific techniques to be able to solve
the problem in a reasonable time which can be very helpful for
the process of solving other case studies.

The results obtained from both methods are better than the
current system consequently both IP and metaheuristics can be
used for the long-term planning. The pros and cons of the two
methods are discussed considering the numerical results, time
requirement, software requirement and the usability.
Furthermore, the simulation model is used to examine the flow
of the balanced line for different scenarios. The model is
executed for both IP and metaheuristic results. Since the same
cycle time used for both models, the bottleneck stations have
the same workload. Therefore, the hourly throughput for the
results gathered from different methods have the same number
of products. Nevertheless, the hourly throughput is increased
significantly compared to current production especially when
the line is flexible about the air-driver adjustments.
Consequently, our results show that the company has an
inefficient assembly line with respects to number of workers,
workload balance, number of stations, and hourly throughput.
The company can adapt to the proposed assembly line by
replacing some tools and educating workers for the new set of
tasks in a couple of weeks.
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