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Abstract 

Assembly line balancing (ALB) allocates individual tasks to work stations while respecting the physical, safety, and quality constraints. Two-
sided assembly lines are generally used in the production of medium or large-sized products (e.g. automotive, household appliance). We 
considered several characteristics including zoning constraints, the task to task relationships, tooling and station dependent constraints to offer 
the real-world environment. The most common two objectives for the ALB are minimizing the number of workers (type-1) and minimizing the 
cycle time (type-2). This article presents an integer programming formulation for both type-1 and type-2 ALB problems and metaheuristics to 
solve this complex problem. Even if ALB gives better results than the current line balance that our industry partner applied, it cannot be guaranteed 
that the amount of daily production will increase due to randomness in the line. We simulate the proposed line balances to provide a testing 
platform for line balancing results and to help identify inefficiencies and bottlenecks in the system. 
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1. Motivation 

Assembly line balancing (ALB) is a production efficiency 
improvement strategy that assigns predetermined tasks to work 
stations while respecting the precedence order and problem-
specific constraints. The main objective of ALB is to distribute 
workload evenly among workers and to increase the output rate. 
Some mandatory steps to achieve this objective are as follows:  

 Determine tasks and task properties 
 Determine the precedence relationship among tasks 
 Estimate (observe) task times 
 Assign tasks to the stations 
 Calculate efficiency 
We assign tasks with one of two points of view: either 

minimize the number of workers subject to the amount of time 
allowed per station (cycle time) or minimize the cycle time 
subject to the number of workers available. 

Mid-sized products like major household appliances are 
generally produced in two-sided assembly lines. The two-sided 

assembly line can perform tasks on both sides where there are 
sequential stations. Unlike multi-manned assembly lines that 
produce large-sized products, such as cars, two-sided assembly 
lines allow only one person to work on either side of the line. 
Parallel stations facing each other are called mated-stations. 

The analytical statement of ALB was first introduced by 
Bryton (1954) [1] and there has been an enormous increase in 
the number of articles on this subject ever since. As the 
competition increased among the companies and they attempt 
to cut costs, manufacturers that do not apply ALB become 
unable to survive. Since ALB is so important for mass 
production, various mathematical formulation and exact 
solution methods have been presented over the last decades. It 
is well-known that ALB is an NP-hard problem as it is a 
reduction of the partition problem [2]. Because it is often 
difficult to find an optimal solution, especially for larger data 
sets, many heuristic and metaheuristic methods have been 
developed to solve the ALB problem (ALBP). 
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This project is intended to provide a method for ALB for a 
company making products like washing machines. The current 
techniques, as described in the literature review, may be 
inappropriate for the case study because the exact scenario we 
have is not represented. We investigate the appropriateness of 
these approaches. 

We present an integer programming formulation and a hill-
climbing algorithm to solve two-sided ALBP (TALBP) with 
real-world constraints, such as zoning, tooling, adjacency, and 
station dependent constraints. These supplementary constraints 
are explained in detail in Section 3. Finally, we present a 
simulation model to provide information about the future 
possible reactions of the production system against various 
situations, according to arranged scenarios. 

The remaining of this paper organized as follows. Related 
literature is given in Section 2. We define the problem 
environment and real-world constraints in Section 3. An integer 
programming formulation and a metaheuristic algorithm are 
proposed in Section 4 and Section 5, respectively. Section 6 
involves simulation modeling. The results obtained with this 
project presented in Section 7. Lastly, the discussion about the 
process of problem solving and implementation is shared in 
Section 8. 

2. Literature Review 

The very first study that might be considered as line 
balancing was in Bryton’s MS thesis but the first published 
study came from Salveson who formulated a simple assembly 
line balancing problem (SALBP) [3]. SALBP is based on a set 
of limitations [4]: 

1. Mass-production of one homogeneous product. 
2. All tasks are processed in a predetermined mode. 
3. Paced line with fixed common cycle time according 

to market demand. 
4. The line is considered to be serial with no feeder lines 

or parallel elements. 
5. The processing sequence of tasks is subject to 

precedence restrictions. 
6. Deterministic task times. 
7. No assignment restrictions of tasks besides 

precedence constraints. 
8. No task can be split among two or more stations. 
9. All stations are equally equipped with concerning 

machines and workers. 
SALB problems differ according to objectives. Scholl 

categorized SALB problems into four categories [5]: 
 SALBP-1 minimizes the number of stations for a given 

cycle time (type-1 objective). 
 SALBP-2 minimizes the cycle time for a given number 

of stations (type-2 objective). 
 SALBP-E minimizes the cycle time and the number of 

stations (minimizes the line efficiency). 
 SALBP-F finds a balance for a given number of stations 

and a given cycle time. 
Limitations (7) and (9) do not hold in our problem. 

Variations of these limitations are called as general ALB 
(gALB).  Real-life problems have additional restrictions to the 
precedence constraints like tooling, zoning, worker skill, 
resource, and equipment. Sivasankaran and Shahabudeen 

distinguished the ALB problems based on three main features 
to present a well-structured review [6]: 

 Number of models produced in the line 
o Single model 
o Multi model/Mixed model 

 The variation of task times 
o Deterministic task times 
o Stochastic task times 

 The variation of flow  
o Straight type 
o U type 

Our problem is considered as a single model with 
deterministic task times and straight type ALB with both type-
1 and type-2 objectives, thus we highly focus on this type of 
problem in the literature. Since the ALBP is an NP-hard 
problem [7], a large number of exact and heuristic algorithms 
have been proposed to solve the ALB problems in the literature. 

The first mathematical formulation of SALBP, introduced 
by Bowman, used linear programming [8]. White presented a 
modified version of Bowman’s formulation [9]. Thangavelu 
and Shetty presented a revised version of the Bowman-White 
zero-one integer programming formulation so that certain steps 
in Geoffrion’s 0-1 integer programming algorithm can be 
simplified or eliminated to solve SALBP-1 [10]. The historical 
development of the SALBP mathematical models is given by 
Salama et al. [11].  Exact solution methods for SALBP-1 can 
be separated into branch and bound approaches and dynamic 
programming processes [12]. In the literature, there are many 
studies that applied branch and bound methods to find an exact 
solution for the applied SALBP [13–20]. Various dynamic 
programming methods have been used to solve SALBP, 
especially with stochastic task times [21–25]. 

Heuristic solution methods for SALBP mostly depend on 
ranked positional weight (RPW) algorithms [26]. The RPW 
method takes into account all task times and the precedence 
relationship. It is designed for fixed cycle time problems 
(SALBP-1). The first step is to draw a precedence diagram. 
Then, sort the tasks according to the positional weight, which 
is equal to the task duration plus the total duration of all of its 
successor tasks. Once the tasks are ranked in descending order 
of positional weight, assign the tasks to the first station as the 
cycle time allows. Then continue with the next station by 
following precedence constraints. Fathi et al. compared 20 
different heuristics on 100 problems and the results showed that 
the RPW heuristic undoubtedly produced better results for the 
straight-line configuration [27]. Kim et al. used a modified 
version of RPW to find an initial solution and used a genetic 
algorithm to solve TALBP [28]. 

Simulation models help management by showing how post-
change production will flow. Implementing a balanced line 
without applying simulation can cause millions of dollars in 
damage. Therefore, it is a must to see the results of the 
assembly line balancing by simulation model as many 
researchers did before in diverse industries [29–34].  

Two-sided assembly lines consist of two connected serial 
lines in parallel. The products are worked concurrently at both 
sides of the line. This is generally the case when the product is 
mid-sized or larger. Studies mostly focus on one-sided ALB, 
with few studies targeting two-sided ALB. This type of ALBP  
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was addressed and solved firstly by Bartholdi [35]. Baykasoglu 
and Dereli suggested the first study on the two-sided ALB with 
zoning constraints and they proposed an ant-colony-based 
heuristic algorithm to solve the problem [36]. A genetic 
algorithm was created by Kim et al. to solve two-sided ALB 
and they also presented a mathematical formulation to lead the 
future works on this area [37]. Gansterer and Hartl suggested 
SALBP and TALBP formulations with real-world constraints 
like task or machine incompatibilities and they provided 
feasible test instances for two-sided ALB [38]. 

Other characteristics of gALB have been considered 
recently. Pearce et al. presented an integer programming model 
and a combined heuristic of RPW, last-fit-increasing 
improvement and iterative blocking scheme for a complex two-
sided ALB model of automotive production. They included 
several additional constraints for task-to-task relationships, 
work-station characteristics and parallel worker zoning 
interactions [39]. Chen et al. proposed a two-phased genetic 
algorithm and a mathematical formulation to solve ALBP 
including multi-skilled worker constraints [40]. Bautista et al. 
study the SALBP-1 with additional incompatibilities between 
tasks. They improved a greedy randomized adaptive search 
procedure and genetic algorithm to solve the problem [41]. 

3. Problem environment and supplementary constraints 

The field of this study is a major household appliance 
industry and the washing machine is considered a 
representative product. Because it is a medium-sized product 
and appropriate for two people to work at the same time, it is 
produced on two-sided lines. There are some different types of 
characteristics listed below to ensure that the real-world system 
requirements are met. Additionally, the time estimation method 
we used is explained below.  

3.1. Time Estimation 

The individual task times are required to solve a real-world 
problem. Collecting task times with traditional times study 
methods requires so much time when the number of tasks is 
large. Thus, we used a validated technique for assembly time 
estimation called Methods Time Measurement (MTM). MTM 

is a time estimation method commonly used in both industry 
and academia [42,43]. MTM times were used for the estimation 
of common tasks like “get” and “place”. To ensure the time 
estimations are accurate as possible, a series of distances to key 
points on the machine were collected using the remaining body 
from the machine teardown. These distances were collected 
using a laser measure in several different machine orientations 
and station layout scenarios, as shown in Figure 1. Another 
advantage of using the MTM approach is that times can be 
adjusted based on the size and handling difficulty of parts, the 
body motions needed to perform assembly in hard-to-reach 
areas, and general fluctuations in assembly times. The 
remaining assembly tasks in the task model that could not be 
accurately estimated using MTM were collected using 
traditional time study techniques. 

3.2. Zoning constraints 

Zoning restrictions are introduced because the size of the 
work-piece may cause some restrictions. The washing 
machines are produced in two-sided lines means that parallel 
stations face the opposite side of the machine. Thus, we should 
consider different available working zones for sides of the line. 
A worker in a station cannot reach all the locations of the 
machine. For example, if a worker works on the front lower 
area of the machine, it is impossible to work on the back of the 
machine at the same time and also it is not ergonomic for the 
worker to work on the front upper side of the machine. Some 
stations have platforms to let workers work on the upper side 
of the machine. The zoning constraints were also used for 
ergonomic reasons to prevent excessive bending and reaching. 

Each task is required to be done on a specific area of the 
machine. The product is divided into 16 pieces as shown in 
Figure 2 and the list of the product zones is defined as 
Z={DRBO, DRBI, DRFO, DRFI, DLBO, DLBI, DLFO, DLFI, 
URBO, URBI, URFO, URFI, ULBO, ULBI, ULFO, ULFI, 
URBT, ULBT, URFT, ULFT, URMT, ULMT}. Four letter 
product zone codes correspond to down (D) or up (U), right (R) 
or left (L), front (F) or back (B), inside (I) or outside (O) or top 
(T), respectively as shown in Figure 2. Tasks usually require 
access to more than one product zone and all these product 

Figure 1. Distances used for MTM time estimation 



74	 I. Ozan Yilmazlar  et al. / Procedia Manufacturing 48 (2020) 71–81
4 Ozan Yilmazlar / Procedia Manufacturing 00 (2019) 000–000 

zones should be covered (accessible) by the station to assign 
the task to the station.  

Each station is capable to reach different work zones 
depending on the configuration of the machine. Washing 
machines travel down the line in one of four configurations 
(front leading, back leading, right leading and left leading), 
which impacts where the workers can access the product. For 
example, if the machine is right leading, the front and back of 
the machine is accessible. Moreover, the presence of a platform 
may either hinder or facilitate access to certain product zones. 
The combination of machine orientation, platform and product 
zones are required to determine if a task can be assigned to a 
station. Work zones and their product zone coverages are given 
in Table 1. For example, if the machine is back-facing and there 
is no platform (NP) at a station, then a worker at that station 
can access the DRBO product zone.  

Table 1: Work zone coverages 

 Front Back Right Left 
Product 
Zones 

NP P NP P NP P NP P 

DRBO 0 0 1 0 1 0 0 0 
DRBI 1 0 1 0 0 0 0 0 
DRFO 1 0 0 0 1 0 0 0 
DRFI 1 0 0 0 0 0 0 0 
DLBO 0 0 1 0 0 0 1 0 
DLBI 1 0 1 0 0 0 0 0 
DLFO 1 0 0 0 0 0 1 0 
DLFI 1 0 0 0 0 0 0 0 

URBO 0 0 1 1 1 1 0 0 
URBI 1 1 1 1 0 0 0 0 
URFO 1 1 0 0 1 1 0 0 
URFI 1 1 0 0 0 0 0 0 
ULBO 0 0 1 1 0 0 1 1 
ULBI 1 1 1 1 0 0 0 0 
ULFO 1 1 0 0 0 0 1 1 
ULFI 1 1 0 0 0 0 0 0 
URBT 0 0 0 1 0 1 0 0 
ULBT 0 0 0 1 0 0 0 1 
URFT 0 1 0 0 0 1 0 0 
ULFT 0 1 0 0 0 0 0 1 

URMT 0 1 0 1 0 1 0 0 
ULMT 0 1 0 1 0 0 0 1 

3.3. Tooling and station dependent constraints 

There are two types of tasks that require special tools or 
equipment. The first task set requires tools that are available at 
more than one station. Thus, tool required tasks are not fixed to 
the station with tools. The second task set is the fixed tasks 
which require special equipment that is available at only one 
station. Thus, fixed tasks are pre-assigned to the fixed stations. 
These tool and equipment requirements are added to the model 
as set of constraints in addition to the precedence and zoning 
constraints. 

3.4. Adjacency Constraints 

Some tasks are required to be processed consecutively by 
the same worker. These tasks are called adjacent tasks. 
Consider that task A is to get an object and task B is to install 
that object to the washing machine. In that case, task B needs 
to be done right after task A since the worker’s hands will be 
unavailable to accomplish any other tasks. These tasks are 
modelled separately because their standard times differ based 
on aspects independently, such as part location on the side of 
the line. 

4. Integer programming 

We present integer programming formulation for both type-
1 and type-2 gALBs to meet the demand of our industry 
partner. In our specific problem, it is observed that most of the 
tasks are required to be assigned to the front face of the 
machine. So, the probability of a task and its immediate 
predecessor task to be assigned to a mated station is low. Thus, 
the problem is formulated as a one-sided gALB problem for the 
integer programming and precedence check for the mated 
stations is done as a post-processing step. These formulations 
are extensions of formulations such those proposed by  Pearce 
et al. [39] but include exactly the characteristics we want. As 

Figure 2. The product zone directions and work zones of machine 
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exact models, they serve as our benchmark for the 
metaheuristic. 

The constraints mentioned in section 3 are included in the 
formulation. The sets and input parameters used in the 
formulation are given in Table 2 and Table 3, respectively.  

Table 2: Sets 

Symbol Description Index 
I Set of tasks i 
K Set of stations k 
F Set of fixed stations k 
N Set of non-machinery fixed stations k 
M Set of machinery  fixed stations k 
𝑇𝑇𝑘𝑘 Set of tasks fixed at station k, ∀𝑘𝑘 ∈ 𝐹𝐹 i 
𝑃𝑃𝑖𝑖 Set of all predecessors of task i i 
𝑆𝑆𝑖𝑖  Set of all successors of task i i 

Table 3: Input Parameters 

Symbol Description  

C Cycle time (sec) Note: Parameter for only model 
type-1 

W Number of work locations Note: Parameter for only model 
type-2 

𝑡𝑡𝑖𝑖  Duration of task i 
𝐸𝐸𝑖𝑖 Earliest station that task i can be assigned 
𝐿𝐿𝑖𝑖 Latest station that task i can be assigned  
τ𝑖𝑖

𝑃𝑃 Total duration of tasks in 𝛲𝛲𝑖𝑖 
τ𝑖𝑖

𝑆𝑆 Total duration of tasks in 𝑆𝑆𝑖𝑖 
τ𝑘𝑘 Total duration of fixed tasks assigned to station k, ∀𝑘𝑘 ∈ 𝐹𝐹 
𝑝𝑝𝑖𝑖𝑖𝑖  {1, if task 𝑖𝑖 is an immediate predecessor of task 𝑗𝑗

0, otherwise                                                                     

𝑎𝑎𝑖𝑖𝑖𝑖  {1, if tasks 𝑖𝑖 and 𝑗𝑗 are adjacency tasks
0, otherwise                                               

𝑞𝑞𝑖𝑖𝑖𝑖 {1, if task 𝑖𝑖 has to be assigned to station 𝑘𝑘 
0, otherwise                                                        

𝑠𝑠𝑖𝑖𝑖𝑖 {
1, if task 𝑖𝑖 can be assigned to station 𝑘𝑘 due to 

work zone accessibility
0, otherwise                                                                

 

𝑒𝑒𝑖𝑖𝑖𝑖 {
1, if task 𝑖𝑖 is able to assigned to station 𝑘𝑘

due to equipment necessity
0, otherwise                                                      

 

𝑟𝑟𝑖𝑖𝑖𝑖 {1, if 𝑠𝑠𝑖𝑖𝑖𝑖, 𝑒𝑒𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
0, otherwise                                                                                        

 

4.1. Decision variables 

The decision variables for both models are given in Table 4. 
Note that 𝑐𝑐𝑘𝑘  and 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  are variables for the only type-2 model, 
while 𝑥𝑥𝑖𝑖𝑖𝑖  and 𝑦𝑦𝑘𝑘  are for both models. To eliminate unnecessary 
decision variables 𝑥𝑥𝑖𝑖𝑖𝑖  is defined only if 𝑟𝑟𝑖𝑖𝑖𝑖  equals one. The 
factors that affect the formation of 𝑟𝑟𝑖𝑖𝑖𝑖 are explained in the pre-
processing section. 

Table 4: Decision Variables 

Symbol Description Valid for type 

𝑥𝑥𝑖𝑖𝑖𝑖 {1, if task 𝑖𝑖 is assigned to station 𝑘𝑘
0, else                                                     I and II 

𝑦𝑦𝑘𝑘 {1, if station 𝑘𝑘 is active
0, else                               I and II 

𝑐𝑐𝑘𝑘 Cycle time of station 𝑘𝑘 Only II 
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚{𝑐𝑐𝑘𝑘 | 𝑘𝑘 ∈ 𝐾𝐾} Only II 

 

4.2. Pre-processing 

Commercial solvers (e.g. GUROBI, CPLEX) have 
improved drastically in recent years with the development of 
advanced integer programming solution methods. Depending 
on the size and nature of the problem, these commercial solvers 
are even able to solve NP-hard problems in a reasonable time. 
We reduced the number of variables in two ways; by computing 
the earliest and latest available stations for each task [44] and 
using environment restrictions. 

The earliest and latest stations of tasks are computed as 
follows: 

  ,,max (max{ }| 1), /P
i i ik iE i k Fk P q C         (1) 

  min min{ }| , , 1, 1 /S
i i ik iL k i S k F q K C           (2) 

To find the earliest station of task i, τ𝑖𝑖
𝑃𝑃  is divided by the 

cycle time and rounded up. The resulting number is compared 
with the station number k which is the largest station ID among 
the stations that any fixed task in 𝑃𝑃𝑖𝑖  is fixed to. 𝐸𝐸𝑖𝑖  equals to the 
maximum of these two numbers. To find the latest station of 
task i, τ𝑖𝑖

𝑆𝑆 is divided by the cycle time and rounded up, then it is 
subtracted from the total number of stations plus one. The 
resulting number is compared with the station number k which 
is the smallest station ID among the stations that any fixed task 
in 𝑃𝑃𝑖𝑖  is fixed to. 𝐿𝐿𝑖𝑖  equals to the minimum of these two 
numbers. 

A parameter matrix 𝑟𝑟𝑖𝑖𝑖𝑖  is used to decide which variables to 
define. We can think of two groups of tasks: fixed tasks, and 
unfixed tasks. If task i is a fixed task and in set 𝑇𝑇𝑘𝑘, 𝑟𝑟𝑖𝑖𝑖𝑖 equals 
zero for all stations except the station k. If task i is an unfixed 
task, then 𝑟𝑟𝑖𝑖𝑖𝑖  equals one when 𝑠𝑠𝑖𝑖𝑖𝑖, 𝑒𝑒𝑖𝑖𝑖𝑖 = 1  and 𝐸𝐸𝑖𝑖 ≤ 𝑘𝑘 ≤ 𝐿𝐿𝑖𝑖. 
There is a special case for fixed stations. If station k is in the 
set M or k is in the set N and τ𝑘𝑘 < 𝐶𝐶, then 𝑟𝑟𝑖𝑖𝑖𝑖 equals zero for 
all the tasks except the tasks in 𝑇𝑇𝑘𝑘 . This pre-processing method 
allows us to eliminate the fixed resource constraints, work-zone 
constraints, and station interval constraints. As the variable 𝑥𝑥𝑖𝑖𝑖𝑖 
is only defined when 𝑟𝑟𝑖𝑖𝑖𝑖  equals one, this condition is not 
written for each constraint that includes variable x. 

4.3. Formulation 

Objective functions and distinctive constraints of type-1 and 
type-2 gALB are given in Table 5 and Table 6, respectively. 
Subsequently, the common constraints for the models are given 
in Table 7. Types of constraints and objectives are grouped into 
three categories. “T1” is only for the model type-1, “T2” is only 
in the model type-2, and “C” constraints are the common 
constraints involved in both models. 

Table 5: Mathematical Model of Type-1 gALB 

Constraint Formula Quantification and Condition Set 
𝑀𝑀𝑀𝑀𝑀𝑀 ∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝐾𝐾    (T1) 

∑ (𝑡𝑡𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖) ≤ 𝐶𝐶𝑦𝑦𝑘𝑘𝑖𝑖∈𝐼𝐼   ∀𝑘𝑘 ∈ 𝐾𝐾, ∀𝑘𝑘 ∉ 𝐹𝐹 𝑜𝑜𝑜𝑜 ∀𝑘𝑘 ∈
          𝐹𝐹, τ𝑘𝑘 < 𝐶𝐶  (T1.1) 

 
The objective of the type-1 model (T1) is to minimize the 

total number of active work locations with given cycle time. 
Constraints (T1.1) imply that the workload assigned to each 
work station cannot exceed the cycle time. 
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Table 6: Mathematical Model of Type-2 gALB 

Constraint Formula Quantification and Condition Set 
𝑀𝑀𝑖𝑖𝑎𝑎 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚   (T2) 
∑ 𝑦𝑦𝑘𝑘 𝑘𝑘∈𝐾𝐾 ≤ 𝑊𝑊   (T2.1) 
∑ (𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖)𝑖𝑖∈𝐼𝐼 = 𝑐𝑐𝑘𝑘  ∀𝑘𝑘 ∈ 𝐾𝐾  (T2.2) 
𝑐𝑐𝑘𝑘 ≤ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  ∀𝑘𝑘 ∈ 𝐾𝐾 (T2.3) 
∑ (𝑡𝑡𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖)𝑖𝑖∈𝐼𝐼 ≤ 𝑁𝑁𝑦𝑦𝑘𝑘  ∀𝑘𝑘 ∈ 𝐾𝐾 (T2.4) 

 
The objective of the type-2 model (T2) is to minimize the 

cycle time with a given total available number of work 
locations. Constraints (T2.1) guarantee that the number of 
active work-stations is less than or equal to the number of 
available work locations. Constraints (T2.2) impose that the 
cycle time of a workstation equals the total duration of the tasks 
assigned to that station. Constraint set (T2.3) helps the 𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 
variable to be larger than or equal to the longest cycle time. 
Constraints (T2.4) ensure that a station with an assigned task 
becomes active. 

Table 7: Common Constraints for Type-1 and Type-2 Models 

Constraint Formula Quantification and Condition Set 
∑ 𝑓𝑓𝑖𝑖𝑖𝑖 = 1𝑘𝑘∈𝐾𝐾   ∀𝑖𝑖 ∈ 𝐼𝐼 (C1) 
∑ 𝑓𝑓𝑖𝑖𝑖𝑖

|𝐾𝐾|
𝑘𝑘=𝑣𝑣+1  ≤ 1 −

        ∑ 𝑓𝑓𝑖𝑖𝑗𝑗
𝑣𝑣
𝑘𝑘=1   

∀𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼, ∀𝑣𝑣 = 1 … |𝐾𝐾| −
         1, 𝑖𝑖𝑓𝑓 𝑝𝑝𝑖𝑖𝑖𝑖 = 1  (C2) 

𝑓𝑓𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑖𝑖𝑗𝑗 ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼, ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑖𝑖𝑓𝑓 𝑎𝑎𝑖𝑖𝑖𝑖 = 1  (C3) 
𝑓𝑓𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑘𝑘 ∈ 𝐾𝐾  (C4) 
𝑦𝑦𝑘𝑘 ∈ {0,1} ∀𝑘𝑘 ∈ 𝐾𝐾 (C5) 

 
Constraint set (C1) ensures that all regular tasks are assigned 

to exactly one work station. Set (C2) enforces precedence 
constraints. Constraint set (C3) guarantees that the adjacency 
tasks are assigned to the same stations. Some tasks require 
fixed resources in exact stations since it is costly to change the 
location of some equipment and machines. Constraints (C4) 
and (C5) ensure that all decision variables are binary. 

4.4. Post-processing 

The problem is formulated in a way that the order of the 
tasks inside stations is not addressed. Once the tasks are 
assigned to stations, we run an algorithm to order the tasks 
inside the station according to precedence and adjacency 
constraints for each station. Likewise, the precedence 
relationship inside the mated stations is not included in the 
formulation. A post-process is used to check this issue. In the 
case of mated station precedence violation, extra constraints to 
block this violation is added and run the integer program again. 
Consider a result in which we solved the problem and task A is 
the immediate predecessor of task B and they are at the same 
mated group. If the cycle time and the orders of tasks inside 
mated stations do not allow task B to be done after task A, then 
there is a violation. We add a constraint not to allow task A and 
task B to be assigned these mated stations at the same time. In 
this way, we keep the integer programming as small as 
possible. 

5. Metaheuristic 

Metaheuristics are often used to solve large assembly line 
balancing problems because they can solve problems more 

quickly than integer programs even though they do not 
guarantee an optimal solution. This was developed to minimize 
the number of stations required for the production line, and the 
constraints from the integer program were incorporated into the 
metaheuristic. 

5.1. Initial solution 

To use this metaheuristic, first a feasible line balance needs 
to be created. For this project, the ranked positional weight 
technique was used [26].  First, it creates an order for the tasks 
to be assigned in by using precedence and task time to weight 
how early the tasks should be placed, 1 + (τ𝑖𝑖

𝑃𝑃/𝐶𝐶)  gives the 
earliest station due to task times. Because precedence is 
preserved, the balance is always feasible.  In order of their 
ranked positional weight, tasks are placed in stations where 
precedence, station attributes, and cycle time allow. After all 
the tasks have been allocated, a count of how many stations 
were used is obtained. Algorithm 1 is a pseudocode to create 
the initial solution. 

Algorithm 1: Assignment order using RPW 

1: function RPW 
2:     assign fixed tasks to appropriate stations 
3:     for each task in task list do 
4:         for each station in model do 
5:              if all requirements are met then 
6:                  place task in selected station 
7:              end if 
8:         next 
9:     next 

10: end function 
 

5.2. Hill climbing algorithm 

Using the initial solution, the hill climbing algorithm selects 
the station that has the smallest allotted time. It attempts to 
move each task to different feasible stations and closes stations 
with no tasks in them. If the station cannot be closed, it is added 
to the tabu list, the remaining station with the shortest allotted 
time is selected, and the process is repeated. Pseudocode is 
given in Algorithm 2. 

Algorithm 2: Hill Climbing with Tabu List 

1: function HillClimbing 
2:     while fewer than 10 failed attempts do 
3:         select station with shortest time 
4:         for each task assigned to the station do 
5:             for each station in use do 
6:                 if all requirements are met then 
7:                     move task to new station 
8:                 end if 
9:             next 

10:        next 
11:         if all tasks in shortest station are moved then 
12:             close station 
13:         else 
14:             add shortest station to tabu list to prevent looping 
15:         end if 
16:         if no tasks were moved then 
17:             add an additional failed attempt 
18:         end if 
19:     loop 
20: end function 
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5.3. Abandoned hill climbing algorithm with tabu list 

From this baseline, the hill climbing algorithm starts, and 
switches the position of tasks in the order.  If the resulting order 
will satisfy precedence, it will run through the check to allocate 
tasks.  If the new balance is feasible and requires fewer stations 
than the previous, it is adopted as the new balance.  By 
checking multiple swaps, many possible solutions were 
sampled. The algorithm was abandoned because little 
improvement was seen between the initial solution and the final 
solution. It is believed that this lack of improvement was 
because the line balance was similar even when tasks were 
swapped. Algorithm 3 is a pseudocode to create the initial 
solution. 

Algorithm 3: Abandoned Hill Climbing 

1: function AbandonedHillClimbing 
2:     for each task in list do 
3:         for each task after previous task do 
4:             switch the previous two tasks 
5:             test for precedence 
6:             if precedence can be met then 
7:                 using new order create new balance 
8:                 if fewer stations are needed then 
9:                     replace original balance 

10:                 end if 
11:             end if 
12:         next 
13:     next 
14: end function 

 

6. Simulation modeling 

A simulation model is developed in Arena (a commercial 
simulation software product) to (1) understand and represent 
the current-state processes, (2) track metrics that help identify 
inefficiencies in the system, and (3) provide a validation tool 
for testing various throughput improvement scenarios 
developed by the research team and the project sponsors. 

6.1. Methodology 

The simulation project follows a standard template 
involving problem formulation, identifying objectives, 
collecting input data, developing a base model, verifying the 
processes, validating the current-state operations, developing 
pertinent metrics to measure the objectives, developing 
scenarios to be tested, conducting simulation runs, collecting 
and analyzing output, and documenting results. 

6.1.1. Objective 
The objective is to validate the expected throughput increase 

of the assembly line after incorporating the results from the 
line-balancing exercise. The output of the line-balancing 
exercise is the optimal number and cycle times of tasks at each 
workstation, which serves as the input to the simulation model. 

6.1.2. Inputs required 
The primary inputs require, which are the number of tasks 

at each workstation and the process time for each task, are 
organized in a spreadsheet in Excel. Flexibility in changing 
various input parameters – add new tasks at a workstation, edit 
task data, remove a task from a workstation, or move a task 
within or between workstations – is built into the input file 
using VB macros. 

6.1.3. Developing base model and metrics 
Initially, a base model is developed along with relevant 

metrics to validate the current state of operations for the 
machining section of one of the assembly lines. These metrics 
includes total units produced in a shift, hourly throughput, and 
station utilization. Once the processes in the machining section 
are validated, the model is used as the standard for building the 
remaining sections – assembly, inspection, and final. 

6.1.4. Incorporating variability in task times 
After the initial model is created, an option to conduct 

simulations with or without variability in task times is 
incorporated, resulting in two scenarios: 

• Ideal task-times scenario – The workstations in the 
model used the most likely time specified for each task, 
thus eliminating variability due to process times. 

• Stochastic task-times scenario – The workstations in the 
model used a triangular distribution of the times for 
each task (i.e., a minimum time, a most likely time, and 
a maximum time) in order to account for actual 
variability in processing times for workstations where 
an operator is assigned to complete tasks. Note that the 
workstations with machines are expected to have far 
less variability than the workstations where operators 
performs manual tasks. 

6.1.5. Incorporating loss in production time  
After analyzing data for loss in production time recorded 

over the past six months, the following reasons are identified 
and incorporated into the model: 

• Machine breakdowns 
• Internal material shortages and material defects 
• Process unbalance 
The model simulates lost production time in the form of 

mean time between failures (MTBF) and the mean time to 
repair (MTTR), which are calculated based on the received 
input data. The MTBF is computed by dividing the total 
scheduled production time by the total number of breakdowns 
for each reason for loss. The MTTR is computed by dividing 
the total downtime by reason for loss by the total number of 
breakdowns for each reason for loss. Both the MTBF and 
MTTR are exponentially distributed. Further, since the 
analyzed data only captured lost time if it is greater than five 
minutes, an additional five minutes is added to the MTTR. 

6.2. Simulation scenarios based on downtime 

Simulations can be conducted with or without incorporating 
downtimes, with further flexibility in choosing any 
combination of reasons for loss in production time. One 
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example would be to test only the effect of machine 
breakdowns on the throughput of the lines. The locations on the 
line that cause a loss in time are identified from meetings with 
subject matter experts at the plant. It is determined that process 
unbalance is most likely to occur at one of two specific 
locations, while material defect and internal material shortage 
is most likely to occur at six other locations. The machines that 
are most likely to breakdown are not known with certainty, so 
three machines in different sections of the line are selected 
initially. At first, the likelihood that a downtime would occur is 
equally distributed between these locations. After further 
discussions with the subject matter experts, an option to test the 
effect of downtime occurring at a specific machine on the 
throughput of the line is incorporated. Functionality that allows 
the user to alter the percentage of time a breakdown occurred 
at any given machine is also added. 

6.3. Model validation 

The above scenarios are simulated with ideal and stochastic 
task times for five replications of 20 shifts each with five-
hundred and eighty minutes of available production time. The 
results are collected after a warm-up period of three hours, 
introduced to achieve stable running conditions. Output 
statistics, including total units produced in a shift, hourly 
throughput, and station utilization, are collected for each of the 
scenarios. For validating the model, the results are compared 
with the actual production data collected over the same time 
period. The model produces comparable production levels over 
the time period from May to August 2019. Figure 3 reports the 
observed hourly throughput for the 100 simulated shifts and the 
average simulated hourly throughput. 

7. Numerical Results 

Two integer programs, type-1 and type-2 objective, and a 
metaheuristic have been developed to offer various solutions to 
our industrial partner. Although the integer program provides 
better results than the metaheuristic in terms of the number of 
stations used, it requires a commercial solver to be bought and 

has a longer running time. The results are presented by 
comparing the integer program and metaheuristic to show the 
application advantages and disadvantages of the methods. 

There are 315 individual tasks and 175 available work 
stations in our problem. The number of available work stations 
is more than twice the number of currently active stations - 73 
stations are active presently.  

7.1. Integer program and metaheuristic results 

The integer program is modeled in Python 3.7.1 and solved 
through GUROBI 7.0.1 solver. Finding the optimal solution for 
the type-1 integer programming model takes around ten 
minutes on a 64 bit Intel Core i7-8550U CPU (1.80 GHz) with 
32 GB of RAM computer. The runtime and the optimality gap 
for each type-2 integer program scenario are given in Table 8. 
Although Python is an open-source programming language, 
GUROBI is not free for non-academic purposes. 

The metaheuristic algorithm is coded and solved in Visual 
Basic for Applications (VBA). The runtime to find the best 
solution takes approximately 1.5 seconds on a 64 bit Intel Core 
i7-8565U CPU with 16 GB of RAM computer. VBA is not an 
open-source programming language. However, most 
companies have access to the Microsoft Office including our 
partner. Therefore, there is no need to purchase a software to 
run the ALB metaheuristic regularly. The metaheuristic could 
have been written in another open-source programming 
language other than VBA, however, our partner has already 
Microsoft Office access and it is a plus that the engineers who 
will implement the balanced assembly line are familiar with 
VBA. 

Focusing on the type-1 objective, the integer program has 
found the optimal solution as 59 work stations and the best 
objective found by the metaheuristic is 67 work stations. While 
the integer program decreases the number of required stations 
by nearly 19%, metaheuristic decreases around 8%, compared 
to the current implemented solution. In companies where the 
rate of the absentee is low, a 19% decrease in the need for 
workers can provide large long-term profit. It should be noted 
that the integer program may not find the optimal solution for 

Figure 3. Comparison of observed and simulated hourly throughput for data from May to August 2019 
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larger problems. The integer program will be able to provide a 
worthy solution unless the problem size increases drastically. 
The metaheuristics are more reliable in terms of generating 
feasible solutions for larger problems, since the integer 
program may run of out memory before a feasible solution is 
found. 

Focusing on the type-2 objective, we executed the integer 
program with a given maximum number of stations ranging 
from 59 to 69, resulting in the minimum cycle time for each 
scenario; the integer program was given 30 minutes of solving 
time, resulting in optimality gaps. After solutions were 
gathered from the type-2 integer program, each cycle time was 
used as a parameter for the metaheuristic. Formally, the results 
of the metaheuristic were compared with the input parameters 
of the integer program in Figure 4. Furthermore, for better 
understanding of the optimality of the type-2 integer program 
and the runtime comparison with metaheuristic is summarized 
in Table 8.  

Table 8: Comparison between Integer Program and Metaheuristic 

Cycle Time Gap in IP IP Run Time (s) MH Run Time (s) 

12.42 0.00% 102.74 1.9 

12.50 0.70% 1810.28 1.75 

12.62 1.64% 1811.98 1.77 

13.00 4.50% 1811.81 1.33 

13.17 4.89% 1811.03 1.36 

13.40 5.73% 1811.13 1.75 

13.83 7.88% 1810.62 1.35 

13.95 7.17% 1811.23 1.81 

14.30 8.57% 1811.34 1.64 

14.67 9.79% 1810.74 1.35 

 

7.2. Simulation results 

Results were gathered for six scenarios: 
• Current-state – with and without incorporating 

downtime 

• Balanced line – with and without incorporating 
downtime 

• Balanced line with air-driver adjustments – with and 
without incorporating downtime 

Note: 
• The balanced line refers to task allocations at 

workstations obtained using the integer program and 
the metaheuristic. 

• The task times for all scenarios utilized the MTM times. 
• “Air-driver adjustments” imply that air-driver tools 

could be installed at any of the workstations on the line, 
thus eliminating some of the restrictions on task 
allocations resulting in cycle time reduction. 

Table 9 summarizes these results along with expected 
improvement. The hourly throughput results achieved in 
simulations using the integer program and the metaheuristic 
were the same despite different task allocations because both 
methods were constrained by the same bottleneck workstation 
that drove throughput. In other words, a single work station task 
allocations set the cycle time for the entire line and is the 
slowest station, and results in being the bottleneck. 

Table 9: Simulation Results 

Scenarios 

Simulated Hourly 
Throughput 

Throughput 
Improvement 

No 
Downtime 

With 
Downtime 

Per 
hour Per shift 

Current-state 178 168 - - 
Balanced line 211 196 28 215 
Balanced line with  
air-driver adjustments 237 216 48 368 

 

8. Conclusion 

This paper is conducted to balance a major household 
appliance assembly line and washing machine is selected as 
representative product. We balance a TALBP with additional 
environment constraints in two different ways: integer program 
and metaheuristic. The real world environment requirements 
for the washing machine assembly line are introduced. The 
mathematical formulation for IP and the algorithm for hill 
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climbing with tabu list are proposed. Since the task distribution 
allows, integer program is modeled as one-sided assembly line 
balancing problem. In this way, we are able to solve the 
problem in optimal way with post-processing to ensure that the 
results generally do not have mated station precedence 
violations. The main contribution of this paper is solving a case 
study with the real-world environment requirements by 
comparing integer programming and a metaheuristics with the 
detailed pros and cons of these two methods. Additionally, the 
size of the integer programming formulation is reduced by 
applying some problem specific techniques to be able to solve 
the problem in a reasonable time which can be very helpful for 
the process of solving other case studies. 

The results obtained from both methods are better than the 
current system consequently both IP and metaheuristics can be 
used for the long-term planning. The pros and cons of the two 
methods are discussed considering the numerical results, time 
requirement, software requirement and the usability. 
Furthermore, the simulation model is used to examine the flow 
of the balanced line for different scenarios. The model is 
executed for both IP and metaheuristic results. Since the same 
cycle time used for both models, the bottleneck stations have 
the same workload. Therefore, the hourly throughput for the 
results gathered from different methods have the same number 
of products. Nevertheless, the hourly throughput is increased 
significantly compared to current production especially when 
the line is flexible about the air-driver adjustments. 
Consequently, our results show that the company has an 
inefficient assembly line with respects to number of workers, 
workload balance, number of stations, and hourly throughput. 
The company can adapt to the proposed assembly line by 
replacing some tools and educating workers for the new set of 
tasks in a couple of weeks. 
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