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ABSTRACT: We determine all 5d SCFTs upto rank three by studying RG flows of 5d KK
theories. Our analysis reveals the existence of new rank one and rank two 5d SCFTs not
captured by previous classifications. In addition to that, we provide for the first time
a systematic and conjecturally complete classification of rank three 5d SCFTs. Our
methods are based on a recently studied geometric description of 5d KK theories, thus
demonstrating the utility of these geometric descriptions. It is straightforward, though
computationally intensive, to extend this work and systematically classify 5d SCF'Ts of
higher ranks (greater than or equal to four) by using the geometric description of 5d
KK theories.
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1 Introduction and Conclusions

Since the successful classification of 6d SCFTs [1-4], there has been considerable interest
in classifying 5d SCFTs [5-15] (see also [16]). In this regard, an interesting conjecture
was made [8] by observing that there seems to be an upper bound on the number of
matter hypermultiplets [7] that can be carried by a supersymmetric 5d gauge theory for



it to have a UV completion. At the tip of the bound, the UV completion is a 6d SCF'T,
and below the bound, the UV completion is a 5d SCFT. Based on this observation, it
was conjectured that it should be possible to obtain all 5d SCFTs by systematically
integrating out BPS particles from 6d SCFTs compactified on a circle?.

This conjecture was tested successfully in a geometric context in [8]. There a
classification of shrinkable smooth local Calabi-Yau threefolds was performed such that
compactifying M-theory on such a threefold would give rise to a 5d SCFT of rank less
than or equal to two. The RG flows associated with integrating out BPS particles
translate to geometric operations involving flops and blowdowns on this threefold. It
was then shown that all such Calabi-Yau threefolds can be obtained from a handful
of “parent” Calabi-Yau threefolds via flops and blowdowns. A parent threefold is not
shrinkable and, in fact, compactifying M-theory on it produces a 5d KK theory, which
is another name for a 6d SCFT compactified on a circle possibly with a twist by a
discrete global symmetry around the circle.

Motivated by the successful test of this conjecture, a number of recent works
9, 10, 15] (see also [11-14]) undertook the task of determining the Calabi-Yau three-
fold? associated to each 5d KK theory. According to the conjecture, these Calabi-Yau
threefolds act as parent threefolds for the “descendant” Calabi-Yau threefolds associ-
ated to bd SCF'Ts, where the descendant threefolds can be determined from the parent
threefolds by performing sequences of flops and blowdowns on the parent threefolds.
The main goal of this paper is to explicitly carry out such a procedure to determine the
Calabi-Yau threefolds associated to all 5d SCF'Ts of rank less than or equal to three,
thus extending the results of [8].

This work provides for the first time a systematic and conjecturally complete clas-
sification of 5d SCFTs of rank three. The contents of this paper can also be viewed as
an illustration of the general procedure by which one can extract the identities of all 5d
SCFTs starting from the results of [9, 10, 15]. In principle, there is no problem in ex-

'Notice that the way this conjecture has been phrased, it not only applies to 5d SCFTs having an
effective gauge theory description, but also to 5d SCFTs not having such a gauge theory description.
An example of such a 5d SCFT is the theory “su(2) with minus one number of fundamental hypers”
which can be obtained by compactifying M-theory on a local P2.

2For generic KK theories, it is a smooth threefold. For some exceptional KK theories, the Calabi-
Yau threefold may not be smooth and/or the compactification of M-theory on the threefold might not
be completely geometric. See [15] for more details. In this paper, we will use the word “geometry”
without distinguishing whether the Calabi-Yau threefold is smooth or singular, and whether the com-
pactification requires extra non-geometric ingredients or not. In the cases where extra non-geometric
ingredients are involved, the effect of such ingredients can be captured in the difference between the
set of generators of the Mori cone (i.e. the set of holomorphic curves) of the threefold and the set of
fundamental BPS particles in the resulting 5d theory.



tending the methods used in this work to obtain the classification of 5d SCFTs for any
arbitrary rank. However, this task becomes increasingly complex in a computational
sense as the rank is increased.

Our approach can be termed as “top-down”, distinguishing it from the “bottom-up”
approach of [8] where 5d SCFTs were determined by building shrinkable Calabi-Yau
threefolds in a bottom-up fashion. Our top-down approach instead starts from the
Calabi-Yau threefolds associated to 5d KK theories, upon which flops and blowdowns
are performed to reach Calabi-Yau threefolds associated to 5d SCFTs. Using this top-
down approach, we revisit the classification of rank one and rank two 5d SCFTs which
was already undertaken in [8] using the bottom-up approach. The top-down approach

uncovers the existence of a few new rank one and rank two 5d SCFTs not accounted in
[8]. These 5d SCFTs are (2.53), (3.99), (3.100), (3.111) and (3.119).

2 Rank one

Notice that integrating out matter hypermultiplets from a 5d gauge theory does not
change the rank of the theory. This generalizes to the fact that integrating out BPS
particles from a 5d theory does not change its rank. Thus the KK theories relevant
to the classification of rank one 5d SCFTs themselves have rank one. So the starting
point to the classification of rank one 5d SCFTs is the classification of rank one 5d KK
theories.

The rank of a 5d KK theory can be determined from the tensor branch description
of the associated 6d SCF'T. Recall that a 6d SCFT is described on its tensor branch by
a 6d gauge theory interacting with a collection of tensor multiplets. If the 6d SCFT is
compactified on a circle without any twist, then both the 6d vector multiplets and 6d
tensor multiplets descend to 5d vector multiplets and hence the rank r of the resulting
5d KK theory can be written as

r=t+g (2.1)

where t is the number of tensor multiplets arising on the tensor branch and g is the
rank of 6d gauge algebra arising on the tensor branch.

The possible twists of 6d SCFTs were studied in [15]. The description of the most
general twist can be found in Section 2 of [15]. The most general twist can be described
as a permutation S of tensor multiplets combined with an outer automorphism O of
the 6d gauge algebra such that this combination SO is a discrete symmetry of the
corresponding 6d SCF'T. When the 6d SCFT is compactified on a circle with the twist
SO, then the different 5d vector multiplets arising from the reduction of 6d tensor
multiplets are identified with each other according to the action of S, and the 5d vector



multiplets arising from the reduction of 6d vector multiplets are identified according to
the action of O. Thus, the rank r of the resulting 5d KK theory can be written as

r=T+G (2.2)

where T' is the number of orbits of the permutation S and G is the rank of algebra left
invariant by O.

Since every 6d SCFT has at least one tensor multiplet, a rank one 5d KK theory
can only arise from 6d SCFTs which do not carry any 6d gauge algebra on their tensor
branch. All the rank one 5d KK theories can be determined to be

sp(0))
1 (2.3)

su(1)W
2 (2.4)

su(1)™
2

- (2.5)

where we have used the graphical notation for 5d KK theories developed in Section 2
of [15]:

e (2.3) denotes the KK theory arising from the untwisted compactification of the
6d SCFT arising from an empty —1 curve® in F-theory, commonly known as the
E-string theory. The label 1 denotes that —1 curve is used and the label sp(0)
denotes that the gauge algebra living on the —1 curve is trivial. The superscript
(1) in the label 5p(0)(!) denotes that there is no gauge algebra outer automorphism
involved, which is obvious in this case since a trivial gauge algebra cannot have
any outer automorphisms.

e Similarly, (2.4) denotes the KK theory arising from the untwisted compactifi-
cation of the 6d SCFT arising from an empty —2 curve in F-theory, commonly
known as the A; (2,0) theory. Here su(1) denotes that the gauge algebra is trivial
and the superscript again denotes the non-existence of an outer automorphism.

3In a field theoretic language, we say that there is a fundamental BPS string in the theory whose self
Dirac pairing is +1. The string arises from a D3 brane wrapping the —1 curve, and the self-intersection
of the curve is identified with negative of the self Dirac pairing of the string.



e (2.5) denotes the KK theory arising from a twisted compactification of the 6d
SCFT

2 (2.6)

arising from two —2 curves intersecting each other at one point?, such that both
of the curves carry empty gauge algebra. This 6d SCFT is commonly known as
the Ay (2,0) theory. The discrete symmetry associated to the twist permutes the
two tensor multiplets arising from the two —2 curves. The graph (2.5) is simply a
folding of the graph (2.6) induced by the exchange of the two nodes in (2.6). The
loop in (2.5) is the image of the edge in (2.6) after the folding. The superscript
on su(1) in (2.5) again denotes that there is no outer automorphism.

It is convenient to organize the KK theories by their number of mass parameters.
Each time a BPS particle is integrated out, the number of mass parameters decreases
by one. So, in a sense, the most number of RG flows are produced by KK theories
with the most number of mass parameters. Quite often, the RG flows from theories
containing less number of mass parameters lead to the same 5d SCF'Ts obtained via
RG flows from KK theories with more number of mass parameters. The number of
mass parameters M for a KK theory can be written as

M=F+1 (2.7)

where [ is the rank of the subalgebra of the flavor symmetry algebra of the associated
6d SCFT left invariant by the twist. The extra mass parameter not included in F' is
given by the inverse of the radius of compactification R.

It is well-known that the E-string theory has an eg flavor symmetry, so the number
of mass parameters for the KK theory (2.3) is

M=9 (2.8)
The flavor symmetry for A; (2,0) theory is su(2) giving
M=2 (2.9)

for the KK theory (2.4). Finally, the flavor symmetry for Ay (2,0) theory is su(2). This
symmetry is carried by a non-compact curve intersecting one of the two —2 curves.
Thus it is not possible to preserve the full su(2) after the twist, but a u(1) subalgebra

4The fact that the two curves intersect at one point translates to the fact that the two fundamental
BPS strings arising from these two curves have a mutual Dirac pairing of —1.



can be preserved. The F-theory configuration involves two non-compact curves each
carrying an [I; singularity and each intersecting a different —2 curve. This configuration
is invariant under the discrete symmetry interchanging the two —2 curves. Thus, we

have
M =2 (2.10)

for the KK theory (2.5).
Now we move onto a study of RG flows of these three KK theories.

21 M=9

The Calabi-Yau threefold associated to (2.3) is [8-10, 15] a local neighborhood of the
surface
Fy (2.11)

which denotes an eight-point blowup of the Hirzebruch surface F;. See Appendix A of
[15] for a quick review on Hirzebruch and del Pezzo surfaces.

The RG flows of (2.3) are captured by the blowdowns of —1 curves in the surface
[F$ above. The key point is that a —1 curve in a geometry can always be written as a
blowup on a surface in some isomorphism frame of the geometry. For example, except
the blowups z; (i = 1,---,8), some of the other —1 curves in (2.11) are f — z; and e.
To see that a curve f — x; (for a fixed i) can be written as a blowup, one can perform
the isomorphism F§ to F§ given by

e—e—ux; (2.12)
f—x = (2.13)
v, — f—ux (2.14)
Tj = T; for j #1 (2.15)
This isomorphism leads to an equivalent geometry
8
Fo (2.16)

describing the KK theory (2.3). Now if one performs an isomorphism F§ — F§ given
by

e—x; —e (2.17)
f—z;—x; (2.18)
z;p— [ —x; (2.19)
Ty — Tk for k # j (2.20)



with j # i, then the geometry is again described by (2.11). The combination of these
two isomorphisms is an automorphism of F§ that maps a curve f — x; to a blowup.
Similarly, the curve e in F$ can be written as a blowup by using the isomorphism?®
F$ — dP? given by

e — g (2.21)
f—1— (2.22)
Ty — T (2.23)

leading to an equivalent geometric description

dp’ (2.24)

of the KK theory (2.3). Combining it with another isomorphism dP? — F$ given by

I~z — f (2.25)
xy —e (2.26)

for 1 <i < 8 leads to an automorphism on F$ which converts the curve e to a blowup.
One can check that all the other —1 curves in F} can be converted to a blowup of FY
by an automorphism generated by combining the isomorphisms discussed above along
with the automorphism F§ — F§

e—f (2.28)
foe (2.29)
Ti = X (2.30)

that simply interchanges e and f.

Thus we see that, at the first step, all the RG flows are equivalent to a single
RG flow corresponding to the removal of a blowup from (2.11), leading to a 5d SCFT
described by a local neighborhood of the surface

7
Fi (2.31)
In a similar fashion, at the next few steps, the only RG flows are the ones corresponding
to removal of more blowups. Thus, at the next few steps, we obtain 5d SCFTs described
by geometries

8—m
Fi (2.32)

5In this paper we denote the del Pezzo surface obtained by blowing n points on P? as dP” rather
than dP,,. The surface P? is displayed as dP without any superscript.



where 1 <m < 7.

The geometry at m = 7 has two inequivalent blowdowns. One of them corresponds
to blowing down the only blowup = on F} and the other one corresponds to blowing
down the curve f — x. Notice that, unlike the cases with more blowups, there is no
automorphism of F} which transforms f — z to z. Such an automorphism requires the
existence of at least one more blowup. Blowing down x leads to a 5d SCF'T described
by the geometry

I (2.33)

To blow down f — z, we can first write it as the blowup in F§ by using an isomorphism
discussed above, and then remove this blowup leading to the geometry

Fo (2.34)

which describes a 5d SCFT distinct from the 5d SCFT described by (2.33).

Now, the geometry (2.34) has no —1 curves, but the geometry (2.33) has a —1
curve which is the e curve. To blow this down, we can write the e curve as the blowup
in dP' and then remove this blowup to obtain the geometry described by the surface

dp (2.35)

where dP is our notation for the surface P?.
Thus 5d SCFTs descending from the 5d KK theory (2.3) are described by the

geometries

g
(2.36)
with 1 < m < 8,
Fo (2.37)
and
dp (2.38)

We put a box around a geometry when it describes a 5d SCFT not equivalent to any
of the bd SCFTs discussed earlier in the paper. We hope that this will lead to an
easy identification of all the inequivalent 5d SCF'Ts, since each different box describes a
different 5d SCFT. The number of mass parameters for the family of 5d SCFTs (2.36)
is

M=9-m (2.39)



while the number of mass parameters for the 5d SCFT described by (2.37) is

M=1 (2.40)
and for the one described by (2.38) is

M=0 (2.41)

The prepotential® F for a rank one 5d theory is a single term of the form z¢?
where ¢ is the Coulomb branch parameter. = can be computed [8-10, 15] by counting
the number of blowups on the compact surface in the geometric description of the 5d
theory. If the surface is a Hirzebruch surface F® then 6F = (8 — b)¢*, and if it is a
del Pezzo surface dP’ then 6F = (9 — b)¢3. Thus the prepotential for the 5d SCFT
described by (2.36) is

6F = mg® (2.42)

The prepotential for the 5d SCFT described by (2.37) is

6F = 8¢° (2.43)
and the prepotential for the 5d SCFT described by (2.38) is

6F = 9¢° (2.44)

22 M=2
The KK theory (2.4) is described by the geometry [9, 10, 15]

€e-T

w7

ey

(2.45)

where the loop denotes a self-gluing of F2. The labels at the ends of the loop denote
that the curve e — x is glued to the curve e — y where x and y are the two blowups.

Using the automorphism (2.28-2.30) that interchanges e and f in Fy, we can write
(2.45) as

f-z

+)

I (2.46)

6Tn this paper, we will ignore the contributions to the prepotential involving mass parameters.



Now using the isomorphism (2.17-2.20) with blowup x, we can write the above geometry
as

xT

)

I (2.47)
Finally using the isomorphism (2.12-2.15) with the blowup y, we can write the geometry
associated to the KK theory (2.4) in the isomorphism frame

xT

)

Y

(2.48)

It can be shown that all of the —1 curves in the above geometry are equivalent either
to the blowup z or to the curve f — x by using automorphisms composed out of the
isomorphisms (2.12-2.15), (2.17-2.20), (2.21-2.23), (2.25-2.27) and (2.28-2.30).

Let us first consider the blowdown of f — x, which can be written as the blowup
x in the isomorphism frame given by (2.46). Since f — x and f — y are glued to each
other in (2.46), their volumes must be same, implying that the volumes of x and y
must be same. So, blowing down z in (2.46) blows down y along with it. But z and y
intersect the gluing curves f —x and f — y, and hence their blowdown continues into a
flop transition creating two new blowups 2’ and /. Since x intersects the gluing curve
f — x at one point, the flop of z transforms the gluing curves f —z to (f —z) +x = f
and the gluing curve f —y is transformed to f —y —2’. Thus at this intermediate step,
f—a —yis glued to f. Now, the flop of y subsequently transforms the gluing curve
f—y—2a2'to f— 2" and the gluing curve f to f —y’. The geometry after the flop is

f-a!

)

I (2.49)

which is identical to (2.46).

Now, we turn our attention to the blowdown of z in (2.48). Since z is glued to y,
both z and y are blown down together. At the end of this blowdown, the self-gluing is
removed since the gluing curves participating in the self-gluing have been blown down.

The resulting geometry is

Fo (2.50)

— 10 —



and describes a 5d SCF'T already discovered while studying RG flows of the KK theory
(2.3) in the last subsection. See the discussion around (2.34). There are no more
remaining —1 curves, and hence no new 5d SCFTs are found by studying the RG flows
of (2.4).

There is another rank one KK theory with M = 2, which is (2.5). This KK theory
is described by the geometry [15]

xT

)

Y

(2.51)

The different —1 curves in this geometry are all equivalent to z, f — x and e. The
blowdown of f — x is a flop transition giving back the same geometry as above. The
blowdown of z removes the self-gluing and produces the geometry (2.33) already dis-
covered.

To blow down the e curve we use the isomorphism (2.21-2.23) to write (2.51) as

T

dP1+1+9

)

(2.52)

such that one of the blowups does not participate in the self-gluing. The blowdown
of e curve in (2.51) corresponds to blowdown of this blowup in the above geometry.
Carrying out the blowdown produces the geometry

T

dP1+13

Y

(2.53)

which is a new rank one 5d SCFT not discussed in the literature before”. The only
possible flow now removes the self-gluing from (2.53) giving rise to the 5d SCFT de-
scribed by (2.35) discovered earlier. For a Hirzebruch surface Fo™2¢ with 2s blowups
out of b+ 2s blowups participating in s number of self-gluings, the prepotential is
6F = (8 — 8s — b)¢*. For a del Pezzo surface dP*? with 2s blowups out of b+ 2s
blowups participating in s number of self-gluings, the prepotential is 6F = (9—8s—b)¢3.

"It is also possible to see the existence of this 5d SCFT by using a brane construction for the KK
theory (2.5). We thank Hee-Cheol Kim for a private discussion on this point.

- 11 -



Let us now discuss some aspects of the new 5d SCFT described by the geometry
(2.53). This SCFT has number of mass parameters

M=1 (2.54)

and prepotential
6F = ¢ (2.55)

It can be informally thought of as an “su(2) gauge theory with minus one hypers in
fundamental and one hyper in adjoint” since (2.51) describes a 5d su(2) gauge theory
with one hyper in adjoint, from which we have removed a —1 curve which formally
corresponds to the removal of a fundamental. From this point of view, the existence of
this 5d SCF'T makes sense:

It is known that a 5d N' = 1 su(2) pure gauge theory with § = 7 is a 5d SCFT
described by geometry (2.33). There is an RG flow from this 5d SCFT to another 5d
SCFT described by geometry (2.35). The RG flow corresponds formally to the removal
of a fundamental and hence the resulting 5d SCFT described by (2.35) is often called
“su(2) gauge theory with minus one hypers in fundamental”. Now, it is known that 5d
N =1 su(2) gauge theory with an adjoint hyper and 6 = 7 is the 5d KK theory (2.5).
Thus, it must be possible to formally remove a fundamental from this theory and flow
to a bd SCFT. This is precisely the 5d SCFT described by (2.53).

A subtle aspect of the geometry (2.53) is that it is non-shrinkable in the sense
defined in [8]. The curve [ — z — y is a generator of the Mori cone and has negative
volume on the Coulomb branch. This is problematic since in a traditional M-theory
compactification, M2 brane wrapping a generator of the Mori cone gives rise to a
fundamental® BPS particle. The fact that [ — 2 — y has negative volume would imply
that the corresponding BPS particle has negative mass on the Coulomb branch of the
5d theory.

However, as discussed in detail in [15], not every generator of the Mori cone of
(2.51) leads to a fundamental BPS particle. This is probably due to the effect some
non-geometric ingredient in the M-theory compactification. This situation is analogous
to the situation in the six-dimensional compactifications in the frozen phase of F-
theory [17] where, unlike the traditional non-frozen six-dimensional compactifications
of F-theory, not every generator of the Mori cone of the base of the threefold used
to compactify F-theory leads to a fundamental BPS string (via the wrapping of a D3
brane on it).

8We define a fundamental BPS particle to be a BPS particle that cannot arise as a bound state of
other BPS particles.

- 12 —



The Mori cone of (2.51) is generated by? e, h —x —y, f —x = f —y and x = y.
However, the set of fundamental BPS particles is proposed to be identified instead with
e,2h—x -2y, f—x = f—y, and x = y. From this, we can deduce the the set of
fundamental BPS particles for (2.53) should be identified with 20 —x —2y, [ —z = [ —y,
and x = y. It can be easily checked that all of these curves have non-negative volume
on the Coulomb branch (without turning on mass parameters), and hence the Coulomb
branch physics is consistent, thus resolving the puzzle raised above.

Although we have discussed how the dictionary between geometry and physics
should be modified for this slightly non-traditional M-theory compactification, we have
not explored the precise physical mechanism behind this effect. It is plausible that it
is related to frozen singularities and/or some discrete fluxes in M-theory [18-20]. We
leave a more detailed study to future work.

3 Rank two

The relationship (2.2) implies that for r = 2 we have the following possibilities:
e I'=1,G=1
e I'=2G=0

In the class T'= G = 1, we have the following 5d KK theories:

sp(1))
1 (3.1)

which describes the untwisted compactification of the 6d SCFT carrying sp(1)
gauge algebra on a —1 curve. The 6d theory carries 10 hypers in fundamental of
sp(1). Hence there is a rank ten flavor symmetry implying that

M =11 (3.2)

is the number of mass parameters carried by the KK theory (3.1). See the discu-
sion around (2.7).

90Only the homology class of the curves in the full threefold is recorded in the definition of Mori
cone. Thus, f —x and f — y are equal in the Mori cone since z is identified with y due to self-gluing
of the surface.

—13 —



su(2)®W
2 (3.3)

which describes the untwisted compactification of the 6d SCFT carrying su(2)
gauge algebra on a —2 curve. Even though the theory carries four hypers of
su(2), it is known that the rank of flavor symmetry symmetry algebra'® is three
2, 21], thus

M =4 (3.4)

for the KK theory (3.3).

su(3)?
k (3.5)

for 1 < k < 3, which describes a twisted compactification of the 6d SCF'T carrying
su(3) on —k curve. The kind of twist is depicted by the superscript (2) in the
label s1(3)® which denotes that an outer automorphism of order 2 is acting on
the su(3) gauge algebra as one goes around the circle. The invariant subalgebra
of su(3) under the outer automorphism is sp(1) which implies that indeed G = 1
for (3.5). The 6d SCFT has 18 — 6k hypers in fundamental of su(3), which are
exchanged with each other in pairs [15] under the outer automorphism. This
means that after the reduction we obtain 9 — 3k hypers in fundamental of sp(1)

and hence
M =10 — 3k (3.6)
for (3.5).
[ ]
su(2)™
2

- (3.7)

10We suspect that this is because a u(1) subalgebra of the naive s0(8) flavor symmetry algebra is
anomalous with the anomaly proportional to the Zy valued 6d theta angle for su(2). This dovetails
nicely with the fact that even when all four fundamentals of su(2) are gauged by an su(4), the theta
angle of su(2) is still physically irrelevant. An anomaly of the above form will explain the absence of
theta angle. We thank Gabi Zafrir for a useful discussion on this point. It would be interesting to
verify whether this suspicion is correct.

— 14 —



which denotes the KK theory obtained by compactifying the 6d SCFT

2 (3.8)

with an exchange of the two —2 curves (along with the su(2) gauge algebras living
over them) as one goes around the circle. The matter spectrum of the 6d SCFT
is a hyper in bifundamental plus two extra hypers in fundamental carried by
each su(2). The bifundamental gives rise to a u(1) flavor symmetry and the extra
fundamentals give rise to a su(2) ®su(2) flavor symmetry. The discrete symmetry
exchanging the two su(2) gauge algebras exchanges the two su(2) flavor symmetry
algebra, while preserving the u(1) flavor symmetry. Thus, the KK theory (3.7)
has

M=3 (3.9)

In the class T'= 2,G = 0, we have the following KK theories:

[ J
sp(0)) su(1)W

l———2 (3.10)
which denotes an untwisted compactification of the 6d SCFT arising from an
empty —1 curve intersecting an empty —2 curve at a single point. This 6d SCFT
is commonly known as the rank two E-string theory. It is known to have an
es @ su(2) flavor symmetry. This can be understood from the facts observed in
the last section that the theory arising from an empty —1 curve has eg symmetry
and the theory arising from an empty —2 curve has su(2) flavor symmetry. Thus,

M =10 (3.11)

for the KK theory (3.10).

su(1)® su(1)®
22— 2 (3.12)

which is the untwisted compactification of the Ay (2,0) theory (2.6). It is known
to have an su(2) flavor symmetry and thus

M =2 (3.13)

for (3.12).

— 15—



su(1)®  su(1)®
2———2

- (3.14)

which comes from the twisted compactification of the A4 (2,0) theory

su(l)  su(l) su(l) su(l)
2 2 2 2 (3.15)

by the twist exchanging the two —2 curves at the two ends with each other while
simultaneously exchanging the two —2 curves in the middle:

(3.16)

As for the KK theory (2.5), a u(1) subalgebra of the su(2) flavor symmetry algebra
of the A4 (2,0) theory can be preserved under this twist leading to

M =2 (3.17)

su(H)®  su(1)®
2—2—2 (3.18)

This theory arises from the following twist of A3 (2,0) theory

su(l)  su(l) su(l)
2 2 2

NS

M =2 (3.20)

Observe that the graph (3.18) is a folding of the graph associated to Az (2,0)
theory by the action (3.19). The tiny label 2 in the middle of the directed edge
in the graph (3.18) denotes that there are two directed edges.

(3.19)

and has
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e Finally, we have
su(H)®  su(1)®
22— =2 (3.21)

which arises by twisting the D, (2,0) theory by the following action
su(l)
I
su(l)  su(l) su(l)
2 2 2

N

It can be shown in the F-theory setup that a u(1) flavor algebra can be preserved
under this twist, and hence this KK theory has

(3.22)

M =2 (3.23)

Again, observe that the graph (3.21) is a folding of the graph associated to D,
(2,0) theory by the action (4.40).

Now we move onto a study of RG flows of these KK theories.

3.1 M=11

According to [15], the KK theory (3.1) has geometry given by

10 2h-) @ 2e+f
i Fo (3.24)

which denotes two surfaces F}° and Fy intersecting with each other. The intersection
is described as a gluing of the two surfaces. A single edge between the two surfaces
denotes that there is a single gluing. The labels at the end of the edge denote that the
curve 2e + f in Fy is glued to the curve 2h — Y x; (where the sum is over all the ten
blowups) in F}°.

Using the isomorphism (2.28-2.30) on the right surface, we can rewrite the geom-
etry (3.24) as

F10 2h-> " @ et+2f F,

(3.25)
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Notice that the gluing curve inside the right surface has changed appropriately. Now
performing the isomorphism (2.12-2.15) on the left surface, we can rewrite the above
geometry as

10 26+f—2 T; e+2f
Fi Fo (3.26)

Interchanging e and f on the left surface and performing the isomorphism (2.17-2.20)
on the left surface we obtain

941 h+f-D mi et+2f
i Fo (3.27)

where we have divided the ten blowups on the left surface into a set of nine blowups
denoted by x; and one blowup denoted by y. Performing (2.12-2.15) on the left surface
using the blowup xg, we obtain

[F8+2 etf-> i et2f F,

(3.28)

where the ten blowups on the left surface have been divided into two sets of eight
and two blowups respectively, with the blowups in the first set denoted by x; and
the blowups in second set denoted by y;. Now applying (2.17-2.20), (2.12-2.15) and
(2.17-2.20) in that sequence on the left surface we reach the geometry

F?+5 e-Z T; e+2f IFO

(3.29)

Now we will apply isomorphisms which generalize the isomorphism (2.17-2.20).
These isomorphisms take F}, — F ., and are given by'!

e—r—e (3.30)
f—x—=x (3.31)
r— f—x (3.32)
(3.33)

From now on, we will denote this isomorphism sending F}, to F;._, by Z,. The isomor-
phism (2.12-2.15) can be noticed to equal Zy*.

Applying Z; to the the first surface of (3.29) using one of the blowups appearing
in the gluing curve e — > x;, we obtain

F%+6 e—Z z; e+2f IFO

(3.34)

Notice that the blowup used in this isomorphism is a non-generic blowup for n > 1, since the
isomorphism involves the existence of the curve e — x whose self-intersection is less than —1.
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Let us successively applying Zs,Z3,Z,,Zs in that order to the left surface of the above
geometry every time choosing a blowup in the gluing curve living in the left surface.
This leads us to our desired frame to represent the starting geometry (3.24)

10 e €+2f
Ko Fo (3.35)

All of the —1 curves in the above geometry are equivalent either to a blowup x; or to
a curve of the form f — x; in the left surface. Blowing down some of the blowups, we
obtain a series of 5d SCF'Ts described by

Flo-m < 2 F, 1<m<10
M=11-m
6F = (m — 2)¢7 + 8¢% — 18¢1.6% + 120r0]

(3.36)

where from now on we will display the number of mass parameters M and the prepo-
tential 6F (in the phase described by the displayed geometry) of the 5d SCFT inside
the box as well. Let us describe how the prepotential is computed. For a rank two
theory, we can call the Coulomb branch parameter associated to the left surface as
¢r, and the Coulomb branch parameter associated to the right surface as ¢r. Then
there are four terms appearing in the prepotential, namely ¢3, ¢%, ¢2dr and ¢4y
As discussed in Sections 2.1 and 2.2, the coefficients of ¢? and ¢% in 6F are computed
by counting blowups and self-gluings on the left and right surfaces respectively. The
coefficient of ¢r¢% in 6F is computed by 30%; r Where Cp.g is the curve living in the
left surface gluing it to the right surface. In the geometry (3.36) Cp.p is the e curve in
the left surface Fg"~". Similarly, the coefficient of ¢r¢? in 6F is computed by 3C%.,
where Cr.p, is the curve living in the right surface gluing it to the left surface. In the
geometry (3.36) Cp,p, is the curve e 4+ 2f in the right surface Fy.

The blow down of a curve of the form f — z; living in the left surface of (3.35)
generates a flop transition converting (3.35) to

g e€ e+2f-x 1
s Fo (3.37)
which can be rewritten by performing 7Z; on the right surface as
9 e h+f 1
5 Fi (3.38)
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In going from (3.35) to (3.38), we have effectively “moved a blowup from the left surface
to the right surface”.

The —1 curves in (3.38) are all equivalent to either x;, f — z; in the left surface or
x, [ — x, e in the right surface. Blowing down f — z in the right surface implements an
inverse flop transition to the one we just discussed taking us back to (3.35). Blowing
down m number of blowups in the left surface simply provides a different flop frame
for the geometry (3.36), since after blowing down the m blowups we could do the flop
transition generated by f — x in the second surface converting the geometry to (3.36).
Blowing down z in the second surface produces the geometry

9 e h+f
s Fy (3.39)

which is flop equivalent to the m = 1 geometry in (3.36) as can be seen by moving all
of the blowups from the left surface to the right surface and then exchanging the two
surfaces. So the above geometry does not give rise to a new 5d SCFT not discovered
earlier in this paper.

However, blowing down z in the right surface of (3.38) and then blowing down
m number of blowups in the left surface of (3.38), we discover a series of 5d SCFTs
described by the geometries

Fgm - A=y} 1<m<9
M=10—m
6F = (m — 1)¢7 + 8¢% — 156r6% + 9oro?

(3.40)

We can say that the SCFTs (3.36) are generated by integrating out m blowups from the
left and the SCFTs (3.40) are generated by integrating out one blowup from the right
and m blowups from the left. Similarly, now we can integrate out two blowups from
the right and m blowups from the left to obtain another series of 5d SCF'Ts described
by

F&-m - I F, 2<m<S8
M=9—m
6F = mo} + 8¢k — 120.0% + 6¢ro7

(3.41)

The lower bound on m in (3.41) is placed so that we do not overcount the same 5d

— 20 —



SCFT. One can check that the geometry

Fj - “LFy

(3.42)

obtained by substituting m = 1 in (3.41) is flop equivalent to the geometry obtained
by substituting m = 2 in (3.40). The 5d SCFTs corresponding to (3.41) have

Continuing in a similar fashion, we can integrate out p blowups from the right
before integrating out m blowups from the left to obtain a series of 5d SCF'Ts given by
geometries

p<m<10-p
3<p<5h

10—-m—p € e
L R

M=11-m-p
6F = (m +p —2)¢}, + 8% + 3(p — 6)oro% + 3(4 — p)drdy

(3.43)

The bounds on m and p in (3.43) have been placed in such a fashion that we do not
over-count flop equivalent geometries. For p = 3, the right hand surface is F_; which
is by definition isomorphic to the surface FF; with the isomorphism F_; — F; given by

e—h (3.44)
h—e (3.45)
f=1r (3.46)

(3.47)

For example, the gluing curve in the right surface for p = 3 is the e curve of F_; which
is by definition the A curve of F; and has self-intersection +1. We will continue to use
the surface F_; throughout this paper.

Notice that we still haven’t discussed the blowdown of the e curve in (3.38). Its
blow down leads to a flop transition resulting in the geometry

FLo L ap!

(3.48)
which can also be written as

10 _¢ 2h
Fg Iy

(3.49)
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Furthermore, removing m blowups from the left surface, we obtain the geometry

_ e 2h
]FéO m Fl

(3.50)

As long as m < 9, the above geometry is flop equivalent to (3.36). To see this, notice
that, for m < 9, there is a blowup remaining on the left surface which can be moved
onto the right surface to yield the geometry

9—m € 2h-z 1
FE) ]Fl

(3.51)
which after application of Z;* (on the right surface by using the blowup ) becomes

9—m © 2e+f-x 1
FS ]FO

(3.52)

Blowing down z and interchanging e and f on the right surface leads us to the geometry
(3.36). However, when m = 10, then (3.51) is not flop equivalent to (3.36), thus giving
rise to a different 5d SCF'T not accounted above

Fo — 2
M=1
6F = 8%, +80% — 18610% + 126k}

(3.53)

The e curve in the right surface of (3.53) can be blowndown to give rise to another 5d
SCFT given by

Fg - 2 dpP
M=0
6F = 8¢% + 9% — 18¢Ld% + 12007

(3.54)

The above theory (3.54) can also be obtained by integrating out (towards left) the e
curve in second surface of (3.40) for m = 9. For lower values of m, such an operation
does not give rise to any new 5d SCFTs not discussed in the paper before.

Similarly, there is a blowdown of e curve in the geometries having p = 3 in (3.43)
that has not been addressed so far. These geometries are

7-m _¢€ h
Fs Fi (3.55)
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Blowing down the e curve in the second surface leads to new 5d SCF'Ts described by
geometries

€ l

dpP 0<m<7

Fi-m
M=7—m
6F = (m+ 1)¢} + 9¢% — 990% + 3dro]

(3.56)

It can be checked that it is impossible to integrate out any blowups from the right in
(3.56). For m = 3, the above geometry (3.56) is

Fi — L dp

(3.57)

which has a —1 curve not equivalent to either the blowups z; or to f — x;. This curve
is h — Y ;. To consider the blowdown of this curve let us apply Z, *,Z; ', 75+, Iy in
that order to the left surface every time choosing a blowup not appearing in the gluing
curve. This rewrites the above geometry as

Fy dP (3.58)

The curve h — Y z; in the left surface of (3.57) becomes the e curve in the left surface
of (3.58). Blowing it down, we obtain a 5d SCFT described by

apt =" L dp
M =3
6F = 5¢ + 963 — 991.0% + 36roT
(3.59)
There are no further flows from this geometry.
3.2 M=10
The geometry associated to the KK theory (3.10) is [10, 15]
qp° 31> f F(1)+1 3
- (3.60)

where the two blowups on the right surface have been divided into two sets containing
one blowup each. The blowup in the first set is called x and the blowup in the set
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is called y. This is a notation we will follow throughout this paper. Whenever the
blowups are divided into sets, we will denote the blowups in the first set by x;, in the
second set by y;, in the third set by z;, in the fourth set by w; etc.

Exchanging e and f on the second surface and using a blowup on the first surface
to convert dP? into F$, we obtain

8 2h+ f- T e 141
SEUERERS

Applying Z, on the right surface using the blowup z, and the applying Z; ! on the right

(3.61)

surface using the blowup y, we can rewrite the above geometry as

xT

8  2h+f-> x; etf-r-y 141
-2z i gy

Y

(3.62)

Now flopping = ~ y living in the second surface, we obtain

S+1 2h+f-z -2y e+f
Fy Fo (3.63)

One way to understand the appearance of —2y in the gluing curve on the left side in

the above geometry is as follows: The curve e + f — x — y has genus zero without

the presence of self-gluing, but genus one when x ~ y. Correspondingly, the curve

2h + f — " x; also has genus one. When we remove the genus of the gluing curve on

right side decreases by one. Correspondingly, the genus of gluing curve must decrease

by one. This can be achieved by transforming the left gluing curve to 2h+ f =3 x; — 2y.
Now implementing Z; ' on the left surface using the blowup y, we get

S+1 26+f—2 T; et+f
Fo Fo (3.64)

Now, just as we passed from (3.26) to (3.35), we can pass from the above geometry to
the geometry

g ¢ e+f
F4 Fo (3.65)

Moving all the blowups to the right surface and exchanging the two surfaces we obtain

9 € h+2f
F7 Fy (3.66)
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which is the our final desired frame to represent the geometry (3.60).
Integrating out a blowup towards right from (3.66) produces the 5d SCFT

g € e+2f
Fs Fo (3.67)

which is already accounted in (3.36). Similar statements will hold true for all geometries
that follow in this subsection: Every time a —1 curve is integrated out from the right
surface, the resulting 5d SCF'T has already been accounted. Thus, we only have to
integrate out —1 curves from the left surface.

Removing blowups from the left surface in (3.66), we obtain the following 5d SCFTs

Fom < M2 R, 1<m<09
M=10—-—m
6F = (m — 1)¢7 + 8¢% — 219107 + 156re]
(3.68)
Consider the geometry at m =7
9 € h+2f
F7 Fy (3.69)

Moving one blowup to the right and exchanging e with f in the resulting right surface,
we can rewrite the above as

Fé e 2€+f ]F(l)

(3.70)

Now, as already discussed in the last subsection we can move the blowup on the left
surface to the right surface and then back to the left surface such that the geometry is
transformed to

Fg - T (3.71)
Removing the blowup on the left surface we obtain a 5d SCFT described by
Fy < 2h F!
M =2
6F = 867 + Td% — 18¢10% + 12007
(3.72)
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At level m =1 of (3.68) the geometry is

g € h+2f
¥ Fy (3.73)

which has a —1 curve h — > x; which can be converted to e curve of left surface by
writing the above geometry in the following isomorphism frame

g k> m h+2f
£ iy (3.74)
Blowing down the e curve we obtain a 5d SCF'T described by geometry
dP8 I-in h+2f Fl
M =3
6F = ¢ + 86 — 21¢1.0% + 15007
(3.75)
Integrating out blowups from the right leads to theories (3.56).
33 M=7
The geometry associated to the KK theory (3.5) for k =1 is [15]
6 ]Fg+6 e—in—Eyi 4e+3f Fo
Yi
(3.76)

where the label 6 in the middle of the loop around the first surface denotes that there
are six self-gluings given by z; ~ y;. Flopping all of these and exchanging e with f in
the second surface gives

e 3e+4f-2 Z Ti 6
I, Ko (3.77)
Applying Z, on the second surface using xg gives
e 3h+2f-2 Z Ti-Y 541
F, Fi (3.78)
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Applying Z;* on the second surface using x5 gives

e 3e+3f-2 Ti- ;
F, 2> iy vy ]FngQ

(3.79)
Applying Z, on the second surface using x4 gives
[ 3h+f-2 E IZ‘-E Yi 343
I, Fy (3.80)
Applying Z5* on the second surface using x5 and exchanging e with f gives
e 2e+43f-2 E zi-g Yi 244
¥, Fo (3.81)
Applying 7, on the second surface using xy gives
e 2h4f-22-3 " Yi al4d41
F, Fi (3.82)
Applying Z;* on the second surface using = and exchanging e with f gives
e e+2f-> yi motd
Fs Fo (3.83)

Now we send all the blowups onto the left surface to obtain the desired frame to
represent (3.76)

6 € e+3f
F Fo (3.84)

As in last subsection, integrating out any —1 curve to the right does not produce any
new bd SCFTs not accounted already in the paper. Thus we can focus on integrating
out —1 curves from the left only.

Removing m blowups gives a series of 5d SCFTs described by

F&—m R, 1<m<6
M=7—m
6F = (m+ 2)¢} + 8¢% — 24¢1,.0% + 18¢r7

(3.85)

When m = 3, we can send two of the blowups onto the right surface and then exchange
e with f on the right surface to obtain

1 € 2e+f 1o
Fs Ko (3.86)
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Now, as explained in last subsection, a way to integrate out the blowup remaining on
the left surface produces a 5d SCFT

Fg - LBy
M=3
6F = 8] + 603 — 18¢10% + 12007
(3.87)
34 M=14
The KK theory (3.5) with & = 2 has geometry given by [15]
3 ]Fg+3 e—z mi—z Yi de+2f Fo
Yi
(3.88)

Performing operations similar to the ones described in last subsection, we can rewrite

the above geometry as

Fe h 3

(3.89)

from which it is easy to see that there are no new 5d SCFTs produced by this KK
theory.
The KK theory (3.3) has geometry given by [9, 10, 15]

4 e,e—Z T; e, h
Fo ? F, (3.90)

where the subscript 2 in the middle of the edge denotes that there are two gluing
curves between the two surfaces. The labels placed at the ends of edge identify these
two gluing curves in the order in which they appear. Thus, e in left surface is glued to
e in right surface, and e — " x; in left surface is glued to h in right surface.

One can observe that it is not possible to integrate out the blowups from (3.90)
since blowing them down always leads to a flop transition. If one tries to remove them
from a gluing curve by using the isomorphisms Z,,, they simply appear in the other
gluing curve. For example, if we perform Z; on the left surface using x4, we obtain the
description

3+1 Py, e 2 z; e h
F 2 £ (3.91)
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As we can see, the blowup x4 became the blowup y and entered into the description of
the other gluing curve.

Thus, the only way to obtain an RG flow is to blow down the e curve of an Fy in
some frame. But this will always appear as one of the gluing curves. For example, first
send one of the blowups from the left surface in (3.90) to the right surface

e,e-é T e, h-z
Ko ? F) (3.92)

which can be written, by using Z; ' with the blowup z on the right surface, as

3 e,e—Z T; e-z,h 1~
F; 2 F;

(3.93)

Now, blowing down x sends the blowup back to the left surface but along the other
gluing curve, yielding
4 e,h-é T; e h
F ? Fy (3.94)
We can see that the —1 curve e has appeared as a gluing curve. Blowing down the e
curve removes one of the gluing curves and produces the 5d SCFT

l—zzi l

which has already been found in (3.59). Note that we had not considered the possibility
of blowing down a gluing curve between two distinct surfaces so far because till now
we only encountered examples involving a single gluing curve between two distinct
surfaces. Blowing down this single gluing curve would decouple the two surfaces and
lead to a direct sum of two rank one SCFTs rather than a rank two SCFT.

3.5 M=3
The geometry for the KK theory (3.7) is [15]

T

2 h,h-é T; e+ f-z-2y, e-x 141
F{ 2 ———— I

v
(3.96)
which can be rewritten by performing some isomorphisms as

T

141 h fz et+f-z-2y, f-r 141
F; 2 F5

Y

(3.97)
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Sending the blowup y from the left surface to the right surface, and exchanging the
positions of the two surfaces we can write the geometry for the KK theory as

T

14141 h-z-2y, f-x e+f, f-r
CE 2 Fo

(3.98)
Integrating out the blowup z on the left surface gives rise to the 5d SCF'T
C ]F%+1 h-z-2y, f-x 9 e+f, f-x ]Fé
]
M =2
6F = T} — 15610% + 9dro]
(3.99)

This SCFT is desribed by 5d gauge theory with gauge algebra su(3) at CS level § and
a hyper transforming in two-index symmetric representation of su(3). The existence of
this SCF'T has been known in the literature, but this is the first time a geometry has
been written down describing this bd SCFT. We propose that the fundamental BPS
particles coming from the left surface are associated to curves h—x—2y, e, f—x = f—y
and x = y in the left surface rather than the set of generators of Mori cone of the left
surface.

When there are multiple gluing curves between two surfaces then we take the sum
of all the gluing curves to compute the prepotential. For example, the term ¢r¢% in
6F associated to (3.99) is computed by 3C.p where Cp.p = (h —x —2y) + (f —z) =
h+ f—2x—2y.

We can also integrate out the curve e—x living in the right surface of (3.99) towards
the left, which gives rise to a new bd SCF'T whose existence has not been predicted in
the literature. This SCFT is given by the geometry

T

C ]F%+1 e+ f-z-2y, f-x 9 h+f, e Fl

Y

M=1
6F = 8¢}, — 18¢19% + 120r¢7

(3.100)

The fundamental BPS particles arising from the left surface are again different from the
corresponding Mori cone generators. We propose that the fundamental BPS particles
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coming from the left surface can be identified with the curves e+ f—x—2y, f—x = f—y
and x = y living in the left surface.

It is also possible to remove the self-gluing. Flopping = ~ y simply sends the
self-gluing to the other surface, and hence not useful for this purpose. For example,
flopping = ~ y in (3.97) gives rise to

T

h-x-2y, f-z-z e+f,
@%+1+1+1 v, f : I f T,

Y

(3.101)

However, flopping f — x and f — y (they flop together since they have same volume)
yields a new phase from which it is possible to remove the self-gluing. Let us perform
this flop on the geometry (3.98). Notice that it also flops the curve f — x in the right
surface of (3.98). The geometry after the flop is

T

CF%““ “’ LR,

Y

(3.102)

We refer the reader to Appendix B of [15] for more details on this flop procedure. From
the above geometry we can simply remove the self-gluing by blowing down x ~ y living
in the first surface and obtain the geometry with m = 8 in the series of geometries
(3.40). Integrating out other —1 curves from (3.102) simply give rise to geometries flop
equivalent to those discussed above in this subsection.

3.6 M=2
The geometry for the KK theory (3.12) is given by [10, 15]

e-T

e-Tr
1+1 [z f-zw =141
ey

<y (3.103)

which can be rewritten as

T

xX
1+1 ey, f-= ey f-T =141
Cm s )
Y

y (3.104)
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The only inequivalent —1 curves are f —x and x on both surfaces. The flop of f —x does
not change the geometry but flopping x ~ y on both surfaces changes the geometry to

Fl e-x, f-x

e-x, f-x 1
0 ]FO

(3.105)

Recall from the discussion around (4.6) that flopping a self-gluing leads to the appear-
ance of —2x in the gluing curve inside the adjacent surface. This has split into two
copies of —z above since we have two gluing curves affected by the flop. This is con-
sistent with the discussion around (4.6) since the above flop is not supposed to change
the genus of any gluing curve.

Now the only remaining inequivalent —1 curve is f — x in both surfaces. Blowing
it down, we obtain

i i (3.106)
which has already been accounted in (3.43).
The geometry for the KK theory (3.14) is given by [15]
C Fé+1 f-z,x : 2h-2-2y, f-x ]F%+1 :>
& y (3.107)
After isomorphisms on the left surface, it can rewritten as
C F(1]+1 e-y, f-x N 2h-2-2y, f-x ]F%—H :>
v v (3.108)

Flopping x ~ y living on the left surface, and then interchanging e and f in the left

surface, we get
x

F() f,e 9 2h-z-2y-z, f-x-2 F%—H—H :>
y (3.109)

Integrating out the e curve of the right surface from the left side, we obtain

T

Fl f,e 9 2l-x-2y-z, l-x-z dP1+1+D
v (3.110)

— 32 —



which can be written as

xT

F, e y T f g1 3

Y

M=1
6F = 843 + 30107 — 9PrdT

(3.111)

giving rise to a new 5d SCFT not discussed in the literature before. We propose that
the fundamental BPS particles coming from the right surface can be identified with the
curves e, h+ f —x — 2y, f —x = f —y and x = y living in the right surface.
One can remove the remaining self-gluing as well but that does not give rise to a 5d
SCFT not accounted earlier.

The KK theory (3.18) has the geometry given by [15]

e-T

e-T
ey

ey (3.112)

which can be rewritten as

xT

X
C i+ ey fx_,  2etfady f Rl :>
Y

v (3.113)

Flopping = ~ y living on the left surface, we obtain

Fo e, f 9 2e+ f-x-2y-z, f-x-z IF(1)+1+1 :>
v (3.114)

We can integrate out e — z from the right surface to obtain (3.100). Removing the
remaining self-gluing does not lead to any new 5d SCFT either.
The KK theory (3.21) is described by the geometry [15]

e-T

e-x
F oy s sy ™)
e-y

ey (3.115)
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We claim that the above geometry should be flop equivalent to the geometry

e e+
Fs " F} (3.116)
The claim is based on the fact that the KK theory (3.21) can be described by the
5d N' = 1 gauge theory with g, gauge algebra and a hyper in adjoint representation
[22]. According to [23], the above geometry describes a gauge-theoretic phase of this
5d gauge theory.

Now exchanging e and f in the above geometry (3.116), we can rewrite it as

e e+3f m1
Fs Ko (3.117)

We can now integrate out the blowup sitting on the right surface either from the right
or from the left. Integrating it out from the right leads to a 5d SCFT described by

e e+3f
Fs Fo (3.118)

which has already been found as the m = 6 case of the 5d SCFTs described in (3.85).
However, integrating the blowup from the left leads to a new 5d SCFT not discussed
in the literature before

Fg e h+3f Fl
M=1
6F = 8¢} + 8¢k — 2T¢1% + 21rd]

(3.119)

However, this theory poses a puzzle since it can be checked that the above geometry is
not shrinkable. Two possible resolutions of this puzzle are as follows. First, it could be
possible that (3.119) is an example of a 5d SCFT without a Coulomb branch. Second, it
could be that the Coulomb branch of this 5d SCFT is not described by any gauge theory
but rather by the phase described by the following geometry obtained by flopping the
e curve in the right surface of (3.119)

xT

yCIF;““ ‘ Lgp

z

(3.120)

where the notation indicates that the left surface is a self-glued surface where the self-
gluing x ~ y ~ z is described by gluing the three blowups x, y and z all with each
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other. Naively, the above geometry (3.120) is also non-shrinkable, but it is possible
that there are some extra non-geometric elements introduced by such a flop so that
the curve f — z in the left surface of (3.120) does not give rise to a fundamental BPS
particle, but 2f — x does. This prescription for the BPS states ensures that the (3.120)
is a shrinkable phase and describes a sensible Coulomb branch of the 5d SCFT under
discussion. We do not know if any of the above proposed resolutions is the correct one,
and a more detailed study of this theory is required.

3.7 M=1
The KK theory (3.5) for k = 3 has the geometry [15]

Flo e de+f ]F(]

(3.121)
which has no —1 curves and hence there are no flows.
4 Rank three
For rank three, we have the following possibilities:
e I'=1G=2
e I'=2G=1
e I'=3G=0
In the class T'=1,G = 2, we have the following 5d KK theories:
°
sp(2)®
1 (4.1)

which describes the untwisted compactification of the 6d SCFT carrying sp(2)
gauge algebra on a —1 curve. The 6d theory carries 12 hypers in fundamental of
sp(2). Hence there is a rank twelve flavor symmetry implying that

M =13 (4.2)

is the number of mass parameters carried by the KK theory (4.1).
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su(3)W
k (4.3)

for 1 < k£ < 3, which describes the untwisted compactification of the 6d SCFT
carrying su(3) gauge algebra on a —k curve. The theory carries 18 — 6k hypers
in fundamental of su(3). For k = 1,2, the u(1) subalgebra rotating all the flavors
simultaneously is anomalous and hence for k = 1,2 the theory has only su(18—6k)
symmetry. Thus,

M =18 — 6k (4.4)
for k=1,2 and
M=1 (4.5)
for k = 3.
g
k (4.6)

for 1 < k£ < 3, which describes the untwisted compactification of the 6d SCFT
carrying go on —k curve. The 6d SCFT has 10 — 3k hypers in fundamental of g,,
implying that

M =11 -3k (4.7)

for (4.6).

2 (4.9)

with an exchange of the two —2 curves as one goes around the circle. The matter
spectrum of the 6d SCFT is a hyper in bifundamental plus three extra hypers in
fundamental carried by each su(3). The bifundamental gives rise to a u(1) flavor
symmetry and the extra fundamentals give rise to a su(3)®su(3) flavor symmetry.
The discrete symmetry exchanging the two su(3) gauge algebras exchanges the
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two su(3) flavor symmetry algebras, while preserving the u(1) flavor symmetry.
Thus, we have
M =4 (4.10)

for (4.8).

su(4)®
2 (4.11)
which describes the compactification of the 6d SCFT carrying su(4) on —2 curve
twisted by the outer automorphism of su(4). The invariant subalgebra of su(4)
under the outer automorphism is sp(2) which implies that indeed G = 2 for
(4.11). The 6d SCFT has 8 hypers in fundamental of su(4), which are exchanged

with each other in pairs under the outer automorphism [15]. This means that
after the reduction we obtain 4 hypers in fundamental of sp(2) and hence

M=5 (4.12)

for (4.13).

su(4)®

2 (4.13)
which describes the compactification of the 6d SCFT carrying su(4) on —1 curve
twisted by the outer automorphism of su(4). The 6d SCFT has 12 hypers in
fundamental and one hyper in antisymmetric of su(4). The fundamentals are
exchanged with each other in pairs and the antisymmetric is left invariant under
the outer automorphism [15]. This means that after the reduction we obtain 6
hypers in fundamental and a hyper in antisymmetric of sp(2) and hence

M =38 (4.14)

for (4.13).

su(5)?
2 (4.15)

which describes the compactification of the 6d SCFT carrying su(5) on —2 curve
twisted by the outer automorphism of su(5). The invariant subalgebra of su(5)
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under the outer automorphism is sp(2) which implies that indeed G = 2 for (4.15).
The 6d SCFT has 10 hypers in fundamental of su(5), which are exchanged with
each other in pairs under the outer automorphism [15]. This means that after
the reduction we obtain 5 hypers in fundamental of sp(2) and hence

M=6 (4.16)

for (4.15).

50(8)®

k (4.17)
for 1 < k < 4, which describes the compactification of the 6d SCFT carrying
50(8) on —k curve twisted by the order three outer automorphism of s0(8). The
invariant subalgebra of so(8) under the outer automorphism is go which implies
that indeed G = 2 for (4.17). The 6d SCFT has 4 — k hypers each in fundamental,
spinor and cospinor representations of s0(8). These three representations are
cyclically permuted under the outer automorphism and they all descend to the
fundamental of go. This means that after the reduction we obtain 4 — k hypers
in fundamental of g, and hence

M=5—k (4.18)
for (4.17).

In the class T'= 2,G = 1, we have the following KK theories:

[ ]
sp(0)) su(2)W

I——2 (4.19)
which denotes an untwisted compactification of the 6d SCFT arising from an
empty —1 curve intersecting a —2 curve carrying su(2). The empty —1 carries an
es symmetry out of which su(2) has been gauged. The remaining flavor symmetry
is e;. Moreover, as already discussed above su(2) on —2 has an su(4) flavor
symmetry which is left completely ungauged by sp(0). Thus,

M=11 (4.20)

for the KK theory (4.19).
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sp(1) su(1)W
I——2 (4.21)

which denotes an untwisted compactification of the 6d SCFT arising from an
empty —2 curve intersecting a —1 curve carrying sp(1). The empty —2 carries
an su(2) symmetry which has been completely gauged. Moreover, as already
discussed above sp(1) on —1 carries 10 hypers in fundamental. Out of these ten
hypers, at least a half-hyper must remain localized at the intersection point of the
two curves. In field theoretic terms, this half-hyper of sp(1) provides necessary
degrees of freedom to complete the N/ = (1,0) tensor multiplet associated to
empty —1 curve into an N' = (2,0) tensor multiplet. This leaves only an s0(19)
flavor symmetry and thus,

M =10 (4.22)

for the KK theory (4.21).

sp(0)H)  su(3)@
Il——2 (4.23)

which denotes the compactification of the 6d SCFT arising from an empty —1
curve intersecting a —2 curve carrying su(3), twisted by the outer automorphism
of su(3). Gauging an su(3) out of the eg symmetry of the —1 curve leaves an ¢4
flavor symmetry. However, as explained in [15], the outer automorphism twist
of su(3) is only a symmetry of the theory if this ¢s symmetry is also twisted by
its outer automorphism, thus leaving only a §, flavor symmetry preserved after
the twist. Moreover, as discussed above su(3) on —2 curve twisted by outer
automorphism has an so0(6) flavor symmetry which is left completely ungauged
by sp(0). Thus,

M =38 (4.24)

for the KK theory (4.23).

sp(0)V su(3)@
I——"3 (4.25)

which denotes the compactification of the 6d SCFT arising from an empty —1
curve intersecting a —3 curve carrying su(3), twisted by the outer automorphism
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of su(3). The su(3) carries no matter content, so this twist preserves only an f,
flavor symmetry resulting in

M=5 (4.26)
for the above KK theory (4.25).

su(2)M  su(1)®
2————2

- (4.27)

which comes from the twisted compactification of the 6d SCFT

su(l)  su(2) su(2) su(l)
2 2 2 2 (4.28)

by the twist exchanging the two —2 curves at the two ends with each other while
simultaneously exchanging the two —2 curves in the middle:

su(l)  su(2) su(2) su(l)
2 2 2 2

N
(4.29)

The matter spectrum for the 6d SCE'T is a bifundamental of su(2) ®su(2) and two
extra hypers in fundamental of each su(2). A half-hyper out of these two hypers
is trapped by the neighboring su(1), thus leaving only a u(1) symmetry rotating

the bifundamental. This symmetry is preserved under the twist and hence
M =2 (4.30)
for the KK theory (4.27).

su(3)®  sp(0)Y
3—z2—1 (4.31)

This theory arises by twisting the following 6d SCFT by the discrete symmetry
obtained by combining the following transformation

sp(0)  su(3)  sp(0)
1 3 1

NS

(4.32)
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with the outer automorphism of su(3). This twist preserves an f4 flavor symmetry

and hence
M=5 (4.33)

for it.

su(2)M  su(1)®
2—2 (4.34)
which is the untwisted compactification of the 6d SCFT arising by an empty
—2 curve intersecting a —2 curve carrying su(2). The su(2) has four hypers in

fundamental out of which a half-hyper is trapped by su(1) leading to only a rank
two flavor symmetry and implying that

M=3 (4.35)

for (4.34).

su(2)®  su(1)®
2—2—2 (4.36)

This theory arises from the following twist of the following 6d SCFT

su(l)  su(2)  su(l)
2 2 2

NS

The su(2) has four hypers in fundamental out of which two half-hypers are trapped
by the two su(1). The 6d SCFT thus has an su(3) flavor symmetry. Exchanging
the two su(1) exchanges these two half-hypers and hence their corresponding full
hypers. This is in clash with the su(3) symmetry, which can be restored only

(4.37)

if an outer automorphism of su(3) is also performed. In any case, the maximal
flavor symmetry preserved under the twist has rank one and correspondingly

M=2 (4.38)

for the KK theory (4.36).
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su(2)®  su(1)®
2—s—2 (4.39)

which arises by twisting the following 6d SCFT by the following action
u(1)

S

2
TN
5u2(1) 5u2(2) 5u2(1)

N

A rank one flavor symmetry can be preserved under this twist, and hence this
KK theory has

(4.40)

M =2 (4.41)
In the class T'= 2,G = 1, we have the following KK theories:

[ ]
sp(0)D  su(H)®  su(1)®
1 2 2 (4.42)

which has an eg @ su(2) flavor symmetry and hence
M =10 (4.43)
for the above KK theory.

su(H)®  su()®  su(1)®
2 2 2 (4.44)

which has an su(2) flavor symmetry and hence
M=2 (4.45)

for the above KK theory.
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and carries

number of mass parameters.

su(1)W

su(1)®  su(1)®

2—2—2—— 2

which arises from the following twist of As (2,0) theory

su(l)  su(l)
2 2

su(l)  su(l) su(l)

2 2

and carries

number of mass parameters.

su(1)W

27

su(H)®  su(1)®
2 —2—2
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(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)



which arises from the following twist of D, (2,0) theory
su(l)
2 \
su(l)  su(l) su(l)
2 2 2 (4.53)

and carries

M =2 (4.54)

number of mass parameters.

Now we will move onto a study of RG flows of these KK theories.

4.1 M=13
The geometry associated to the KK theory (4.1) is [9, 10, 15]

12 2h-> " h e 2h
i Fo Fi (4.55)
which we can rewrite in our desired isomorphism frame
12 _¢ h e 2h
F Fo Fy (4.56)

Notice that it is not possible to integrate out any blowup from the middle surface.
Only left and right surfaces allow a blowup in (4.56) to be integrated out. For instance,
blowing down an f — x; in the left surface yields

e

h- e 2h
Fll gl F,

(4.57)

To integrate out the blowup x on the middle surface, we would like to absorb it into
the surface such that it does not appear in any gluing curves. To remove it from the
gluing curve h — 2 we have to perform the isomorphism Z; ' on the middle surface, and
then we obtain

e h e-T h
k7! k3 -y (4.58)

So, instead of absorbing the blowup, we have only managed to move it to the other
gluing curve.
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Removing m blowups from the left surface in (4.56), we obtain a series of 5d SCFTs

Fi2m < Ly 2, 1<m<12

6F = (m — 4)¢} + 83, + 8% — 246167, + 180md7 — 1801¢% + 126r07,

(4.59)
where we denote the Coulomb branch parameters corresponding to left, middle and
right surfaces respectively as ¢, ¢ and ¢r. Using what we have already discussed
in Sections 2 and 3 we can compute all the coefficients in 6F for a rank three theory
except for the coefficient of ¢p¢y g which arises only when the graph associated to
the geometry is cyclic and has a loop-like structure. We will discuss how to compute
this term when such a geometry arises.

Integrating out a blowup from the right surface and integrating out m blowups
from the left surface in (4.56), we obtain another series of 5d SCFTs

Fil-m < oy < M, 1<m<11
M=12—m
6F = (m — 3)p} + 87, + 8% — 21o1d3, + 15007 — 150 0% + IPrY,

(4.60)

Integrating out the e curve from the right surface in (4.59), we obtain the 5d SCFT
described by the geometry

FS e h FG e 21 dP
M=0
6F = 8¢7, + 8¢, + 90 — 240187, + 180n 7 — 180n 0% + 120rdY,

(4.61)

The geometry (4.61) is also the result we obtain by integrating out the e curve of the
right surface in (4.60).

Now, integrating out two blowups from the right surface and m blowups from the
left surface in (4.56) we obtain yet another series of 5d SCFTs described by

Flo-m _© hoF, < /R, 2 <m <10
M=11—-m
6F = (m — 2)¢7 + 8¢, + 8¢% — 18p10%, + 120007 — 12010F + 60rd3,

(4.62)
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The lower bound on m has been put in the above equation so that we do not overcount
5d SCFEF'Ts.

Another series of 5d SCFTs is obtained by integrating out p > 3 blowups from the
right surface and m blowups from the left surface in (4.56)

pS<m<12-—p
3<p<6

12—m—p € h € €
IF8—p Fﬁfp prﬁl

M=13—m-—p

6F = (m+p—4)¢3 + 83, + 8¢% + 3(p — 8)drd3, + 3(6 — p)om b
+3(p — 6)pn % + 3(4 — p)OrY,

(4.63)

Consider the m = 11 case of (4.59)

F§ = g = T (4.64)

As we know from earlier discussions, we can send the remaining blowup to the right
surface and then bring it back to the left surface to obtain the following flop-equivalent
frame of the above geometry

Fé e h Fﬁ e 2e+f ]FO

(4.65)
Blowing down the blowup on the left surface in the above geometry yields the 5d SCF'T

F, < hop, 2e4f
M=1
6F = 867 + 893 + 8d% — 249103, + 180md7 — 180m 9% + 120803,
(4.66)
Consider the p = 3 case of (4.63)
B ~Fa Ty (4.67)

Blowing down the e curve in the right surface, we obtain the following series of 5d
SCFTs

Fo-m ¢ hop, © LapP 0<m<9

M=9—m
6F = (m — 1)¢} + 8¢3; + 993 — 150,05, + 9Pn¢7, — 9P dF, + 3drdT,

(4.68)
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Consider m = 3 case of the above series of geometries

6 € h e l
5 Fs dP (4.69)
We can blow down A — > x; in the left surface to obtain the 5d SCFT
dps =y L ap
M=5
6F = 303 + 8¢, + 90% — 150103, + 9omd] — 9om % + 30rDY,
(4.70)
4.2 M =12
The geometry for the KK theory (4.3) for k£ = 1 can be written as [9, 10, 15]
F%g h-> " h+f F, e h+f F,
N
(4.71)

The way this geometry is written, it is not possible to integrate out any blowup through
any surface due to the same reasons as explained in the last subsection. The reason this
happens is that every single gluing curve contains the e curve of that surface. However,
we can perform some flops and isomorphisms to remove e from one of the gluing curves
as follows. First move one blowup from the left surface to the middle surface, then
from the middle surface to the right surface, and then from the right surface back to
the left surface, such that the blowup goes around the whole geometry in a loop. At
the end of this process, one ends up with the following geometry

i+ h-> @i htf Fy < h+f F,
h-y \/ N

Now applying Z; ! on the left surface using the blowup y, we can rewrite the above as

(4.72)

IF(l)g etf-> mi h+f Fe e h+f F,

e\—/e

(4.73)

— 47 —



Now exchanging e and f achieves our goal as the geometry at hand becomes

IF(1)2 etf-> mi h+f Fe e h+f F,
f\—/e

Now we can absorb all the twelve blowups into the left surface to obtain the frame

(4.74)

Fiz — T e < M R,
! \—/

In the above frame, we can only remove blowups from the left surface. Removing m
blowups gives us a series of 5d SCFTs described by geometries

(4.75)

Fi2-m I g < "I, 1<m<12
N
M=12—-m

6F = (m — 4)¢7 + 8%, + 8¢% — 300103, + 2400 d7 — 180T + 120rP3,
—60RrdT + 60N PR

(4.76)

where the coefficient of ¢r¢r¢r in 6F is computed by 6Cr.a - CL.r. It can also be
computed using 6Chy.1, - Car.g or 6Cgar - Cr,r. This can also be viewed as a consistency
condition on the geometries since all these three expressions must match.

We can also consider first sending a blowup around the whole geometry to obtain

]Féprl e h+f T, e h+f F,
Iy w c

and then flopping the gluing curve f — y in the left surface (which also flops e in the
right surface) to obtain the following geometry in which a blowup is available to be
integrated out from the middle surface

(4.77)

Fy' — = * dp (4.78)
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Removing this blowup gives rise to a flop equivalent frame of the geometry having
m = 1 in the series of geometries (4.60) presented above. Similar remarks will hold
true in whatever follows in this subsection: Every time we integrate out a —1 curve
from the middle surface such that the resulting geometry has no edge between the left
and right surfaces, then that geometry has already been discussed in Section 4.1.

To obtain more RG flows, we can play the same game as above by removing the
presence of e curve from one more gluing curve. Notice that this gluing curve cannot be
the second gluing curve on the left surface. For, if it was this curve then the intersection
of the two gluing curves in the left surface cannot be positive, while the intersection of
the two gluing curves in the left surface in all of the geometries above is +1. So, let us
choose one of the gluing curves in the right surface'? to perform this transformation.
We have two choices: we can either choose the gluing curve for the left surface or the
gluing curve for the middle surface from which we will remove the e curve. Let us first
choose the gluing curve for the left surface. To carry out this procedure, we have to
convert the right surface to Fy, which can be done by sending two blowups to the right
surface in (4.75) and performing some isomorphisms to rewrite the geometry as

Féo e h+f ]F4 e e+f ]F%

f\—/&zm

(4.79)
Now interchanging e and f in the right surface we obtain the geometry
Fl0 _¢ hif g, e et f F2
f \K/ Y ai
(4.80)

which allows us to integrate out blowups either from the left surface or from the right
surface. To obtain any new 5d SCF'T not accounted above, we must integrate out at
least one blowup from the right surface, otherwise we can simply reverse the isomor-
phisms performed on the right surface to go back to geometries of the form already

12Note that this can be done without loss of generality. Choosing the right surface or the middle
surface gives the same results, essentially because the original geometry (4.71) has cyclic symmetry
upto flops. We encourage any interested reader to check this fact in more detail.
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considered before. Thus, the new 5d SCFTs we obtain are

—m— e h e e
R LR, p<m<10-p

fwf'zzi 1<p<5
M=12—m—p

6F = (m+p—2)p3 + 843, + 60% + 3(p — 8)prd3, + 3(6 — p)dnd?
+3(p — 4)pr % + 3(2 — p)drdY — 60rROT + 60LOMOR

(4.81)

where we have integrated out p blowups from the right surface and m blowups from
the left surface.

Now let us instead choose to remove the e curve from the gluing curve for the
middle surface living in the right surface. To do this, we must send two more blowups
onto the right surface in (4.79) to obtain

Fg e h+f F2 e e ]Fg

f \—/ e+ f-> @

Interchanging e and f on the right surface now achieves our goal

(4.82)

]Fg e h+f F2 e f Fg

f w etf-3 @

We can now rewrite the above as

(4.83)

e h+f e f
T F, F
! w c

Integrating out m blowups from the left surface and p blowups from the right surface,

(4.84)

we obtain

]Fg—m € h+f ]F2 € f ]Fg*p

f\/@

(4.85)
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However, notice that if p < 2, then we do not obtain any new geometries since we can
relate the above series of geometries to (4.81) by isomorphisms as described below. We
use two blowups on the right surface to convert the description to

Fg—m € h+f F2 € fIF§+(2_p)

f\_/e—m

(4.86)
and then interchange e and f on the right surface to obtain
Fgfm € h+f F2 ¢ € FSJF@*P)
N Ee
(4.87)

which is flop equivalent to geometries (4.81). So first substituting p = 3, we obtain a
series of hd SCFTs not described above

Fg_m e h+f FQ e f F%
1<m<8
f\—/e
M=9—m

6F = mo? + 83, + 7% — 18pd%, + 120007 — 6dr10% — 60rdT + 60LOMOR

(4.88)
Substituting p = 4, we obtain a series of 5d SCF'Ts

Fg,m e h+f FQ e f IFQ
1<m<8
fwe
M=8—m

6F = moy, + 863, + 8% — 180193, + 120007 — 66r0% — 66rOL + 60rdndR

(4.89)
Just like we saw that we can exchange e and f on the right surface in (4.84), we
can also exchange e and f on the left surface by using six of the blowups and rewrite
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(4.84) as
F8+2 [ mi h+f F, - f ]F;;

ewe

Transferring the four blowups on the right surface to the left surface, we obtain

(4.90)

F2+6 f‘zxz h+f ]F2 e f ]FO
e\/ew

Integrating out blowups from the left surface in the above geometry does not yield new
5d SCFTs since we can exchange e and f on the right surface to map the resulting
geometries to geometries of the form (4.76). So we must integrate out at least one
blowup from the right surface. Suppose furthermore we integrate out m blowups from
the left surface

(4.91)

poreom Sz Ml g, - Ly
‘ w h
(4.92)
If m < 4, then we can write the above geometry as
pgreom Lam Mg, L Rl
(4.93)

which can be mapped to geometries of the form (4.85) upto flops and exchange of
surfaces. Thus the only way to obtain a new SCFT is to susbstitute m =5

Fg f‘sz h+f FQ € f Fl
e\—/h
M =6

6F = 207 + 8¢, + 80 — 180187, + 120007 — 601% + 30rdL — 9010 + 601dM R

(4.94)
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Integrating out two blowups from the right surface and m blowups from the left surface
in (4.91) leads to

Fg+(4fm) > i h+f F, - f F,

which can always be made equivalent to geometries of the form (4.85) irrespective of

(4.95)

the value of m. Integrating out three blowups from the right and m blowups from the
left in (4.91) yields

—m) f-) = h e
F?H?’ )y f-2 +f F, f F,

which can be converted into geometries of the form (4.85) upto flops as long as m < 2,

(4.96)

since the above geometry is isomorphic to the geometry

F6+1+(27m) -2z htf T, e ! T,
0

in which we can exchange e and f on the first surface. Thus the only new 5d SCF'T we

(4.97)

obtain from geometries of the form (4.96) is

]Fili f‘sz h+f F2 € f IFl
M =6

6F = 207 + 8¢3; + 80% — 1801073, + 120007 — 60y — 30reT — 30LOF, + 6drdrdR

(4.98)

Cases involving integrating out of more than three blowups from the right surface and

m blowups from the left surface in (4.91) have already been discussed earlier since the
geometry (4.91) is left-right symmetric upto flops.

To obtain even more RG flows, we can continue playing the same game as above

by removing the presence of e curve from yet another gluing curve. Due to reasons
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already explained before, this time we must choose a gluing curve living in the middle
surface to perform this operation. Without loss of generality, since the geometry for
KK theory is left-right symmetric, we can choose it to be the gluing curve for the left
surface inside the middle surface. We obtain the following new 5d SCF'Ts this way:

]Fé_m e f ]Fg:;—p e e ]FZ%_Q 3 < p < m < 4

f\\_/f‘z”“ 1<n<3
M=12—m—n—p

6F = (m+4)p} + (n+p +2)d%, + 60% — 60003, + 3(p — 4) Ok
+3(2 — )Ry — 60r0T + 60LOMPR

(4.99)
o - ik - Fi <m<4
f\\/ﬂzzi L<m<
M=6-—m

6F = (m +4)¢7, + 88}, + 6% — 60rdi, — 9ord% + 30rd%, — 6OrOT + 60O R

(4.100)
e R 5 <m<4
f\—/ﬁzxi ssms
M=6-m

6F = (m + 4)¢} + 803, + 6% — 60103, + 300 bk — I90rdy — 60rOT + 60LOMOR

(4.101)
F3 = Lap < F?
f\\—/ﬂzm
M=1

6F = 807 + 903, + 60% — 96rd, + 3] + 30 — IordY, — 60ROT + 60LOMOR

(4.102)
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M=12—-m—-n—p
6F = (m +4)d} + (n+4)d%, + (p + 4) 0% — 60003, — 60r00% — 60rOT, + 60LONM PR

(4.103)

4.3 M=11
The KK theory (4.19) has geometry [10, 15]

]F‘4 f 3l- sz 2y1 dP7
e, e- ZJ:, _/

where the label 2 in the middle of the edge between the left and the right surface
signifies that there are two gluing curves between these two surfaces. It can be easily
seen that the above is equivalent to

4o Y1°%2  J Y1-y2

(4.104)

f h+2f-» x; ey f
F} i F}
eve—zxi\ —/e-zwi,e
2 (4.105)
which can be rewritten as
e h+2f-» x; e e
F3 2% F3
5D x\ —/f—z @i, f
2 (4.106)
which is equivalent to
Fg e h+2f F2 e e ]Fg+2
Hf \ —/f-zl‘i,f-zyi
2 (4.107)

Notice that the above geometry is left-right symmetric upto flop equivalences.
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Integrating out m blowups from the left surface we obtain the following 5d SCFTs

F8—m < A, — Fg*? 1<m<8
f»f\\ —/f-zl‘i,f-zyi
2
M=11-m

6F = moy, + 87 + 46%, — 249103, + 180nd] — 66md% — 12007 + 1201000

(4.108)
Integrating out 1 < p < 3 blowups from the right surface and m blowups from the left
surface in (4.107), we obtain

8—m—p € h+2f e € 2+4-2
]Fg_p p—FQ—pilﬁ‘p p<m<8—p
£ f > @i > v
) 1<p<3

M=11—-m-—p

6F = (m +p)d} + 83, + 4% + 3(p — 8)prd3, + 3(6 — p)ome
+3(p — 2)on 0% — 3pPrOY — 120507 + 120100 0R

(4.109)

We can also integrate out four blowups each from the left and the right surfaces to
obtain

F, - LR ~F
f’f\\ _/f‘zxivf‘zyi
2
M =3

6F = 8¢7 + 8¢3, + 497 — 120003, + 60007 + 60r0F, — 120503,
—120r07 + 120100 PR

(4.110)

We can also consider first sending a blowup from the right surface to the left surface
in (4.107) to obtain

148 _¢ h+2f e e ml42
Fg Iy Fo

fa.f \\\\\\\\\\\‘-_______;7 4_______———"”/////// e £ vi
2

(4.111)
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and then flopping the gluing curve f — z in the left surface (which also flops f — z in
the right surface) to obtain the following geometry in which a blowup is available to
be integrated out from the middle surface

e h+f e h
F7 F; Fi
/ w DI

Removing this blowup gives rise to the geometry having m = p = 1 in the series of

(4.112)

geometries (4.81) presented above. Similar remarks will hold true in whatever follows
in this subsection: Every time we integrate out a —1 curve from the middle surface
such that the resulting geometry has only a single gluing curve between the left and
right surfaces, then that geometry has already been discussed in Section 4.2. Thus, we
can focus our attention exclusively on only geometries that contain two gluing curves
between the left and the right surfaces.

We have learned in the previous subsection that new RG flows appear when we
change the degree of one of the Hirzebruch surfaces to zero and then exchange e with
f in that surface. Exchange e and f on the right surface in (4.107) would not be of
any help since we will obtain two gluing curves in the right surface containing the e
curve. Next, we could try to perform an automorphism on the right surface and then
exchange x and y. The only possible non-trivial automorphism involves applying Z,
using y; and then Z5 ' using z; which gives

] € h+2f e et+f-T1-y1 12242

I f \ —/ T1-T2, Y1-Y2
2

But interchanging e and f on the right surface now leaves the geometry invariant, so

(4.113)

this is also of no help. There is a another way that involves first sending a blowup from
the left surface to the right surface to obtain

F; € h+2f F, = e F%+2+1
f»f\ —/f-zl‘i,f-zyi
2

and then applying Z; ' on the right surface using the blowup y; to rewrite the above as

(4.114)

7 e h+2f e e-y1 2+2+1
F7 [y I

hLf \ _/f‘zmi’yl‘QQ
2

(4.115)
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After interchanging e and f, we can now rewrite it as

IF; e h+2f F, e f-y F§+2
f? f \ —/ €,Y1-Y2
2

Notice the key point that this operation has changed which gluing curve on the right

(4.116)

surface carries the e curve. Sending y» onto the left surface and further integrating out
m blowups from the left surface and p blowups from the right surface, we obtain the
following series of 5d SCF'Ts

—m e h+2 e - —
IF§7 )+1 +2f F, f-y ng p)+1

fvf'y €,y o
) 2<p<3

M=11—-m—p

6F = moi + 8%, + (p+ 4)9% — 210005, + 150007 — 3dmd%
—30rPyr — IOROT — 30L0% + 120,00 OR

(4.117)

Consider the geometry (4.117) for m = p = 0. In this geometry, we can change
which gluing curve in the left surface carries the e curve, obtaining

S - ha9 :
Fo++1 f2 iy 2 po IV 3+
ey \\ —/ ey
2

Sending the three available blowups on the right surface onto the left surface, we obtain

(4.118)

Fg+1+4 f‘zmi‘y h+2f Fl € f-z }F%
6y \\ —/ h,z
2

Now, integrating out m blowups from the left surface and p blowups from the right
surface, we obtain

(4.119)

ng;+oxﬂn—m Y wiy  ht2f F, -~ fa:F;_l

evy\\ —/hﬂx
2

(4.120)
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But only the cases m = p = 2 and m = 4, p = 0 lead to new 5d SCFTs not accounted

earlier:
IE‘?“ > ziry h+2f F, e f-z IF%
€y \\ —/ €, T
2
M=7

6F = ¢ + 803, + To% — 216103, + 156002 — 3omd%
—30rd%; — 60rdT — 6010% + 1201000

(4.121)
]Fg+l f-zri-y h+2f Fl € f-x F%
&Y \\ —/ hvx
9
M=T7
6F = ¢3 + 8¢, + T9% — 210103, + 15907 — 3dm iy
—3¢r%; — 12¢010% + 120100 dR
(4.122)

Sending two blowups from left surface to right surface in m = 5 version of (4.108)
changes the middle surface to Fy in which we can exchange e and f to rewrite the
geometry in the following frame

Fé e 2etf F, f e F%+2+2
f»f\ —/f-zl‘i,f-zyi
2

We can take the remaining blowup onto the middle surface and back to the left surface

(4.123)

to rewrite the above geometry as

Fé € 2h F, f e F%+2+2
I \ —/f-zl‘i,f-zyi
2

Removing the blowup on the left surface and integrating out p blowups from the right

(4.124)
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surface, we obtain the following series of 5d SCFTs

e 2h f € 242+ (2—
Fe [y Fyt ) 0<p<2
f:f\ _/f-zxi,f-zyi
2
M=5—-p

6F =8¢ + 8¢5, + (p + 2)¢% — 1801¢%, + 120007 — 6drd3,
—120r¢7 + 120,00 PR

(4.125)

From the p = 2 geometry above, we can integrate out the e curve of the middle surface
towards right to obtain the 5d SCF'T

Fg = 2 qp ° F2+2
f,f\\ _/f-zxi,f-zyi
2
M =2

6F = 8¢5 + 903, + 4¢3 — 1801,0%, + 120,02 + 3dr0%
—90rd%; — 120R0% + 120100 0R

(4.126)
Similarly, we can obtain the following 5d SCFTs
Fé e 2h IF% f-z f-y F(3fp)+1
2
ﬁf—w\ _/e,y 2<p<3
2
M=5-p
6F = T¢% + T¢% + (p+ 4)¢% — 180,03, + 120062 — 3o %
—30r0% — IPrOT, — 3¢LO% + 120L0M PR
(4.127)
4.4 M=10
The KK theory (4.21) has the geometry [10, 15]
o -3 24/ S oy i 3
f—m,m\ —/ ey
m’y
2 (4.128)
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which can be rewritten as

T

IF(I)O e+2f—in e+2f IFO e e ]F%_i_l :>
6-961,331\\ —/ y
f_a:vf_
2 ! (4.129)
Flopping = ~ y in the right surface, we get
e+2 x; e+2 e
Fl0+1 ¢ -3 2 R
e-T1-y, T1-Y \\ —/
(4.130)
Applying Z, using x1, then Z; using y, we obtain
R+ htf-3 iy e+ -
ey \\ —/
(4.131)

Sending all the blowups except y from the left surface to the right surface, we obtain

]F% h+f-z e F5 h+2f e F9+1

e \ _/ £ Iy
2

(4.132)
Let us rewrite the above by performing a left-right exchange
F9+1 e h+2f FS e h+f-x }F%
I 1y \ _/ &
2 (4.133)

which is our desired frame to express the geometry (4.128). It can be checked that
every time we integrate out a —1 curve from the middle surface such that the resulting
geometry has only a single gluing curve between the left and right surfaces, then that
geometry has already been discussed in Section 4.2. Thus, we can focus our attention
exclusively on the geometries that contain two gluing curves between the left and the
right surfaces.
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We can integrate out m blowups from the left surface now to obtain the following
series of bd SCFTs

F(Q—m)-i-l € h+2f Fs ¢ htf-a F%

11

fvf‘y\\ _/@71' 1§m§9
2
M=10—m

6F = (m — 2)p} + 843, + 7% — 33003, + 2T o7 — 150 o%
+90RrOY — 9OROT — 30L0% + 120,00 PR

(4.134)

It can be checked that removing e curve from one of the gluing curves in the right
surface of (4.133) and then integrating out the blowups does not lead to any new 5d
SCFTs. However, removing e curve from one of the gluing curves on the right surface
and one of the gluing curves on the middle surface leads to the following 5d SCFT

A 2h 7, f ° R2t2+3
f»f\\ —/f-zl‘i,f-zyi
2
M =6

6F = 8¢3 + 843, + ¢% — 18¢1d3 + 120107
—6prd3; — 120R07 + 120100 bR

(4.135)
The KK theory (4.42) has the following geometry [10, 15]

e Y e-x

qp? 31-> @i f Fl+l foz ,_foz Fit+ 3
v (4.136)

which can be rewritten as
@ y
Félg 2hAf-> i etf-ay Féﬂ ey fr ey fe Féﬂ :x)

Y (4.137)

Let us now flop x ~ y in the middle surface. Since these —1 curves intersect the gluing
curves for both the left and the right surfaces, the flop creates blowups in both the left
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and the right surfaces, but these blowups must be identified with each other as shown
below

T

8+1 2h+f-)> x;-2y e+f e, f ey-2, f-T-2 14141

z

(4.138)
Flopping z ~ y in the right surface, we obtain
2h+f-) x;-2 e+f e-x, f-x e-x, f-x
i+ S F ) F
v w @
(4.139)

Applying Z; " using y on the left surface, and then exchanging e with f on the left
surface, we get

]Fg+1 e+2f-z z; et+f F(l] e-x, f-x 9 e-x, f-x Fé
&y \—/ z
(4.140)
Cyclically rotating the surfaces by one unit, we prefer to write the above as
]F(l) T e Fgl) h+2f—z T; e+f ]F(l)
e'th_x\\ —/e_x7f'x
2 (4.141)

Moving the blowups on the middle surface to left surface through the right surface, we

obtain

9+1 [y e h+2f € ml
Flg ]Fl ]F7

e,y \\ _/hﬂf—x, f-x
2

which is our preferred frame for the geometry (4.136).

(4.142)
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Now integrating out m blowups from the left surface in (4.142), we obtain the
following series of 5d SCF'Ts

—m - e h e
e’y\\ —/h—i—f—x,f-x l<m<9
2
M=10—m

6F = (m — 2)p} + 8%, + 7% — 3dL0%, — 30m¢7 + 150m 0%
—21¢pey; + 210R0T — 330L0% + 120,00 R

(4.143)

The only other 5d SCFT arising from (4.142) and not accounted earlier in this
paper is obtained by removing e curve from the gluing curve for the left surface in the
middle surface and removing some blowups

Fsl; f-z f-x IF% 2h e ]Fé
6%\ —/thf—x,f—x
2
M =2

6F = T¢3 + T3, + T0% — 30103, — 3omd7, + 120007
—18¢r¢3; + 180r07 — 300L0% + 120,00 R

(4.144)
4.5 M =38
The KK theory (4.13) has the geometry [15]
IF6 e 2h ]F]_ 2h+f e-z-w ]Fg+6+1+1:>
f\ T
f-zi-yi
6 ! (4.145)

where the labels at the ends of the edge between the left and the right surface are
displayed as f and f —x; — y; respectively while leaving the value of ¢ unspecified. This
notation means that a copy of f in the left surface is glued to f — x; — y; in the right
surface for each value of i. Hence, the edge between the left and right surfaces carries
the label 6 in its middle denoting the fact that there are six gluings between the two
surfaces. We will continue using this notation in what follows.
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Flopping z ~ w in the right surface leads to

2h 2h+ f-2x e
Fl /- F6+6

(4.146)
which can be rewritten (upto flops) as
e 2h h+2f-z e
FG Fy FG
f-ai \ —/ f-zi
6 (4.147)

where the notation dictates that, for each 7, the —1 curve f — z; in the left surface is
glued to the —1 curve f — z; in the right surface. Flopping three of these f — z; and
the curve z in the middle surface, we obtain

]Fg e Qh-z T ]F:I; h+2f—z T e Fi+1
f-z; \ —/ f-zi
3 (4.148)
which can be rewritten as
]Fg e e+2f-z x; Fg et+f e Fi+1
f-zi \ —/ f-zi
3 (4.149)

Moving blowups z; living on the middle surface and the blowup y living on the right
surface onto the left surface, we obtain

F§+4 e h+2f F, h e Fg
f—ﬂfi\\ —/f-l‘i
3

which is the our desired frame for (4.145). It is possible to flow to geometries that

(4.150)

carry two gluing curves between the left and right surfaces, but we claim that all such
geometries have been accounted earlier in previous subsection. The reader can easily
check this claim. Thus, we focus our attention only on those geometries that carry
three gluing curves between the left and the right surfaces.
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Integrating out m blowups from the left surface in (4.150) gives rise to

F§+(4—m) e h+2f T, h e ]F§
f—I'\\ —/f—m 1<m<4
3
M=8—-m

6F = (m+ 1)¢} + 8%, + 5% — 21163, + 15007 + 3omd%
—90rP% — IOrROT — 9PLOR + 180LdrdR

(4.151)

Integrating out a blowup from the right surface and m blowups from the left surface
gives rise to

F2+(3_m) e e+2f F() e+ f e ]Fi
f—Ii\\ —/f-%‘ l<m<3
3
M=T7T—m

6F = (m +2)p} + 8%, + 50% — 180103, + 12007 + 6d10F
—120R0% — 90rOT — IPLOR + 180LdN PR

(4.152)
The final case involves integrating out two blowups each from the left and the right
surfaces
f‘xi\\ —/f—wi
3
M =4

6F = 5¢7 + 83, + 5¢% — 150003, + 9oud7 + Ior R
—15¢r0%; — 90rOT — 90107 + 180N R

(4.153)
The KK theory (4.23) has the following geometry [15]
(\E‘g‘f{; e_Z xi_z Yi det2f ]F() f x1-8 dPg
N \ _/ ws-z9, w21,
Yi l-x1-x2-13,
LELT 4 2l-11-T2-T4-T5-T6-T7 (4 154>

— 0606 —



which can be shown to be flop equivalent to

344 € h+3f e e 3

f-zi \\ —/ f-z;
3

(4.155)

Integrating out m blowups from the left gives us the following series of 5d SCFTs

FS+(4*m) € h+3f IFl € € ]Fii}
f—ﬂfi\\ —/f-l‘i l=m<4
3
M=8—m

6F = (m + 1)¢} + 8%, + 50% — 270103, + 21omdT — 30m %
—3¢rd3 — 90RO — 90L0% + 180 oM PR

(4.156)

Integrating out a blowup from right and m blowups from left gives the following 5d

SCFTs
Fg+(3—771) € e+3f FO € e F% § .
f‘xi\\ —/f-%‘ O=m=<3
3
M=7—m

6F = (m +2)¢? + 8¢, + 5o% — 24d103, + 18dr 07
—60Rrd%, — I9OrOT — 9010 + 180LdndR

(4.157)

It can be shown that other ways of integrating out —1 curves discussed earlier do not

give rise to any new bd SCF'Ts. However, a new way of integrating out —1 curves opens

up in this theory. First, sending one blowup from the left surface to the right surface
in (4.155) results in

343 _€ e+3f € e 341
Fg [Fo F5

f-zi \\ —/ f-zi
3

which is isomorphic to

343 € e+3f e e-T1-T2 341
IFg Fo F5

f—Il,f-xQ,f-xs\\ _/Uﬂl,UCQ,f-ws
3
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Now exchanging e and f on the right surface yields

Fg+3 e e+3f ]FO e f-r1-x2 F8+1
f—xlyf-$27f-$3\\ —/xl,xg,e—x;;
3

which after flopping x3 in the left surface and applying isomorphisms can be written as

(4.160)

+3f f- i

F§+3 e e FO € ZCE F%+3

faf‘xi\\ _/el«
3

Now we can integrate out m blowups from the left surface and p blowups from the right
surface to obtain the following 5d SCFTs

(4.161)

24(3—m) € e+3f e f—Zzi 24(3—
IF8+( ) Fo IF2+( 7 0<m<3
Iy f-zi e, T;
M=8-—m-—p

6F = (m+ 3)¢? + 803, + (p+ 3)9% — 240103, + 18pr 7
—6pry; — 120R07 — 60L0% + 180N 0

(4.162)

The KK theory (4.6) for k = 1 has the geometry [9, 10, 15]

qz—’—? e—in‘zyi 3h ]F3 € h Fl
yi (4.163)
which is equivalent to
Fg+4 e e+3f Fo e e ]F%
J-s \\ —/ f-zi

3 (4.164)
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and only produces the following new 5d SCF'Ts

F2t4 < et3f F, < f-2 wi Fgﬂz—p)
fvf-mi\\ _/r 1<p<?2
3
M=8—0p

6F = 2¢3 + 843, + (p+ 4)o% — 240103, + 18dr 07
—6preyr — 120507 — 60L0% + 180101 OR

(4.165)
46 M=6
The KK theory (4.3) for k = 2 has the geometry [9, 10, 15]
]Fg e-Z x; h IF4 e h IFQ
(4.166)

Sending two blowups onto the right surface, we can write the above geometry as

FZO,L f‘Zsz h ]FQ € f ]F%
N

We can send one of the blowups on the right surface onto the left surface to get

(4.167)

Fi+l Jlw b R F}

fy w fa

Blowing down the gluing curve f — y in the left surface (which also blows down the
gluing curve f — x in the right surface) leads to the following 5d SCET

(4.168)

4 [ m h e f
Fi F, Fy (4.169)

which is same as (4.70). There are no other RG flows possible for this KK theory.
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The KK theory (4.15) has the geometry [15]

Zs

(\]Fg_’_5 e—zmi‘zyi 2h ]FG € 2h Fl

which is equivalent to

5 € e 2h e
o F, Fe

from which we can obtain the following rank three 5d SCFTs

F3—m < “F, 2 S 1<m<5
M=6—m
6F = (m+ 3)¢} + 8¢% + 8% — 30003, — 3omeT + 12000% — 180reY,

At m = 3, we can also integrate out h — Y z; in the left surface to obtain

dP? DI “F 2 ~ Fg

M =2
6F = T¢1, + 804 + 805 — 301.0%, — 3dmdL + 12010% — 186r07,

4.7 M =5
The KK theory (4.6) for k = 2 has the geometry [9, 10, 15]

which is equivalent to

]Fg e e+3f Fo e+f e ]Fi

f-ai \ —/ f-zi
4
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This frame allows us to easily integrate out —1 curves and it can be seen that, in doing
so, no bd SCFTs can be obtained which have not been discussed above.
The KK theory (4.11) has geometry [15]

4 € 2h 2h e 4
i F, T4

f-zi \ —/ f-z;
4

which is equivalent to

(4.176)

]Fg e e+2f ]FO e+2f e ]Fg
f-zi \ —/ f-zi
4

and can be seen to not give rise to any new 5d SCFTs.
The KK theory (4.25) has the following geometry [15]

(4.177)

de+f F f T1-T8

ffff\\ —/1‘81}9$2x17
T1-T2-T3

2l-x1-22-T4-T5-T6-TT7 (4178)

which is equivalent to

+4
F%O e e+4f Fo e e ]F%
f—Ii\\ —/f-%‘
4

and can be seen not to lead to any 5d SCF'Ts not discussed earlier in this paper.
The KK theory (4.31) has the geometry [15]

(4.179)

de+f F f T1-T8
ffff\\ —% l-x1-x2-23, T2-21,
-X1-T2-T3-T4-T5-TE-L7-2X9,
2l-11-T2-T4-T5-T6-T7 (4 180)
which is equivalent to
4 € h+4f e et+f 242
Fl4 Fy Fo

511 \ _/w i - i
4

(4.181)
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We can integrate out blowups sitting on the left surface to obtain the following 5d

SCFTs

d—m € h4-4f e etf m242

ﬂﬂf\\\\\\\\‘~‘ 4_~’//////@%%J§)mﬂ2w
4

1<m<4
M=5—-—m

6F = (m +4)¢} + 83, + 40} — 420003, + 36007 — 120007%
+60r0% — 240R07 + 240100 R

4.8 M=14
The KK theory (4.17) for k£ = 1 has the geometry [15]

f_a;i: f‘iv'h
F3+3 e yi o, b (v i+ e wid yi htf

Y Y

which is equivalent to

e h+3f e e+f
F2, Fy Fat?
I f \ _/eJrf-Z Tim Y Yi, TivYi
3

and gives rise to the SCFTs

]F%;m e h+3f F, e et+f Fngz
f»f\\ —/6+f-zwi-zyi7$i-yi
5 1<m<2
M=4—m

6F = (m + 6)p} + 8%, + 4¢% — 360L0%, + 300307 — 12000%
+69ro% — 18pre7 + 180 1dMm R
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(4.183)

(4.184)

(4.185)



The KK theory (4.8) has the geometry [15]

x Yy

h-) x; e+ e+ f-x-2y, f-z-z h,
F:% Z f ]F%—‘rl—‘rl f Y, f 9 / ]Fg
h w €

Moving one blowup from the left surface to the middle surface, then to the right surface
and then back to the left surface,we can write the above as

(4.186)

x Y

e e+ e+2f-x-2y, f-x-z h,
3 . v Flti+l f-a-2y, f ) ! R,

fwe

(4.187)
Removing m blowups from the left surface, we obtain the following 5d SCFTs
x Yy
—m € e+f e+2f-x-2y, f-x-z h, f
F3—m — =L pititl 2 Fr 1<m<3
! w e
M=4—-—m
6F = (m+5)p3 — @3, + 8% — 31,03, — 3dadr — 18pnd%

+12¢r¢%; — 60R0T + 60LOMdR

(4.188)

We propose that the fundamental BPS particles arising from the middle surface are
associated to the curves e+ f, e+ 2f —x -2y, e+2f —z2, f—x—z=f—y—z,x =y
and z living in the middle surface.

Now, moving the blowup z on the middle surface and one blowup on the left surface
onto the right surface in (4.187), we obtain

x Yy

o € e+f 141 et+3f-z-2y, f-z h-y, f-x 141

fwe

(4.189)
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which can be rewritten, by performing isomorphisms on the right surface, as

x Y

9 € et+f 141 e+3f-z-2y, f-x et+f-z,x 141
I Fy 2 Fy

f \—/&zw

(4.190)
Exchanging e and f on the right surface, we obtain
x Y
F2 < et f Fi+! et3f-e-y. f-r ,  etfw FL+!
f &/ﬂz—y
(4.191)

Now we can integrate out blowups (living on the left surface) from both the left and the
right surface. The only possibility giving rise to a new 5d SCFT not discussed above is
obtained by integrating out one blowup from the left and one blowup from the right:

z Yy

F, h e+f E})H et+df-x-2y, f-x 9 h-z,x ]F%+1

f\\/ﬂw—y
M =2

6F = 8¢3 + 6¢% + 3% — 9OmdT — IPm T
+3¢ro3 — 60RrPT + 6PLOMOR

(4.192)

We propose that the fundamental BPS particles arising from the middle surface are
associated to the curves e+ f, e +4f —x — 2y, f —x = f —y and z = y living in the
middle surface. Removing the self-gluing leads to 5d SCFTs already discussed before.

4.9 M=3
The KK theory (4.17) for k = 2 has the geometry [15]

f-z4, f-z,
IF%“ e> i 5 R4 (f-i) IF%H e xi-y i 3e 4 2f F,

Y Y

(4.193)
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which is flop equivalent to

Fiq e h+2f F, e et+f Fg+2
I f \\ _/f‘zzivf‘zyi
2

from which we can obtain the 5d SCF'T described by the geometry

(4.194)

Fg e h+f F5 e h+f ]F%

f\\—/f—zm

M =2

6F = 8¢} + 8¢3; + 60% — 270,073, + 21om 07 — 15000%
+9¢rp3; — 66rd? + 6Prdr PR

(4.195)

The KK theory (4.34) is described by the geometry [9, 10, 15]

e-T

4 € e T e h f f-z-y 141
f-z1, 21 ey
2 1‘7y

Our desired frame for this geometry is

(4.196)

F% €, 9 f-z, f-y F% e-x-y e+f IFO

(4.197)

from which it is easily shown that no new 5d SCFTs arise. For example, integrating
out f —y in middle surface and z in left surface leads to the 5d SCFT

Fl e f-z Fé e-T e+f IFO

(4.198)

which has already been discussed in Section 4.2. To see this, notice that flopping x on
the middle surface leads to

F} - L, < " T}

(4.199)

which is clearly flop equivalent to (4.100) for m = 4.
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410 M =2
The KK theory (4.6) for & = 3 has the geometry [9, 10, 15]

T

[ [ 3h e-T-y
. . )

Y

which is equivalent to

]FQ € f ]FO e+3f € ]Fg
f\\—/ﬂzm

and produces no new 5d SCFTs.
Similarly, the KK theory (4.17) for k = 3 is associated the geometry [15]

f-z, f-z,
ey h+f- e-z-y 3h
it 9 f-y F%H F,

Ty "y

which can be written in our desired frame as

f-) zi e e+3f e
F2, L2 F, F?

€, T \ —/ ht-£- " s, f-z
3

(4.200)

(4.201)

(4.202)

(4.203)

The only possible blowdown is the blowdown of a blowup in the left surface, which

induces a flop transition leading to

]F%O f-z e F% h+2f e }F%

e \ _/hﬂf—x, f-x
2

(4.204)

Removing the blowup from the middle surface leads to (4.143) for m = 9 and hence we

don’t obtain any new 5d SCFT.
The KK theory (4.44) is described by the geometry [10, 15]

141 f-z,z f-z,x 141 [z, f-z,x 141
F5 2 Fs 2 Fs

e-x U ey e-x Q e-y e-x Q &y
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which is equivalent to

(4.206)

from which we can blowdown x to obtain a 5d SCF'T discussed in Section 4.1. Thus,
there are no new 5d SCF'Ts arising from this KK theory.

Now, consider the KK theory (4.49), which is described by the following geometry
easily seen to be equivalent to the geometry assigned to the KK theory by [15]

F(1)+1 e-y, f-x 9 e-y, f-x F(l)+1 2e+ f-z-2y, f-x 9 e-y, f-r ]F(l)+1
O O O
(4.207)
Flopping x ~ y in the left surface and x ~ y in the right surface, we obtain
F, ef ., _eyzfaz FLti+isl 2etfoa-2yw, faw ef F,
O
(4.208)

Adding some decoupled states onto the right surface and flopping = ~ y in the middle
surface, we obtain

T

1 ez, f-x ez, f-x 141 2e+f-y, f-y et+f-z-2y, f-x 141
Fo 2 Fo 2 ¥y

xm\ _/ !
x!y
2

where the blowup on the left surface must glue to both z and y in the right surface,

(4.209)

and to account for that the blowup on the left surface appears twice in the gluing rules
with the right surface. Flopping f —x and f — y in the right surface (which flops f —y
in the middle surface as well) leads to

xT

o e-x-y, f-x h-z, f-x 1 2h e 141
5 2 IFq Fg

TY, T-Y, Y, y\\ —/ Y
4 fvfaf'x?f'y

(4.210)
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Now flop f — = in the left surface which is glued to f — z in the middle surface

T, w

- 2¢-+-2 _w-
]F% ez e T, e+2f e-w-z Fé“““ 9

f—m,f—x,m,x\\ _/ \y_zj
4 fw, f-z, f-a, fy

Flopping f — x in the left surface (and other curves in the threefold glued to it) leads
to

(4.211)

z, f-w
IFZ e e IFO 2€+2f e Fé+1+1+1 9
£ \\ _/ ~_/
: Forew foez VT (4.212)
Now flopping = ~ y in the right surface leads to
IF% e e F, 2e+2f e-x-y FéJrl D

f-z, f-x Y
2 z7y

Finally, flopping  ~ y in the right surface leads us to our desired frame for this KK

(4.213)

theory

Iy = “F ~ F (4.214)
which indeed, as expected [22], describes the 5d gauge theory having gauge algebra
s0(7) and a hyper in adjoint. See [23] for more details on the correspondence between
geometries and Hd gauge theory descriptions. Removing the blowup from the middle
surface integrates out the adjoint matter leading to the geometry for pure N’ =1 s0(7)
theory in 5d, but this was already accounted as m = 5 case of (4.172). Thus there are
no new 5d SCF'Ts arising from this KK theory.
For the KK theory (4.39), the associated geometry is [15]

e-T e-y

2+1 fyy 2f-z, f-y 1+1 Y f-r, e
Fo 2 F5 2 F5

e“zmi_?he\ —//h-ZC,E
2

(4.215)
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By doing similar flop gymnastics as above, it can be shown that it is equivalent to the

following geometry

F'y e h+2f Fl f e ]Fg

f\\—/ﬂzm

from which it can be seen that no new flows can be produced.
For the KK theory (4.36), the associated geometry is [15]

e-T e-y

“9 )T Ty ad)
Fg+1 I~y 9 Iz, f-y Fé-{-l 9 fxo:F%
e'zzi_yve\ —/h'w’e
2

and turns out to be equivalent to

F%‘i’l € l dP l € IF%

> wivy \\ —/ frx
2

(4.216)

(4.217)

(4.218)

from which the only flow arises by blowing down the blowup y in the left surface leading

to the 5d SCFT described by the geometry

l e

Fy - L gp F2

f\\—/ﬂm

which was already found earlier (4.102).
The KK theory (4.27) is described by [15]

O (Y
e-T e-y

1+1 f-z-y S i+l etf-z-2yeax hyh-z-y =141
[y Fo 2 IFy

z,y \ —//f—:r,x
2
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which is equivalent to

x Y

1 € h i1 hz-2y, f-z et+f, f-y mi+1
Fg ——— 2 Fy

It \\ —// e-T-y, YT
2

(4.221)
Removing the blowup on the left surface leads to a 5d SCFT described by
x Y
Ty e h ]F%H h-z-2y, f-z 9 e+f, f-y ]F[lﬁl
5 \\ —// e-ay, Y-
2
M=1
6F = 8¢% + 60% — 99163, + 30mdT — 150 %,
+90r03 — 12007 + 12000 PR

(4.222)

We propose that the fundamental BPS particles arising from the middle surface are
identified with the curves e, h —x — 2y, f —x = f —y and z = y living in the middle
surface. We can also move the blowup on the left surface of (4.221) to the middle
surface, then to the right surface and then back to the left surface to obtain

x Y

2

f-z, f \\ —/h—x—y,y—x
2

Flopping f — x in the left surface and h — x — y in the right surface, we obtain

1 € € 1+1 e+f—w—2y,f—w h:f'y 1+1
]FZ ]FO ]Fl

(4.223)

x Y

e e h-z-2y, f-x h, f-x
F, S © pl+l 2 F!

f w e
(4.224)

which is the same as m = 3 case of (4.188) upto decoupled states.
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The KK theory (4.46) is described by the geometry [15]

]F%+1 2h-x-2y, f-x 9 f-z,x ]F(]j+1 f-z,x 9 f-z,x F(l)Jrl
Ok (" ("
(4.225)
which can be rewritten as
IF%H 2h-z-2y, f-x 9 ey, f-x Fé+1 ey, f-x 9 ey, f-x ]F(I)H
A A A
(4.226)
Flopping x ~ y in the middle and right surfaces leads to
X
C F%-l-l-i—l 2h-x-2y-z, f-x-2 9 e, f F(l) e-x, f-x 9 e-x, f-x F(l)
Y z \—/ z
(4.227)
which is isomorphic to
xr
C ]:F%“Fl-i'l h+f-a-2y, f-z-z 2 e f ]F(l) ez, f-x 2 ez, f-x Fé
Y e \\—// z
(4.228)
Rotating the above configuration clockwise by one unit, we get
x y
]F(l) z ¢ ]F%“Fl-‘rl h+f-z-2y, f-z-2 2 e f Fé
e—x,f—x\\ —//e—m,f-w
2 (4.229)

We claim that the blowup z on the middle surface can actually be integrated out from
the left surface. To see this, let us exchange e, f on the right and left surfaces to rewrite
the above geometry as

x Y

1.z € 14141 htf-z-2y, f-z-2 fre m1
Fo IFy 2 Fo

f-z,e-x \\ —// f-z,e-x
2

(4.230)
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Now it is clear that the blowup z on the middle surface can be taken to right surface
and then to the left surface. Performing this action leads to

x Yy

141 = e 141 h+f-z-2y, f-x fre 1
FliAt L ° Rl 2 F!

f-z,e-x ¥ —/ f-z, h-x
2

(4.231)
which can be rewritten to produce our desired frame for this KK theory
x Yy
]F%+1 f-z e F%+1 h+f-z-2y, f-z 9 h-z,x ]F%
e & _// It
2 (4.232)

Removing the extra blowup on the left surface not participating in any of the gluing
curves leads to the following 5d SCFT

x Yy
F% f-z e F%+1 h+f-z-2y, f-x 9 h-z,x ]F%
ez \\ _// f.f-e
2
M=1

6F =797 + 7¢% — 3dprd3; — 30mdT — 9dn o7,
+30r03 — 30rOT — IOLOR + 120100 PR

(4.233)

We propose that the fundamental BPS particles arising from the middle surface are
identified with the curves e, h+ f —x — 2y, f —x = f —y and = = y living in the
middle surface.

The KK theory (4.46) is described by the geometry [15]

F1+1 2f-x,x
1

e-x U ey e-x Q e-y e-x Q &y

9 f-z,x ]F(]j+1 f-z,x 9 f-z,x F(l)Jrl
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which is flop equivalent to

x
14141 2h-z-2y-z, f-z-2 e, f 1 ez, f-x e-x, f-x 1
C I ? Fo 2 o
v z \\—// T

Notice that the above configuration is analogous to the configuration (4.227), but it

(4.235)

does not lead to any flows, though the configuration (4.227) does. There are thus no
new 5d SCF'Ts obtained from this KK theory.

411 M=1
The KK theory (4.17) for k = 4 has the geometry [15]

Flo e h FS e 3e+f ]FO (4236>
which has no —1 curves and hence no RG flows.
The KK theory (4.3) for k£ = 3 has the geometry [5, 9, 10, 15]
Fl e e Fl e e Fl
(4.237)

The only —1 curve is the e curve in each surface which are all glued to each other.
Integrating it out leads to three copies of the rank one SCET given by (2.38), but not
to a rank three SCFT.
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