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Abstract: We determine all 5d SCFTs upto rank three by studying RG flows of 5d KK

theories. Our analysis reveals the existence of new rank one and rank two 5d SCFTs not

captured by previous classifications. In addition to that, we provide for the first time

a systematic and conjecturally complete classification of rank three 5d SCFTs. Our

methods are based on a recently studied geometric description of 5d KK theories, thus

demonstrating the utility of these geometric descriptions. It is straightforward, though

computationally intensive, to extend this work and systematically classify 5d SCFTs of

higher ranks (greater than or equal to four) by using the geometric description of 5d

KK theories.
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1 Introduction and Conclusions

Since the successful classification of 6d SCFTs [1–4], there has been considerable interest

in classifying 5d SCFTs [5–15] (see also [16]). In this regard, an interesting conjecture

was made [8] by observing that there seems to be an upper bound on the number of

matter hypermultiplets [7] that can be carried by a supersymmetric 5d gauge theory for
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it to have a UV completion. At the tip of the bound, the UV completion is a 6d SCFT,

and below the bound, the UV completion is a 5d SCFT. Based on this observation, it

was conjectured that it should be possible to obtain all 5d SCFTs by systematically

integrating out BPS particles from 6d SCFTs compactified on a circle1.

This conjecture was tested successfully in a geometric context in [8]. There a

classification of shrinkable smooth local Calabi-Yau threefolds was performed such that

compactifying M-theory on such a threefold would give rise to a 5d SCFT of rank less

than or equal to two. The RG flows associated with integrating out BPS particles

translate to geometric operations involving flops and blowdowns on this threefold. It

was then shown that all such Calabi-Yau threefolds can be obtained from a handful

of “parent” Calabi-Yau threefolds via flops and blowdowns. A parent threefold is not

shrinkable and, in fact, compactifying M-theory on it produces a 5d KK theory, which

is another name for a 6d SCFT compactified on a circle possibly with a twist by a

discrete global symmetry around the circle.

Motivated by the successful test of this conjecture, a number of recent works

[9, 10, 15] (see also [11–14]) undertook the task of determining the Calabi-Yau three-

fold2 associated to each 5d KK theory. According to the conjecture, these Calabi-Yau

threefolds act as parent threefolds for the “descendant” Calabi-Yau threefolds associ-

ated to 5d SCFTs, where the descendant threefolds can be determined from the parent

threefolds by performing sequences of flops and blowdowns on the parent threefolds.

The main goal of this paper is to explicitly carry out such a procedure to determine the

Calabi-Yau threefolds associated to all 5d SCFTs of rank less than or equal to three,

thus extending the results of [8].

This work provides for the first time a systematic and conjecturally complete clas-

sification of 5d SCFTs of rank three. The contents of this paper can also be viewed as

an illustration of the general procedure by which one can extract the identities of all 5d

SCFTs starting from the results of [9, 10, 15]. In principle, there is no problem in ex-

1Notice that the way this conjecture has been phrased, it not only applies to 5d SCFTs having an

effective gauge theory description, but also to 5d SCFTs not having such a gauge theory description.

An example of such a 5d SCFT is the theory “su(2) with minus one number of fundamental hypers”

which can be obtained by compactifying M-theory on a local P2.
2For generic KK theories, it is a smooth threefold. For some exceptional KK theories, the Calabi-

Yau threefold may not be smooth and/or the compactification of M-theory on the threefold might not

be completely geometric. See [15] for more details. In this paper, we will use the word “geometry”

without distinguishing whether the Calabi-Yau threefold is smooth or singular, and whether the com-

pactification requires extra non-geometric ingredients or not. In the cases where extra non-geometric

ingredients are involved, the effect of such ingredients can be captured in the difference between the

set of generators of the Mori cone (i.e. the set of holomorphic curves) of the threefold and the set of

fundamental BPS particles in the resulting 5d theory.
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tending the methods used in this work to obtain the classification of 5d SCFTs for any

arbitrary rank. However, this task becomes increasingly complex in a computational

sense as the rank is increased.

Our approach can be termed as “top-down”, distinguishing it from the “bottom-up”

approach of [8] where 5d SCFTs were determined by building shrinkable Calabi-Yau

threefolds in a bottom-up fashion. Our top-down approach instead starts from the

Calabi-Yau threefolds associated to 5d KK theories, upon which flops and blowdowns

are performed to reach Calabi-Yau threefolds associated to 5d SCFTs. Using this top-

down approach, we revisit the classification of rank one and rank two 5d SCFTs which

was already undertaken in [8] using the bottom-up approach. The top-down approach

uncovers the existence of a few new rank one and rank two 5d SCFTs not accounted in

[8]. These 5d SCFTs are (2.53), (3.99), (3.100), (3.111) and (3.119).

2 Rank one

Notice that integrating out matter hypermultiplets from a 5d gauge theory does not

change the rank of the theory. This generalizes to the fact that integrating out BPS

particles from a 5d theory does not change its rank. Thus the KK theories relevant

to the classification of rank one 5d SCFTs themselves have rank one. So the starting

point to the classification of rank one 5d SCFTs is the classification of rank one 5d KK

theories.

The rank of a 5d KK theory can be determined from the tensor branch description

of the associated 6d SCFT. Recall that a 6d SCFT is described on its tensor branch by

a 6d gauge theory interacting with a collection of tensor multiplets. If the 6d SCFT is

compactified on a circle without any twist, then both the 6d vector multiplets and 6d

tensor multiplets descend to 5d vector multiplets and hence the rank r of the resulting

5d KK theory can be written as

r = t + g (2.1)

where t is the number of tensor multiplets arising on the tensor branch and g is the

rank of 6d gauge algebra arising on the tensor branch.

The possible twists of 6d SCFTs were studied in [15]. The description of the most

general twist can be found in Section 2 of [15]. The most general twist can be described

as a permutation S of tensor multiplets combined with an outer automorphism O of

the 6d gauge algebra such that this combination SO is a discrete symmetry of the

corresponding 6d SCFT. When the 6d SCFT is compactified on a circle with the twist

SO, then the different 5d vector multiplets arising from the reduction of 6d tensor

multiplets are identified with each other according to the action of S, and the 5d vector
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multiplets arising from the reduction of 6d vector multiplets are identified according to

the action of O. Thus, the rank r of the resulting 5d KK theory can be written as

r = T + G (2.2)

where T is the number of orbits of the permutation S and G is the rank of algebra left

invariant by O.

Since every 6d SCFT has at least one tensor multiplet, a rank one 5d KK theory

can only arise from 6d SCFTs which do not carry any 6d gauge algebra on their tensor

branch. All the rank one 5d KK theories can be determined to be

1
sp(0)(1)

(2.3)

2
su(1)(1)

(2.4)

2
su(1)(1)

(2.5)

where we have used the graphical notation for 5d KK theories developed in Section 2

of [15]:

• (2.3) denotes the KK theory arising from the untwisted compactification of the

6d SCFT arising from an empty −1 curve3 in F-theory, commonly known as the

E-string theory. The label 1 denotes that −1 curve is used and the label sp(0)

denotes that the gauge algebra living on the −1 curve is trivial. The superscript

(1) in the label sp(0)(1) denotes that there is no gauge algebra outer automorphism

involved, which is obvious in this case since a trivial gauge algebra cannot have

any outer automorphisms.

• Similarly, (2.4) denotes the KK theory arising from the untwisted compactifi-

cation of the 6d SCFT arising from an empty −2 curve in F-theory, commonly

known as the A1 (2, 0) theory. Here su(1) denotes that the gauge algebra is trivial

and the superscript again denotes the non-existence of an outer automorphism.

3In a field theoretic language, we say that there is a fundamental BPS string in the theory whose self

Dirac pairing is +1. The string arises from a D3 brane wrapping the −1 curve, and the self-intersection

of the curve is identified with negative of the self Dirac pairing of the string.
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• (2.5) denotes the KK theory arising from a twisted compactification of the 6d

SCFT

2
su(1)

2
su(1)

(2.6)

arising from two −2 curves intersecting each other at one point4, such that both

of the curves carry empty gauge algebra. This 6d SCFT is commonly known as

the A2 (2, 0) theory. The discrete symmetry associated to the twist permutes the

two tensor multiplets arising from the two −2 curves. The graph (2.5) is simply a

folding of the graph (2.6) induced by the exchange of the two nodes in (2.6). The

loop in (2.5) is the image of the edge in (2.6) after the folding. The superscript

on su(1) in (2.5) again denotes that there is no outer automorphism.

It is convenient to organize the KK theories by their number of mass parameters.

Each time a BPS particle is integrated out, the number of mass parameters decreases

by one. So, in a sense, the most number of RG flows are produced by KK theories

with the most number of mass parameters. Quite often, the RG flows from theories

containing less number of mass parameters lead to the same 5d SCFTs obtained via

RG flows from KK theories with more number of mass parameters. The number of

mass parameters M for a KK theory can be written as

M = F + 1 (2.7)

where F is the rank of the subalgebra of the flavor symmetry algebra of the associated

6d SCFT left invariant by the twist. The extra mass parameter not included in F is

given by the inverse of the radius of compactification R.

It is well-known that the E-string theory has an e8 flavor symmetry, so the number

of mass parameters for the KK theory (2.3) is

M = 9 (2.8)

The flavor symmetry for A1 (2, 0) theory is su(2) giving

M = 2 (2.9)

for the KK theory (2.4). Finally, the flavor symmetry for A2 (2, 0) theory is su(2). This

symmetry is carried by a non-compact curve intersecting one of the two −2 curves.

Thus it is not possible to preserve the full su(2) after the twist, but a u(1) subalgebra

4The fact that the two curves intersect at one point translates to the fact that the two fundamental

BPS strings arising from these two curves have a mutual Dirac pairing of −1.
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can be preserved. The F-theory configuration involves two non-compact curves each

carrying an I1 singularity and each intersecting a different −2 curve. This configuration

is invariant under the discrete symmetry interchanging the two −2 curves. Thus, we

have

M = 2 (2.10)

for the KK theory (2.5).

Now we move onto a study of RG flows of these three KK theories.

2.1 M = 9

The Calabi-Yau threefold associated to (2.3) is [8–10, 15] a local neighborhood of the

surface
F

8
1 (2.11)

which denotes an eight-point blowup of the Hirzebruch surface F1. See Appendix A of

[15] for a quick review on Hirzebruch and del Pezzo surfaces.

The RG flows of (2.3) are captured by the blowdowns of −1 curves in the surface

F
8
1 above. The key point is that a −1 curve in a geometry can always be written as a

blowup on a surface in some isomorphism frame of the geometry. For example, except

the blowups xi (i = 1, · · · , 8), some of the other −1 curves in (2.11) are f − xi and e.

To see that a curve f − xi (for a fixed i) can be written as a blowup, one can perform

the isomorphism F
8
1 to F

8
0 given by

e → e − xi (2.12)

f − xi → xi (2.13)

xi → f − xi (2.14)

xj → xj for j 6= i (2.15)

This isomorphism leads to an equivalent geometry

F
8
0 (2.16)

describing the KK theory (2.3). Now if one performs an isomorphism F
8
0 → F

8
1 given

by

e − xj → e (2.17)

f − xj → xj (2.18)

xj → f − xj (2.19)

xk → xk for k 6= j (2.20)
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with j 6= i, then the geometry is again described by (2.11). The combination of these

two isomorphisms is an automorphism of F
8
1 that maps a curve f − xi to a blowup.

Similarly, the curve e in F
8
1 can be written as a blowup by using the isomorphism5

F
8
1 → dP9 given by

e → x9 (2.21)

f → l − x9 (2.22)

xi → xi (2.23)

leading to an equivalent geometric description

dP9
(2.24)

of the KK theory (2.3). Combining it with another isomorphism dP9 → F
8
1 given by

l − x1 → f (2.25)

x1 → e (2.26)

xi+1 → xi (2.27)

for 1 ≤ i ≤ 8 leads to an automorphism on F
8
1 which converts the curve e to a blowup.

One can check that all the other −1 curves in F
8
1 can be converted to a blowup of F8

1

by an automorphism generated by combining the isomorphisms discussed above along

with the automorphism F
8
0 → F

8
0

e → f (2.28)

f → e (2.29)

xi → xi (2.30)

that simply interchanges e and f .

Thus we see that, at the first step, all the RG flows are equivalent to a single

RG flow corresponding to the removal of a blowup from (2.11), leading to a 5d SCFT

described by a local neighborhood of the surface

F
7
1 (2.31)

In a similar fashion, at the next few steps, the only RG flows are the ones corresponding

to removal of more blowups. Thus, at the next few steps, we obtain 5d SCFTs described

by geometries

F
8−m
1 (2.32)

5In this paper we denote the del Pezzo surface obtained by blowing n points on P
2 as dP

n rather

than dPn. The surface P
2 is displayed as dP without any superscript.
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where 1 ≤ m ≤ 7.

The geometry at m = 7 has two inequivalent blowdowns. One of them corresponds

to blowing down the only blowup x on F
1
1 and the other one corresponds to blowing

down the curve f − x. Notice that, unlike the cases with more blowups, there is no

automorphism of F1
1 which transforms f − x to x. Such an automorphism requires the

existence of at least one more blowup. Blowing down x leads to a 5d SCFT described

by the geometry

F1 (2.33)

To blow down f − x, we can first write it as the blowup in F
1
0 by using an isomorphism

discussed above, and then remove this blowup leading to the geometry

F0 (2.34)

which describes a 5d SCFT distinct from the 5d SCFT described by (2.33).

Now, the geometry (2.34) has no −1 curves, but the geometry (2.33) has a −1

curve which is the e curve. To blow this down, we can write the e curve as the blowup

in dP1 and then remove this blowup to obtain the geometry described by the surface

dP (2.35)

where dP is our notation for the surface P
2.

Thus 5d SCFTs descending from the 5d KK theory (2.3) are described by the

geometries

F
8−m

1

(2.36)

with 1 ≤ m ≤ 8,

F0 (2.37)

and

dP
(2.38)

We put a box around a geometry when it describes a 5d SCFT not equivalent to any

of the 5d SCFTs discussed earlier in the paper. We hope that this will lead to an

easy identification of all the inequivalent 5d SCFTs, since each different box describes a

different 5d SCFT. The number of mass parameters for the family of 5d SCFTs (2.36)

is

M = 9 − m (2.39)
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while the number of mass parameters for the 5d SCFT described by (2.37) is

M = 1 (2.40)

and for the one described by (2.38) is

M = 0 (2.41)

The prepotential6 F for a rank one 5d theory is a single term of the form xφ3

where φ is the Coulomb branch parameter. x can be computed [8–10, 15] by counting

the number of blowups on the compact surface in the geometric description of the 5d

theory. If the surface is a Hirzebruch surface F
b
n then 6F = (8 − b)φ3, and if it is a

del Pezzo surface dPb then 6F = (9 − b)φ3. Thus the prepotential for the 5d SCFT

described by (2.36) is

6F = mφ3 (2.42)

The prepotential for the 5d SCFT described by (2.37) is

6F = 8φ3 (2.43)

and the prepotential for the 5d SCFT described by (2.38) is

6F = 9φ3 (2.44)

2.2 M = 2

The KK theory (2.4) is described by the geometry [9, 10, 15]

F
1+1

0

e-x

e-y

(2.45)

where the loop denotes a self-gluing of F2
0. The labels at the ends of the loop denote

that the curve e − x is glued to the curve e − y where x and y are the two blowups.

Using the automorphism (2.28–2.30) that interchanges e and f in F0, we can write

(2.45) as

F
1+1

0

f -x

f -y
(2.46)

6In this paper, we will ignore the contributions to the prepotential involving mass parameters.
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Now using the isomorphism (2.17–2.20) with blowup x, we can write the above geometry

as

F
1+1

1

x

f -y
(2.47)

Finally using the isomorphism (2.12–2.15) with the blowup y, we can write the geometry

associated to the KK theory (2.4) in the isomorphism frame

F
1+1

0

x

y

(2.48)

It can be shown that all of the −1 curves in the above geometry are equivalent either

to the blowup x or to the curve f − x by using automorphisms composed out of the

isomorphisms (2.12–2.15), (2.17–2.20), (2.21–2.23), (2.25–2.27) and (2.28–2.30).

Let us first consider the blowdown of f − x, which can be written as the blowup

x in the isomorphism frame given by (2.46). Since f − x and f − y are glued to each

other in (2.46), their volumes must be same, implying that the volumes of x and y

must be same. So, blowing down x in (2.46) blows down y along with it. But x and y

intersect the gluing curves f − x and f − y, and hence their blowdown continues into a

flop transition creating two new blowups x′ and y′. Since x intersects the gluing curve

f − x at one point, the flop of x transforms the gluing curves f − x to (f − x) + x = f

and the gluing curve f − y is transformed to f − y − x′. Thus at this intermediate step,

f − x′ − y is glued to f . Now, the flop of y subsequently transforms the gluing curve

f − y − x′ to f − x′ and the gluing curve f to f − y′. The geometry after the flop is

F
1+1

0

f -x′

f -y′

(2.49)

which is identical to (2.46).

Now, we turn our attention to the blowdown of x in (2.48). Since x is glued to y,

both x and y are blown down together. At the end of this blowdown, the self-gluing is

removed since the gluing curves participating in the self-gluing have been blown down.

The resulting geometry is

F0 (2.50)
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and describes a 5d SCFT already discovered while studying RG flows of the KK theory

(2.3) in the last subsection. See the discussion around (2.34). There are no more

remaining −1 curves, and hence no new 5d SCFTs are found by studying the RG flows

of (2.4).

There is another rank one KK theory with M = 2, which is (2.5). This KK theory

is described by the geometry [15]

F
1+1

1

x

y

(2.51)

The different −1 curves in this geometry are all equivalent to x, f − x and e. The

blowdown of f − x is a flop transition giving back the same geometry as above. The

blowdown of x removes the self-gluing and produces the geometry (2.33) already dis-

covered.

To blow down the e curve we use the isomorphism (2.21–2.23) to write (2.51) as

dP1+1+1

x

y

(2.52)

such that one of the blowups does not participate in the self-gluing. The blowdown

of e curve in (2.51) corresponds to blowdown of this blowup in the above geometry.

Carrying out the blowdown produces the geometry

dP1+1

x

y

(2.53)

which is a new rank one 5d SCFT not discussed in the literature before7. The only

possible flow now removes the self-gluing from (2.53) giving rise to the 5d SCFT de-

scribed by (2.35) discovered earlier. For a Hirzebruch surface F
b+2s
n with 2s blowups

out of b + 2s blowups participating in s number of self-gluings, the prepotential is

6F = (8 − 8s − b)φ3. For a del Pezzo surface dPb+2s with 2s blowups out of b + 2s

blowups participating in s number of self-gluings, the prepotential is 6F = (9−8s−b)φ3.

7It is also possible to see the existence of this 5d SCFT by using a brane construction for the KK

theory (2.5). We thank Hee-Cheol Kim for a private discussion on this point.
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Let us now discuss some aspects of the new 5d SCFT described by the geometry

(2.53). This SCFT has number of mass parameters

M = 1 (2.54)

and prepotential

6F = φ3 (2.55)

It can be informally thought of as an “su(2) gauge theory with minus one hypers in

fundamental and one hyper in adjoint” since (2.51) describes a 5d su(2) gauge theory

with one hyper in adjoint, from which we have removed a −1 curve which formally

corresponds to the removal of a fundamental. From this point of view, the existence of

this 5d SCFT makes sense:

It is known that a 5d N = 1 su(2) pure gauge theory with θ = π is a 5d SCFT

described by geometry (2.33). There is an RG flow from this 5d SCFT to another 5d

SCFT described by geometry (2.35). The RG flow corresponds formally to the removal

of a fundamental and hence the resulting 5d SCFT described by (2.35) is often called

“su(2) gauge theory with minus one hypers in fundamental”. Now, it is known that 5d

N = 1 su(2) gauge theory with an adjoint hyper and θ = π is the 5d KK theory (2.5).

Thus, it must be possible to formally remove a fundamental from this theory and flow

to a 5d SCFT. This is precisely the 5d SCFT described by (2.53).

A subtle aspect of the geometry (2.53) is that it is non-shrinkable in the sense

defined in [8]. The curve l − x − y is a generator of the Mori cone and has negative

volume on the Coulomb branch. This is problematic since in a traditional M-theory

compactification, M2 brane wrapping a generator of the Mori cone gives rise to a

fundamental8 BPS particle. The fact that l − x − y has negative volume would imply

that the corresponding BPS particle has negative mass on the Coulomb branch of the

5d theory.

However, as discussed in detail in [15], not every generator of the Mori cone of

(2.51) leads to a fundamental BPS particle. This is probably due to the effect some

non-geometric ingredient in the M-theory compactification. This situation is analogous

to the situation in the six-dimensional compactifications in the frozen phase of F-

theory [17] where, unlike the traditional non-frozen six-dimensional compactifications

of F-theory, not every generator of the Mori cone of the base of the threefold used

to compactify F-theory leads to a fundamental BPS string (via the wrapping of a D3

brane on it).

8We define a fundamental BPS particle to be a BPS particle that cannot arise as a bound state of

other BPS particles.
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The Mori cone of (2.51) is generated by9 e, h − x − y, f − x = f − y and x = y.

However, the set of fundamental BPS particles is proposed to be identified instead with

e, 2h − x − 2y, f − x = f − y, and x = y. From this, we can deduce the the set of

fundamental BPS particles for (2.53) should be identified with 2l−x−2y, l−x = l−y,

and x = y. It can be easily checked that all of these curves have non-negative volume

on the Coulomb branch (without turning on mass parameters), and hence the Coulomb

branch physics is consistent, thus resolving the puzzle raised above.

Although we have discussed how the dictionary between geometry and physics

should be modified for this slightly non-traditional M-theory compactification, we have

not explored the precise physical mechanism behind this effect. It is plausible that it

is related to frozen singularities and/or some discrete fluxes in M-theory [18–20]. We

leave a more detailed study to future work.

3 Rank two

The relationship (2.2) implies that for r = 2 we have the following possibilities:

• T = 1, G = 1

• T = 2, G = 0

In the class T = G = 1, we have the following 5d KK theories:

•

1
sp(1)(1)

(3.1)

which describes the untwisted compactification of the 6d SCFT carrying sp(1)

gauge algebra on a −1 curve. The 6d theory carries 10 hypers in fundamental of

sp(1). Hence there is a rank ten flavor symmetry implying that

M = 11 (3.2)

is the number of mass parameters carried by the KK theory (3.1). See the discu-

sion around (2.7).

9Only the homology class of the curves in the full threefold is recorded in the definition of Mori

cone. Thus, f − x and f − y are equal in the Mori cone since x is identified with y due to self-gluing

of the surface.
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•

2
su(2)(1)

(3.3)

which describes the untwisted compactification of the 6d SCFT carrying su(2)

gauge algebra on a −2 curve. Even though the theory carries four hypers of

su(2), it is known that the rank of flavor symmetry symmetry algebra10 is three

[2, 21], thus

M = 4 (3.4)

for the KK theory (3.3).

•

k

su(3)(2)

(3.5)

for 1 ≤ k ≤ 3, which describes a twisted compactification of the 6d SCFT carrying

su(3) on −k curve. The kind of twist is depicted by the superscript (2) in the

label su(3)(2) which denotes that an outer automorphism of order 2 is acting on

the su(3) gauge algebra as one goes around the circle. The invariant subalgebra

of su(3) under the outer automorphism is sp(1) which implies that indeed G = 1

for (3.5). The 6d SCFT has 18 − 6k hypers in fundamental of su(3), which are

exchanged with each other in pairs [15] under the outer automorphism. This

means that after the reduction we obtain 9 − 3k hypers in fundamental of sp(1)

and hence

M = 10 − 3k (3.6)

for (3.5).

•

2
su(2)(1)

(3.7)

10We suspect that this is because a u(1) subalgebra of the naive so(8) flavor symmetry algebra is

anomalous with the anomaly proportional to the Z2 valued 6d theta angle for su(2). This dovetails

nicely with the fact that even when all four fundamentals of su(2) are gauged by an su(4), the theta

angle of su(2) is still physically irrelevant. An anomaly of the above form will explain the absence of

theta angle. We thank Gabi Zafrir for a useful discussion on this point. It would be interesting to

verify whether this suspicion is correct.
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which denotes the KK theory obtained by compactifying the 6d SCFT

2
su(2)

2
su(2)

(3.8)

with an exchange of the two −2 curves (along with the su(2) gauge algebras living

over them) as one goes around the circle. The matter spectrum of the 6d SCFT

is a hyper in bifundamental plus two extra hypers in fundamental carried by

each su(2). The bifundamental gives rise to a u(1) flavor symmetry and the extra

fundamentals give rise to a su(2)⊕su(2) flavor symmetry. The discrete symmetry

exchanging the two su(2) gauge algebras exchanges the two su(2) flavor symmetry

algebra, while preserving the u(1) flavor symmetry. Thus, the KK theory (3.7)

has

M = 3 (3.9)

In the class T = 2, G = 0, we have the following KK theories:

•

1
sp(0)(1)

2
su(1)(1)

(3.10)

which denotes an untwisted compactification of the 6d SCFT arising from an

empty −1 curve intersecting an empty −2 curve at a single point. This 6d SCFT

is commonly known as the rank two E-string theory. It is known to have an

e8 ⊕ su(2) flavor symmetry. This can be understood from the facts observed in

the last section that the theory arising from an empty −1 curve has e8 symmetry

and the theory arising from an empty −2 curve has su(2) flavor symmetry. Thus,

M = 10 (3.11)

for the KK theory (3.10).

•

2
su(1)(1)

2
su(1)(1)

(3.12)

which is the untwisted compactification of the A2 (2, 0) theory (2.6). It is known

to have an su(2) flavor symmetry and thus

M = 2 (3.13)

for (3.12).
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•

2
su(1)(1)

2
su(1)(1)

(3.14)

which comes from the twisted compactification of the A4 (2, 0) theory

2
su(1)

2
su(1)

2
su(1)

2
su(1)

(3.15)

by the twist exchanging the two −2 curves at the two ends with each other while

simultaneously exchanging the two −2 curves in the middle:

2
su(1)

2
su(1)

2
su(1)

2
su(1)

(3.16)

As for the KK theory (2.5), a u(1) subalgebra of the su(2) flavor symmetry algebra

of the A4 (2, 0) theory can be preserved under this twist leading to

M = 2 (3.17)

•

2
su(1)(1)

2
su(1)(1)

2 (3.18)

This theory arises from the following twist of A3 (2, 0) theory

2
su(1)

2
su(1)

2
su(1)

(3.19)

and has

M = 2 (3.20)

Observe that the graph (3.18) is a folding of the graph associated to A3 (2, 0)

theory by the action (3.19). The tiny label 2 in the middle of the directed edge

in the graph (3.18) denotes that there are two directed edges.
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• Finally, we have

2
su(1)(1)

2
su(1)(1)

3 (3.21)

which arises by twisting the D4 (2, 0) theory by the following action

2
su(1)

2
su(1)

2
su(1)

2
su(1)

(3.22)

It can be shown in the F-theory setup that a u(1) flavor algebra can be preserved

under this twist, and hence this KK theory has

M = 2 (3.23)

Again, observe that the graph (3.21) is a folding of the graph associated to D4

(2, 0) theory by the action (4.40).

Now we move onto a study of RG flows of these KK theories.

3.1 M = 11

According to [15], the KK theory (3.1) has geometry given by

F
10
1 F0

2h-
∑

xi 2e+f

(3.24)

which denotes two surfaces F
10
1 and F0 intersecting with each other. The intersection

is described as a gluing of the two surfaces. A single edge between the two surfaces

denotes that there is a single gluing. The labels at the end of the edge denote that the

curve 2e + f in F0 is glued to the curve 2h −
∑

xi (where the sum is over all the ten

blowups) in F
10
1 .

Using the isomorphism (2.28–2.30) on the right surface, we can rewrite the geom-

etry (3.24) as

F
10
1 F0

2h-
∑

xi e+2f

(3.25)
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Notice that the gluing curve inside the right surface has changed appropriately. Now

performing the isomorphism (2.12–2.15) on the left surface, we can rewrite the above

geometry as

F
10
1 F0

2e+f -
∑

xi e+2f

(3.26)

Interchanging e and f on the left surface and performing the isomorphism (2.17–2.20)

on the left surface we obtain

F
9+1
1 F0

h+f -
∑

xi e+2f

(3.27)

where we have divided the ten blowups on the left surface into a set of nine blowups

denoted by xi and one blowup denoted by y. Performing (2.12–2.15) on the left surface

using the blowup x9, we obtain

F
8+2
0 F0

e+f -
∑

xi e+2f

(3.28)

where the ten blowups on the left surface have been divided into two sets of eight

and two blowups respectively, with the blowups in the first set denoted by xi and

the blowups in second set denoted by yi. Now applying (2.17–2.20), (2.12–2.15) and

(2.17–2.20) in that sequence on the left surface we reach the geometry

F
5+5
1 F0

e-
∑

xi e+2f

(3.29)

Now we will apply isomorphisms which generalize the isomorphism (2.17–2.20).

These isomorphisms take F
1
n → F

1
n+1 and are given by11

e − x → e (3.30)

f − x → x (3.31)

x → f − x (3.32)

(3.33)

From now on, we will denote this isomorphism sending F
1
n to F

1
n+1 by In. The isomor-

phism (2.12–2.15) can be noticed to equal I−1
0 .

Applying I1 to the the first surface of (3.29) using one of the blowups appearing

in the gluing curve e −
∑

xi, we obtain

F
4+6
2 F0

e-
∑

xi e+2f

(3.34)

11Notice that the blowup used in this isomorphism is a non-generic blowup for n ≥ 1, since the

isomorphism involves the existence of the curve e − x whose self-intersection is less than −1.
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Let us successively applying I2, I3, I4, I5 in that order to the left surface of the above

geometry every time choosing a blowup in the gluing curve living in the left surface.

This leads us to our desired frame to represent the starting geometry (3.24)

F
10
6 F0

e e+2f

(3.35)

All of the −1 curves in the above geometry are equivalent either to a blowup xi or to

a curve of the form f − xi in the left surface. Blowing down some of the blowups, we

obtain a series of 5d SCFTs described by

F
10−m
6 F0

e e+2f
1 ≤ m ≤ 10

M = 11 − m

6F = (m − 2)φ3
L + 8φ3

R − 18φLφ2
R + 12φRφ2

L

(3.36)

where from now on we will display the number of mass parameters M and the prepo-

tential 6F (in the phase described by the displayed geometry) of the 5d SCFT inside

the box as well. Let us describe how the prepotential is computed. For a rank two

theory, we can call the Coulomb branch parameter associated to the left surface as

φL and the Coulomb branch parameter associated to the right surface as φR. Then

there are four terms appearing in the prepotential, namely φ3
L, φ3

R, φ2
LφR and φ2

RφL.

As discussed in Sections 2.1 and 2.2, the coefficients of φ3
L and φ3

R in 6F are computed

by counting blowups and self-gluings on the left and right surfaces respectively. The

coefficient of φLφ2
R in 6F is computed by 3C2

L;R where CL;R is the curve living in the

left surface gluing it to the right surface. In the geometry (3.36) CL;R is the e curve in

the left surface F
10−m
6 . Similarly, the coefficient of φRφ2

L in 6F is computed by 3C2
R;L

where CR;L is the curve living in the right surface gluing it to the left surface. In the

geometry (3.36) CR;L is the curve e + 2f in the right surface F0.

The blow down of a curve of the form f − xi living in the left surface of (3.35)

generates a flop transition converting (3.35) to

F
9
5 F

1
0

e e+2f -x

(3.37)

which can be rewritten by performing I1 on the right surface as

F
9
5 F

1
1

e h+f

(3.38)
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In going from (3.35) to (3.38), we have effectively “moved a blowup from the left surface

to the right surface”.

The −1 curves in (3.38) are all equivalent to either xi, f − xi in the left surface or

x, f − x, e in the right surface. Blowing down f − x in the right surface implements an

inverse flop transition to the one we just discussed taking us back to (3.35). Blowing

down m number of blowups in the left surface simply provides a different flop frame

for the geometry (3.36), since after blowing down the m blowups we could do the flop

transition generated by f − x in the second surface converting the geometry to (3.36).

Blowing down x in the second surface produces the geometry

F
9
5 F1

e h+f

(3.39)

which is flop equivalent to the m = 1 geometry in (3.36) as can be seen by moving all

of the blowups from the left surface to the right surface and then exchanging the two

surfaces. So the above geometry does not give rise to a new 5d SCFT not discovered

earlier in this paper.

However, blowing down x in the right surface of (3.38) and then blowing down

m number of blowups in the left surface of (3.38), we discover a series of 5d SCFTs

described by the geometries

F
9−m
5 F1

e h+f
1 ≤ m ≤ 9

M = 10 − m

6F = (m − 1)φ3
L + 8φ3

R − 15φLφ2
R + 9φRφ2

L

(3.40)

We can say that the SCFTs (3.36) are generated by integrating out m blowups from the

left and the SCFTs (3.40) are generated by integrating out one blowup from the right

and m blowups from the left. Similarly, now we can integrate out two blowups from

the right and m blowups from the left to obtain another series of 5d SCFTs described

by

F
8−m
4 F0

e e+f
2 ≤ m ≤ 8

M = 9 − m

6F = mφ3
L + 8φ3

R − 12φLφ2
R + 6φRφ2

L

(3.41)

The lower bound on m in (3.41) is placed so that we do not overcount the same 5d
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SCFT. One can check that the geometry

F
7
4 F0

e e+f

(3.42)

obtained by substituting m = 1 in (3.41) is flop equivalent to the geometry obtained

by substituting m = 2 in (3.40). The 5d SCFTs corresponding to (3.41) have

Continuing in a similar fashion, we can integrate out p blowups from the right

before integrating out m blowups from the left to obtain a series of 5d SCFTs given by

geometries

F
10−m−p
6−p Fp−4

e e
p ≤ m ≤ 10 − p

3 ≤ p ≤ 5

M = 11 − m − p

6F = (m + p − 2)φ3
L + 8φ3

R + 3(p − 6)φLφ2
R + 3(4 − p)φRφ2

L

(3.43)

The bounds on m and p in (3.43) have been placed in such a fashion that we do not

over-count flop equivalent geometries. For p = 3, the right hand surface is F−1 which

is by definition isomorphic to the surface F1 with the isomorphism F−1 → F1 given by

e → h (3.44)

h → e (3.45)

f → f (3.46)

(3.47)

For example, the gluing curve in the right surface for p = 3 is the e curve of F−1 which

is by definition the h curve of F1 and has self-intersection +1. We will continue to use

the surface F−1 throughout this paper.

Notice that we still haven’t discussed the blowdown of the e curve in (3.38). Its

blow down leads to a flop transition resulting in the geometry

F
10
6 dP1e 2l

(3.48)

which can also be written as

F
10
6 F1

e 2h

(3.49)
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Furthermore, removing m blowups from the left surface, we obtain the geometry

F
10−m
6 F1

e 2h

(3.50)

As long as m ≤ 9, the above geometry is flop equivalent to (3.36). To see this, notice

that, for m ≤ 9, there is a blowup remaining on the left surface which can be moved

onto the right surface to yield the geometry

F
9−m
5 F

1
1

e 2h-x

(3.51)

which after application of I−1
0 (on the right surface by using the blowup x) becomes

F
9−m
5 F

1
0

e 2e+f -x

(3.52)

Blowing down x and interchanging e and f on the right surface leads us to the geometry

(3.36). However, when m = 10, then (3.51) is not flop equivalent to (3.36), thus giving

rise to a different 5d SCFT not accounted above

F6 F1
e 2h

M = 1

6F = 8φ3
L + 8φ3

R − 18φLφ2
R + 12φRφ2

L

(3.53)

The e curve in the right surface of (3.53) can be blowndown to give rise to another 5d

SCFT given by

F6 dP
e 2l

M = 0

6F = 8φ3
L + 9φ3

R − 18φLφ2
R + 12φRφ2

L

(3.54)

The above theory (3.54) can also be obtained by integrating out (towards left) the e

curve in second surface of (3.40) for m = 9. For lower values of m, such an operation

does not give rise to any new 5d SCFTs not discussed in the paper before.

Similarly, there is a blowdown of e curve in the geometries having p = 3 in (3.43)

that has not been addressed so far. These geometries are

F
7−m
3 F1

e h

(3.55)
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Blowing down the e curve in the second surface leads to new 5d SCFTs described by

geometries

F
7−m
3 dP

e l 0 ≤ m ≤ 7

M = 7 − m

6F = (m + 1)φ3
L + 9φ3

R − 9φLφ2
R + 3φRφ2

L

(3.56)

It can be checked that it is impossible to integrate out any blowups from the right in

(3.56). For m = 3, the above geometry (3.56) is

F
4
3 dP

e l

(3.57)

which has a −1 curve not equivalent to either the blowups xi or to f − xi. This curve

is h −
∑

xi. To consider the blowdown of this curve let us apply I−1
2 , I−1

1 , I−1
0 , I0 in

that order to the left surface every time choosing a blowup not appearing in the gluing

curve. This rewrites the above geometry as

F
4
1 dP

h-
∑

xi l

(3.58)

The curve h −
∑

xi in the left surface of (3.57) becomes the e curve in the left surface

of (3.58). Blowing it down, we obtain a 5d SCFT described by

dP4 dP
l-
∑

xi l

M = 3

6F = 5φ3
L + 9φ3

R − 9φLφ2
R + 3φRφ2

L

(3.59)

There are no further flows from this geometry.

3.2 M = 10

The geometry associated to the KK theory (3.10) is [10, 15]

dP9 F
1+1
0

3l-
∑

xi f

e-x

e-y

(3.60)

where the two blowups on the right surface have been divided into two sets containing

one blowup each. The blowup in the first set is called x and the blowup in the set
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is called y. This is a notation we will follow throughout this paper. Whenever the

blowups are divided into sets, we will denote the blowups in the first set by xi, in the

second set by yi, in the third set by zi, in the fourth set by wi etc.

Exchanging e and f on the second surface and using a blowup on the first surface

to convert dP9 into F
8
1, we obtain

F
8
1 F

1+1
0

2h+f -
∑

xi e

f -x

f -y
(3.61)

Applying I0 on the right surface using the blowup x, and the applying I−1
0 on the right

surface using the blowup y, we can rewrite the above geometry as

F
8
1 F

1+1
0

2h+f -
∑

xi e+f -x-y

x

y

(3.62)

Now flopping x ∼ y living in the second surface, we obtain

F
8+1
1 F0

2h+f -
∑

xi-2y e+f

(3.63)

One way to understand the appearance of −2y in the gluing curve on the left side in

the above geometry is as follows: The curve e + f − x − y has genus zero without

the presence of self-gluing, but genus one when x ∼ y. Correspondingly, the curve

2h + f −
∑

xi also has genus one. When we remove the genus of the gluing curve on

right side decreases by one. Correspondingly, the genus of gluing curve must decrease

by one. This can be achieved by transforming the left gluing curve to 2h+f −
∑

xi −2y.

Now implementing I−1
0 on the left surface using the blowup y, we get

F
8+1
0 F0

2e+f -
∑

xi e+f

(3.64)

Now, just as we passed from (3.26) to (3.35), we can pass from the above geometry to

the geometry

F
9
4 F0

e e+f

(3.65)

Moving all the blowups to the right surface and exchanging the two surfaces we obtain

F
9
7 F1

e h+2f

(3.66)
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which is the our final desired frame to represent the geometry (3.60).

Integrating out a blowup towards right from (3.66) produces the 5d SCFT

F
8
6 F0

e e+2f

(3.67)

which is already accounted in (3.36). Similar statements will hold true for all geometries

that follow in this subsection: Every time a −1 curve is integrated out from the right

surface, the resulting 5d SCFT has already been accounted. Thus, we only have to

integrate out −1 curves from the left surface.

Removing blowups from the left surface in (3.66), we obtain the following 5d SCFTs

F
9−m
7 F1

e h+2f
1 ≤ m ≤ 9

M = 10 − m

6F = (m − 1)φ3
L + 8φ3

R − 21φLφ2
R + 15φRφ2

L

(3.68)

Consider the geometry at m = 7

F
2
7 F1

e h+2f

(3.69)

Moving one blowup to the right and exchanging e with f in the resulting right surface,

we can rewrite the above as

F
1
6 F

1
0

e 2e+f

(3.70)

Now, as already discussed in the last subsection we can move the blowup on the left

surface to the right surface and then back to the left surface such that the geometry is

transformed to

F
1
6 F

1
1

e 2h

(3.71)

Removing the blowup on the left surface we obtain a 5d SCFT described by

F6 F
1
1

e 2h

M = 2

6F = 8φ3
L + 7φ3

R − 18φLφ2
R + 12φRφ2

L

(3.72)
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At level m = 1 of (3.68) the geometry is

F
8
7 F1

e h+2f

(3.73)

which has a −1 curve h −
∑

xi which can be converted to e curve of left surface by

writing the above geometry in the following isomorphism frame

F
8
1 F1

h-
∑

xi h+2f

(3.74)

Blowing down the e curve we obtain a 5d SCFT described by geometry

dP8 F1
l-
∑

xi h+2f

M = 8

6F = φ3
L + 8φ3

R − 21φLφ2
R + 15φRφ2

L

(3.75)

Integrating out blowups from the right leads to theories (3.56).

3.3 M = 7

The geometry associated to the KK theory (3.5) for k = 1 is [15]

F
6+6
2 F0

e-
∑

xi-
∑

yi 4e+3f

xi

yi

6

(3.76)

where the label 6 in the middle of the loop around the first surface denotes that there

are six self-gluings given by xi ∼ yi. Flopping all of these and exchanging e with f in

the second surface gives

F2 F
6
0

e 3e+4f -2
∑

xi

(3.77)

Applying I0 on the second surface using x6 gives

F2 F
5+1
1

e 3h+2f -2
∑

xi-y

(3.78)
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Applying I−1
0 on the second surface using x5 gives

F2 F
4+2
0

e 3e+3f -2
∑

xi-
∑

yi

(3.79)

Applying I0 on the second surface using x4 gives

F2 F
3+3
1

e 3h+f -2
∑

xi-
∑

yi

(3.80)

Applying I−1
0 on the second surface using x3 and exchanging e with f gives

F2 F
2+4
0

e 2e+3f -2
∑

xi-
∑

yi

(3.81)

Applying I0 on the second surface using x2 gives

F2 F
1+4+1
1

e 2h+f -2x-
∑

yi

(3.82)

Applying I−1
0 on the second surface using x and exchanging e with f gives

F2 F
2+4
0

e e+2f -
∑

yi

(3.83)

Now we send all the blowups onto the left surface to obtain the desired frame to

represent (3.76)

F
6
8 F0

e e+3f

(3.84)

As in last subsection, integrating out any −1 curve to the right does not produce any

new 5d SCFTs not accounted already in the paper. Thus we can focus on integrating

out −1 curves from the left only.

Removing m blowups gives a series of 5d SCFTs described by

F
6−m
8 F0

e e+3f
1 ≤ m ≤ 6

M = 7 − m

6F = (m + 2)φ3
L + 8φ3

R − 24φLφ2
R + 18φRφ2

L

(3.85)

When m = 3, we can send two of the blowups onto the right surface and then exchange

e with f on the right surface to obtain

F
1
6 F

2
0

e 2e+f

(3.86)

– 27 –



Now, as explained in last subsection, a way to integrate out the blowup remaining on

the left surface produces a 5d SCFT

F6 F
2
1

e 2h

M = 3

6F = 8φ3
L + 6φ3

R − 18φLφ2
R + 12φRφ2

L

(3.87)

3.4 M = 4

The KK theory (3.5) with k = 2 has geometry given by [15]

F
3+3
6 F0

e-
∑

xi-
∑

yi 4e+2f

xi

yi

3

(3.88)

Performing operations similar to the ones described in last subsection, we can rewrite

the above geometry as

F6 F
3
1

e 2h

(3.89)

from which it is easy to see that there are no new 5d SCFTs produced by this KK

theory.

The KK theory (3.3) has geometry given by [9, 10, 15]

F
4
0 F2

e, e-
∑

xi e, h
2

(3.90)

where the subscript 2 in the middle of the edge denotes that there are two gluing

curves between the two surfaces. The labels placed at the ends of edge identify these

two gluing curves in the order in which they appear. Thus, e in left surface is glued to

e in right surface, and e −
∑

xi in left surface is glued to h in right surface.

One can observe that it is not possible to integrate out the blowups from (3.90)

since blowing them down always leads to a flop transition. If one tries to remove them

from a gluing curve by using the isomorphisms In, they simply appear in the other

gluing curve. For example, if we perform I0 on the left surface using x4, we obtain the

description

F
3+1
1 F2

h-y, e-
∑

xi e, h
2

(3.91)
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As we can see, the blowup x4 became the blowup y and entered into the description of

the other gluing curve.

Thus, the only way to obtain an RG flow is to blow down the e curve of an F1 in

some frame. But this will always appear as one of the gluing curves. For example, first

send one of the blowups from the left surface in (3.90) to the right surface

F
3
0 F

1
2

e, e-
∑

xi e, h-x
2

(3.92)

which can be written, by using I−1
1 with the blowup x on the right surface, as

F
3
0 F

1
1

e, e-
∑

xi e-x, h
2

(3.93)

Now, blowing down x sends the blowup back to the left surface but along the other

gluing curve, yielding

F
4
1 F1

e, h-
∑

xi e, h
2

(3.94)

We can see that the −1 curve e has appeared as a gluing curve. Blowing down the e

curve removes one of the gluing curves and produces the 5d SCFT

dP4 dP
l-
∑

xi l

(3.95)

which has already been found in (3.59). Note that we had not considered the possibility

of blowing down a gluing curve between two distinct surfaces so far because till now

we only encountered examples involving a single gluing curve between two distinct

surfaces. Blowing down this single gluing curve would decouple the two surfaces and

lead to a direct sum of two rank one SCFTs rather than a rank two SCFT.

3.5 M = 3

The geometry for the KK theory (3.7) is [15]

F
2
1 F

1+1
0

h, h-
∑

xi e+f -x-2y, e-x
2

x

y

(3.96)

which can be rewritten by performing some isomorphisms as

F
1+1
1 F

1+1
0

h, f -x e+f -x-2y, f -x
2

x

y

(3.97)
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Sending the blowup y from the left surface to the right surface, and exchanging the

positions of the two surfaces we can write the geometry for the KK theory as

F
1
0F

1+1+1
1

e+f, f -xh-x-2y, f -x
2

x

y

(3.98)

Integrating out the blowup z on the left surface gives rise to the 5d SCFT

F
1
0F

1+1
1

e+f, f -xh-x-2y, f -x
2

x

y

M = 2

6F = 7φ3
R − 15φLφ2

R + 9φRφ2
L

(3.99)

This SCFT is desribed by 5d gauge theory with gauge algebra su(3) at CS level 1
2

and

a hyper transforming in two-index symmetric representation of su(3). The existence of

this SCFT has been known in the literature, but this is the first time a geometry has

been written down describing this 5d SCFT. We propose that the fundamental BPS

particles coming from the left surface are associated to curves h−x−2y, e, f −x = f −y

and x = y in the left surface rather than the set of generators of Mori cone of the left

surface.

When there are multiple gluing curves between two surfaces then we take the sum

of all the gluing curves to compute the prepotential. For example, the term φLφ2
R in

6F associated to (3.99) is computed by 3C2
L;R where CL;R = (h − x − 2y) + (f − x) =

h + f − 2x − 2y.

We can also integrate out the curve e−x living in the right surface of (3.99) towards

the left, which gives rise to a new 5d SCFT whose existence has not been predicted in

the literature. This SCFT is given by the geometry

F1F
1+1
2

h+f, ee+f -x-2y, f -x
2

x

y

M = 1

6F = 8φ3
R − 18φLφ2

R + 12φRφ2
L

(3.100)

The fundamental BPS particles arising from the left surface are again different from the

corresponding Mori cone generators. We propose that the fundamental BPS particles
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coming from the left surface can be identified with the curves e+f −x−2y, f −x = f −y

and x = y living in the left surface.

It is also possible to remove the self-gluing. Flopping x ∼ y simply sends the

self-gluing to the other surface, and hence not useful for this purpose. For example,

flopping x ∼ y in (3.97) gives rise to

F0F
1+1+1+1
1

e+f, fh-x-2y, f -x-z
2

x

y

(3.101)

However, flopping f − x and f − y (they flop together since they have same volume)

yields a new phase from which it is possible to remove the self-gluing. Let us perform

this flop on the geometry (3.98). Notice that it also flops the curve f − x in the right

surface of (3.98). The geometry after the flop is

F1F
1+1+1
5

h+fe

x

y

(3.102)

We refer the reader to Appendix B of [15] for more details on this flop procedure. From

the above geometry we can simply remove the self-gluing by blowing down x ∼ y living

in the first surface and obtain the geometry with m = 8 in the series of geometries

(3.40). Integrating out other −1 curves from (3.102) simply give rise to geometries flop

equivalent to those discussed above in this subsection.

3.6 M = 2

The geometry for the KK theory (3.12) is given by [10, 15]

F
1+1
0 F

1+1
0

f -x,x f -x,x

e-x

e-y

e-x

e-y

2

(3.103)

which can be rewritten as

F
1+1
0 F

1+1
0

e-y, f -x e-y, f -x

x

y

x

y

2

(3.104)
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The only inequivalent −1 curves are f −x and x on both surfaces. The flop of f −x does

not change the geometry but flopping x ∼ y on both surfaces changes the geometry to

F
1
0 F

1
0

e-x, f -x e-x, f -x
2

(3.105)

Recall from the discussion around (4.6) that flopping a self-gluing leads to the appear-

ance of −2x in the gluing curve inside the adjacent surface. This has split into two

copies of −x above since we have two gluing curves affected by the flop. This is con-

sistent with the discussion around (4.6) since the above flop is not supposed to change

the genus of any gluing curve.

Now the only remaining inequivalent −1 curve is f − x in both surfaces. Blowing

it down, we obtain

F1 F1
e e

(3.106)

which has already been accounted in (3.43).

The geometry for the KK theory (3.14) is given by [15]

F
1+1
0 F

1+1
1

f -x,x 2h-x-2y, f -x

e-x

e-y

x

y

2

(3.107)

After isomorphisms on the left surface, it can rewritten as

F
1+1
0 F

1+1
1

e-y, f -x 2h-x-2y, f -x

x

y

x

y

2

(3.108)

Flopping x ∼ y living on the left surface, and then interchanging e and f in the left

surface, we get

F0 F
1+1+1
1

f, e 2h-x-2y-z, f -x-z

x

y

2

(3.109)

Integrating out the e curve of the right surface from the left side, we obtain

F1 dP1+1+1f, e 2l-x-2y-z, l-x-z

x

y

2

(3.110)
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which can be written as

F1 F
1+1
1

f, e h+f -x-2y, f -x

x

y

2

M = 1

6F = 8φ3
L + 3φLφ2

R − 9φRφ2
L

(3.111)

giving rise to a new 5d SCFT not discussed in the literature before. We propose that

the fundamental BPS particles coming from the right surface can be identified with the

curves e, h + f − x − 2y, f − x = f − y and x = y living in the right surface.

One can remove the remaining self-gluing as well but that does not give rise to a 5d

SCFT not accounted earlier.

The KK theory (3.18) has the geometry given by [15]

F
1+1
0 F

1+1
0

f -x,x 2f -x,x

e-x

e-y

e-x

e-y

2

(3.112)

which can be rewritten as

F
1+1
0 F

1+1
0

e-y, f -x 2e+f -x-2y, f -x

x

y

x

y

2

(3.113)

Flopping x ∼ y living on the left surface, we obtain

F0 F
1+1+1
0

e, f 2e+f -x-2y-z, f -x-z

x

y

2

(3.114)

We can integrate out e − z from the right surface to obtain (3.100). Removing the

remaining self-gluing does not lead to any new 5d SCFT either.

The KK theory (3.21) is described by the geometry [15]

F
1+1
0 F

1+1
0

f -x,x 3f -x,x

e-x

e-y

e-x

e-y

2

(3.115)
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We claim that the above geometry should be flop equivalent to the geometry

F8 F
1
0

e 3e+f

(3.116)

The claim is based on the fact that the KK theory (3.21) can be described by the

5d N = 1 gauge theory with g2 gauge algebra and a hyper in adjoint representation

[22]. According to [23], the above geometry describes a gauge-theoretic phase of this

5d gauge theory.

Now exchanging e and f in the above geometry (3.116), we can rewrite it as

F8 F
1
0

e e+3f

(3.117)

We can now integrate out the blowup sitting on the right surface either from the right

or from the left. Integrating it out from the right leads to a 5d SCFT described by

F8 F0
e e+3f

(3.118)

which has already been found as the m = 6 case of the 5d SCFTs described in (3.85).

However, integrating the blowup from the left leads to a new 5d SCFT not discussed

in the literature before

F9 F1
e h+3f

M = 1

6F = 8φ3
L + 8φ3

R − 27φLφ2
R + 21φRφ2

L

(3.119)

However, this theory poses a puzzle since it can be checked that the above geometry is

not shrinkable. Two possible resolutions of this puzzle are as follows. First, it could be

possible that (3.119) is an example of a 5d SCFT without a Coulomb branch. Second, it

could be that the Coulomb branch of this 5d SCFT is not described by any gauge theory

but rather by the phase described by the following geometry obtained by flopping the

e curve in the right surface of (3.119)

dPF
1+1+1
9

4le

x

y

z

(3.120)

where the notation indicates that the left surface is a self-glued surface where the self-

gluing x ∼ y ∼ z is described by gluing the three blowups x, y and z all with each
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other. Naively, the above geometry (3.120) is also non-shrinkable, but it is possible

that there are some extra non-geometric elements introduced by such a flop so that

the curve f − x in the left surface of (3.120) does not give rise to a fundamental BPS

particle, but 2f − x does. This prescription for the BPS states ensures that the (3.120)

is a shrinkable phase and describes a sensible Coulomb branch of the 5d SCFT under

discussion. We do not know if any of the above proposed resolutions is the correct one,

and a more detailed study of this theory is required.

3.7 M = 1

The KK theory (3.5) for k = 3 has the geometry [15]

F10 F0
e 4e+f

(3.121)

which has no −1 curves and hence there are no flows.

4 Rank three

For rank three, we have the following possibilities:

• T = 1, G = 2

• T = 2, G = 1

• T = 3, G = 0

In the class T = 1, G = 2, we have the following 5d KK theories:

•

1
sp(2)(1)

(4.1)

which describes the untwisted compactification of the 6d SCFT carrying sp(2)

gauge algebra on a −1 curve. The 6d theory carries 12 hypers in fundamental of

sp(2). Hence there is a rank twelve flavor symmetry implying that

M = 13 (4.2)

is the number of mass parameters carried by the KK theory (4.1).
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•

k

su(3)(1)

(4.3)

for 1 ≤ k ≤ 3, which describes the untwisted compactification of the 6d SCFT

carrying su(3) gauge algebra on a −k curve. The theory carries 18 − 6k hypers

in fundamental of su(3). For k = 1, 2, the u(1) subalgebra rotating all the flavors

simultaneously is anomalous and hence for k = 1, 2 the theory has only su(18−6k)

symmetry. Thus,

M = 18 − 6k (4.4)

for k = 1, 2 and

M = 1 (4.5)

for k = 3.

•

k
g

(1)
2

(4.6)

for 1 ≤ k ≤ 3, which describes the untwisted compactification of the 6d SCFT

carrying g2 on −k curve. The 6d SCFT has 10 − 3k hypers in fundamental of g2,

implying that

M = 11 − 3k (4.7)

for (4.6).

•

2
su(3)(1)

(4.8)

which denotes the KK theory obtained by compactifying the 6d SCFT

2
su(3)

2
su(3)

(4.9)

with an exchange of the two −2 curves as one goes around the circle. The matter

spectrum of the 6d SCFT is a hyper in bifundamental plus three extra hypers in

fundamental carried by each su(3). The bifundamental gives rise to a u(1) flavor

symmetry and the extra fundamentals give rise to a su(3)⊕su(3) flavor symmetry.

The discrete symmetry exchanging the two su(3) gauge algebras exchanges the
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two su(3) flavor symmetry algebras, while preserving the u(1) flavor symmetry.

Thus, we have

M = 4 (4.10)

for (4.8).

•

2
su(4)(2)

(4.11)

which describes the compactification of the 6d SCFT carrying su(4) on −2 curve

twisted by the outer automorphism of su(4). The invariant subalgebra of su(4)

under the outer automorphism is sp(2) which implies that indeed G = 2 for

(4.11). The 6d SCFT has 8 hypers in fundamental of su(4), which are exchanged

with each other in pairs under the outer automorphism [15]. This means that

after the reduction we obtain 4 hypers in fundamental of sp(2) and hence

M = 5 (4.12)

for (4.13).

•

2
su(4)(2)

(4.13)

which describes the compactification of the 6d SCFT carrying su(4) on −1 curve

twisted by the outer automorphism of su(4). The 6d SCFT has 12 hypers in

fundamental and one hyper in antisymmetric of su(4). The fundamentals are

exchanged with each other in pairs and the antisymmetric is left invariant under

the outer automorphism [15]. This means that after the reduction we obtain 6

hypers in fundamental and a hyper in antisymmetric of sp(2) and hence

M = 8 (4.14)

for (4.13).

•

2
su(5)(2)

(4.15)

which describes the compactification of the 6d SCFT carrying su(5) on −2 curve

twisted by the outer automorphism of su(5). The invariant subalgebra of su(5)
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under the outer automorphism is sp(2) which implies that indeed G = 2 for (4.15).

The 6d SCFT has 10 hypers in fundamental of su(5), which are exchanged with

each other in pairs under the outer automorphism [15]. This means that after

the reduction we obtain 5 hypers in fundamental of sp(2) and hence

M = 6 (4.16)

for (4.15).

•

k

so(8)(3)

(4.17)

for 1 ≤ k ≤ 4, which describes the compactification of the 6d SCFT carrying

so(8) on −k curve twisted by the order three outer automorphism of so(8). The

invariant subalgebra of so(8) under the outer automorphism is g2 which implies

that indeed G = 2 for (4.17). The 6d SCFT has 4−k hypers each in fundamental,

spinor and cospinor representations of so(8). These three representations are

cyclically permuted under the outer automorphism and they all descend to the

fundamental of g2. This means that after the reduction we obtain 4 − k hypers

in fundamental of g2 and hence

M = 5 − k (4.18)

for (4.17).

In the class T = 2, G = 1, we have the following KK theories:

•

1
sp(0)(1)

2
su(2)(1)

(4.19)

which denotes an untwisted compactification of the 6d SCFT arising from an

empty −1 curve intersecting a −2 curve carrying su(2). The empty −1 carries an

e8 symmetry out of which su(2) has been gauged. The remaining flavor symmetry

is e7. Moreover, as already discussed above su(2) on −2 has an su(4) flavor

symmetry which is left completely ungauged by sp(0). Thus,

M = 11 (4.20)

for the KK theory (4.19).
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•

1
sp(1)(1)

2
su(1)(1)

(4.21)

which denotes an untwisted compactification of the 6d SCFT arising from an

empty −2 curve intersecting a −1 curve carrying sp(1). The empty −2 carries

an su(2) symmetry which has been completely gauged. Moreover, as already

discussed above sp(1) on −1 carries 10 hypers in fundamental. Out of these ten

hypers, at least a half-hyper must remain localized at the intersection point of the

two curves. In field theoretic terms, this half-hyper of sp(1) provides necessary

degrees of freedom to complete the N = (1, 0) tensor multiplet associated to

empty −1 curve into an N = (2, 0) tensor multiplet. This leaves only an so(19)

flavor symmetry and thus,

M = 10 (4.22)

for the KK theory (4.21).

•

1
sp(0)(1)

2
su(3)(2)

(4.23)

which denotes the compactification of the 6d SCFT arising from an empty −1

curve intersecting a −2 curve carrying su(3), twisted by the outer automorphism

of su(3). Gauging an su(3) out of the e8 symmetry of the −1 curve leaves an e6

flavor symmetry. However, as explained in [15], the outer automorphism twist

of su(3) is only a symmetry of the theory if this e6 symmetry is also twisted by

its outer automorphism, thus leaving only a f4 flavor symmetry preserved after

the twist. Moreover, as discussed above su(3) on −2 curve twisted by outer

automorphism has an so(6) flavor symmetry which is left completely ungauged

by sp(0). Thus,

M = 8 (4.24)

for the KK theory (4.23).

•

1
sp(0)(1)

3
su(3)(2)

(4.25)

which denotes the compactification of the 6d SCFT arising from an empty −1

curve intersecting a −3 curve carrying su(3), twisted by the outer automorphism
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of su(3). The su(3) carries no matter content, so this twist preserves only an f4

flavor symmetry resulting in

M = 5 (4.26)

for the above KK theory (4.25).

•

2
su(2)(1)

2
su(1)(1)

(4.27)

which comes from the twisted compactification of the 6d SCFT

2
su(1)

2
su(2)

2
su(2)

2
su(1)

(4.28)

by the twist exchanging the two −2 curves at the two ends with each other while

simultaneously exchanging the two −2 curves in the middle:

2
su(2)

2
su(2)

2
su(1)

2
su(1)

(4.29)

The matter spectrum for the 6d SCFT is a bifundamental of su(2)⊕su(2) and two

extra hypers in fundamental of each su(2). A half-hyper out of these two hypers

is trapped by the neighboring su(1), thus leaving only a u(1) symmetry rotating

the bifundamental. This symmetry is preserved under the twist and hence

M = 2 (4.30)

for the KK theory (4.27).

•

3
su(3)(2)

1
sp(0)1)

2 (4.31)

This theory arises by twisting the following 6d SCFT by the discrete symmetry

obtained by combining the following transformation

3
su(3)

1
sp(0)

1
sp(0)

(4.32)
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with the outer automorphism of su(3). This twist preserves an f4 flavor symmetry

and hence

M = 5 (4.33)

for it.

•

2
su(2)(1)

2
su(1)(1)

(4.34)

which is the untwisted compactification of the 6d SCFT arising by an empty

−2 curve intersecting a −2 curve carrying su(2). The su(2) has four hypers in

fundamental out of which a half-hyper is trapped by su(1) leading to only a rank

two flavor symmetry and implying that

M = 3 (4.35)

for (4.34).

•

2
su(2)(1)

2
su(1)(1)

2 (4.36)

This theory arises from the following twist of the following 6d SCFT

2
su(2)

2
su(1)

2
su(1)

(4.37)

The su(2) has four hypers in fundamental out of which two half-hypers are trapped

by the two su(1). The 6d SCFT thus has an su(3) flavor symmetry. Exchanging

the two su(1) exchanges these two half-hypers and hence their corresponding full

hypers. This is in clash with the su(3) symmetry, which can be restored only

if an outer automorphism of su(3) is also performed. In any case, the maximal

flavor symmetry preserved under the twist has rank one and correspondingly

M = 2 (4.38)

for the KK theory (4.36).
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•

2
su(2)(1)

2
su(1)(1)

3 (4.39)

which arises by twisting the following 6d SCFT by the following action

2
su(2)

2
su(1)

2
su(1)

2
su(1)

(4.40)

A rank one flavor symmetry can be preserved under this twist, and hence this

KK theory has

M = 2 (4.41)

In the class T = 2, G = 1, we have the following KK theories:

•

1
sp(0)(1)

2
su(1)(1)

2
su(1)(1)

(4.42)

which has an e8 ⊕ su(2) flavor symmetry and hence

M = 10 (4.43)

for the above KK theory.

•

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

(4.44)

which has an su(2) flavor symmetry and hence

M = 2 (4.45)

for the above KK theory.
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•

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

(4.46)

which arises from the A6 (2, 0) theory by the following twist

2
su(1)

2
su(1)

2
su(1)

2
su(1)

2
su(1)

2
su(1)

(4.47)

and carries

M = 2 (4.48)

number of mass parameters.

•

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

2 (4.49)

which arises from the following twist of A5 (2, 0) theory

2
su(1)

2
su(1)

2
su(1)

2
su(1)

2
su(1)

(4.50)

and carries

M = 2 (4.51)

number of mass parameters.

•

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

2 (4.52)
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which arises from the following twist of D4 (2, 0) theory

2
su(1)

2
su(1)

2
su(1)

2
su(1)

(4.53)

and carries

M = 2 (4.54)

number of mass parameters.

Now we will move onto a study of RG flows of these KK theories.

4.1 M = 13

The geometry associated to the KK theory (4.1) is [9, 10, 15]

F
12
1 F6 F1

2h-
∑

xi h e 2h

(4.55)

which we can rewrite in our desired isomorphism frame

F
12
8 F6 F1

e h e 2h

(4.56)

Notice that it is not possible to integrate out any blowup from the middle surface.

Only left and right surfaces allow a blowup in (4.56) to be integrated out. For instance,

blowing down an f − xi in the left surface yields

F
11
7 F

1
6 F1

e h-x e 2h

(4.57)

To integrate out the blowup x on the middle surface, we would like to absorb it into

the surface such that it does not appear in any gluing curves. To remove it from the

gluing curve h − x we have to perform the isomorphism I−1
5 on the middle surface, and

then we obtain

F
11
7 F

1
5 F1

e h e-x 2h

(4.58)

So, instead of absorbing the blowup, we have only managed to move it to the other

gluing curve.
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Removing m blowups from the left surface in (4.56), we obtain a series of 5d SCFTs

F
12−m
8 F6 F1

e h e 2h 1 ≤ m ≤ 12

M = 13 − m

6F = (m − 4)φ3
L + 8φ3

M + 8φ3
R − 24φLφ2

M + 18φMφ2
L − 18φMφ2

R + 12φRφ2
M

(4.59)

where we denote the Coulomb branch parameters corresponding to left, middle and

right surfaces respectively as φL, φM and φR. Using what we have already discussed

in Sections 2 and 3 we can compute all the coefficients in 6F for a rank three theory

except for the coefficient of φLφMφR which arises only when the graph associated to

the geometry is cyclic and has a loop-like structure. We will discuss how to compute

this term when such a geometry arises.

Integrating out a blowup from the right surface and integrating out m blowups

from the left surface in (4.56), we obtain another series of 5d SCFTs

F
11−m
7 F5 F1

e h e h+f
1 ≤ m ≤ 11

M = 12 − m

6F = (m − 3)φ3
L + 8φ3

M + 8φ3
R − 21φLφ2

M + 15φMφ2
L − 15φMφ2

R + 9φRφ2
M

(4.60)

Integrating out the e curve from the right surface in (4.59), we obtain the 5d SCFT

described by the geometry

F8 F6 dP
e h e 2l

M = 0

6F = 8φ3
L + 8φ3

M + 9φ3
R − 24φLφ2

M + 18φMφ2
L − 18φMφ2

R + 12φRφ2
M

(4.61)

The geometry (4.61) is also the result we obtain by integrating out the e curve of the

right surface in (4.60).

Now, integrating out two blowups from the right surface and m blowups from the

left surface in (4.56) we obtain yet another series of 5d SCFTs described by

F
10−m
6 F4 F0

e h e e+f
2 ≤ m ≤ 10

M = 11 − m

6F = (m − 2)φ3
L + 8φ3

M + 8φ3
R − 18φLφ2

M + 12φMφ2
L − 12φMφ2

R + 6φRφ2
M

(4.62)
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The lower bound on m has been put in the above equation so that we do not overcount

5d SCFTs.

Another series of 5d SCFTs is obtained by integrating out p ≥ 3 blowups from the

right surface and m blowups from the left surface in (4.56)

F
12−m−p
8−p F6−p Fp−4

e h e e
p ≤ m ≤ 12 − p

3 ≤ p ≤ 6

M = 13 − m − p

6F = (m + p − 4)φ3
L + 8φ3

M + 8φ3
R + 3(p − 8)φLφ2

M + 3(6 − p)φMφ2
L

+3(p − 6)φMφ2
R + 3(4 − p)φRφ2

M

(4.63)

Consider the m = 11 case of (4.59)

F
1
8 F6 F1

e h e 2h

(4.64)

As we know from earlier discussions, we can send the remaining blowup to the right

surface and then bring it back to the left surface to obtain the following flop-equivalent

frame of the above geometry

F
1
8 F6 F0

e h e 2e+f

(4.65)

Blowing down the blowup on the left surface in the above geometry yields the 5d SCFT

F8 F6 F0
e h e 2e+f

M = 1

6F = 8φ3
L + 8φ3

M + 8φ3
R − 24φLφ2

M + 18φMφ2
L − 18φMφ2

R + 12φRφ2
M

(4.66)

Consider the p = 3 case of (4.63)

F
9−m
5 F3 F1

e h e h

(4.67)

Blowing down the e curve in the right surface, we obtain the following series of 5d

SCFTs

F
9−m
5 F3 dP

e h e l 0 ≤ m ≤ 9

M = 9 − m

6F = (m − 1)φ3
L + 8φ3

M + 9φ3
R − 15φLφ2

M + 9φMφ2
L − 9φMφ2

R + 3φRφ2
M

(4.68)
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Consider m = 3 case of the above series of geometries

F
6
5 F3 dP

e h e l

(4.69)

We can blow down h −
∑

xi in the left surface to obtain the 5d SCFT

dP6 F3 dP
l-
∑

xi h e l

M = 5

6F = 3φ3
L + 8φ3

M + 9φ3
R − 15φLφ2

M + 9φMφ2
L − 9φMφ2

R + 3φRφ2
M

(4.70)

4.2 M = 12

The geometry for the KK theory (4.3) for k = 1 can be written as [9, 10, 15]

F
12
1 F7 F3

h-
∑

xi h+f e h+f

h e

(4.71)

The way this geometry is written, it is not possible to integrate out any blowup through

any surface due to the same reasons as explained in the last subsection. The reason this

happens is that every single gluing curve contains the e curve of that surface. However,

we can perform some flops and isomorphisms to remove e from one of the gluing curves

as follows. First move one blowup from the left surface to the middle surface, then

from the middle surface to the right surface, and then from the right surface back to

the left surface, such that the blowup goes around the whole geometry in a loop. At

the end of this process, one ends up with the following geometry

F
11+1
1 F6 F2

h-
∑

xi h+f e h+f

h-y e

(4.72)

Now applying I−1
0 on the left surface using the blowup y, we can rewrite the above as

F
12
0 F6 F2

e+f -
∑

xi h+f e h+f

e e

(4.73)
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Now exchanging e and f achieves our goal as the geometry at hand becomes

F
12
0 F6 F2

e+f -
∑

xi h+f e h+f

f e

(4.74)

Now we can absorb all the twelve blowups into the left surface to obtain the frame

F
12
10 F6 F2

e h+f e h+f

f e

(4.75)

In the above frame, we can only remove blowups from the left surface. Removing m

blowups gives us a series of 5d SCFTs described by geometries

F
12−m
10 F6 F2

e h+f e h+f

f e

1 ≤ m ≤ 12

M = 12 − m

6F = (m − 4)φ3
L + 8φ3

M + 8φ3
R − 30φLφ2

M + 24φMφ2
L − 18φMφ2

R + 12φRφ2
M

−6φRφ2
L + 6φLφMφR

(4.76)

where the coefficient of φLφMφR in 6F is computed by 6CL;M · CL;R. It can also be

computed using 6CM ;L ·CM ;R or 6CR;M ·CR;L. This can also be viewed as a consistency

condition on the geometries since all these three expressions must match.

We can also consider first sending a blowup around the whole geometry to obtain

F
11+1
9 F5 F1

e h+f e h+f

f -y e

(4.77)

and then flopping the gluing curve f − y in the left surface (which also flops e in the

right surface) to obtain the following geometry in which a blowup is available to be

integrated out from the middle surface

F
11
8 F

1
6 dP

e h e 2l

(4.78)
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Removing this blowup gives rise to a flop equivalent frame of the geometry having

m = 1 in the series of geometries (4.60) presented above. Similar remarks will hold

true in whatever follows in this subsection: Every time we integrate out a −1 curve

from the middle surface such that the resulting geometry has no edge between the left

and right surfaces, then that geometry has already been discussed in Section 4.1.

To obtain more RG flows, we can play the same game as above by removing the

presence of e curve from one more gluing curve. Notice that this gluing curve cannot be

the second gluing curve on the left surface. For, if it was this curve then the intersection

of the two gluing curves in the left surface cannot be positive, while the intersection of

the two gluing curves in the left surface in all of the geometries above is +1. So, let us

choose one of the gluing curves in the right surface12 to perform this transformation.

We have two choices: we can either choose the gluing curve for the left surface or the

gluing curve for the middle surface from which we will remove the e curve. Let us first

choose the gluing curve for the left surface. To carry out this procedure, we have to

convert the right surface to F0, which can be done by sending two blowups to the right

surface in (4.75) and performing some isomorphisms to rewrite the geometry as

F
10
8 F4 F

2
0

e h+f e e+f

f e-
∑

xi

(4.79)

Now interchanging e and f in the right surface we obtain the geometry

F
10
8 F4 F

2
0

e h+f e e+f

f f -
∑

xi

(4.80)

which allows us to integrate out blowups either from the left surface or from the right

surface. To obtain any new 5d SCFT not accounted above, we must integrate out at

least one blowup from the right surface, otherwise we can simply reverse the isomor-

phisms performed on the right surface to go back to geometries of the form already

12Note that this can be done without loss of generality. Choosing the right surface or the middle

surface gives the same results, essentially because the original geometry (4.71) has cyclic symmetry

upto flops. We encourage any interested reader to check this fact in more detail.
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considered before. Thus, the new 5d SCFTs we obtain are

F
10−m−p
8−p F4−p F

2
p−2

e h+f e e

f f -
∑

xi

p ≤ m ≤ 10 − p

1 ≤ p ≤ 5

M = 12 − m − p

6F = (m + p − 2)φ3
L + 8φ3

M + 6φ3
R + 3(p − 8)φLφ2

M + 3(6 − p)φMφ2
L

+3(p − 4)φMφ2
R + 3(2 − p)φRφ2

M − 6φRφ2
L + 6φLφMφR

(4.81)

where we have integrated out p blowups from the right surface and m blowups from

the left surface.

Now let us instead choose to remove the e curve from the gluing curve for the

middle surface living in the right surface. To do this, we must send two more blowups

onto the right surface in (4.79) to obtain

F
8
6 F2 F

4
0

e h+f e e

f e+f -
∑

xi

(4.82)

Interchanging e and f on the right surface now achieves our goal

F
8
6 F2 F

4
0

e h+f e f

f e+f -
∑

xi

(4.83)

We can now rewrite the above as

F
8
6 F2 F

4
2

e h+f e f

f e

(4.84)

Integrating out m blowups from the left surface and p blowups from the right surface,

we obtain

F
8−m
6 F2 F

4−p
2

e h+f e f

f e

(4.85)
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However, notice that if p ≤ 2, then we do not obtain any new geometries since we can

relate the above series of geometries to (4.81) by isomorphisms as described below. We

use two blowups on the right surface to convert the description to

F
8−m
6 F2 F

2+(2−p)
2

e h+f e f

f e-
∑

xi

(4.86)

and then interchange e and f on the right surface to obtain

F
8−m
6 F2 F

2+(2−p)
2

e h+f e e

f f -
∑

xi

(4.87)

which is flop equivalent to geometries (4.81). So first substituting p = 3, we obtain a

series of 5d SCFTs not described above

F
8−m
6 F2 F

1
2

e h+f e f

f e
1 ≤ m ≤ 8

M = 9 − m

6F = mφ3
L + 8φ3

M + 7φ3
R − 18φLφ2

M + 12φMφ2
L − 6φMφ2

R − 6φRφ2
L + 6φLφMφR

(4.88)

Substituting p = 4, we obtain a series of 5d SCFTs

F
8−m
6 F2 F2

e h+f e f

f e
1 ≤ m ≤ 8

M = 8 − m

6F = mφ3
L + 8φ3

M + 8φ3
R − 18φLφ2

M + 12φMφ2
L − 6φMφ2

R − 6φRφ2
L + 6φLφMφR

(4.89)

Just like we saw that we can exchange e and f on the right surface in (4.84), we

can also exchange e and f on the left surface by using six of the blowups and rewrite

– 51 –



(4.84) as

F
6+2
0 F2 F

4
2

f -
∑

xi h+f e f

e e

(4.90)

Transferring the four blowups on the right surface to the left surface, we obtain

F
6+6
4 F2 F0

f -
∑

xi h+f e f

e e+f

(4.91)

Integrating out blowups from the left surface in the above geometry does not yield new

5d SCFTs since we can exchange e and f on the right surface to map the resulting

geometries to geometries of the form (4.76). So we must integrate out at least one

blowup from the right surface. Suppose furthermore we integrate out m blowups from

the left surface

F
6+(5−m)
3

F2 F1
f -

∑
xi h+f e f

e h

(4.92)

If m ≤ 4, then we can write the above geometry as

F
6+(4−m)
2

F2 F
1
0

f -
∑

xi h+f e f

e e

(4.93)

which can be mapped to geometries of the form (4.85) upto flops and exchange of

surfaces. Thus the only way to obtain a new SCFT is to susbstitute m = 5

F
6
3 F2 F1

f -
∑

xi h+f e f

e h

M = 6

6F = 2φ3
L + 8φ3

M + 8φ3
R − 18φLφ2

M + 12φMφ2
L − 6φMφ2

R + 3φRφ2
L − 9φLφ2

R + 6φLφMφR

(4.94)
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Integrating out two blowups from the right surface and m blowups from the left surface

in (4.91) leads to

F
6+(4−m)
2

F2 F0
f -

∑
xi h+f e f

e e

(4.95)

which can always be made equivalent to geometries of the form (4.85) irrespective of

the value of m. Integrating out three blowups from the right and m blowups from the

left in (4.91) yields

F
6+(3−m)
1

F2 F1
f -

∑
xi h+f e f

e e

(4.96)

which can be converted into geometries of the form (4.85) upto flops as long as m ≤ 2,

since the above geometry is isomorphic to the geometry

F
6+1+(2−m)
0

F2 F1
f -

∑
xi h+f e f

e-y e

(4.97)

in which we can exchange e and f on the first surface. Thus the only new 5d SCFT we

obtain from geometries of the form (4.96) is

F
6
1 F2 F1

f -
∑

xi h+f e f

e e

M = 6

6F = 2φ3
L + 8φ3

M + 8φ3
R − 18φLφ2

M + 12φMφ2
L − 6φMφ2

R − 3φRφ2
L − 3φLφ2

R + 6φLφMφR

(4.98)

Cases involving integrating out of more than three blowups from the right surface and

m blowups from the left surface in (4.91) have already been discussed earlier since the

geometry (4.91) is left-right symmetric upto flops.

To obtain even more RG flows, we can continue playing the same game as above

by removing the presence of e curve from yet another gluing curve. Due to reasons
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already explained before, this time we must choose a gluing curve living in the middle

surface to perform this operation. Without loss of generality, since the geometry for

KK theory is left-right symmetric, we can choose it to be the gluing curve for the left

surface inside the middle surface. We obtain the following new 5d SCFTs this way:

F
4−m
2 F

6−n−p
4−p F

2
p−2

e f e e

f f -
∑

xi

3 ≤ p ≤ m ≤ 4

1 ≤ n ≤ 3

M = 12 − m − n − p

6F = (m + 4)φ3
L + (n + p + 2)φ3

M + 6φ3
R − 6φLφ2

M + 3(p − 4)φMφ2
R

+3(2 − p)φRφ2
M − 6φRφ2

L + 6φLφMφR

(4.99)

F
4−m
2 F3 F

2
1

e f e h

f f -
∑

xi

1 ≤ m ≤ 4

M = 6 − m

6F = (m + 4)φ3
L + 8φ3

M + 6φ3
R − 6φLφ2

M − 9φMφ2
R + 3φRφ2

M − 6φRφ2
L + 6φLφMφR

(4.100)

F
4−m
2 F1 F

2
3

e f h e

f f -
∑

xi

3 ≤ m ≤ 4

M = 6 − m

6F = (m + 4)φ3
L + 8φ3

M + 6φ3
R − 6φLφ2

M + 3φMφ2
R − 9φRφ2

M − 6φRφ2
L + 6φLφMφR

(4.101)

F3 dP F
2
3

e l l e

f f -
∑

xi

M = 1

6F = 8φ3
L + 9φ3

M + 6φ3
R − 9φLφ2

M + 3φMφ2
L + 3φMφ2

R − 9φRφ2
M − 6φRφ2

L + 6φLφMφR

(4.102)
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F
4−m
2 F

4−n
2 F

4−p
2

e f e f

f e
1 ≤ p ≤ n ≤ m ≤ 4

M = 12 − m − n − p

6F = (m + 4)φ3
L + (n + 4)φ3

M + (p + 4)φ3
R − 6φLφ2

M − 6φMφ2
R − 6φRφ2

L + 6φLφMφR

(4.103)

4.3 M = 11

The KK theory (4.19) has geometry [10, 15]

F
4
0 dP7+2 F2

f 3l-
∑

xi-2y1
y1-y2 f

e, e-
∑

xi e, h

2 (4.104)

where the label 2 in the middle of the edge between the left and the right surface

signifies that there are two gluing curves between these two surfaces. It can be easily

seen that the above is equivalent to

F
2
0 F

7+1
1 F

2
0

f h+2f -
∑

xi
e-y f

e, e-
∑

xi e-
∑

xi, e

2 (4.105)

which can be rewritten as

F
2
0 F

8
2 F

2
0

e h+2f -
∑

xi e e

f, f -
∑

xi f -
∑

xi, f

2 (4.106)

which is equivalent to

F
8
8 F2 F

2+2
0

e h+2f e e

f, f f -
∑

xi, f -
∑

yi

2 (4.107)

Notice that the above geometry is left-right symmetric upto flop equivalences.
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Integrating out m blowups from the left surface we obtain the following 5d SCFTs

F
8−m
8 F2 F

2+2
0

e h+2f e e

f, f f -
∑

xi, f -
∑

yi

2

1 ≤ m ≤ 8

M = 11 − m

6F = mφ3
L + 8φ3

M + 4φ3
R − 24φLφ2

M + 18φMφ2
L − 6φMφ2

R − 12φRφ2
L + 12φLφMφR

(4.108)

Integrating out 1 ≤ p ≤ 3 blowups from the right surface and m blowups from the left

surface in (4.107), we obtain

F
8−m−p
8−p F2−p F

2+2
p

e h+2f e e

f, f f -
∑

xi, f -
∑

yi

2

p ≤ m ≤ 8 − p

1 ≤ p ≤ 3

M = 11 − m − p

6F = (m + p)φ3
L + 8φ3

M + 4φ3
R + 3(p − 8)φLφ2

M + 3(6 − p)φMφ2
L

+3(p − 2)φMφ2
R − 3pφRφ2

M − 12φRφ2
L + 12φLφMφR

(4.109)

We can also integrate out four blowups each from the left and the right surfaces to

obtain

F4 F0 F
2+2
4

e e+f e+f e

f, f f -
∑

xi, f -
∑

yi

2

M = 3

6F = 8φ3
L + 8φ3

M + 4φ3
R − 12φLφ2

M + 6φMφ2
L + 6φMφ2

R − 12φRφ2
M

−12φRφ2
L + 12φLφMφR

(4.110)

We can also consider first sending a blowup from the right surface to the left surface

in (4.107) to obtain

F
1+8
8 F2 F

1+2
0

e h+2f e e

f -x, f f -x, f -
∑

yi

2 (4.111)
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and then flopping the gluing curve f − x in the left surface (which also flops f − x in

the right surface) to obtain the following geometry in which a blowup is available to

be integrated out from the middle surface

F
8
7 F

1
3 F

2
1

e h+f e h

f f -
∑

xi

(4.112)

Removing this blowup gives rise to the geometry having m = p = 1 in the series of

geometries (4.81) presented above. Similar remarks will hold true in whatever follows

in this subsection: Every time we integrate out a −1 curve from the middle surface

such that the resulting geometry has only a single gluing curve between the left and

right surfaces, then that geometry has already been discussed in Section 4.2. Thus, we

can focus our attention exclusively on only geometries that contain two gluing curves

between the left and the right surfaces.

We have learned in the previous subsection that new RG flows appear when we

change the degree of one of the Hirzebruch surfaces to zero and then exchange e with

f in that surface. Exchange e and f on the right surface in (4.107) would not be of

any help since we will obtain two gluing curves in the right surface containing the e

curve. Next, we could try to perform an automorphism on the right surface and then

exchange x and y. The only possible non-trivial automorphism involves applying I0

using y1 and then I−1
0 using x1 which gives

F
8
8 F2 F

2+2
0

e h+2f e e+f -x1-y1

f, f x1-x2, y1-y2

2 (4.113)

But interchanging e and f on the right surface now leaves the geometry invariant, so

this is also of no help. There is a another way that involves first sending a blowup from

the left surface to the right surface to obtain

F
7
7 F1 F

2+2+1
1

e h+2f e e

f, f f -
∑

xi, f -
∑

yi

2 (4.114)

and then applying I−1
0 on the right surface using the blowup y1 to rewrite the above as

F
7
7 F1 F

2+2+1
0

e h+2f e e-y1

f, f f -
∑

xi, y1-y2

2 (4.115)
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After interchanging e and f , we can now rewrite it as

F
7
7 F1 F

3+2
2

e h+2f e f -y1

f, f e, y1-y2

2 (4.116)

Notice the key point that this operation has changed which gluing curve on the right

surface carries the e curve. Sending y2 onto the left surface and further integrating out

m blowups from the left surface and p blowups from the right surface, we obtain the

following series of 5d SCFTs

F
(7−m)+1
7

F1 F
(3−p)+1
2

e h+2f e f -y

f, f -y e, y

2

0 ≤ m ≤ 7

2 ≤ p ≤ 3

M = 11 − m − p

6F = mφ3
L + 8φ3

M + (p + 4)φ3
R − 21φLφ2

M + 15φMφ2
L − 3φMφ2

R

−3φRφ2
M − 9φRφ2

L − 3φLφ2
R + 12φLφMφR

(4.117)

Consider the geometry (4.117) for m = p = 0. In this geometry, we can change

which gluing curve in the left surface carries the e curve, obtaining

F
6+1+1
0 F1 F

3+1
2

f -
∑

xi-y h+2f e f -y

e, y e, y

2 (4.118)

Sending the three available blowups on the right surface onto the left surface, we obtain

F
6+1+4
3 F1 F

1
1

f -
∑

xi-y h+2f e f -x

e, y h, x

2 (4.119)

Now, integrating out m blowups from the left surface and p blowups from the right

surface, we obtain

F
6+1+(4−m−p)
3−p F1 F

1
p−1

f -
∑

xi-y h+2f e f -x

e, y h, x

2 (4.120)
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But only the cases m = p = 2 and m = 4, p = 0 lead to new 5d SCFTs not accounted

earlier:

F
6+1
1 F1 F

1
1

f -
∑

xi-y h+2f e f -x

e, y e, x

2

M = 7

6F = φ3
L + 8φ3

M + 7φ3
R − 21φLφ2

M + 15φMφ2
L − 3φMφ2

R

−3φRφ2
M − 6φRφ2

L − 6φLφ2
R + 12φLφMφR

(4.121)

F
6+1
3 F1 F

1
1

f -
∑

xi-y h+2f e f -x

e, y h, x

2

M = 7

6F = φ3
L + 8φ3

M + 7φ3
R − 21φLφ2

M + 15φMφ2
L − 3φMφ2

R

−3φRφ2
M − 12φLφ2

R + 12φLφMφR

(4.122)

Sending two blowups from left surface to right surface in m = 5 version of (4.108)

changes the middle surface to F0 in which we can exchange e and f to rewrite the

geometry in the following frame

F
1
6 F0 F

2+2+2
2

e 2e+f f e

f, f f -
∑

xi, f -
∑

yi

2 (4.123)

We can take the remaining blowup onto the middle surface and back to the left surface

to rewrite the above geometry as

F
1
6 F1 F

2+2+2
2

e 2h f e

f, f f -
∑

xi, f -
∑

yi

2 (4.124)

Removing the blowup on the left surface and integrating out p blowups from the right
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surface, we obtain the following series of 5d SCFTs

F6 F1 F
2+2+(2−p)
2

e 2h f e

f, f f -
∑

xi, f -
∑

yi

2

0 ≤ p ≤ 2

M = 5 − p

6F = 8φ3
L + 8φ3

M + (p + 2)φ3
R − 18φLφ2

M + 12φMφ2
L − 6φRφ2

M

−12φRφ2
L + 12φLφMφR

(4.125)

From the p = 2 geometry above, we can integrate out the e curve of the middle surface

towards right to obtain the 5d SCFT

F6 dP F
2+2
3

e 2l l e

f, f f -
∑

xi, f -
∑

yi

2

M = 2

6F = 8φ3
L + 9φ3

M + 4φ3
R − 18φLφ2

M + 12φMφ2
L + 3φMφ2

R

−9φRφ2
M − 12φRφ2

L + 12φLφMφR

(4.126)

Similarly, we can obtain the following 5d SCFTs

F
1
6 F

1
1 F

(3−p)+1
2

e 2h f -x f -y

f, f -x e, y

2

2 ≤ p ≤ 3

M = 5 − p

6F = 7φ3
L + 7φ3

M + (p + 4)φ3
R − 18φLφ2

M + 12φMφ2
L − 3φMφ2

R

−3φRφ2
M − 9φRφ2

L − 3φLφ2
R + 12φLφMφR

(4.127)

4.4 M = 10

The KK theory (4.21) has the geometry [10, 15]

F
10
1 F0 F

1+1
0

2h-
∑

xi 2e+f f f -x-y

f -x1, x1

x, y
2

e-x

e-y

(4.128)
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which can be rewritten as

F
10
0 F0 F

1+1
2

e+2f -
∑

xi e+2f e e

e-x1, x1

f -x, f -y
2

x

y

(4.129)

Flopping x ∼ y in the right surface, we get

F
10+1
0 F0 F2

e+2f -
∑

xi e+2f e e

e-x1-y, x1-y

2

f, f

(4.130)

Applying I0 using x1, then I1 using y, we obtain

F
9+1+1
2 F0 F2

h+f -
∑

xi-y e+2f e e

e, y-z

2

f, f

(4.131)

Sending all the blowups except y from the left surface to the right surface, we obtain

F
1
2 F5 F

9+1
11

h+f -x e h+2f e

e, x

2

f, f -y

(4.132)

Let us rewrite the above by performing a left-right exchange

F
9+1
11 F5 F

1
2

e h+2f e h+f -x

f, f -y

2

e, x

(4.133)

which is our desired frame to express the geometry (4.128). It can be checked that

every time we integrate out a −1 curve from the middle surface such that the resulting

geometry has only a single gluing curve between the left and right surfaces, then that

geometry has already been discussed in Section 4.2. Thus, we can focus our attention

exclusively on the geometries that contain two gluing curves between the left and the

right surfaces.
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We can integrate out m blowups from the left surface now to obtain the following

series of 5d SCFTs

F
(9−m)+1
11

F5 F
1
2

e h+2f e h+f -x

f, f -y

2

e, x 1 ≤ m ≤ 9

M = 10 − m

6F = (m − 2)φ3
L + 8φ3

M + 7φ3
R − 33φLφ2

M + 27φMφ2
L − 15φMφ2

R

+9φRφ2
M − 9φRφ2

L − 3φLφ2
R + 12φLφMφR

(4.134)

It can be checked that removing e curve from one of the gluing curves in the right

surface of (4.133) and then integrating out the blowups does not lead to any new 5d

SCFTs. However, removing e curve from one of the gluing curves on the right surface

and one of the gluing curves on the middle surface leads to the following 5d SCFT

F6 F1 F
2+2+3
2

e 2h f e

f, f

2

f -
∑

xi, f -
∑

yi

M = 6

6F = 8φ3
L + 8φ3

M + φ3
R − 18φLφ2

M + 12φMφ2
L

−6φRφ2
M − 12φRφ2

L + 12φLφMφR

(4.135)

The KK theory (4.42) has the following geometry [10, 15]

dP9 F
1+1
0 F

1+1
0

3l-
∑

xi f f -x, x f -x, x

e-x

e-y

e-x e-y

2

(4.136)

which can be rewritten as

F
8
1 F

1+1
0 F

1+1
0

2h+f -
∑

xi e+f -x-y e-y, f -x e-y, f -x

x

y

x y

2

(4.137)

Let us now flop x ∼ y in the middle surface. Since these −1 curves intersect the gluing

curves for both the left and the right surfaces, the flop creates blowups in both the left
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and the right surfaces, but these blowups must be identified with each other as shown

below

F
8+1
1 F0 F

1+1+1
0

2h+f -
∑

xi-2y e+f e, f e-y-z, f -x-z

x

y

2

y
z

(4.138)

Flopping x ∼ y in the right surface, we obtain

F
8+1
1 F

1
0 F

1
0

2h+f -
∑

xi-2y e+f e-x, f -x e-x, f -x
2

y x

(4.139)

Applying I−1
0 using y on the left surface, and then exchanging e with f on the left

surface, we get

F
8+1
0 F

1
0 F

1
0

e+2f -
∑

xi e+f e-x, f -x e-x, f -x
2

e-y x

(4.140)

Cyclically rotating the surfaces by one unit, we prefer to write the above as

F
1
0 F

9
1 F

1
0

x e h+2f -
∑

xi e+f

e-x, f -x

2

e-x, f -x

(4.141)

Moving the blowups on the middle surface to left surface through the right surface, we

obtain

F
9+1
10 F1 F

1
7

f -y e h+2f e

e, y

2

h+f -x, f -x

(4.142)

which is our preferred frame for the geometry (4.136).
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Now integrating out m blowups from the left surface in (4.142), we obtain the

following series of 5d SCFTs

F
(9−m)+1
10

F1 F
1
7

f -y e h+2f e

e, y

2

h+f -x, f -x
1 ≤ m ≤ 9

M = 10 − m

6F = (m − 2)φ3
L + 8φ3

M + 7φ3
R − 3φLφ2

M − 3φMφ2
L + 15φMφ2

R

−21φRφ2
M + 21φRφ2

L − 33φLφ2
R + 12φLφMφR

(4.143)

The only other 5d SCFT arising from (4.142) and not accounted earlier in this

paper is obtained by removing e curve from the gluing curve for the left surface in the

middle surface and removing some blowups

F
1
9 F

1
1 F

1
6

f -x f -x 2h e

e, x

2

h+f -x, f -x

M = 2

6F = 7φ3
L + 7φ3

M + 7φ3
R − 3φLφ2

M − 3φMφ2
L + 12φMφ2

R

−18φRφ2
M + 18φRφ2

L − 30φLφ2
R + 12φLφMφR

(4.144)

4.5 M = 8

The KK theory (4.13) has the geometry [15]

F6 F1 F
6+6+1+1
6

e 2h 2h+f e-z-w

f

f -xi-yi
6

z

w

(4.145)

where the labels at the ends of the edge between the left and the right surface are

displayed as f and f −xi −yi respectively while leaving the value of i unspecified. This

notation means that a copy of f in the left surface is glued to f − xi − yi in the right

surface for each value of i. Hence, the edge between the left and right surfaces carries

the label 6 in its middle denoting the fact that there are six gluings between the two

surfaces. We will continue using this notation in what follows.
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Flopping z ∼ w in the right surface leads to

F6 F
1
1 F

6+6
6

e 2h 2h+f -2x e

f f -xi-yi

6 (4.146)

which can be rewritten (upto flops) as

F
6
6 F

1
1 F

6
6

e 2h h+2f -x e

f -xi f -xi

6 (4.147)

where the notation dictates that, for each i, the −1 curve f − xi in the left surface is

glued to the −1 curve f − xi in the right surface. Flopping three of these f − xi and

the curve x in the middle surface, we obtain

F
3
3 F

3
1 F

3+1
4

e 2h-
∑

xi h+2f -
∑

xi e

f -xi f -xi

3 (4.148)

which can be rewritten as

F
3
3 F

3
0 F

3+1
4

e e+2f -
∑

xi e+f e

f -xi f -xi

3 (4.149)

Moving blowups xi living on the middle surface and the blowup y living on the right

surface onto the left surface, we obtain

F
3+4
7 F1 F

3
3

e h+2f h e

f -xi f -xi

3 (4.150)

which is the our desired frame for (4.145). It is possible to flow to geometries that

carry two gluing curves between the left and right surfaces, but we claim that all such

geometries have been accounted earlier in previous subsection. The reader can easily

check this claim. Thus, we focus our attention only on those geometries that carry

three gluing curves between the left and the right surfaces.
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Integrating out m blowups from the left surface in (4.150) gives rise to

F
3+(4−m)
7

F1 F
3
3

e h+2f h e

f -xi f -xi

3

1 ≤ m ≤ 4

M = 8 − m

6F = (m + 1)φ3
L + 8φ3

M + 5φ3
R − 21φLφ2

M + 15φMφ2
L + 3φMφ2

R

−9φRφ2
M − 9φRφ2

L − 9φLφ2
R + 18φLφMφR

(4.151)

Integrating out a blowup from the right surface and m blowups from the left surface

gives rise to

F
3+(3−m)
6

F0 F
3
4

e e+2f e+f e

f -xi f -xi

3

1 ≤ m ≤ 3

M = 7 − m

6F = (m + 2)φ3
L + 8φ3

M + 5φ3
R − 18φLφ2

M + 12φMφ2
L + 6φMφ2

R

−12φRφ2
M − 9φRφ2

L − 9φLφ2
R + 18φLφMφR

(4.152)

The final case involves integrating out two blowups each from the left and the right

surfaces

F
3
5 F1 F

3
5

e h+f h+f e

f -xi f -xi

3

M = 4

6F = 5φ3
L + 8φ3

M + 5φ3
R − 15φLφ2

M + 9φMφ2
L + 9φMφ2

R

−15φRφ2
M − 9φRφ2

L − 9φLφ2
R + 18φLφMφR

(4.153)

The KK theory (4.23) has the following geometry [15]

F
3+3
6 F0 dP9

x1-x8f4e+2fe-
∑

xi-
∑

yi

f, f, f, f

x8-x9, x2-x1,

4

3

xi

yi l-x1-x2-x3,

2l-x1-x2-x4-x5-x6-x7 (4.154)
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which can be shown to be flop equivalent to

F
3+4
9 F1 F

3
1

e h+3f e e

f -xi f -xi

3 (4.155)

Integrating out m blowups from the left gives us the following series of 5d SCFTs

F
3+(4−m)
9

F1 F
3
1

e h+3f e e

f -xi f -xi

3

1 ≤ m ≤ 4

M = 8 − m

6F = (m + 1)φ3
L + 8φ3

M + 5φ3
R − 27φLφ2

M + 21φMφ2
L − 3φMφ2

R

−3φRφ2
M − 9φRφ2

L − 9φLφ2
R + 18φLφMφR

(4.156)

Integrating out a blowup from right and m blowups from left gives the following 5d

SCFTs

F
3+(3−m)
8

F0 F
3
2

e e+3f e e

f -xi f -xi

3

0 ≤ m ≤ 3

M = 7 − m

6F = (m + 2)φ3
L + 8φ3

M + 5φ3
R − 24φLφ2

M + 18φMφ2
L

−6φRφ2
M − 9φRφ2

L − 9φLφ2
R + 18φLφMφR

(4.157)

It can be shown that other ways of integrating out −1 curves discussed earlier do not

give rise to any new 5d SCFTs. However, a new way of integrating out −1 curves opens

up in this theory. First, sending one blowup from the left surface to the right surface

in (4.155) results in

F
3+3
8 F0 F

3+1
2

e e+3f e e

f -xi f -xi

3 (4.158)

which is isomorphic to

F
3+3
8 F0 F

3+1
0

e e+3f e e-x1-x2

f -x1, f -x2, f -x3 x1, x2, f -x3

3 (4.159)
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Now exchanging e and f on the right surface yields

F
3+3
8 F0 F

3+1
0

e e+3f e f -x1-x2

f -x1, f -x2, f -x3
x1, x2, e-x3

3 (4.160)

which after flopping x3 in the left surface and applying isomorphisms can be written as

F
2+3
8 F0 F

2+3
2

e e+3f e f -
∑

xi

f, f -xi
e, xi

3 (4.161)

Now we can integrate out m blowups from the left surface and p blowups from the right

surface to obtain the following 5d SCFTs

F
2+(3−m)
8

F0 F
2+(3−p)
2

e e+3f e f -
∑

xi

f, f -xi
e, xi

3

0 ≤ m ≤ 3

2 ≤ p ≤ 3

M = 8 − m − p

6F = (m + 3)φ3
L + 8φ3

M + (p + 3)φ3
R − 24φLφ2

M + 18φMφ2
L

−6φRφ2
M − 12φRφ2

L − 6φLφ2
R + 18φLφMφR

(4.162)

The KK theory (4.6) for k = 1 has the geometry [9, 10, 15]

F
7+7
1 F3 F1

he3he-
∑

xi-
∑

yi
7

xi

yi (4.163)

which is equivalent to

F
3+4
8 F0 F

3
2

e e+3f e e

f -xi f -xi

3 (4.164)
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and only produces the following new 5d SCFTs

F
2+4
8 F0 F

2+(2−p)
2

e e+3f e f -
∑

xi

f, f -xi
e, xi

3

1 ≤ p ≤ 2

M = 8 − p

6F = 2φ3
L + 8φ3

M + (p + 4)φ3
R − 24φLφ2

M + 18φMφ2
L

−6φRφ2
M − 12φRφ2

L − 6φLφ2
R + 18φLφMφR

(4.165)

4.6 M = 6

The KK theory (4.3) for k = 2 has the geometry [9, 10, 15]

F
6
0 F4 F2

e-
∑

xi h e h

e e

(4.166)

Sending two blowups onto the right surface, we can write the above geometry as

F
4
0 F2 F

2
0

f -
∑

xi h e f

f f -
∑

xi

(4.167)

We can send one of the blowups on the right surface onto the left surface to get

F
4+1
0 F2 F

1
0

f -
∑

xi h e f

f -y f -x

(4.168)

Blowing down the gluing curve f − y in the left surface (which also blows down the

gluing curve f − x in the right surface) leads to the following 5d SCFT

F
4
1 F2 F1

f -
∑

xi h e f

(4.169)

which is same as (4.70). There are no other RG flows possible for this KK theory.
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The KK theory (4.15) has the geometry [15]

F
5+5
6 F6 F1

2he2he-
∑

xi-
∑

yi
5

xi

yi (4.170)

which is equivalent to

F
5
1 F1 F6

e e 2h e

(4.171)

from which we can obtain the following rank three 5d SCFTs

F
5−m
1 F1 F6

e e 2h e
1 ≤ m ≤ 5

M = 6 − m

6F = (m + 3)φ3
L + 8φ3

M + 8φ3
R − 3φLφ2

M − 3φMφ2
L + 12φMφ2

R − 18φRφ2
M

(4.172)

At m = 3, we can also integrate out h −
∑

xi in the left surface to obtain

dP2 F1 F6
l-
∑

xi e 2h e

M = 2

6F = 7φ3
L + 8φ3

M + 8φ3
R − 3φLφ2

M − 3φMφ2
L + 12φMφ2

R − 18φRφ2
M

(4.173)

4.7 M = 5

The KK theory (4.6) for k = 2 has the geometry [9, 10, 15]

F
4+4
4 F2 F0

ee3he-
∑

xi-
∑

yi
4

xi

yi (4.174)

which is equivalent to

F
4
8 F0 F

4
4

e e+3f e+f e

f -xi f -xi

4 (4.175)
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This frame allows us to easily integrate out −1 curves and it can be seen that, in doing

so, no 5d SCFTs can be obtained which have not been discussed above.

The KK theory (4.11) has geometry [15]

F
4
6 F1 F

4
6

e 2h 2h e

f -xi f -xi

4 (4.176)

which is equivalent to

F
4
6 F0 F

4
6

e e+2f e+2f e

f -xi f -xi

4 (4.177)

and can be seen to not give rise to any new 5d SCFTs.

The KK theory (4.25) has the following geometry [15]

F10 F0 dP9
x1-x8f4e+fe

f, f, f, f
x8-x9, x2-x1,

4
l-x1-x2-x3,

2l-x1-x2-x4-x5-x6-x7 (4.178)

which is equivalent to

F
4
10 F0 F

4
2

e e+4f e e

f -xi f -xi

4 (4.179)

and can be seen not to lead to any 5d SCFTs not discussed earlier in this paper.

The KK theory (4.31) has the geometry [15]

F10 F0 dP9
x1-x8f4e+fe

f, f, f, f
3l-x1-x2-x3-x4-x5-x6-x7-2x9,

4

l-x1-x2-x3, x2-x1,

2l-x1-x2-x4-x5-x6-x7 (4.180)

which is equivalent to

F
4
14 F4 F

2+2
0

e+feh+4fe

f, f, f

4

e-xi-yi, f -
∑

xi, f -
∑

yi

(4.181)
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We can integrate out blowups sitting on the left surface to obtain the following 5d

SCFTs

F
4−m
14 F4 F

2+2
0

e+feh+4fe

f, f, f

4

e-xi-yi, f -
∑

xi, f -
∑

yi

1 ≤ m ≤ 4
M = 5 − m

6F = (m + 4)φ3
L + 8φ3

M + 4φ3
R − 42φLφ2

M + 36φMφ2
L − 12φMφ2

R

+6φRφ2
M − 24φRφ2

L + 24φLφMφR

(4.182)

4.8 M = 4

The KK theory (4.17) for k = 1 has the geometry [15]

F
3+3
7 F

3+3
5 F1

e-
∑

yi h+
∑

(f -yi) e-
∑

xi-
∑

yi 3h + f

f -xi,f -xi,

4
xi yi xi yi

3 3 (4.183)

which is equivalent to

F
2
12 F4 F

2+2
0

e+feh+3fe

f, f

3

e+f -
∑

xi-
∑

yi, xi-yi

(4.184)

and gives rise to the SCFTs

F
2−m
12 F4 F

2+2
0

e+feh+3fe

f, f

3

e+f -
∑

xi-
∑

yi, xi-yi

1 ≤ m ≤ 2
M = 4 − m

6F = (m + 6)φ3
L + 8φ3

M + 4φ3
R − 36φLφ2

M + 30φMφ2
L − 12φMφ2

R

+6φRφ2
M − 18φRφ2

L + 18φLφMφR

(4.185)
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The KK theory (4.8) has the geometry [15]

F
3
1 F

1+1+1
2 F3

h-
∑

xi e+f e+f -x-2y, f -x-z h, f

h e

2

x y

(4.186)

Moving one blowup from the left surface to the middle surface, then to the right surface

and then back to the left surface,we can write the above as

F
3
1 F

1+1+1
3 F2

e e+f e+2f -x-2y, f -x-z h, f

f e

2

x y

(4.187)

Removing m blowups from the left surface, we obtain the following 5d SCFTs

F
3−m
1 F

1+1+1
3 F2

e e+f e+2f -x-2y, f -x-z h, f

f e

2

x y

1 ≤ m ≤ 3

M = 4 − m

6F = (m + 5)φ3
L − φ3

M + 8φ3
R − 3φLφ2

M − 3φMφ2
L − 18φMφ2

R

+12φRφ2
M − 6φRφ2

L + 6φLφMφR

(4.188)

We propose that the fundamental BPS particles arising from the middle surface are

associated to the curves e + f , e + 2f − x − 2y, e + 2f − z, f − x − z = f − y − z, x = y

and z living in the middle surface.

Now, moving the blowup z on the middle surface and one blowup on the left surface

onto the right surface in (4.187), we obtain

F
2
0 F

1+1
4 F

1+1
2

e e+f e+3f -x-2y, f -x h-y, f -x

f e

2

x y

(4.189)
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which can be rewritten, by performing isomorphisms on the right surface, as

F
2
0 F

1+1
4 F

1+1
0

e e+f e+3f -x-2y, f -x e+f -x, x

f e-x-y

2

x y

(4.190)

Exchanging e and f on the right surface, we obtain

F
2
0 F

1+1
4 F

1+1
0

e e+f e+3f -x-2y, f -x e+f -x, x

f f -x-y

2

x y

(4.191)

Now we can integrate out blowups (living on the left surface) from both the left and the

right surface. The only possibility giving rise to a new 5d SCFT not discussed above is

obtained by integrating out one blowup from the left and one blowup from the right:

F1 F
1+1
5 F

1+1
1

h e+f e+4f -x-2y, f -x h-x, x

f f -x-y

2

x y

M = 2

6F = 8φ3
L + 6φ3

R + 3φLφ2
M − 9φMφ2

L − 9φMφ2
R

+3φRφ2
M − 6φRφ2

L + 6φLφMφR

(4.192)

We propose that the fundamental BPS particles arising from the middle surface are

associated to the curves e + f , e + 4f − x − 2y, f − x = f − y and x = y living in the

middle surface. Removing the self-gluing leads to 5d SCFTs already discussed before.

4.9 M = 3

The KK theory (4.17) for k = 2 has the geometry [15]

F
2+2
8 F

2+2
6 F0

e-
∑

yi h+
∑

(f -yi) e-
∑

xi-
∑

yi 3e + 2f

f -xi,f -xi,

3
xi yi xi yi

2 2 (4.193)
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which is flop equivalent to

F10 F4 F
2+2
0

e h+2f e e+f

f, f f -
∑

xi, f -
∑

yi

2 (4.194)

from which we can obtain the 5d SCFT described by the geometry

F9 F5 F
2
1

e h+f e h+f

f f -
∑

xi

M = 2

6F = 8φ3
L + 8φ3

M + 6φ3
R − 27φLφ2

M + 21φMφ2
L − 15φMφ2

R

+9φRφ2
M − 6φRφ2

L + 6φLφMφR

(4.195)

The KK theory (4.34) is described by the geometry [9, 10, 15]

F
4
0 F2 F

1+1
0

e, e-
∑

xi e, h f f -x-y

f -x1, x1

2

e-x

e-y

x, y

2

(4.196)

Our desired frame for this geometry is

F
1
1 F

2
2 F0

e, x f -x, f -y e-x-y e+f
2

(4.197)

from which it is easily shown that no new 5d SCFTs arise. For example, integrating

out f − y in middle surface and x in left surface leads to the 5d SCFT

F1 F
1
3 F0

e f -x e-x e+f

(4.198)

which has already been discussed in Section 4.2. To see this, notice that flopping x on

the middle surface leads to

F
1
2 F3 F

1
1

e f e h

f -x f -x

(4.199)

which is clearly flop equivalent to (4.100) for m = 4.
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4.10 M = 2

The KK theory (4.6) for k = 3 has the geometry [9, 10, 15]

F1 F1 F
1+1
7

e e 3h e-x-y

x

y (4.200)

which is equivalent to

F2 F0 F
2
8

e f e+3f e

f f -
∑

xi

(4.201)

and produces no new 5d SCFTs.

Similarly, the KK theory (4.17) for k = 3 is associated the geometry [15]

F
1+1
9 F

2+2
6 F1

e-y h+f -y e-x-y 3h

f -x,f -x,

2
x y x y

(4.202)

which can be written in our desired frame as

F
2
10 F0 F

2
8

f -
∑

xi e e+3f e

e, xi

3

h+f -
∑

xi, f -xi

(4.203)

The only possible blowdown is the blowdown of a blowup in the left surface, which

induces a flop transition leading to

F
1
10 F

1
1 F

1
7

f -x e h+2f e

e, x

2

h+f -x, f -x

(4.204)

Removing the blowup from the middle surface leads to (4.143) for m = 9 and hence we

don’t obtain any new 5d SCFT.

The KK theory (4.44) is described by the geometry [10, 15]

F
1+1
0 F

1+1
0 F

1+1
0

f -x, x f -x, x f -x, x f -x, x
2

e-x e-y e-x e-y e-x e-y

2

(4.205)
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which is equivalent to

F
1
2 F0 F

1
2

e e e e

x x

(4.206)

from which we can blowdown x to obtain a 5d SCFT discussed in Section 4.1. Thus,

there are no new 5d SCFTs arising from this KK theory.

Now, consider the KK theory (4.49), which is described by the following geometry

easily seen to be equivalent to the geometry assigned to the KK theory by [15]

F
1+1
0 F

1+1
0 F

1+1
0

e-y, f -x e-y, f -x 2e+f -x-2y, f -x e-y, f -x
2

x y x y x y

2

(4.207)

Flopping x ∼ y in the left surface and x ∼ y in the right surface, we obtain

F0 F
1+1+1+1
0 F0

e, f e-y-z, f -x-z 2e+f -x-2y-w, f -x-w e, f
2

x y

2

(4.208)

Adding some decoupled states onto the right surface and flopping x ∼ y in the middle

surface, we obtain

F
1
0 F

1+1
0 F

1+1
2

e-x, f -x e-x, f -x 2e+f -y, f -y e+f -x-2y, f -x
2 2

2
x, y

x, x

x

y

(4.209)

where the blowup on the left surface must glue to both x and y in the right surface,

and to account for that the blowup on the left surface appears twice in the gluing rules

with the right surface. Flopping f − x and f − y in the right surface (which flops f − y

in the middle surface as well) leads to

F
2
0 F

1
1 F

1+1
6

e-x-y, f -x h-x, f -x 2h e
2

4 f, f, f -x, f -y

x-y, x-y, y, y

x

y

(4.210)
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Now flop f − x in the left surface which is glued to f − x in the middle surface

F
1
1 F0 F

1+1+1+1
6

e-x e 2e+2f e-w-z

4 f -w, f -z, f -x, f -y

f -x, f -x, x, x

x, w

y, z

2

(4.211)

Flopping f − x in the left surface (and other curves in the threefold glued to it) leads

to

F2 F0 F
1+1+1+1
8

e e 2e+2f e

2 f -x-w, f -y-z

f, f

x, f -w

y, f -z

2

(4.212)

Now flopping x ∼ y in the right surface leads to

F
1
2 F0 F

1+1
6

e e 2e+2f e-x-y

2
x, y

f -x, f -x

x

y

(4.213)

Finally, flopping x ∼ y in the right surface leads us to our desired frame for this KK

theory

F1 F
1
1 F6

e e 2h e

(4.214)

which indeed, as expected [22], describes the 5d gauge theory having gauge algebra

so(7) and a hyper in adjoint. See [23] for more details on the correspondence between

geometries and 5d gauge theory descriptions. Removing the blowup from the middle

surface integrates out the adjoint matter leading to the geometry for pure N = 1 so(7)

theory in 5d, but this was already accounted as m = 5 case of (4.172). Thus there are

no new 5d SCFTs arising from this KK theory.

For the KK theory (4.39), the associated geometry is [15]

F
2+1
0 F

1+1
0 F

1
2

f -y, y 2f -x, f -y x, y f -x, x

2

h-x, ee-
∑

xi-y, e

e-x e-y

2 2

(4.215)
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By doing similar flop gymnastics as above, it can be shown that it is equivalent to the

following geometry

F7 F1 F
2
2

e h+2f f e

f f -
∑

xi

(4.216)

from which it can be seen that no new flows can be produced.

For the KK theory (4.36), the associated geometry is [15]

F
2+1
0 F

1+1
0 F

1
2

f -y, y f -x, f -y x, y f -x, x

2

h-x, ee-
∑

xi-y, e

e-x e-y

2 2

(4.217)

and turns out to be equivalent to

F
2+1
3 dP F

1
3

e l l e

f -
∑

xi, y

2

f, x

(4.218)

from which the only flow arises by blowing down the blowup y in the left surface leading

to the 5d SCFT described by the geometry

F3 dP F
2
3

e l l e

f f -
∑

xi

(4.219)

which was already found earlier (4.102).

The KK theory (4.27) is described by [15]

F
1+1
0 F

1+1
0 F

1+1
1

f -x-y f e+f -x-2y, e-x h, h-x-y

2

f -x, xx, y

e-x e-y

2

x y

(4.220)
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which is equivalent to

F
1
3 F

1+1
1 F

1+1
0

e h h-x-2y, f -x e+f, f -y

2

e-x-y, y-xf, f

2

x y

(4.221)

Removing the blowup on the left surface leads to a 5d SCFT described by

F3 F
1+1
1 F

1+1
0

e h h-x-2y, f -x e+f, f -y

2

e-x-y, y-xf, f

2

x y

M = 1

6F = 8φ3
L + 6φ3

R − 9φLφ2
M + 3φMφ2

L − 15φMφ2
R

+9φRφ2
M − 12φRφ2

L + 12φLφMφR

(4.222)

We propose that the fundamental BPS particles arising from the middle surface are

identified with the curves e, h − x − 2y, f − x = f − y and x = y living in the middle

surface. We can also move the blowup on the left surface of (4.221) to the middle

surface, then to the right surface and then back to the left surface to obtain

F
1
2 F

1+1
0 F

1+1
1

e e e+f -x-2y, f -x h, f -y

2

h-x-y, y-xf -x, f

2

x y

(4.223)

Flopping f − x in the left surface and h − x − y in the right surface, we obtain

F1 F
1+1
1 F

1
2

e e h-x-2y, f -x h, f -x

ef

2

x y

(4.224)

which is the same as m = 3 case of (4.188) upto decoupled states.
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The KK theory (4.46) is described by the geometry [15]

F
1+1
1 F

1+1
0 F

1+1
0

2h-x-2y, f -x f -x, x f -x, x f -x, x
2

x y e-x e-y e-x e-y

2

(4.225)

which can be rewritten as

F
1+1
1 F

1+1
0 F

1+1
0

2h-x-2y, f -x e-y, f -x e-y, f -x e-y, f -x
2

x y x y x y

2

(4.226)

Flopping x ∼ y in the middle and right surfaces leads to

F
1+1+1
1 F

1
0 F

1
0

2h-x-2y-z, f -x-z e, f e-x, f -x e-x, f -x
2

x

y
z

x

2

(4.227)

which is isomorphic to

F
1+1+1
1 F

1
0 F

1
0

h+f -x-2y, f -x-z e, f e-x, f -x e-x, f -x
2

x

y
e

x

2

(4.228)

Rotating the above configuration clockwise by one unit, we get

F
1
0 F

1+1+1
1 F

1
0

x e h+f -x-2y, f -x-z e, f

2

e-x, f -xe-x, f -x

2

x y

(4.229)

We claim that the blowup z on the middle surface can actually be integrated out from

the left surface. To see this, let us exchange e, f on the right and left surfaces to rewrite

the above geometry as

F
1
0 F

1+1+1
1 F

1
0

x e h+f -x-2y, f -x-z f, e

2

f -x, e-xf -x, e-x

2

x y

(4.230)
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Now it is clear that the blowup z on the middle surface can be taken to right surface

and then to the left surface. Performing this action leads to

F
1+1
1 F

1+1
1 F

1
1

x e h+f -x-2y, f -x f, e

2

f -x, h-xf -x, e-x

2

x y

(4.231)

which can be rewritten to produce our desired frame for this KK theory

F
1+1
2 F

1+1
1 F

1
1

f -x e h+f -x-2y, f -x h-x, x

2

f, f -xe, x

2

x y

(4.232)

Removing the extra blowup on the left surface not participating in any of the gluing

curves leads to the following 5d SCFT

F
1
2 F

1+1
1 F

1
1

f -x e h+f -x-2y, f -x h-x, x

2

f, f -xe, x

2

x y

M = 1

6F = 7φ3
L + 7φ3

R − 3φLφ2
M − 3φMφ2

L − 9φMφ2
R

+3φRφ2
M − 3φRφ2

L − 9φLφ2
R + 12φLφMφR

(4.233)

We propose that the fundamental BPS particles arising from the middle surface are

identified with the curves e, h + f − x − 2y, f − x = f − y and x = y living in the

middle surface.

The KK theory (4.46) is described by the geometry [15]

F
1+1
1 F

1+1
0 F

1+1
0

2f -x, x f -x, x f -x, x f -x, x
2

e-x e-y e-x e-y e-x e-y

2

(4.234)
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which is flop equivalent to

F
1+1+1
1 F

1
0 F

1
0

2h-x-2y-z, f -x-z e, f e-x, f -x e-x, f -x
2

x

y
z

x

2

(4.235)

Notice that the above configuration is analogous to the configuration (4.227), but it

does not lead to any flows, though the configuration (4.227) does. There are thus no

new 5d SCFTs obtained from this KK theory.

4.11 M = 1

The KK theory (4.17) for k = 4 has the geometry [15]

F10 F8 F0
e h e 3e+f

(4.236)

which has no −1 curves and hence no RG flows.

The KK theory (4.3) for k = 3 has the geometry [5, 9, 10, 15]

F1 F1 F1
e e e e

e e

(4.237)

The only −1 curve is the e curve in each surface which are all glued to each other.

Integrating it out leads to three copies of the rank one SCFT given by (2.38), but not

to a rank three SCFT.
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