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Abstract: We present Standard Model predictions for the complete set of phenomenologi-

cally relevant electroweak precision pseudo-observables related to the Z-boson: the leptonic

and bottom-quark effective weak mixing angles sin2 θℓeff , sin
2 θbeff , the Z-boson partial decay

widths Γf , where f indicates any charged lepton, neutrino and quark flavor (except for the

top quark), as well as the total Z decay width ΓZ , the branching ratios Rℓ, Rc, Rb, and the

hadronic cross section σ0
had. The input parameters are the masses MZ, MH and mt, and

the couplings αs, α. The scheme dependence due to the choice of MW or its alternative Gµ

as a last input parameter is also discussed. Recent substantial technical progress in the cal-

culation of Minkowskian massive higher-order Feynman integrals allows the calculation of

the complete electroweak two-loop radiative corrections to all the observables mentioned.

QCD contributions are included appropriately. Results are provided in terms of simple

and convenient parameterization formulae whose coefficients have been determined from

the full numerical multi-loop calculation. The size of the missing electroweak three-loop or

QCD higher-order corrections is estimated. We briefly comment on the prospects for their

calculation. Finally, direct predictions for the Zf̄f vector and axial-vector form-factors are

given, including a discussion of separate order-by-order contributions.
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1 Introduction

In 2018 we celebrated 50 years of the Standard Model of elementary particles. The basics

of the model were formulated and experimentally validated in the 1960s/70s. The next

decade brought an intensive development of the calculation of quantum field theoretical

radiative corrections in that model and in its alternatives. An experimental highlight in this

context was the e+e−-collider LEP, which enabled us to check the Standard Model at an

accuracy of better than the per-cent level, which corresponds to effects from more than one

electroweak and two QCD loop orders. This proved, for the first time in a systematic way,

the Standard Model as a quantum field theory. LEP 1 was running, from Summer 1989 to

1995, at and around the Z-boson peak. The expectation for the experimental precision of

MZ and ΓZ was 20MeV in 1986 [1] and reached finally 2MeV [2]. This precision tag was

extremely important because MZ is one of the Standard Model input parameters to the

commonly used on-mass-shell renormalization scheme. Indeed, the experimental accuracy

of MZ triggered much of the precision loop calculations, including the prediction of the top

quark and Higgs masses prior to their discoveries from loop corrections to LEP observables

in the Standard Model, see refs. [3–5] (as well as refs. [6, 7] for an overview of the current

state of the art). Data from the Z peak and the Z resonance curve (the Z line shape) allow

to measure a large variety of observables, such as MZ, ΓZ, cross-sections for different two-

fermion final states and their ratios and angular asymmetries, together with radiation of

(sufficiently soft) photons, gluons, etc. From the real observables, the so-called electroweak

pseudo-observables (EWPOs) are extracted by means of a de-convolution of initial-state

radiation and subtraction of backgrounds. The fine details of relating EWPOs to real

cross-sections at LEP 1 precision are described in detail in ref. [8] and references quoted

therein.
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On occasion of the 50th anniversary of the Standard Model, many of the related crucial

developments were remembered at the conference “SM@50” [9].

This article is devoted to the state-of-the art calculation of the Standard Model (SM)

corrections to the Zf̄f -vertex and their inclusion into the predictions for the various EW-

POs. We will mostly focus on recent advances in the calculation of the electroweak two-loop

terms. QCD contributions, which are known up to four-loop order, have also been taken

into account in the results presented here, but we will refer to the literature for further

details.

The Z resonance curve can be described theoretically by writing the S-matrix elements

as a Laurent series in the center-of-mass energy squared s (also called S-matrix ansatz).

This Laurent series ansatz is worked out up to two loops [10–18]. The coefficients of the

leading series term contain the Z vertex form factors. Their one-loop corrections were stud-

ied in the 1980s; first with massless fermions [19–22], and slightly later with the full mass

dependence of the Standard Model [23–26]. After several papers on approximate/partial

higher-order corrections, the complete two-loop weak corrections were determined in a se-

ries of papers from 2004 to 2018 [27–37]. The correct formulation of the interplay of the

2→2 loop corrections with higher order real QED corrections in the S-matrix approach,

also called un-folding of the effective 2→2 Born terms from the realistic 2→n observables,

is a topic on its own. It was first studied in refs. [38–41], but its extension beyond two-loop

level will require more work [8, 42, 43]. The numerically relevant two-loop and partial

higher-order corrections were included in the final analysis of LEP 1 data [44].1

The theoretical advances described here go beyond the Standard Model theory used

for physics at LEP 1 [45, 46] but will be needed for the FCC-ee Tera-Z project [6, 7, 50–52]

whose unique experimental precision calls for perturbative predictions at three electroweak

loops together with corresponding QCD terms.

In this work, the following pseudo-EWPOs are discussed: the partial widths Γf for

Z-boson decay into ff̄ final states; the total Z width ΓZ; the branching fractions Γf/ΓZ;

the total hadronic Z-pole quark-pair production cross-section σ0
had; and the effective weak

mixing angles sin2 θfeff , defined from the ratio of vector- and axial Z-boson couplings. The

precise definition of all these pseudo-observables will be given below. Pseudo-observables

differ from real observables by removing from the former the effects of initial-state and

initial-final QED radiation, as well as non-resonant photon-exchange, box and t-channel

contributions [6, 44].

1The EWPOs at LEP 1 were determined order by order without a Laurent expansion. This was based

on the ZFITTER software [45, 46], for both the Standard Model loop calculation and the unfolding of

cross-sections. The relevant higher-order corrections to the input W mass [47] and to the leptonic weak

mixing angle [27] are implemented in ZFITTER v.6.42. While ZFITTER v.6.44beta [48] also contains the

QCD four-loop corrections of [49], they are of no experimental relevance so far.
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The Standard Model predictions for Z-pole pseudo-observables can be constructed in

terms of the following three theoretical building blocks [29]:

vf (s) ≡ vZf (s)− vγf (s)
ΣγZ(s)

s+Σγγ(s)
, (1.1)

af (s) ≡ aZf (s)− aγf (s)
ΣγZ(s)

s+Σγγ(s)
, (1.2)

ΣZ(s) ≡ ΣZZ(s)−
[ΣγZ(s)]

2

s+Σγγ(s)
, (1.3)

where vZf and aZf are the one-particle irreducible Zff̄ vector- and axial-vector vertex con-

tributions, respectively, whereas vγf and aγf are their counterparts for the γff̄ vertex. The

ΣV1V2
denotes the one-particle irreducible V1–V2 self-energy. At tree level,

vZf(0) = e
I3f − 2Qfs

2
W

2sWcW
, vγf(0) = eQf , (1.4)

aZf(0) = e
I3f

2sWcW
, aγf(0) = 0. (1.5)

Here I3f and Qf are the weak isospin and electric charge (in units of the elementary charge

e > 0) of the fermion f , respectively. sW and cW are the sine and cosine of the weak mixing

angle, respectively, and the subscript (0) is used to denote tree-level order.

For the theory calculations, these building blocks must be evaluated at the complex Z

pole [11–13, 17], s0 ≡ M
2
Z − iMZΓZ, where MZ and ΓZ are the on-shell mass and width of

the Z-boson, respectively. Note that MZ and ΓZ differ from the mass MZ and width ΓZ

reported in publications of LEP, Tevatron and LHC experiments by a fixed factor [38, 53]:

MZ = MZ

/

√

1 + Γ2
Z/M

2
Z ,

ΓZ = ΓZ

/

√

1 + Γ2
Z/M

2
Z . (1.6)

Similar expressions hold for MW and ΓW [54, 55].

2 Z-boson decay width, branching ratios and cross-sections

The width of the Z boson, ΓZ, is related to the imaginary part of the Z self-energy. Using

the optical theorem, one can derive the following expression for ΓZ [33, 35]:

ΓZ =
∑

f

Γf , f = e, µ, τ, νe, νµ, ντ , u, c, s, d, b, (2.1)

Γf =
Nf

c MZ

12π

[

Rf
VF

f
V +Rf

AF
f
A

]

s=M
2

Z

. (2.2)

Here Nf
c is the color factor and RV,A are radiator functions that capture final-state QCD

and QED corrections, see section 7 in ref. [56, 57], whereas the remaining electroweak and
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mixed electroweak-QCD corrections are contained in the form factors F f
V,A. Up to two-loop

accuracy, the form factors can be written as follows [35]:

F f
V =

|vf |2
1 + Re

{

Σ′

Z − i
2MZΓZΣ′′

Z

}

∣

∣

∣

∣

s=M
2

Z

, (2.3)

F f
A =

|af |2
1 + Re

{

Σ′

Z − i
2MZΓZΣ′′

Z

}

∣

∣

∣

∣

s=M
2

Z

, (2.4)

where Σ′

Z and Σ′′

Z are shorthand expressions for dΣZ/ds and d2ΣZ/ds
2, respectively.

In addition to the partial widths, certain branching ratios are of phenomenological

importance:

Rℓ = Γhad/Γℓ, Rc = Γc/Γhad, Rb = Γb/Γhad. (2.5)

Here Γhad =
∑

f=u,c,d,s,b Γf . Further, the cross-section for e+e− → hadrons at the Z peak

can be expressed in terms of partial widths [35],

σhad = σ0
had + σhad,non−res , σ0

had =
∑

f=u,d,c,s,b

12π

M
2
Z

ΓeΓf

Γ
2
Z

(1 + δX) . (2.6)

Here σ0
had,non−res accounts for non-resonant photon-exchange, box and t-channel contri-

butions. Furthermore, δX occurs from higher-order terms of the Laurent expansion of

the full amplitude around the complex pole s0. At two-loop order, δX can be written as

δX(2) = −(ImΣ′

Z(1))
2 − 2ΓZMZ ImΣ′′

Z(1), where subscripts (n) indicate the loop order. In

the limit mf ≪ MW (f 6= t), it is given by

δX(2) = −
[

α

s2
W
c2
W

(

7

8
− 5

3
s2
W
+

20

9
s4
W

)]2

. (2.7)

It is important to note that eq. (2.6) assumes that initial-state photon radiation effects

have been removed by means of a de-convolution procedure, see e.g. ref. [58].

Results for the partial and total Z widths, branching ratios and σ0
had including the full

two-loop corrections have first been published in ref. [37]. They can be expressed in simple

parameterization formulae, which are adequate for most phenomenological applications.

Here, we present slightly more complicated formulae that cover an extended numerical

range of input parameters:2

25GeV < MH < 225GeV, 155GeV < mt < 192GeV,

MZ = 91.1876± 0.0084GeV,

αs = 0.1184± 0.0050, ∆α = 0.0590± 0.0005. (2.8)

Here ∆α is the shift in the running electromagnetic coupling α(q2) from q2 = 0 to M2
Z,

defined by α(M2
Z) = α(0)/(1 − ∆α). It can be divided into a leptonic and a hadronic

2This extended input parameter range is useful for determining indirect constraints on various SM

parameters from electroweak precision observables (see e.g. section 10 in ref. [59]), since these indirect

bounds often extend over larger intervals than the corresponding direct measurements.
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part, ∆α = ∆αlept + ∆αrad. ∆αlept has been computed to three-loop order [60], whereas

∆αhad contains non-perturbative hadronic contributions, which are commonly extracted

from data [61–63]. We neglect the light fermion masses mf , f 6= t, everywhere besides in

∆α and (at leading power) in the radiator functions Rf
V/A. The W boson mass MW can be

computed from the Fermi constant Gµ (see eqs. (6)–(8) in the arXiv version of ref. [47]) and

thus is not listed as an independent input parameter. Both Gµ and α, the electromagnetic

fine structure constant in the Thomson limit, are known with very small uncertainties, and

thus we use their central experimental values [59] without any uncertainty interval.

The fitting formulae for the EWPOs have the form

X = X0 + a1LH + a2L
2
H + a3L

4
H + a4∆H + a5∆t + a6∆

2
t + a7∆tLH + a8∆tL

2
H

+ a9∆αs
+ a10∆

2
αs

+ a11∆αs
∆H + a12∆αs

∆t + a13∆α + a14∆α∆H

+ a15∆α∆t + a16∆Z, (2.9)

LH = log
MH

125.7GeV
, ∆H =

(125.7GeV

MH

)4
− 1, ∆t =

( mt

173.2GeV

)2
− 1,

∆αs
=

αs(MZ)

0.1184
− 1, ∆α =

∆α

0.059
− 1, ∆Z =

MZ

91.1876GeV
− 1.

The coefficients X0 and a1, . . . a16 are obtained from fits to a grid of 8750 data points of

the full computation. The latter includes

• Complete one-loop corrections [23], which have been re-computed for this work, and

full two-loop [33, 35, 37] electroweak corrections;

• Corrections of order O(ααs) to vector-boson self-energies [64–68], which have been

re-evaluated for this work;

• Non-factorizable O(ααs) Zqq̄ vertex contributions [69–74], which are not captured in

the products Rf
i F

f
i (i = V,A);

• Higher-loop QCD corrections in the limit of a large top Yukawa coupling yt, of orders

O(αtα
2
s ) [75, 76], O(α2

tαs), O(α3
t ) [77, 78], and O(αtα

3
s ) [79–81], where αt ≡ y2t /(4π).

• Final-state QED and QCD radiation effects, which enter through the radiator func-

tions RV,A, up to the orders O(α2), O(ααs) and O(α4
s ) [56, 57, 82, 83].

Both the Z vertex corrections as well as the prediction of MW from Gµ have been computed

to this same level of perturbation theory.

Numerical values for the coefficients are given in table 1. Some of the numbers for X0

deviate slightly in the last digit from those in ref. [37]. This is due to the larger grid of

input parameters used here, which can exert a pull on the fit parameters. The differences

are well within the accuracy quoted in the last column of table 1.
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Observable X0 a1 a2 a3 a4 a5 a6 a7 a8

Γe,µ [MeV] 83.983 −0.1202 −0.06919 0.00383 0.0597 0.8037 −0.015 −0.0195 0.0032

Γτ [MeV] 83.793 −0.1200 −0.06905 0.00382 0.0596 0.8023 −0.015 −0.0195 0.0032

Γν [MeV] 167.176 −0.1752 −0.1249 0.00595 0.1046 1.253 −0.110 −0.0232 0.0064

Γu [MeV] 299.994 −0.6152 −0.2771 0.0174 0.2341 4.051 −0.467 −0.0676 0.017

Γc [MeV] 299.918 −0.6152 −0.2771 0.0174 0.2340 4.051 −0.467 −0.0676 0.017

Γd,s [MeV] 382.829 −0.6685 −0.3322 0.0193 0.2792 3.792 −0.18 −0.0706 0.020

Γb [MeV] 375.890 −0.6017 −0.3158 0.0190 0.227 −2.174 0.042 −0.027 0.021

ΓZ [MeV] 2494.75 −4.055 −2.117 0.122 1.746 19.68 −1.63 −0.432 0.12

Rℓ [10−3] 20751.6 −8.112 −1.174 0.155 0.16 −37.59 −10.9 1.27 0.29

Rc [10−5] 17222.2 −4.049 −0.749 0.0832 1.08 98.956 −15.1 −0.761 0.080

Rb [10−5] 21585.0 4.904 0.9149 −0.0535 −2.676 −292.21 20.0 1.97 −0.11

σ0
had [pb] 41489.6 0.408 −0.320 0.0424 1.32 60.17 16.3 −2.31 −0.19

Observable a9 a10 a11 a12 a13 a14 a15 a16 max. dev.

Γe,µ [MeV] −0.0956 −0.0078 −0.0095 0.25 −1.08 0.056 −0.37 286 < 0.0015

Γτ [MeV] −0.0954 −0.0078 −0.0094 0.25 −1.08 0.056 −0.37 285 < 0.0015

Γν [MeV] −0.187 −0.014 −0.014 0.37 −0.085 0.054 −0.30 503 < 0.002

Γu [MeV] 14.26 1.6 −0.046 1.82 −11.1 0.16 −1.0 1253 < 0.006

Γc [MeV] 14.26 1.6 −0.046 1.82 −11.1 0.16 −1.0 1252 < 0.006

Γd,s [MeV] 10.20 −2.4 −0.052 0.71 −10.1 0.16 −0.92 1469 < 0.007

Γb [MeV] 10.53 −2.4 −0.056 1.2 −10.1 0.15 −0.95 1458 < 0.007

ΓZ [MeV] 58.61 −4.0 −0.32 8.1 −56.1 1.1 −6.8 9267 < 0.04

Rℓ [10−3] 732.30 −44 −0.61 5.7 −358 −4.7 37 11649 < 0.12

Rc [10−5] 230.9 125 0.045 36.9 −120 1.2 −6.2 3667 < 0.1

Rb [10−5] −131.9 −84 −0.27 4.4 71.9 −0.77 −4.4 −1790 < 0.12

σ0
had [pb] −579.58 38 0.010 7.5 85.2 9.1 −68 −85957 < 0.15

Table 1. Coefficients for the parameterization formula (2.9) for various observables. Within

the ranges 25GeV < MH < 225GeV, 155GeV < mt < 195GeV, αs = 0.1184 ± 0.0050, ∆α =

0.0590 ± 0.0005 and MZ = 91.1876 ± 0.0084GeV, the formulae approximate the full result with

maximal deviations given in the last column.

3 Asymmetries and effective weak mixing angles

The effective weak mixing angle for the Zff̄ vertex is defined, from the theory side, as

sin2 θfeff ≡ 1

4|Qf |

(

1 + Re

{

vf (M
2
Z)

af (M
2
Z)

})

. (3.1)

Here M
2
W and M

2
Z are the real parts of the complex pole of the W and Z propagators,

respectively. They are related to the masses commonly reported by experiments at LEP,

– 6 –
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MH [GeV] Result of ref. [28] Our result

100 −0.733989× 10−4 −0.733955× 10−4

200 −0.469470× 10−4 −0.471273× 10−4

Table 2. Comparison of numerical results for ∆κ
(α2,bos)
ℓ from ref. [28] with our calculation of Z

vertex corrections from ref. [37]. We use MZ = 91.1876GeV and MW = 80.385GeV.

Tevatron, LHC according to eq (1.6). Moreover, Qf denotes the electric charge of the

fermion f .

The effective weak mixing angles can be extracted from a range of asymmetries [8],

defined from effective Born two-particle cross-sections, including the left-right asymmetry

ALR =
σeL − σeR
σeL + σeR

= Ae +Anon−res
LR (3.2)

and the forward-backward asymmetry

Af
FB =

σcos θ>0 − σcos θ<0

σcos θ>0 + σcos θ<0
= 3

4AeAf +Af,non−res
FB , (3.3)

where

Af ≡ 2Re{vf/af}
1 + (Re{vf/af})2

=
1− 4|Qf | sin2 θfeff

1− 4|Qf | sin2 θfeff + 8(|Qf | sin2 θfeff)2
. (3.4)

Here σeL and σeR are the cross-sections for e+e− → ff̄ for left- and right-handed polarized

electron beams, respectively, whereas σcos θ>0 and σcos θ<0 denote the cross-section for f

restricted to the forward and backward hemisphere, respectively. Furthermore, Anon−res
X

accounts for the non-resonant photon-exchange, box and t-channel contributions.

The most precisely measured effective weak mixing angles are the leptonic effective

weak mixing angle sin2 θℓeff (extracted from ALR) and the bottom-quark one, sin2 θbeff (ex-

tracted from Ab
FB) [58].

Standard Model predictions for sin2 θℓeff including the full two-loop corrections have

been presented originally in refs. [28, 29, 31]. We reproduced by an independent calculation

the contribution of the bosonic electroweak two-loop corrections using the methods of

ref. [37]. The corrections can be expressed in terms of a weak form factor ∆κ
(α2,bos)
ℓ , where

∆κf =

(

1− MW

MZ

)

−1

sin2 θfeff − 1 . (3.5)

The comparison with ref. [28] is shown in table 2, which demonstrates that the two calcu-

lations agree to an accuracy of O(10−7), which implies an accuracy of better than 10−7 for

sin2 θℓeff . The full two-loop corrections for sin2 θbeff have been presented first in ref. [36].

In the following, we present simple parameterization formulae for sin2 θℓeff and sin2 θbeff ,

which cover the extended range of input parameters of eq. (2.8). The parameterization

– 7 –
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formula

sin2 θfeff = s0 + d1LH + d2L
2
H + d3L

4
H + d4∆α + d5∆t + d6∆

2
t + d7∆tLH (3.6)

+ d8∆αs
+ d9∆αs

∆t + d10∆Z

with

LH = log
MH

125.7GeV
, ∆t =

( mt

173.2GeV

)2
− 1,

∆αs
=

αs(MZ)

0.1184
− 1, ∆α =

∆α

0.059
− 1, ∆Z =

MZ

91.1876GeV
− 1

provides a good description of the full result in the parameter region (2.8). Values for the

coefficients are obtained by fitting (3.6) to a grid of 8750 data points.

Table 3 shows the result of a fit to a calculation that includes all known corrections:

• Complete one- and two-loop electroweak corrections,

(see refs. [21, 23, 27, 28, 30–32, 36] for the original references);

• Corrections of order O(ααs) to vector-boson self-energies [64–68], which we have

re-evaluated for this work;

• Non-factorizable O(ααs) Zbb̄ vertex contributions [69–74], which do not cancel in the

ratio vb/ab;

• Higher-loop corrections in the limit of a large top Yukawa coupling yt, of orders

O(αtα
2
s ) [75, 76], O(α2

tαs), O(α3
t ) [77, 78], and O(αtα

3
s ) [79–81] where αt ≡ y2t /(4π).

As indicated by the last column in the table, the largest deviation of the fit formulae

from the full result is O(few × 10−6), while for most of the parameter region in (2.8) the

agreement is better than 10−6. The careful reader may realize that the parameterization

for sin2 θbeff in table 3 deviates slightly from eqs. (20,22) in [36]. The difference is due to

the larger grid of data points used here. A fit formula is, obviously, not able to reproduce

the data points in a grid perfectly. The fitting aims to find the best average agreement

between the data points (which are generated with our full numerical calculation) and

the fit formula. A larger grid therefore can lead to some shifts of the coefficients. As a

consequence, the formula in [36] will probably be more accurate for input values within

the ranges in table 1 there. On the other hand, while the formula here may be a little less

accurate within these ranges, it covers a much larger range of input values.

It should also be noted that the fit formula for sin2 θℓeff in ref. [28] does not include the

O(αtα
3
s ) corrections from refs. [79–81], but they are included in the formula presented here.

In table 4 it is shown that the technical accuracy of our fit formulae is adequate for

the expected experimental precision of several future e+e− colliders, although it will get

modified by anticipated future three-loop electroweak corrections.
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Observable s0 d1 d2 d3 d4 d5

sin2 θℓeff × 104 2314.64 4.616 0.539 −0.0737 206 −25.71

sin2 θbeff × 104 2327.04 4.638 0.558 −0.0700 207 −9.554

Observable d6 d7 d8 d9 d10 max. dev.

sin2 θℓeff × 104 4.00 0.288 3.88 −6.49 −6560 < 0.056

sin2 θbeff × 104 3.83 0.179 2.41 −8.24 −6630 < 0.025

Table 3. Coefficients for the parameterization formula (3.6) for the leptonic and bottom-quark

effective weak mixing angles. Within the ranges given in eq. (2.8), the formula deviates from the

full result up to the maximal amount given in the last column.

Observable max. dev. EXP now FCC-ee CEPC GigaZ

ΓZ [MeV] 0.04 2.3 0.1 0.5 0.8

sin2 θℓeff × 104 0.056 1.6 0.06 0.23 0.1

sin2 θbeff × 104 0.025 160 9 9 15

Table 4. Goodness of fit for some chosen EWPOs, compared with the envisaged precision mea-

surements for ΓZ and sin2 θℓeff (statistical errors), and sin2 θbeff (systematic errors) at the collider

projects FCC-ee Tera-Z [84], CEPC [85] and ILC/GigaZ [86]. The values of maximal deviations

are taken from tables 1 and 3. The entry “EXP now” gives the present experimental precision, as

known since LEP 1 [44].

4 Vector and axial-vector Z-boson form factors F
f
V

and F
f
A

The pseudo-observables discussed in the previous sections aim to be closely related to

actual observables, such as cross-sections, branching ratios, or asymmetries. On the other

hand, for some purposes it is also useful to have numerical results for the underlying vertex

corrections themselves [34], for example: (i) Inclusion of selected corrections from Beyond

Standard Model (BSM) physics, (ii) Estimations of magnitudes of selected single terms,

(iii) Partial cross-checks with other calculations. For such purposes, the form factors F f
V

and F f
A introduced in eq. (2.2) are needed explicitly.

Tables 5 and 6 show the numerical contributions of different orders of perturbation

theory to F f
V and F f

A. Here the form factors are always understood to include the appro-

priate (on-shell) counterterms to render them UV-finite. In table 5 these are computed

using the following input values:

MZ = 91.1876GeV, ΓZ = 2.4952GeV, ⇒ MZ = 91.1535GeV (4.1a)

MW = 80.385GeV, ΓW = 2.085GeV, ⇒ MW = 80.358GeV (4.1b)

MH = 125.1GeV, mt = 173.2GeV,

mMS
b = 4.2GeV, ∆α = 0.059, αs = 0.1184 (4.1c)

For table 6, on the other hand, the Fermi constant Gµ is used as an input instead of (4.1b),
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Form fact. Born O(α) O(ααs)
O(αtα

2
s , αtα

3
s ,

α2
tαs, α

3
t )

O(N2
fα

2) O(Nfα
2) O(α2

bos)

F ℓ
V [10−5] 39.07 −24.86 2.41 0.35 1.47 2.37 0.27

F ℓ
A [10−5] 3309.44 118.59 9.46 1.22 8.60 2.60 0.45

F ν
V,A [10−5] 3309.44 127.56 9.46 1.22 8.60 3.83 0.39

Fu,c
V [10−5] 544.88 −44.80 7.29 1.02 −1.67 3.25 0.33

Fu,c
A [10−5] 3309.44 120.79 9.46 1.22 8.60 3.27 0.44

F d,s
V [10−5] 1635.01 5.84 9.64 1.32 0.71 3.45 0.37

F d,s
A [10−5] 3309.44 123.78 9.46 1.22 8.60 3.11 0.42

F b
V [10−5] 1635.01 −26.16 9.64 1.32 0.71 1.77 1.05

F b
A [10−5] 3309.44 78.26 9.46 1.22 8.60 0.13 1.18

Table 5. Contributions of different perturbative orders to the Z vertex form factors. A fixed value

of MW has been used as input, instead of Gµ. N
n
f refers to corrections with n closed fermions loops,

whereas α2
bos denotes corrections without closed fermions loops. Furthermore, αt = yt/(4π) where

yt is the top Yukawa coupling.

Form fact. Born O(α) O(ααs)
O(αtα

2
s , αtα

3
s ,

α2
tαs, α

3
t )

O(N2
fα

2, Nfα
2) O(α2

bos)

F ℓ
V [10−5] 77.63 −59.86 0.31 −0.09 1.88 0.24

F ℓ
A [10−5] 3426.43 19.32 −1.12 −0.92 1.62 0.28

F ν
V,A [10−5] 3426.43 28.36 −1.16 −0.93 2.81 0.21

Fu,c
V [10−5] 644.45 −129.87 −1.36 −0.73 −6.26 0.19

Fu,c
A [10−5] 3426.43 21.54 −1.13 −0.93 2.28 0.27

F d,s
V [10−5] 1760.71 −100.64 −1.15 −1.01 −6.24 0.19

F d,s
A [10−5] 3426.43 24.56 −2.21 −0.93 2.10 0.25

F b
V [10−5] 1760.71 −133.08 −1.58 −0.95 −7.68 0.86

F b
A [10−5] 3426.43 −21.45 −0.85 −0.87 −0.62 1.01

Table 6. Same as table 5, but with MW calculated from Gµ.

and MW is computed from

M
2
W

(

1− M
2
W

M
2
Z

)

=
πα√
2Gµ

(1 + ∆r), (4.2)

where ∆r has been evaluated to the same orders as given in each column of the table. More

details about the calculation of ∆r can be found in ref. [47]. As before, the dependence of

the Standard Model prediction on various input parameters can be expressed in terms of

the simple parameterization formula eq. (2.9).

Table 7 shows the numerical values for the coefficients obtained by fitting this formula

to the currently most precise computation, including the same corrections as in section 2,
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Form fact. X0 a1 a2 a3 a4 a5 a6 a7 a8

F ℓ
V [10−5] 20.11 −1.317 −0.2615 0.0333 0.276 7.474 1.55 −0.326 0.0012

F ℓ
A [10−5] 3446.88 −3.645 −2.595 0.125 2.188 25.70 −2.17 −0.480 0.13

F ν
V,A [10−5] 3457.02 −3.623 −2.584 0.123 2.163 25.92 −2.27 −0.481 0.13

Fu,c
V [10−5] 506.214 −4.485 −1.063 0.105 0.912 23.21 −1.54 −0.410 0.085

Fu,c
A [10−5] 3448.76 −3.635 −2.591 0.124 2.181 25.83 −2.24 −0.480 0.13

F d,s
V [10−5] 1650.98 −5.247 −1.836 0.134 1.541 29.22 −2.78 −0.458 0.13

F d,s
A [10−5] 3451.41 −3.617 −2.584 0.123 2.170 25.67 −2.21 −0.477 0.13

F b
V [10−5] 1622.01 −4.891 −1.758 0.134 1.27 −2.87 −1.5 −0.21 0.13

F b
A [10−5] 3409.36 −3.114 −2.461 0.120 1.757 −21.03 −0.60 −0.15 0.14

Form fact. a9 a10 a11 a12 a13 a14 a15 a16 max. dev.

F ℓ
V [10−5] −0.13 −0.037 −0.11 2.78 −43.17 1.2 −9.0 1397 < 0.02

F ℓ
A [10−5] −3.81 −0.29 −0.28 7.6 −2.0 1.1 −6.3 6921 < 0.04

F ν
V,A [10−5] −3.87 −0.29 −0.28 7.6 −1.7 1.1 −6.3 6949 < 0.04

Fu,c
V [10−5] −3.89 −0.16 −0.22 6.5 −145.7 0.98 −6.9 5651 < 0.03

Fu,c
A [10−5] −4.80 −0.27 −0.27 7.5 −1.9 1.1 −6.3 6928 < 0.04

F d,s
V [10−5] −5.53 −0.24 −0.28 8.1 −132. 0.95 −6.0 7498 < 0.04

F d,s
A [10−5] −4.98 −0.27 −0.27 7.5 −1.7 1.1 −6.2 6933 < 0.04

F b
V [10−5] −1.3 −0.28 −0.32 12.5 −131. 0.95 −5.7 7457 < 0.04

F b
A [10−5] 0.93 −0.31 −0.31 13.6 −2.5 1.1 −7.2 6927 < 0.04

Table 7. Coefficients for the parameterization formula (2.9) for various form factors (X). Within

the ranges 25GeV < MH < 225GeV, 155GeV < mt < 195GeV, αs = 0.1184 ± 0.0050, ∆α =

0.0590 ± 0.0005 and MZ = 91.1876 ± 0.0084GeV, the formula approximates the full result with

average and maximal deviations given in the last two columns.

except for the final-state QED and QCD radiation effects, i.e.

F f
V= |vf(0)|2 + F f

V(α) + F f
V(ααs)

+ F f
V(α2)

+ F f
V(αtα2

s )
+ F f

V(α2
t
αs)

+ F f
V(α3

t
)
+ F f

V(αtα3
s )
,

F f
A= |af(0)|2 + F f

A(α) + F f
A(ααs)

+ F f
A(α2)

+ F f
A(αtα2

s )
+ F f

A(α2
t
αs)

+ F f
A(α3

t
)
+ F f

A(αtα3
s )
. (4.3)

Note that Gµ (rather than MW) has been used as one input in table 7.

The form factor results presented here can be easily augmented to include the effects

of some new physics model:

F f
V,SM+NP ≈ F f

V,SM + 2Re{vf(0)vf,NP} , (4.4)

F f
A,SM+NP ≈ F f

A,SM + 2Re{af(0)af,NP} . (4.5)

Here “SM” denotes the SM contributions discussed in the present paper, while “NP”

stands for the new physics correction on top of the SM. Since the existing experimental
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constraints imply that any possible new physics effect is small, it is sufficient to use the

tree-level couplings vf(0) and af(0) in the interference terms and neglect the |vf,NP|2 and

|af,NP|2 terms.

5 Theoretical error estimates for missing higher order corrections

The main theory uncertainty of the results presented in this paper stems from unknown

three- and four-loop corrections. The leading missing orders are O(α3), O(α2αs), O(αα2
s ),

and O(αα3
s ). Partial results for these contributions, in the limit of a large top Yukawa

coupling yt, have already been computed [75–81]. Therefore, when evaluating the impact

of theory uncertainties, it is always implied that we refer to these contributions beyond the

leading-yt limit.

There are a number of different methods for assessing theory uncertainties from un-

known higher orders, none of which is fully reliable. Rather, they should be taken as an

order-of-magnitude estimate of the size of these terms. A convenient and widely applicable

method is based on the assumption that the first few orders of the perturbation series

approximately follow a geometric series [35, 37, 87]. In this way one obtains as an ansatz

O(α3)−O(α3
t ) ∼

O(α2)−O(α2
t )

O(α)
O(α2),

O(α2αs)−O(α2
tαs) ∼

O(α2)−O(α2
t )

O(α)
O(ααs),

O(αα2
s )−O(αtα

2
s ) ∼

O(ααs)−O(αtαs)

O(α)
O(ααs),

O(αα3
s )−O(αtα

3
s ) ∼

O(ααs)−O(αtαs)

O(α)
O(αα2

s ),

(5.1)

where αt = y2t /(4π). Since we are only interested in the missing higher orders beyond the

leading large-yt limit, the same leading large-yt approximations have been subtracted in

the numerators on the right-hand sides.

The contribution of these estimates to the overall theory error evaluation is shown in

table 8 for various pseudo-observables, and in table 9 for the Z-boson form factors. Note

that the error estimate for sin2 θℓeff is slightly improved compared to refs. [28, 29] due to

the inclusion of O(αtα
3
s ) corrections from refs. [79–81].

Nevertheless, we would also like to remind the reader that any estimate of the theory

error from missing higher orders is not a precise prediction. Therefore it is generally

desirable to ensure that the theory error is sub-dominant in any phenomenological analysis.

Comparing the numbers in table 8 to current measurement results [58, 59], this is clearly

seen to be the case.
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Observable αα2
s αα3

s α2αs α3 Total

Γe,µ,τ [MeV] 0.008 0.001 0.010 0.013 0.018

Γν [MeV] 0.008 0.001 0.008 0.011 0.016

Γu,c [MeV] 0.025 0.004 0.08 0.07 0.11

Γd,s [MeV] 0.016 0.003 0.06 0.05 0.08

Γb [MeV] 0.11 0.02 0.13 0.06 0.18

ΓZ [MeV] 0.23 0.035 0.21 0.20 0.4

Rℓ [10
−3] 2.5 0.4 3.6 3.9 6

Rc [10
−5] 1.6 0.3 3.4 3.0 5

Rb [10
−5] 5.5 0.9 6.4 3.7 10

σ0
had [pb] 0.2 0.03 4.2 3.7 6

sin2 θℓeff [10−5] — 0.3 3.0 3.1 4.3

sin2 θbeff [10−5] 0.7 0.4 4.3 3.2 5.3

Table 8. Leading unknown higher-order corrections and their estimated order of magnitude for

various pseudo-observables. The different orders always correspond to missing higher orders beyond

the known approximations in the limit of a large top Yukawa coupling. The total theory error is

obtained by adding the individual orders in quadrature.

Observable αα2
s αα3

s α2αs α3 Total

F ℓ
V [10−5] 0.03 0.004 0.2 0.4 0.5

F ℓ
A [10−5] 0.17 0.03 0.3 0.3 0.4

F ν
V,A [10−5] 0.16 0.02 0.3 0.5 0.6

F u,c
V [10−5] 0.09 0.01 0.4 0.2 0.5

F u,c
A [10−5] 0.17 0.03 0.3 0.4 0.5

F d,s
V [10−5] 0.2 0.03 0.6 0.8 1.1

F d,s
A [10−3] 0.3 0.04 0.4 0.5 0.7

F b
V [10−5] 0.2 0.03 0.8 0.7 1.1

F b
A [10−5] 0.3 0.04 0.1 0.1 0.3

Table 9. Same as table 8, but for various form factors.

6 Conclusions and outlook

In this study, we have presented some phenomenologically useful applications of the recently

completed electroweak two-loop calculation of Z-boson vertex corrections [36, 37]. The

work collects multi-year efforts of several groups for predictions of the EWPOs related

to the Z peak up to electroweak full two-loop accuracy, supplemented by leading QCD

higher-order terms. We have determined the two-loop electroweak contributions with a net

relative numerical accuracy of about four digits. This ensures that these two-loop results
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will be known with sufficient accuracy even when adding the next perturbative order, as it

might be needed for applications at the next generation of e+e− colliders.

For practical applications, the results for the EWPOs, as well as for the Z-boson

vertex form factors, have been presented in terms of simple parameterization formulae,

whose coefficients have been fitted to the full numerical computation. It is planned to

include these fitting formulae into a new version of the weak library DIZET of ZFIT-

TER [45, 46, 48, 88–90].3 The accuracy of the fitting formulae is less than our full numeri-

cal two-loop calculation, but more than sufficient for present-day purposes. For the future

FCC-ee Tera-Z project, it may be necessary to provide more precise formulae by including

more terms with higher powers of the input parameters.

Finally, we would like to make a few comments on the prospects for the calculation

of electroweak three-loop corrections, which will be necessary for the level of precision

foreseen for FCC-ee and similar e+e− collider proposals. This electroweak third order,

by itself, will be needed with only about two digits accuracy [91]. The generation of the

amplitudes for O(104−105) diagrams as well as the evaluation of the Lorentz and Dirac

algebra are routine tasks performed by computer algebra programs, and they should be

straightforward with increased computing power in the future. Potential specific problems

related to the treatment of γ5 at three-loop level have to be controlled [92].

The most challenging problem will certainly be the stable numerical computation of

three-loop Feynman integrals with several different internal mass scales. At two loops, we

did not perform any reduction of the Feynman integrals to a smaller number of masters

and thus had to calculate about 1000 previously unknown numerical integrals. In the

next perturbative order, it may be advantageous to perform such a reduction to masters,

given the ever increasing performance of programs like KIRA [93, 94], Reduze 2 [95],

FIRE [96, 96], and LiteRED [97].

For the calculation of the (master) integrals themselves, it is desirable to have a proce-

dure to automatically isolate and treat the ultra-violet and infra-red singularities. Although

there is rapid progress in several analytical approaches to complicated loop integrals [6, 7],

one has to expect that the more complicated ones will have to be done numerically. An

additional complication is that for integrals with physical cuts, their stable numerical eval-

uation becomes more challenging. There are two kinds of software packages available that

address these problems, based on either sector decomposition (SD) as realized in the SecDec

project [98–103] and the FIESTA project [104–107], or based on Mellin-Barnes (MB) trans-

formations, as implemented in the AMBRE project [108–121]. Sector decomposition is typ-

ically advantageous for integrals with many different mass scales, while the MB approach

is more efficient for integrals with fewer independent parameters. Both methods certainly

have room for crucial improvements. Several other numerical integration methods, as re-

viewed e.g. in refs. [6, 7], are useful for certain classes of multi-loop integrals, even though

they are less general than the SD and MB approaches. Overall, numerical loop integration

techniques are well positioned to meet the necessary future precision demands.

3Private communication by L. Kalinovskaya for the ZFITTER/DIZET support team.
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An electroweak three-loop result for the Z-peak EWPOs must be accompanied by

improved calculations of the corrections needed to translate EWPOs to real observables.

These include initial-state and final-state QED corrections and their interference as well

as higher-order terms of the Laurent series expansion about the Z resonance pole [6]. The

latter will, for example, involve massive two-loop box diagrams. A complete accounting of

the required correction terms is still lacking.

To summarize, we have completed the electroweak two-loop predictions for the EWPOs

of the Z resonance and collect here an extensive set of new fitting formulae for them. On a

longer time scale, the calculation of the next perturbative order for the calculation of the

EWPOs will be necessary and, with proper investments, realistically accessible.
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[78] M. Faisst, J.H. Kühn, T. Seidensticker and O. Veretin, Three loop top quark contributions

to the ρ parameter, Nucl. Phys. B 665 (2003) 649 [hep-ph/0302275] [INSPIRE].
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[93] P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program,

Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].
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