PUBLISHED FOR SISSA BY 4} SPRINGER

RECEIVED: July 1, 2019
ACCEPTED: July 31, 2019
PUBLISHED: August 21, 2019

r

Electroweak pseudo-observables and Z-boson form
factors at two-loop accuracy

levgen Dubovyk,” Ayres Freitas,” Janusz Gluza,“? Tord Riemann®¢ and
Johann Usovitsch/
@JI. Institut fiir Theoretische Physik, Universitdt Hamburg,
22761 Hamburg, Germany
b Pittsburgh Particle Physics, Astrophysics & Cosmology Center (PITT PACCO),
Department of Physics & Astronomy, University of Pittsburgh,
Pittsburgh, PA 15260, U.S.A.
¢Institute of Physics, University of Silesia,
Katowice, Poland
4 Faculty of Science, University of Hradec Krdlové,
500 03 Hradec Kralové, Czech Republic
¢ Deutsches Elektronen-Synchrotron, DESY,
15738 Zeuthen, Germany
fSchool of Mathematics, Trinity College Dublin, University of Dublin,
Dublin 2, Ireland
E-mail: e.a.dubovyk@gmail.com, afreitas@pitt.edu, gluzalus.edu.pl,
tordriemann@gmail.com, jusovitsch@gmail.com

ABSTRACT: We present Standard Model predictions for the complete set of phenomenologi-
cally relevant electroweak precision pseudo-observables related to the Z-boson: the leptonic
and bottom-quark effective weak mixing angles sin? 9£H, sin? Hgﬁ, the Z-boson partial decay
widths I'¢, where f indicates any charged lepton, neutrino and quark flavor (except for the
top quark), as well as the total Z decay width 'z, the branching ratios Ry, R, Ry, and the
hadronic cross section Uﬁad. The input parameters are the masses My, My and my, and
the couplings ag, a. The scheme dependence due to the choice of Myy or its alternative G,
as a last input parameter is also discussed. Recent substantial technical progress in the cal-
culation of Minkowskian massive higher-order Feynman integrals allows the calculation of
the complete electroweak two-loop radiative corrections to all the observables mentioned.
QCD contributions are included appropriately. Results are provided in terms of simple
and convenient parameterization formulae whose coefficients have been determined from
the full numerical multi-loop calculation. The size of the missing electroweak three-loop or
QCD higher-order corrections is estimated. We briefly comment on the prospects for their
calculation. Finally, direct predictions for the Z f f vector and axial-vector form-factors are
given, including a discussion of separate order-by-order contributions.
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1 Introduction

In 2018 we celebrated 50 years of the Standard Model of elementary particles. The basics
of the model were formulated and experimentally validated in the 1960s/70s. The next
decade brought an intensive development of the calculation of quantum field theoretical
radiative corrections in that model and in its alternatives. An experimental highlight in this
context was the eTe -collider LEP, which enabled us to check the Standard Model at an
accuracy of better than the per-cent level, which corresponds to effects from more than one
electroweak and two QCD loop orders. This proved, for the first time in a systematic way,
the Standard Model as a quantum field theory. LEP 1 was running, from Summer 1989 to
1995, at and around the Z-boson peak. The expectation for the experimental precision of
My and T'z was 20 MeV in 1986 [1] and reached finally 2 MeV [2]. This precision tag was
extremely important because My is one of the Standard Model input parameters to the
commonly used on-mass-shell renormalization scheme. Indeed, the experimental accuracy
of My triggered much of the precision loop calculations, including the prediction of the top
quark and Higgs masses prior to their discoveries from loop corrections to LEP observables
in the Standard Model, see refs. [3-5] (as well as refs. [6, 7] for an overview of the current
state of the art). Data from the Z peak and the Z resonance curve (the Z line shape) allow
to measure a large variety of observables, such as My, 'y, cross-sections for different two-
fermion final states and their ratios and angular asymmetries, together with radiation of
(sufficiently soft) photons, gluons, etc. From the real observables, the so-called electroweak
pseudo-observables (EWPOs) are extracted by means of a de-convolution of initial-state
radiation and subtraction of backgrounds. The fine details of relating EWPOs to real
cross-sections at LEP 1 precision are described in detail in ref. [8] and references quoted
therein.



On occasion of the 50" anniversary of the Standard Model, many of the related crucial
developments were remembered at the conference “SM@50” [9].

This article is devoted to the state-of-the art calculation of the Standard Model (SM)
corrections to the Z f f-vertex and their inclusion into the predictions for the various EW-
POs. We will mostly focus on recent advances in the calculation of the electroweak two-loop
terms. QCD contributions, which are known up to four-loop order, have also been taken
into account in the results presented here, but we will refer to the literature for further
details.

The Z resonance curve can be described theoretically by writing the S-matrix elements
as a Laurent series in the center-of-mass energy squared s (also called S-matrix ansatz).
This Laurent series ansatz is worked out up to two loops [10-18]. The coefficients of the
leading series term contain the Z vertex form factors. Their one-loop corrections were stud-
ied in the 1980s; first with massless fermions [19-22], and slightly later with the full mass
dependence of the Standard Model [23-26]. After several papers on approximate/partial
higher-order corrections, the complete two-loop weak corrections were determined in a se-
ries of papers from 2004 to 2018 [27-37]. The correct formulation of the interplay of the
2—2 loop corrections with higher order real QED corrections in the S-matrix approach,
also called un-folding of the effective 2—2 Born terms from the realistic 2—n observables,
is a topic on its own. It was first studied in refs. [38—41], but its extension beyond two-loop
level will require more work [8, 42, 43]. The numerically relevant two-loop and partial
higher-order corrections were included in the final analysis of LEP 1 data [44].!

The theoretical advances described here go beyond the Standard Model theory used
for physics at LEP 1 [45, 46] but will be needed for the FCC-ee Tera-Z project [6, 7, 50-52]
whose unique experimental precision calls for perturbative predictions at three electroweak
loops together with corresponding QCD terms.

In this work, the following pseudo-EWPOs are discussed: the partial widths I'y for
Z-boson decay into ff final states; the total Z width I'z; the branching fractions T #/Tz;
the total hadronic Z-pole quark-pair production cross-section Uﬁad; and the effective weak
mixing angles sin? 9£H, defined from the ratio of vector- and axial Z-boson couplings. The
precise definition of all these pseudo-observables will be given below. Pseudo-observables
differ from real observables by removing from the former the effects of initial-state and
initial-final QED radiation, as well as non-resonant photon-exchange, box and ¢-channel
contributions [6, 44].

'The EWPOs at LEP 1 were determined order by order without a Laurent expansion. This was based
on the ZFITTER software [45, 46], for both the Standard Model loop calculation and the unfolding of
cross-sections. The relevant higher-order corrections to the input W mass [47] and to the leptonic weak
mixing angle [27] are implemented in ZFITTER v.6.42. While ZFITTER v.6.44beta [48] also contains the
QCD four-loop corrections of [49], they are of no experimental relevance so far.



The Standard Model predictions for Z-pole pseudo-observables can be constructed in
terms of the following three theoretical building blocks [29]:

_ Yz(8)
vi(s) = vf(s) — v} ( )ﬁfzw(s), (1.1)
IVIE)
ay(s) = af(s) — aj(s) 8+”2W(8), (1.2)
s 2
S7(s) = Sy (s) S[i”;ij(]s), (1.3)

where vJZe and a% are the one-particle irreducible Z f f vector- and axial-vector vertex con-
tributions, respectively, whereas ’U}/ and a} are their counterparts for the v ff vertex. The
Yv,v, denotes the one-particle irreducible V;-V3 self-energy. At tree level,

I3 —2Q s>
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Here I ]?2 and @ are the weak isospin and electric charge (in units of the elementary charge
e > 0) of the fermion f, respectively. sy and cy are the sine and cosine of the weak mixing
angle, respectively, and the subscript (0) is used to denote tree-level order.

For the theory calculations, these building blocks must be evaluated at the complex Z
pole [11-13, 17], so = M% —iMyI'y, where M7z and I'z are the on-shell mass and width of
the Z-boson, respectively. Note that My and T'z differ from the mass Mz and width T'z
reported in publications of LEP, Tevatron and LHC experiments by a fixed factor [38, 53]:

MZ:Mz/ 1—|—F%/M%,

Iy =Tz/\/1+T%/M3. (1.6)

Similar expressions hold for My and T [54, 55].

2 Z-boson decay width, branching ratios and cross-sections

The width of the Z boson, I'z, is related to the imaginary part of the Z self-energy. Using
the optical theorem, one can derive the following expression for T'z [33, 35]:

fzzsz7 f:€7M7T7V67V,U7VT7U767S7d7b7 (21)
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Here N/ is the color factor and Rv a are radiator functions that capture final-state QCD
and QED corrections, see section 7 in ref. [56, 57], whereas the remaining electroweak and



mixed electroweak-QCD corrections are contained in the form factors F\J; A+ Up to two-loop
accuracy, the form factors can be written as follows [35]:

2
f los? 7 2.3
v 1+ RG{E/Z — %Mzrzzlzl} s:ﬁ% ( )
Jag|?
Fl{ - 1 / fz'i T N\ __ 5 (2'4)
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where ¥/, and X/ are shorthand expressions for d¥z/ds and d*Yz/ds?, respectively.
In addition to the partial widths, certain branching ratios are of phenomenological
importance:

Ry = Thaa/Ts, Re. =T¢/Thad, Ry =T%/Thaa- (2.5)

Here Tjag = Zf:%c’d’s,b ff. Further, the cross-section for ete™ — hadrons at the Z peak
can be expressed in terms of partial widths [35],
127 T.T
Ohad = U}qad =+ Ohad,non—res s Ugad = Z f— in(l + 5X) . (2.6)
f=u,d,c,s,b MZ FZ

Here agad non—res accounts for non-resonant photon-exchange, box and ¢-channel contri-
butions. Furthermore, 6X occurs from higher-order terms of the Laurent expansion of
the full amplitude around the complex pole syg. At two-loop order, X can be written as
60Xy = —(Im Z’Z(l))z —2I'zM7z Im E’Z'(l), where subscripts (n) indicate the loop order. In
the limit my < My (f # t), it is given by

a (7 5 20 2
(5X(2) = — |:S\2)VC%V (8 — 553\, + 953‘,)] . (27)
It is important to note that eq. (2.6) assumes that initial-state photon radiation effects
have been removed by means of a de-convolution procedure, see e.g. ref. [58].

Results for the partial and total Z widths, branching ratios and agad including the full
two-loop corrections have first been published in ref. [37]. They can be expressed in simple
parameterization formulae, which are adequate for most phenomenological applications.
Here, we present slightly more complicated formulae that cover an extended numerical

range of input parameters:?
25GeV < My < 225 GeV, 155 GeV < my < 192 GeV,
Mz = 91.1876 4+ 0.0084 GeV,
as = 0.1184 4+ 0.0050, Aa = 0.0590 £ 0.0005. (2.8)

Here Ac is the shift in the running electromagnetic coupling a(q?) from ¢ = 0 to M2,
defined by a(M2) = «(0)/(1 — Aa). It can be divided into a leptonic and a hadronic

2This extended input parameter range is useful for determining indirect constraints on various SM
parameters from electroweak precision observables (see e.g. section 10 in ref. [59]), since these indirect
bounds often extend over larger intervals than the corresponding direct measurements.



part, Ao = Acvept + Aotad. Aaiepe has been computed to three-loop order [60], whereas
Aoapag contains non-perturbative hadronic contributions, which are commonly extracted
from data [61-63]. We neglect the light fermion masses my, f # t, everywhere besides in
A« and (at leading power) in the radiator functions 7?,{/ /A" The W boson mass My can be
computed from the Fermi constant G, (see eqgs. (6)—(8) in the arXiv version of ref. [47]) and
thus is not listed as an independent input parameter. Both G, and «, the electromagnetic
fine structure constant in the Thomson limit, are known with very small uncertainties, and
thus we use their central experimental values [59] without any uncertainty interval.

The fitting formulae for the EWPOs have the form

X=Xo+a1Ly+ a2L2H + agLil{ + asAg + asA¢ + agAf + a7 A{Lg + agAtL%{
+ agla, + a10AZ + a1180, Al + 1280, A¢ + a130q + 128, Al

+ a15A,A¢ + a16A 7z, (2.9)
125.7 GeV 4 my 2
Ly=log——0 — Ag=(—20) 21 Ay=(——1—) -1
H= 8 05 7Gey’ —H < My ) Ot <173.2 GeV) )
aS(Mz) Ao MZ
as — - 1, AO[ = — 17 A - — 1
s 7 0.1184 0.059 27 91.1876 GeV

The coefficients Xy and a1, ...a16 are obtained from fits to a grid of 8750 data points of
the full computation. The latter includes

e Complete one-loop corrections [23], which have been re-computed for this work, and
full two-loop [33, 35, 37] electroweak corrections;

e Corrections of order O(aas) to vector-boson self-energies [64—68], which have been
re-evaluated for this work;

e Non-factorizable O(aas) ZqqG vertex contributions [69-74], which are not captured in
the products R{Fif (1= V,A);

e Higher-loop QCD corrections in the limit of a large top Yukawa coupling y;, of orders
O(aa?) [75, 76], O(aZas), O(a?) [77, 78], and O(awa?) [79-81], where oy = y2/(47).

e Final-state QED and QCD radiation effects, which enter through the radiator func-
tions Ry a, up to the orders O(a?), O(aas) and O(ad) [56, 57, 82, 83].

Both the Z vertex corrections as well as the prediction of My from G, have been computed
to this same level of perturbation theory.

Numerical values for the coeflicients are given in table 1. Some of the numbers for X
deviate slightly in the last digit from those in ref. [37]. This is due to the larger grid of
input parameters used here, which can exert a pull on the fit parameters. The differences
are well within the accuracy quoted in the last column of table 1.



Observable Xo ay as as ay as ag ar as
., [MeV]| 83983 —0.1202 —0.06919 0.00383 0.0597 0.8037 —0.015 —0.0195 0.0032
I, [MeV] 83.793 —0.1200 —0.06905 0.00382 0.0596 0.8023 —0.015 —0.0195 0.0032
r, [MeV] |167.176 —0.1752 —0.1249 0.00595 0.1046 1.253 —0.110 —0.0232 0.0064
', [MeV] {299.994 —0.6152 —0.2771 0.0174 0.2341 4.0561 —0.467 —0.0676 0.017
. [MeV] [299.918 —0.6152 —0.2771 0.0174 0.2340 4.061 —0.467 —0.0676 0.017
Iys [MeV] | 382.829 —0.6685 —0.3322  0.0193 0.2792 3.792 —-0.18 —0.0706 0.020
I, [MeV] |375.890 —0.6017 —0.3158 0.0190 0.227 —2.174 0.042 —0.027 0.021
'z [MeV] |2494.75 —4.055  —2.117 0.122  1.746 19.68 —1.63 —0.432 0.12
[ ] |20751.6 —8.112 —1.174 0.155 0.16 —-37.59 —-10.9 1.27  0.29
R.[107°] [17222.2 —4.049  —0.749 0.0832 1.08 98.956 —15.1 —0.761 0.080
[107°]

Ry [107° 21585.0 4.904 0.9149 —0.0535 —2.676 —292.21 20.0 197 —-0.11
op.q [pb] 41489.6 0.408 —0.320 0.0424 1.32 60.17 16.3 -2.31 -0.19
Observable ag aio ai ais a3 a4 ais a1¢ | max. dev.

I., [MeV]|—0.0956 —0.0078 —0.0095 0.25 —1.08 0.056 —0.37 286 | < 0.0015

I'; [MeV] |—-0.0954 —0.0078 —0.0094 0.25 —1.08 0.056 —0.37 285 | < 0.0015

I, [MeV] —0.187 —-0.014 —0.014 0.37 —0.085 0.054 —0.30 503 | < 0.002

T, [MeV] 14.26 1.6 -0.046 1.82 —-11.1 0.16 -1.0 1253| < 0.006

I'. [MeV] 14.26 1.6 -0.046 1.82 -—-11.1 0.16 —-1.0 1252| < 0.006

Tys [MeV] 10.20 -24 —-0.052 0.71 -10.1 0.16 —0.92 1469 | < 0.007

Ty [MeV] 10.53 —24 —-0.066 1.2 -10.1 0.15 —0.95 1458 | < 0.007

'z [MeV] 58.61 —-4.0 -0.32 8.1 -56.1 1.1 —6.8 9267| <0.04

Ry [1073] 732.30 —44  —-0.61 5.7 —358 —4.7 37 11649 | < 0.12

R, [1077] 230.9 125 0.045 36.9 —120 1.2 —-6.2 3667 < 0.1

Ry, [1077] —131.9 -84  —-0.27 44 71.9 —-0.77 —4.4 -—-1790| < 0.12

op.q [pb] —579.58 38 0.010 7.5 85.2 9.1 —68 —85957| < 0.15

Table 1. Coeflicients for the parameterization formula (2.9) for various observables. Within
the ranges 25 GeV < My < 225GeV, 155GeV < my < 195GeV, ag = 0.1184 £ 0.0050, Aa =
0.0590 4+ 0.0005 and My = 91.1876 + 0.0084 GeV, the formulae approximate the full result with
maximal deviations given in the last column.

3 Asymmetries and effective weak mixing angles

The effective weak mixing angle for the Zf f vertex is defined, from the theory side, as

sin? 67 = Z@(HM{%}). (3.1)

Here M%N and M% are the real parts of the complex pole of the W and Z propagators,
respectively. They are related to the masses commonly reported by experiments at LEP,



My [GeV] | Result of ref. [2§] Our result
100 —0.733989 x 10~% | —0.733955 x 10~*
200 —0.469470 x 10~ | —0.471273 x 10~*
Table 2. Comparison of numerical results for Anéaz’bos) from ref. [28] with our calculation of Z

vertex corrections from ref. [37]. We use Mz = 91.1876 GeV and Mw = 80.385 GeV.

Tevatron, LHC according to eq (1.6). Moreover, QQy denotes the electric charge of the
fermion f.

The effective weak mixing angles can be extracted from a range of asymmetries [8],
defined from effective Born two-particle cross-sections, including the left-right asymmetry
Oep, — Oegr _ Ae"‘AE(l)?il_reS (32)

Arr =
Oep, T Oeg

and the forward-backward asymmetry

Af _ Ocos >0 — Tcos <0 — 344 _|_A4f,non71res7 3.3
FB Ocos0>0 T Ocos <0 4e S FB ( )
where
2R 1—4 in2 6/
A = efve/fag} Q| sin” O g (3.4)

L+ (Re{vp/agh)® 1 4Qy|sin? 0/ + 8(|Qy|sin® 673)2

Here o, and o, are the cross-sections for ete™ — f f for left- and right-handed polarized
electron beams, respectively, whereas o.osg>0 and o¢os9<¢ denote the cross-section for f
restricted to the forward and backward hemisphere, respectively. Furthermore, A%" "
accounts for the non-resonant photon-exchange, box and t-channel contributions.

The most precisely measured effective weak mixing angles are the leptonic effective
weak mixing angle sin? 0% (extracted from Apg) and the bottom-quark one, sin? 8% (ex-
tracted from A%g) [58].

Standard Model predictions for sin? Gﬁﬁ including the full two-loop corrections have
been presented originally in refs. [28, 29, 31]. We reproduced by an independent calculation
the contribution of the bosonic electroweak two-loop corrections using the methods of

ref. [37]. The corrections can be expressed in terms of a weak form factor A/ﬁéaQ’bos), where
Ay = (12 W) Gz 3
Rf = — ﬁz sin off — L ( 5)

The comparison with ref. [28] is shown in table 2, which demonstrates that the two calcu-
lations agree to an accuracy of O(10~7), which implies an accuracy of better than 10~" for
sin? 0. The full two-loop corrections for sin® §%; have been presented first in ref. [36].

In the following, we present simple parameterization formulae for sin? 9£ﬂ¢ and sin? Ggﬁc,
which cover the extended range of input parameters of eq. (2.8). The parameterization



formula

sin? @)y = so + di Ly + doL? + dzL; + daDg + dsAq + de A2 + d7 ALy (3.6)
+ dgAq, + doAn Ay + dioAy,

with
My my 2
Ly = log — 8 A, = (7> -1
H =108 o8 7 GeV’ ¢~ \1732Gev ’
_Oés(Mz)_ . Aa 1 A . MZ 1
@ 01184 “70.059 27 91.1876 GeV

provides a good description of the full result in the parameter region (2.8). Values for the
coefficients are obtained by fitting (3.6) to a grid of 8750 data points.

Table 3 shows the result of a fit to a calculation that includes all known corrections:

e Complete one- and two-loop electroweak corrections,
(see refs. [21, 23, 27, 28, 30-32, 36] for the original references);

e Corrections of order O(aag) to vector-boson self-energies [64—68], which we have
re-evaluated for this work;

e Non-factorizable O(aas) Zbb vertex contributions [69-74], which do not cancel in the
ratio vp/ap;

e Higher-loop corrections in the limit of a large top Yukawa coupling w;, of orders
O(aa?) [75, 76], O(a2as), O(a) [77, 78], and O(awa?) [79-81] where oy = y2/(47).

As indicated by the last column in the table, the largest deviation of the fit formulae
from the full result is O(few x 107%), while for most of the parameter region in (2.8) the
agreement is better than 1075. The careful reader may realize that the parameterization
for sin? §% in table 3 deviates slightly from egs. (20,22) in [36]. The difference is due to
the larger grid of data points used here. A fit formula is, obviously, not able to reproduce
the data points in a grid perfectly. The fitting aims to find the best average agreement
between the data points (which are generated with our full numerical calculation) and
the fit formula. A larger grid therefore can lead to some shifts of the coefficients. As a
consequence, the formula in [36] will probably be more accurate for input values within
the ranges in table 1 there. On the other hand, while the formula here may be a little less
accurate within these ranges, it covers a much larger range of input values.

It should also be noted that the fit formula for sin? 6% in ref. [28] does not include the
O(aya?) corrections from refs. [79-81], but they are included in the formula presented here.

In table 4 it is shown that the technical accuracy of our fit formulae is adequate for
the expected experimental precision of several future eTe™ colliders, although it will get
modified by anticipated future three-loop electroweak corrections.



Observable S0 dq do ds da ds
sin® 0% x 10* | 2314.64 4.616 0.539 —0.0737 206 —25.71
sin® 0% x 10* | 2327.04 4.638 0.558 —0.0700 207  —9.554
Observable de dr dg do dio max. dev.
sin? %5 x 10 | 4.00 0.288 3.88 —6.49 —6560 | < 0.056
sin® @% x 10* | 3.83 0.179 241 -824 —6630 | < 0.025

Table 3. Coefficients for the parameterization formula (3.6) for the leptonic and bottom-quark
effective weak mixing angles. Within the ranges given in eq. (2.8), the formula deviates from the
full result up to the maximal amount given in the last column.

Observable max. dev. EXP now FCC-ee CEPC GigaZ
Iz [MeV] 0.04 2.3 0.1 0.5 0.8
sin? 0% x 10 0.056 1.6 0.06 0.23 0.1
sin? 0% x 10* 0.025 160 9 9 15

Table 4. Goodness of fit for some chosen EWPOs, compared with the envisaged precision mea-
surements for I'z and sin® 6% (statistical errors), and sin® 6%; (systematic errors) at the collider
projects FCC-ee Tera-Z [84], CEPC [85] and ILC/GigaZ [86]. The values of maximal deviations
are taken from tables 1 and 3. The entry “EXP now” gives the present experimental precision, as
known since LEP 1 [44].

4 Vector and axial-vector Z-boson form factors F\J; and FK

The pseudo-observables discussed in the previous sections aim to be closely related to
actual observables, such as cross-sections, branching ratios, or asymmetries. On the other
hand, for some purposes it is also useful to have numerical results for the underlying vertex
corrections themselves [34], for example: (i) Inclusion of selected corrections from Beyond
Standard Model (BSM) physics, (ii) Estimations of magnitudes of selected single terms,
(iii) Partial cross-checks with other calculations. For such purposes, the form factors F\J;
and F j: introduced in eq. (2.2) are needed explicitly.

Tables 5 and 6 show the numerical contributions of different orders of perturbation
theory to F\]; and F/{. Here the form factors are always understood to include the appro-
priate (on-shell) counterterms to render them UV-finite. In table 5 these are computed
using the following input values:

My = 91.1876 GeV, Iy =24952GeV, = Mz=091.1535GeV  (4.1a)
My = 80.385 GeV, Ty = 2.085GeV, = My = 80.358 GeV (4.1Db)
My = 125.1 GeV, m; = 173.2 GeV,
miS = 4.2GeV, Aa = 0.059, o = 0.1184 (4.1c)

For table 6, on the other hand, the Fermi constant G/, is used as an input instead of (4.1b),



Form fact. Born O(a)  Olaay) O(zézg” Z;;()lg’ (’)(N?oﬂ) O(Nsa?) O(ad,,)
FL [1079] 30.07 —24.86 241 0.35 1.47 2.37 0.27
Ffl [1075] 3309.44  118.59 9.46 1.22 8.60 2.60 0.45
Fy 4 [1075] | 3309.44 127.56 9.46 1.22 8.60 3.83 0.39
v [1077] 544.88 —44.80 7.29 1.02 —1.67 3.25 0.33
Fye [1075] | 3309.44  120.79 9.46 1.22 8.60 3.27 0.44
F& (1075 | 1635.01 584  9.64 1.32 0.71 3.45 0.37
F& [1075] | 3309.44 12378 9.46 1.22 8.60 3.11 0.42
Fb[107°] | 1635.01 —26.16  9.64 1.32 0.71 1.77 1.05
Fb (1075 | 3300.44  78.26  9.46 1.22 8.60 0.13 1.18

Table 5. Contributions of different perturbative orders to the Z vertex form factors. A fixed value
of My has been used as input, instead of G . N]’} refers to corrections with n closed fermions loops,
whereas o . denotes corrections without closed fermions loops. Furthermore, oy = y;/(4m) where
ys is the top Yukawa coupling.

Form fact. Born O(a) O(aas) O(Z%Zi z%‘;g’ O(N]%oﬂ, Nia?) O(ad.)
FY [1079] 7763 —59.86 0.31 —0.09 1.88 0.24
F4 (1075 | 342643 1932 —1.12 —0.92 1.62 0.28
Fy 4 [1075] | 3426.43 28.36 —1.16 —-0.93 2.81 0.21
Fy© [1079] 644.45 —129.87 —1.36 -0.73 —6.26 0.19
FZ’C [10_5] 3426.43 21.54 —-1.13 —0.93 2.28 0.27
P& [10-°] | 176071 —100.64 —1.15 ~1.01 —6.24 0.19
Fz’s [1075] | 3426.43 24.56 —2.21 —-0.93 2.10 0.25
FY [1079] 1760.71 —133.08  —1.58 —0.95 —7.68 0.86
FY[1075) | 342643 —2145  —0.85 —0.87 ~0.62 1.01

Table 6. Same as table 5, but with My calculated from G,.
and M is computed from

=2

. i

My <1 = V2V> —
M,

(0%

o (1+ Ar), (4.2)

where Ar has been evaluated to the same orders as given in each column of the table. More
details about the calculation of Ar can be found in ref. [47]. As before, the dependence of
the Standard Model prediction on various input parameters can be expressed in terms of
the simple parameterization formula eq. (2.9).

Table 7 shows the numerical values for the coefficients obtained by fitting this formula
to the currently most precise computation, including the same corrections as in section 2,

,10,



Form fact. Xo ay ao as ay as ag ar as
Ff 1079 20.11 -1.317 —0.2615 0.0333 0.276 7.474 1.55 —0.326 0.0012
F4 [1077] 3446.88 —3.645 —2.595 0.125 2.188 25.70  —2.17 —0.480 0.13
Fy 4 [1075] | 3457.02 —3.623 —2.584 0.123 2.163 25.92 —2.27 —0.481 0.13
v ] | 506.214 —4.485 —1.063 0.105 0.912 23.21 —-1.54 —0.410 0.085
F€ (1075 | 3448.76  —3.635  —2.591  0.124 2.181 25.83 —2.24 —0.480 0.13
[1077]
[1077]

1650.98 —5.247 —1.836 0.134 1.541 29.22 —-2.78 —0.458 0.13
3451.41 -3.617 —2.584 0.123 2.170 25.67 —2.21 —0.477 0.13
Fb [1079) 1622.01 —-4.891 —-1.758 0.134 127 287 —-15 —-0.21 0.13
FY [1077] 3409.36 -3.114 -2.461 0.120 1.757 -21.03 -0.60 —0.15 0.14

Form fact. ag alo a1 a2 a3 a4 ais aie | max. dev.
FS (1079 —-0.13 -0.037 —-0.11 2.78 —-43.17 12 —-9.0 1397 < 0.02
FY [1077] -3.81 —-0.29 -—-0.28 7.6 -20 1.1 -6.3 6921 < 0.04
Fy o [1075] | —=3.87 —0.29 —0.28 7.6 -17 11 —-6.3 6949 < 0.04
Fy©[107°] | =3.89  —0.16 —0.22 6.5 —145.7 0.98 —6.9 5651 < 0.03
Fye107° | =480 —0.27 —-0.27 175 -19 11 -6.3 6928 < 0.04
F[107°] | =553  —0.24 —028 81 —132. 095 —6.0 7498 | < 0.04
FZ’S [107°] | —4.98 —0.27 -0.27 7.5 -1.7 11 -6.2 6933 < 0.04
FY% (1079 -13 —-0.28 -0.32 12,5 —131. 0.95 —5.7 7457 < 0.04
F& [1079] 093 —-0.31 —-0.31 13.6 -25 11 =72 6927 < 0.04

Table 7. Coefficients for the parameterization formula (2.9) for various form factors (X). Within
the ranges 25GeV < My < 225GeV, 155GeV < my < 195GeV, as = 0.1184 + 0.0050, Aa =
0.0590 + 0.0005 and Mz = 91.1876 + 0.0084 GeV, the formula approximates the full result with
average and maximal deviations given in the last two columns.

except for the final-state QED and QCD radiation effects, i.e.

i ; ; ; ; ; ;
=100 " + Fy) T Faay T Fe2) T Faaz) T Faza T Hd) T FVaad) -

f_ 2 f f f f f f f
Fy=layo)l” + Fyo) T Fapan T Fae2) T Faaa) T Fawzan T Faes) T Faaraz) - (43)

Note that G, (rather than Myy) has been used as one input in table 7.
The form factor results presented here can be easily augmented to include the effects
of some new physics model:

F\J;,SM+NP ~ F\J;,SM + 2Re{vy)vsNp (4.4)

FK,SM—&-NP ~ K,SM + 2Re{ay)asnp}- (4.5)

Here “SM” denotes the SM contributions discussed in the present paper, while “NP”
stands for the new physics correction on top of the SM. Since the existing experimental
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constraints imply that any possible new physics effect is small, it is sufficient to use the
tree-level couplings vy(g) and af(g) in the interference terms and neglect the |’Uf,NP|2 and
laynp|? terms.

5 Theoretical error estimates for missing higher order corrections

The main theory uncertainty of the results presented in this paper stems from unknown
three- and four-loop corrections. The leading missing orders are O(a?), O(a?as), O(aa?),
and O(aag’). Partial results for these contributions, in the limit of a large top Yukawa
coupling vy, have already been computed [75-81]. Therefore, when evaluating the impact
of theory uncertainties, it is always implied that we refer to these contributions beyond the
leading-y; limit.

There are a number of different methods for assessing theory uncertainties from un-
known higher orders, none of which is fully reliable. Rather, they should be taken as an
order-of-magnitude estimate of the size of these terms. A convenient and widely applicable
method is based on the assumption that the first few orders of the perturbation series

approximately follow a geometric series [35, 37, 87]. In this way one obtains as an ansatz

OéQ o a2
O) - 0(a) ~ 2 T o),
o2) — O(a2
O(a2as) - (’)(agas) ~ C)(()Q(a()o(t)(’)(aas),
. . (5.1)
Ofaad) ~Ofena?) ~ 1 A0 0ar)
O(aa?) — O(aray) ~ O(aaS)(’)_(a()Q(ataS)O(aag)j

where ay = y2/(4m). Since we are only interested in the missing higher orders beyond the
leading large-y; limit, the same leading large-y; approximations have been subtracted in
the numerators on the right-hand sides.

The contribution of these estimates to the overall theory error evaluation is shown in
table 8 for various pseudo-observables, and in table 9 for the Z-boson form factors. Note

that the error estimate for sin? G‘fﬁ is slightly improved compared to refs. [28, 29] due to

3

2) corrections from refs. [79-81].

the inclusion of O(aza

Nevertheless, we would also like to remind the reader that any estimate of the theory
error from missing higher orders is not a precise prediction. Therefore it is generally
desirable to ensure that the theory error is sub-dominant in any phenomenological analysis.
Comparing the numbers in table 8 to current measurement results [58, 59], this is clearly
seen to be the case.
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Observable a2 aad a’as o | Total
Te,r [MeV] | 0.008 0.001 0.010 0.013 | 0.018
I, [MeV] 0.008 0.001 0.008 0.011 | 0.016
Ty [MeV] 0.025 0.004 0.08 0.07 | 0.11
Tys [MeV] 0.016 0.003 0.06 0.05 | 0.08
Iy [MeV] 0.11 0.02 0.13 0.06 | 0.18
I'z [MeV] 023 0.035 0.21 020 | 04
Ry [1073] 2.5 04 3.6 3.9 6
R, [1077] 1.6 03 34 30

Ry, [1077] 5.5 0.9 6.4 3.7 10
o .4 [pb] 02 0.03 42 3.7 6
sin? @ [1075) | — 03 3.0 31 | 43
sin? 0% [107°] | 0.7 04 43 32 | 53

Table 8. Leading unknown higher-order corrections and their estimated order of magnitude for
various pseudo-observables. The different orders always correspond to missing higher orders beyond
the known approximations in the limit of a large top Yukawa coupling. The total theory error is
obtained by adding the individual orders in quadrature.

Observable | aa? aa? o?as o | Total
FL[107°] ] 0.03 0.004 0.2 04| 05
F{[107% 017 003 03 03] 04
Fy o 10711016 002 03 05| 06
0.09 001 04 02| 05

[1077]

F%[107°] | 0.17 003 03 04| 05
[107°]
[1077]

02 003 06 08| 1.1
03 004 04 05| 07
FS 1075 | 02 003 08 07| 11
F4[107°] | 03 004 01 01| 03

Table 9. Same as table 8, but for various form factors.

6 Conclusions and outlook

In this study, we have presented some phenomenologically useful applications of the recently
completed electroweak two-loop calculation of Z-boson vertex corrections [36, 37]. The
work collects multi-year efforts of several groups for predictions of the EWPOs related
to the Z peak up to electroweak full two-loop accuracy, supplemented by leading QCD
higher-order terms. We have determined the two-loop electroweak contributions with a net
relative numerical accuracy of about four digits. This ensures that these two-loop results
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will be known with sufficient accuracy even when adding the next perturbative order, as it
might be needed for applications at the next generation of eTe™ colliders.

For practical applications, the results for the EWPOs, as well as for the Z-boson
vertex form factors, have been presented in terms of simple parameterization formulae,
whose coefficients have been fitted to the full numerical computation. It is planned to
include these fitting formulae into a new version of the weak library DIZET of ZFIT-
TER [45, 46, 48, 88-90].> The accuracy of the fitting formulae is less than our full numeri-
cal two-loop calculation, but more than sufficient for present-day purposes. For the future
FCC-ee Tera-Z project, it may be necessary to provide more precise formulae by including
more terms with higher powers of the input parameters.

Finally, we would like to make a few comments on the prospects for the calculation
of electroweak three-loop corrections, which will be necessary for the level of precision
foreseen for FCC-ee and similar eTe™ collider proposals. This electroweak third order,
by itself, will be needed with only about two digits accuracy [91]. The generation of the
amplitudes for O(10*—10°) diagrams as well as the evaluation of the Lorentz and Dirac
algebra are routine tasks performed by computer algebra programs, and they should be
straightforward with increased computing power in the future. Potential specific problems
related to the treatment of v5 at three-loop level have to be controlled [92].

The most challenging problem will certainly be the stable numerical computation of
three-loop Feynman integrals with several different internal mass scales. At two loops, we
did not perform any reduction of the Feynman integrals to a smaller number of masters
and thus had to calculate about 1000 previously unknown numerical integrals. In the
next perturbative order, it may be advantageous to perform such a reduction to masters,
given the ever increasing performance of programs like KIRA [93, 94], Reduze 2 [95],
FIRE [96, 96], and LiteRED [97].

For the calculation of the (master) integrals themselves, it is desirable to have a proce-
dure to automatically isolate and treat the ultra-violet and infra-red singularities. Although
there is rapid progress in several analytical approaches to complicated loop integrals [6, 7],
one has to expect that the more complicated ones will have to be done numerically. An
additional complication is that for integrals with physical cuts, their stable numerical eval-
uation becomes more challenging. There are two kinds of software packages available that
address these problems, based on either sector decomposition (SD) as realized in the SecDec
project [98-103] and the FIESTA project [104-107], or based on Mellin-Barnes (MB) trans-
formations, as implemented in the AMBRE project [108-121]. Sector decomposition is typ-
ically advantageous for integrals with many different mass scales, while the MB approach
is more efficient for integrals with fewer independent parameters. Both methods certainly
have room for crucial improvements. Several other numerical integration methods, as re-
viewed e.g. in refs. [6, 7], are useful for certain classes of multi-loop integrals, even though
they are less general than the SD and MB approaches. Overall, numerical loop integration
techniques are well positioned to meet the necessary future precision demands.

3Private communication by L. Kalinovskaya for the ZFITTER/DIZET support team.
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An electroweak three-loop result for the Z-peak EWPOs must be accompanied by
improved calculations of the corrections needed to translate EWPOs to real observables.
These include initial-state and final-state QED corrections and their interference as well
as higher-order terms of the Laurent series expansion about the Z resonance pole [6]. The
latter will, for example, involve massive two-loop box diagrams. A complete accounting of
the required correction terms is still lacking.

To summarize, we have completed the electroweak two-loop predictions for the EWPOs
of the Z resonance and collect here an extensive set of new fitting formulae for them. On a
longer time scale, the calculation of the next perturbative order for the calculation of the
EWPOs will be necessary and, with proper investments, realistically accessible.
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