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1 Introduction

The calculation of higher-order radiative corrections is important for the interpretation

of precision measurements at the LHC and various e+e− machines, such as SuperKEKB

and planned future Higgs and Z factories. Multi-loop contributions in the full Standard

Model or models beyond the Standard Model (BSM) are particularly challenging due to

the presence of many independent mass and momentum scales [1]. General loop integrals

beyond the one-loop level cannot be solved analytically in terms of elementary functions.

This observation prompted the investigation of new classes of special functions, such as

harmonic polylogarithms [2], generalized harmonic polylogarithms [3–6], and elliptic poly-

logarithms [7–15], see e.g. ref. [16] for a recent review. However, it is not clear if any

multi-loop integral can be represented by these classes of functions, in particular beyond

the two-loop level.

This motivates the development of numerical methods for multi-loop integrations. Two

general approaches, which in principle can be applied to any number of loops and external

legs, are known: sector decomposition and Mellin-Barnes representations. The former has

been realized in the SecDec [17–20] and FIESTA [21–24] software packages, while the

latter is the basis for the AMBRE/MBnumerics project [25–29]. Both approaches pro-

vide an algorithmic procedure for removing UV and IR singularities, but they require very
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significant computing resources, especially for integrals with physical internal thresholds

that develop imaginary parts. Alternatively, more efficient numerical integration methods

can be developed for limited classes of multi-loop integrals (see ref. [1] for a review of some

of these methods). At the three-loop level, an important step in this direction was achieved

with the programs TVID [30, 31] and 3VIL [32], which can evaluate the master integrals

for arbitrary three-loop vacuum integrals.

This article reports on the new version 2.0 of TVID, which includes a large class of

three-loop self-energy master integrals. This class consists of the master integrals necessary

to evaluate three-loop self-energy diagrams containing two closed fermion loops. They are

descendants of the planar three-loop self-energy topology (i.e. the ladder topology). It is

shown that all these master integrals can be evaluated in terms of at most two-dimensional

numerical integrals, by making use of the following two ideas:

• Integrals with sub-loop self-energies are evaluated by using dispersion relations for

the sub-loop. This technique was previously developed for the evaluation of two-loop

self-energy master integrals [33, 34].

• Planar integrals with without sub-loop self-energies are tackled with a variant of the

method introduced in ref. [35].

See section 2 for more details on the master integrals that fall into either of these two cate-

gories. The construction of the numerical integral representations for these master integrals

is illustrated for a few characteristic examples in section 3. It should be noted that many of

the master integrals are UV divergent, and these singularities must be removed before the

numerical integration can be carried out. In TVID, this is achieved by subtracting terms

that have the same singularity structure, but that lead to simpler integrals which are al-

ready known in the literature, see section 3 and appendix A. TVID provides the integrated

subtraction terms in the framework of dimensional regularization and then numerically

evaluates the finite remainder integrals. More information on the implementation of the

three-loop self-energy integrals in TVID 2.0 can be found in section 4, together with a

discussion of potential problems and comparison to results in the literature. A manual for

the installation and usage of TVID 2.0 is provided in appendix B.

2 Planar three-loop self-energy topologies and master integrals

This article focuses on the evaluation of the “planar-type” three-loop self-energy integrals

that descend from diagrams containing two closed fermion loops. With “planar-type” we

refer to topologies that can be considered descendants of the “master topology” U8a in

figure 1, by removing and/or doubling some propagators.

For the set of master integrals, we choose only integrals without numerator terms,

which generically are of the form

Uij = i
e3γEǫ

π3D/2

∫
dDq1 d

Dq2 d
Dq3

1

[q21−m2
1]
ν1 [(q1+p)2−m2

2]
ν2 [(q1−q2)2−m2

3]
ν3

×
1

[q22−m2
4]
ν4 [(q2+p)2−m2

5]
ν5 [(q2−q3)2−m2

6]
ν6 [q23−m2

7]
ν7 [(q3+p)2−m2

8]
ν8

(2.1)
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Figure 1. Basic master integral topologies without doubled propagators considered in this paper.

Here ǫ = (4−D)/2 and D is the number of space-time dimensions in dimensional regular-

ization. Furthermore, the νk are integer numbers which can be 0, 1 or 2 in our case.

To define our set of master integrals, we generated the diagrams with the topology

of U8a that occur in the three-loop self-energy diagrams with two closed fermion loops

using FeynArts 3 [36]. We then performed an integral reduction based on integration-

by-parts identities with the help of FIRE 5 [37]. The resulting set of irreducible three-loop

master integrals is shown in figures 1 and 2. They are all of the form given in eq. (2.1) with

νk ∈ {0, 1, 2}. There are additional master integrals that factorize into products of one-loop

and two-loop integrals. The complete set of the latter is shown in figure 3 (see also ref. [38]).

We do not claim that this set of master integrals is minimal or optimal, but it is

suitable for numerical evaluation in terms of two-dimensional numerical integrals, as will be

demonstrated below. It should be emphasized that additional master integrals are needed

for diagrams that do not conform to the planar master topology U8a, such as non-planar

three-loop self-energy diagrams.

The integrals in figures 1 and 2 can be divided into two groups:

• Integrals with one- or two-loop sub-loop self-energy. These can be evaluated efficiently

using a dispersion relation for the sub-loop bubbles [30, 33, 34].

• Integrals without sub-loop self-energies. For these we employ a variant of the method

proposed in ref. [35]. This category comprises the master integrals U7a, U8a, U7a1 and

U7a2. All the remaining master integrals belong to the former category.
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Figure 2. Master integral topologies with doubled propagators considered in this paper. The dot

indicates a propagator that is raised to the power 2.

3 Examples

In the following subsections, our approaches for the numerical evaluation of the master

integrals are described in more detail for a few characteristic examples from both categories.

3.1 Double-bubble integrals: U5b

A basic one-loop self-energy sub-loop can be expressed in terms of a dispersion relation [33],

e.g.

eγEǫ

iπD/2

∫
dDq1

1

[q21−m2
a][(q1−q2)2−m2

b ]
≡B0(q

2
2,m

2
a,m

2
b)=

∫
∞

0
ds

∆B0(s,m
2
a,m

2
b)

s−q22−iε
, (3.1)
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Figure 3. Two-loop master integrals.

where ∆B0 is the discontinuity of the one-loop function B0. In D = 4 dimensions, it is

given by

∆B0(s,m
2
a,m

2
b) =

1

s

√
λ(s,m2

a,m
2
b)Θ

(
s− (ma +mb)

2
)
, (3.2)

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + xz) and Θ(t) is the Heaviside step function.

U5b contains two such sub-loop bubbles. Inserting the dispersion for each of them, one

obtains

U5b =

∫
∞

0
ds1

∫
∞

0
ds2 ∆B0(s1,m

2
6,m

2
7)∆B0(s2,m

2
1,m

2
3)

×
eγEǫ

iπD/2

∫
dDq2

1

[q22 −m2
4][q

2
2 − s1][(q2 + p)2 − s2]

=

∫
∞

0
ds1

∫
∞

0
ds2 ∆B0(s1,m

2
6,m

2
7)∆B0(s2,m

2
1,m

2
3)

B0(p
2, s1, s2)−B0(p

2,m2
4, s

2
2)

s1 −m2
4 − iε

=

∫
∞

0
ds1

∫
∞

0
ds2 ∆B0(s1,m

2
6,m

2
7)∆B0(s2,m

2
1,m

2
3)

B0(p
2, s1, s2)

s1 −m2
4 − iε

+B0(m
2
4,m

2
6,m

2
7)T3a(p

2,m2
1,m

2
3) . (3.3)

Here T3a is a two-loop self-energy function, see figure 3.

The s1 and s2 integrals in eq. (3.3) diverge at the upper integral limit ∞, which can

be attributed to the fact that U5b is UV divergent. The expression can be rendered UV

finite by subtracting suitable terms in the integrand that have the same UV singularity

structure, but that are otherwise simpler than the full U5b function. One way to achieve
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this purpose is by subtracting the first two terms in a Taylor expansion in p2:

U5b(p
2,m2

2,m
2
3,m

2
4,m

2
6,m

2
7) =

U5b(0,m
2
2,m

2
3,m

2
4,m

2
6,m

2
7) + p2U ′

5b(0,m
2
2,m

2
3,m

2
4,m

2
6,m

2
7)

+B0(m
2
4,m

2
6,m

2
7)
[
T3a(p

2,m2
1,m

2
3)− T3a(0,m

2
1,m

2
3)− p2T3a(0,m

2
1,m

2
3)
]

+

∫
∞

0
ds1

∫
∞

0
ds2 ∆B0(s1,m

2
6,m

2
7)∆B0(s2,m

2
1,m

2
3)

×
B0(p

2, s1, s2)−B0(0, s1, s2)− p2B′

0(0, s1, s2)

s1 −m2
4 − iε

. (3.4)

Here the prime in B′

0 etc. denotes a derivative with respect to p2. The integral in the last two

lines of eq. (3.4) is now finite and can be evaluated numerically. U5b(0, . . .) and U ′

5b(0, . . .)

are three-loop vacuum integrals, for which general methods for numerical evaluation are

known [30, 32]. Similarly, the two-loop function T3a can be easily determined using the

technique of ref. [33]. The basic one-loop function B0 is known analytically [39–41] (see

ref. [30] for expressions that use the same conventions as in this paper).

3.2 Planar master topology: U8a

An simple method for numerically evaluating the master topology U8a was presented in

ref. [35]. This integral is UV finite and thus can be computed in four dimensions. It can

be written as

U8a =

∫
d4q

iπ2

C0(p
2, (q + p)2, q2,m2

1,m
2
2,m

2
3)C0(q

2, p2, (p+ q)2,m2
6,m

2
7,m

2
8)

[q2 −m2
4 + iε][(q + p)2 −m2

5 + iε]
, (3.5)

where C0 is the basic one-loop vertex function, which is known analytically in terms of

logarithms and dilogarithms [39–41]. By moving to the center-of-mass frame for p and

integrating over the solid angle of ~q, this becomes

U8a =
4π

iπ2

∫
∞

−∞

dq0

∫
∞

0
d|~q| |~q|2

C0(p
2, y, x,m2

1,m
2
2,m

2
3)C0(x, p

2, y,m2
6,m

2
7,m

2
8)

[x−m2
4 + iε][y −m2

5 + iε]
, (3.6)

where

x = q2 = q20 − |~q|2, y = (q + p)2 = q20 − |~q|2 + p2 + 2q0
√
p2. (3.7)

This formula suggests that it is convenient to adopt x and y as integration variables, leading

to the two-dimensional integral

U8a =
1

2iπp2

∫
∞

−∞

dx

∫
∞

−∞

dy
√
λ(x, y, p2)Θ(λ(x, y, p2))

×
C0(p

2, y, x,m2
1,m

2
2,m

2
3)C0(x, p

2, y,m2
6,m

2
7,m

2
8)

[x−m2
4 + iε][y −m2

5 + iε]
. (3.8)

Here the Heaviside Θ function is inserted to ensure that the integral runs only over kine-

matically allowed values of x and y.
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The integrand in eq. (3.8) has singularities at x = m2
4 and y = m2

5, which lead to

difficulties for numerical integration routines. In ref. [35] this was addressed by using a

deformation of the integration contours into the complex plane. Here we instead split

the integrals into a residuum contribution and principal value integral, according to the

prescription [30]

∫
∞

−∞

dx
f(x)

x− ξ ± iε
= ∓iπf(ξ) +

∫
∞

0
dx′

f(ξ + x′)− f(ξ − x′)

x′
. (3.9)

This has the advantage that one does not need to worry about the complex contour crossing

any other singular points.

3.3 Planar 7-propagator topology: U7a

In princple, the 7-propagator integral

U7a =

∫
d4q

iπ2

C0(p
2, (q + p)2, q2,m2

1,m
2
2,m

2
3)C0((p+ q)2, p2, q2,m2

6,m
2
7,m

2
8)

[q21 −m2
4 + iε]

(3.10)

can be treated with the same approach as described for U8a in the previous sub-section.

However, it turns out that the y integration is badly converging in this case. A better

convergence behavior is achieved by using x and q0 as integration variables,

U7a=
2

iπ

∫
∞

−∞

dq0

∫ q2
0

−∞

dx

√
q20−x

[x−m2
4+iε]

C0

(
p2,x+p2+2q0

√
p2,x,m2

1,m
2
2,m

2
3

)

×C0

(
x,p2,x+p2+2q0

√
p2,m2

6,m
2
7,m

2
8

)
. (3.11)

For the x integration again one can use the split into a residuum contribution and principal

value integral according to eq. (3.9).

4 Implementation in TVID 2

The TVID 2 package has two components:

• One component runs in Mathematica and performs the separation of the master

integrals into UV-divergent subtraction terms and finite remainder functions, as de-

scribed in section 3.1 and appendix A. This separation can be performed algebraically

(keeping the momenta and masses as non-numerical symbols) or with numbers for the

momenta and mass inserted from the beginning (which will speed up the evaluation

in Mathematica).

• The second component carries out the numerical integration of the finite remainder

functions (i.e. the functions labeled U...,sub in appendix A). It is written in C and

uses an adaptive Gauss-Kronrod algorithm for the integrals, which yields a relative

precision of 9–10 digits for most cases (see below for exceptions to this statement).

The input and output are handled through simple text files that contain a list of

numerical parameter values. The Mathematica component of TVID 2 can directly

call the numerical C component through an external system call.

– 7 –
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The numerical of TVID uses quadruple precision floating points numbers to reduce

rounding-off errors in the tails of the integrals. However, for some master integrals this

turns out not to be sufficient. For these cases, we use an asymptotic formula for the inte-

grand in the limit of large values of the dispersion variable s1 and/or s2. The asymptotic

formula is used for values of s1 + s2 > scut, with a suitably chosen value for the parameter

scut. Specifically, scut = c×p2, where c is a constant that depends on which function U...,sub

is being considered. Since scut is proportional to p2, there could be a loss of precision for

cases when p2 is either much larger or much smaller than the masses in the integral.

The reader should take note of the following limitations of version 2.0 of TVID:

• The program cannot handle IR-divergent integrals. IR divergencies may occur from

certain configurations with multiple massless propagators or threshold singularities.

TVID 2.0 furthermore does not check whether a certain parameter choice leads to an

IR divergency; the user has to ensure that this is the case.

• There are additional cases (i.e. particular combinations of input parameters) that

are IR finite but may require a special treatment within TVID to avoid numerical

instabilities. A few of these are implemented in version 2.0, but there are probably

many more that are currently missing. The authors encourage users to submit any

such special cases when they discover them, and they will be considered for imple-

mentation in future versions of TVID.

• The finite remainder functions of U6m1, U6m3, U6n2, U7a1 and U7a2 are related to those

of U6m, U6n and U7a through mass derivatives:

U6m1,sub(. . .) =
∂

∂m2
3

U6m,sub(. . .), U6m3,sub(. . .) =
∂

∂m2
2

U6m,sub(. . .),

U6n2,sub(. . .) =
∂

∂m2
2

U6n,sub(. . .),

U7a1,sub(. . .) =
∂

∂m2
3

U7a,sub(. . .), U7a2,sub(. . .) =
∂

∂m2
2

U7a,sub(. . .). (4.1)

In version 2.0 of TVID these have been implemented using numerical differentiation

(based on a five-point stencil).1 As a result the delivered precision for these functions

is reduced to 6–7 digits.

• Due to the presence of C0 functions in the integrands of U7a, U8a, U7a1 and U7a2,

their evaluation is much more time-consuming than that other master integrals. To

mitigate this issue, TVID 2.0 uses only double precision floating point numbers for

the evaluation of the C0 functions, and the target precision of these master integrals

is reduced to 8 digits for U7a and 6 digits for U8a, U7a1 and U7a2.

1The reason for this choice is that the reduction formula for the mass derivative T5a has rational co-

efficients with high polynomial degrees in both the numerators and denominators, which leads to many

instabilities of the 0/0 type. Furthermore, the direct integration of U7a1 and U7a2 involves very large

numerical cancellations between regions with positive and negative integrand, which leads to numerical

instabilities.
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• TVID 2.0 does not numerically evaluate the O(ǫ) parts of the two-loop functions in

figure 3 (labeled T...,delta in appendix A). In principle, these O(ǫ) terms are needed if

one wishes to evaluate all the master integrals in figures 1 and 2 to O(ǫ0). However, in

the calculation of any physical observable the T...,delta functions should drop out when

including the appropriate counterterm contributions, so that their explicit numerical

value should not be needed.

• The algebraic part in TVID 2.0, which runs in Mathematica, performs the sepa-

ration of UV divergent subtraction terms (as detailed in appendix A) for individual

master integrals or for expressions that contain any linear combinations of these.

However, the resulting expressions can grow rather large, in particular if the masses

are treated symbolically at this stage. The Mathematica code in TVID 2.0 is not

optimized to deal with very large expressions, and the user may have to modify the

PrepInt method in TVID to avoid excessively long computing times and related

problems.

As a check and to calibrate the performance of TVID 2, we have performed comparisons

with FIESTA 4.1 [24]. If one takes each master integral in isolation, the subtraction terms

defined in appendix A would require the evaluation of some two-loop functions up to O(ǫ).

As already mentioned above, these T...,delta functions are currently not implemented in

TVID 2.0, and they would also not be needed in the calculation of physical quantities.

To circumvent this issue, we have such defined modified version of some master integrals,

where certain terms have been subtracted that reflect the physical counterterm structure.

These modified master functions are listed in table 1. Note that the achievable numerical

precision in some cases is somewhat reduced due to cancellations between different terms

in these expressions.

The benchmark tests have been performed on a single core of an Intel Xeon CPU with

3.7 GHz. Two parameter choices have been considered:

a) One choice where p2 < m2
i , so that p2 is below any threshold, and all master integrals

are real. For these cases FIESTA has been run with the settings

CurrentIntegratorSettings = {{"epsrel","1.000000E-05"},{"maxeval","5000000"}};

ComplexMode = False;

The results are shown in table 2.

b) A second choice where p2 ≫ m2
i , all master integrals develop an imaginary part. For

these cases FIESTA has been run with the settings

CurrentIntegratorSettings = {{"epsrel","1.000000E-04"},{"maxeval","5000000"}};

ComplexMode = True;

The results are shown in table 3.
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Ũ5a = U5a(p
2, 1, 3, 5, 6, 7)−B0(0, 1, 3)T3a(p

2, 5, 6, 7)−B0(0, 6, 7)T3a(p
2, 1, 3, 5)

Ũ5b = U5b(p
2, 2, 3, 4, 6, 7)−B0(0, 6, 7)T3a(p

2, 2, 3, 4)

Ũ5c = U5c(p
2, 1, 2, 3, 6, 7)− [B0(p

2, 1, 2)−B0(0, 1, 2)]T3a(1, 3, 6, 7)

Ũ6a = U6a(p
2, 1, 3, 4, 5, 6, 7)−B0(0, 1, 3)T4a(p

2, 4, 5, 6, 7)−B0(0, 6, 7)T4a(p
2, 4, 5, 1, 3)

−B0(0, 1, 3)B0(0, 6, 7)B0(p
2, 4, 5)

Ũ6b = U6b(p
2, 1, 3, 4, 5, 6, 8)−B0(0, 1, 3)T4a(p

2, 5, 4, 6, 8)−B0(0, 6, 8)T4a(p
2, 4, 5, 1, 3)

−B0(0, 1, 3)B0(0, 6, 8)B0(p
2, 4, 5)

Ũ6c = U6c(p
2, 1, 2, 3, 4, 6, 7)−B0(0, 6, 7)T4a(p

2, 1, 2, 3, 4)−B0(p
2, 1, 2)T4a(0, 3, 4, 6, 7)

−B0(p
2, 1, 2)B0(0, 3, 4)B0(0, 6, 7)

Ũ6m = U6m(p
2, 1, 2, 3, 4, 6, 8)−B0(0, 6, 8)T4a(p

2, 1, 2, 3, 4)−B0(p
2, 1, 2)T4a(0, 3, 4, 6, 8)

−B0(p
2, 1, 2)B0(0, 3, 4)B0(0, 6, 8)

Ũ6n = U6n(p
2, 1, 2, 3, 6, 7, 8)−B0(p

2, 1, 2) [T4a(0, 7, 8, 3, 6)−B0(0, 7, 8)B0(0, 3, 6)]

−B0(p
2, 7, 8) [T4a(0, 1, 2, 3, 6)−B0(0, 1, 2)B0(0, 3, 6)]

−B0(p
2, 1, 2)B0(p

2, 7, 8)B0(0, 3, 6)

Ũ5a1 = U5a1(p
2, 1, 3, 5, 6, 7)−B0(0, 1, 3)T3a1(p

2, 5, 6, 7)−B0(0, 6, 7)T3a1(p
2, 5, 1, 3)

Ũ5a2 = U5a2(p
2, 1, 3, 5, 6, 7)−B0(0, 6, 7)T3a1(p

2, 1, 3, 5)

Ũ5b1 = U5b1(p
2, 2, 3, 4, 6, 7)−B0(0, 6, 7)T3a1(p

2, 4, 2, 3)

Ũ5b2 = U5b2(p
2, 2, 3, 4, 6, 7)−B0(0, 6, 7)T3a1(p

2, 2, 3, 4)

Ũ5c1 = U5c1(p
2, 1, 2, 3, 6, 7)−B0(p

2, 1, 2)T3a1(0, 7, 6, 3)

Ũ6m1 = U6m1(p
2, 1, 2, 3, 4, 6, 8)−B0(0, 6, 8)T4a3(p

2, 1, 2, 3, 4)

Ũ6m3 = U6m3(p
2, 1, 2, 3, 4, 6, 8)−B0(0, 6, 8)T4a2(p

2, 1, 2, 3, 4)

−B0,m1
(p2, 2, 1)T4a(0, 3, 4, 6, 8)−B0,m1

(p2, 1, 2)B0(0, 3, 4)B0(0, 6, 8)

Ũ6n2 = U6n2(p
2, 1, 2, 3, 6, 7, 8)−B0,m1

(p2, 2, 1) [T4a(0, 7, 8, 3, 6)

+B0(p
2, 7, 8)B0(0, 3, 6)−B0(0, 7, 8)B0(0, 3, 6)]

Table 1. Definition of linear combinations of the master integrals, in which all higher-order terms

in ǫ of the basic integral functions (labeled T...,delta in appendix A) drop out. These are used in

tables 2 and 3 for benchmarks and comparisons. For the mass parameters the shorthand notations

1 ≡ m2
1
, etc. have been employed. See appendix A for the definition of the functions in the

subtraction terms.
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p2 = 1.0, m2
1 = 1.1, m2

2 = 1.2, m2
3 = 1.3, m2

4 = 1.4, m2
5 = 1.5, m2

6 = 1.6, m2
7 = 1.7, m2

8 = 1.8

TVID 2.0 FIESTA 4.1

Result Time [s] Result Time [s]

U4a 38.7964435845(4) 6.6 38.80(1) 283

Ũ5a 9.828362321(2) 0.5 9.830(2) 283

Ũ5b 38.34202364(1) 6.1 38.342(2) 325

Ũ5c −2.97969664(6) 9.4 −2.980(2) 354

Ũ6a 1.196967810(2) 0.5 1.1970(1) 315

Ũ6b 1.214272730(7) 8.0 1.2143(1) 314

Ũ6c −9.4490640(1) 7.5 −9.4491(1) 340

Ũ6m −9.64795183(6) 160 −9.6480(1) 336

Ũ6n −10.703719678(7) 118 −10.7037(2) 365

Ũ7m 0.56501718077(4) 78 0.56502(2) 320

U7a −1.34380486(1) 206 −1.34381(1) 275

U8a 0.1224166(1) 232 0.122418(1) 542

U4a1 −1.4651121210(1) 1.5 1.465(3) 163

U4a2 −4.0102924343(4) 3.0 −4.0103(3) 80

U4a3 −3.1152647692(8) 9.4 −3.1153(4) 93

Ũ5a1 5.0248990852(4) 0.5 5.0248(1) 164

Ũ5a2 −3.3851828312(5) 0.5 −3.3852(2) 156

Ũ5b1 7.419421372(3) 13.5 7.4194(1) 166

Ũ5b2 −3.261463313(4) 30 −3.2615(2) 153

Ũ5c1 −4.0173586528(4) 30 −4.0174(2) 165

Ũ6m1 0.74392431(2) 638 0.74392(3) 148

U6m2 −1.33361342263(2) 12.7 −1.33362(1) 105

Ũ6m3 −0.1300547(6) 623 −0.1301(1) 195

U6n1 −1.63165820287(4) 7.5 −1.63166(1) 100

Ũ6n2 0.36932150(7) 444 0.3693(1) 175

U7a1 0.101053(1) 812 0.101054(1) 264

U7a2 0.220078(1) 822 0.220080(3) 269

Table 2. Comparison of results between TVID 2.0 and FIESTA 4.1 [24]. Where applicable, the

linear combinations defined in table 1 are used, indicated by the tilde (Ũxxx). The table lists the

finite part of a series expansion in ǫ, with the numbers in brackets giving the integration error in the

last quoted digit. Also given are the run times for the numerical integration of the two programs,

which exclude the preparation time (in Mathematica) of the integrals in either case.
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p2 = 40, m2
1 = 1.1, m2

2 = 1.2, m2
3 = 1.3, m2

4 = 1.4, m2
5 = 1.5, m2

6 = 1.6, m2
7 = 1.7, m2

8 = 1.8

TVID 2.0 FIESTA 4.1

Result Time [s] Result Time [s]

U4a −149.6944621(5) 17.6 −149.7(1) 3052

+9.6099138(5) i +9.6(1) i

Ũ5a 53.705925142(1) 0.5 53.71(8) 2865

−20.874552008(1) i −20.88(8) i

Ũ5b 91.63152677(6) 15.3 91.64(7) 2826

−2.54536001(6) i −2.54(7) i

Ũ5c −18.763016(2) 18.4 −18.8(2) 3728

+0.452121(2) i +0.5(2) i

Ũ6a 3.347688278(2) 0.6 3.35(2) 5216

−2.796453548(2) i −2.79(2) i

Ũ6b 3.461079863(7) 16.1 3.46(1) 5300

−0.420922147(7) i −0.42(1) i

Ũ6c −8.7387474(1) 15.0 −8.74(1) 5549

−0.3410452(1) i −0.34(1) i

Ũ6m −11.094545131(6) 989 −11.094(7) 5585

+4.390391111(6) i +4.391(7) i

U7a 0.572024801(5) 174 0.57186(5) 6116

−0.361496849(5) i −0.36139(4) i

U8a 0.01238717(2) 253 0.012353(3) 11407

−0.16344185(2) i −0.016361(3) i

Table 3. Same as table 2, but for a larger value of p2.

As can be seen from the tables, there is generally excellent agreement between TVID 2

and FIESTA within integration errors. Only for the cases with 7 or more propagators

(U7a and U8a) that require contour deformation in sector decomposition (table 3), the

discrepancy between the two programs is larger than the integration error reported by

FIESTA. This may in part be due to the contour deformation being unable to make the

integrands sufficiently smooth in those cases.

TVID 2 generally achieves 6–10 digit precision within run times ranging from less

than 1 second to about 20 minutes. The precision and run time are not crucially affected

by the presence of physical cuts (i.e. whether p2 is below or above any of the thresholds

of the integral). Note that the run times shown in the tables only reflect the time for

the numerical integrations. Additionally, the preparation time for the integrals in the

Mathematica module of FIESTA can be significant, in particular for the cases that

require contour deformation (table 3).2

2In fact, the preparation of the contour deformation for U8a in FIESTA takes several days.

– 12 –



J
H
E
P
0
1
(
2
0
2
0
)
0
2
4

5 Conclusions

Numerical integration is currently the most efficient way to evaluate the finite pieces of

multi-loop integrals with arbitrary masses, which set a multitude of different scales. The

program TVID 2 aims to provide an efficient and automizable procedure for the numerical

evaluation of a large class of three-loop self-energy integrals.

The master topologies fall into one of two categories. Topologies containing one or two

sub-loop self-energies are generally UV-divergent and are treated by subtracting simpler,

known integrals with the same divergence structure. The remaining finite pieces are written

as one- or two-dimensional integrals over analytically known functions with the help of

dispersion relations, which in turn can be evaluated numerically. The topologies without

sub-loops self-energies are UV-finite and can be performed as two-dimensional integrals

containing one-loop triangle functions in integrand. The general procedure for this class has

been described in ref. [35] and was adapted to avoid complex contour deformation. Several

technical subtleties when following this approach are discussed in this paper. TVID 2

contains also contains all the basic elements of the S2LSE package for two-loop self-energy

master integrals [42].

In order to confirm the correctness and accuracy of the implementation we carried out

a multitude of independent comparisons. To that end we utilized the publicly available

package FIESTA and found excellent agreement for almost all the master integrals. If

the external momentum squared is sufficiently large so that the master integrals develop a

non-zero imaginary part, the precision and accuracy of FIESTA is significantly diminished,

leading to less perfect agreement between the two programs in some cases. Generally,

TVID 2 achieves 6–10 digit precision for all the master integrals in run times of seconds

to minutes.

At the present time a few issues remain to be addressed before one has complete com-

putational control over the entirety of three-loop self-energy-type integrals. The current

version of TVID is not equipped to treat integrals that exhibit soft/collinear divergencies,

which can occur in some master integrals for certain input parameter combinations. Fur-

thermore, even though we cover a large subset of master integrals, there is a number of

topologies missing, specifically the descendants of the “Mercedes star” and the non-planar

topologies. These issues are delegated to future work.
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A Subtraction of divergent terms

Before the master integrals in figures 1, 2 and 3 can be evaluated numerically, one needs to

remove their UV divergencies. This can be achieved by subtracting simpler integrals that

have the same UV singularity structure, but that are known in the literature. The finite

remainder parts are denoted by Txxx,sub and Uxxx,sub in the equations below. These can

be evaluated with the numerical part of TVID 2.

For the sake of brevity, the following shorthand notations are used in this section:

B0(p
2, 1, 2) ≡ B0(p

2,m2
1,m

2
2), etc. (A.1)

B0,m1
(p2, 1, 2) =

∂

∂m2
1

B0(p
2, 1, 2) (A.2)

B
(n)
0 denotes the B0 function with the order-n Taylor expansion subtracted,

B
(n)
0 (p2, 1, 2) = B0(p

2, 1, 2)−

n∑

k=0

p2k

k!

∂k

∂(p2)k
B0(p

2, 1, 2)
∣∣∣
p2=0

. (A.3)

T
(n)
3a , T

(n)
4a and T

(n)
5a are defined in a similar fashion.

The discontinuities of B0 and B0,m1
are given by, in D = 4 dimensions,

∆B0(s,m
2
a,m

2
b) =

1

s

√
λ(s,m2

a,m
2
b)Θ

(
s− (ma +mb)

2
)
, (A.4)

∆B0,m1
(s,m2

a,m
2
b) =

m2
a −m2

b − s

s
√
λ(s,m2

a,m
2
b)

Θ
(
s− (ma +mb)

2
)
, (A.5)

where

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + xz) , (A.6)

and Θ(t) is the Heaviside step function.

The UV subtractions for the two-loop integrals can be taken over from ref. [42]:

T3a(p
2,2,3,4)=T3(2,3,4)+T ′

3a(0,2,3,4)

+T3a,sub(p
2,2,3,4)+ǫT3a,delta(p

2,2,3,4)+O(ǫ2) , (A.7)

T3a,sub(p
2,2,3,4)=−

∫
∞

0
ds∆B0(s,2,3)B

(1)
0 (p2,s,4) , (A.8)

T3a1(p
2,2,3,4)=T3,m1

(2,3,4)+T3a1,sub(p
2,2,3,4)+T3a1,delta(p

2,2,3,4)+O(ǫ2) , (A.9)

T3a1,sub(p
2,2,3,4)=−

∫
∞

0
ds∆B0,m1

(s,2,3)B
(0)
0 (p2,s,4) , (A.10)

T4a(p
2,1,2,3,4)=T4a(0,1,2,3,4)+B0(1,3,4)B

(0)
0 (p2,1,2)

+T4a,sub(p
2,1,2,3,4)+ǫT4a,delta(p

2,1,2,3,4)+O(ǫ2) , (A.11)

T4a,sub(p
2,1,2,3,4)=−

∫
∞

0
ds

∆B0(s,3,4)

s−m2
1−iε

B
(0)
0 (p2,s,2) , (A.12)

T4a1(p
2,1,2,3,4)=B0(1,3,4)B0,m1

(p2,1,2)

+T4a1,sub(p
2,1,2,3,4)+ǫT4a1,delta(p

2,1,2,3,4)+O(ǫ2) , (A.13)

T4a1,sub(p
2,1,2,3,4)=−

∫
∞

0
ds

∆B0(s,3,4)

(s−m2
1−iε)2

[B0(p
2,s,2)−B0(p

2,1,2)] . (A.14)
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The two-loop vacuum integral T3 is known analyically [43–45], and T ′

3a(0, . . .) and T4a(0, . . .)

can be reduced to linear combinations of T3 functions and one-loop functions by using

partial fractioning and integration-by-parts relations.3 Here T ′

3a denotes the derivative of

T3a with respect to p2.

In a similar fashion, the UV subtraction for the three-loop self-energy integrals Uxxx

leads to the functions Uxxx(0, . . .), U
′

xxx(0, . . .) and U ′′

xxx(0, . . .), which are three-loop vac-

uum integrals. They also can be reduced to basic master vacuum integrals [30, 32] with

the help of partial fractioning and integration by parts.3 As before, U ′

xxx and U ′′

xxx denote

the first and second derivative of Uxxx with respect to p2.

U4a(p
2,1,3,6,8)=U4a(0,1,3,6,8)+p2U ′

4a(0,1,3,6,8)+
p4

2
U ′′

4a(0,1,3,6,8)

+U4a,sub(p
2,1,3,6,8) , (A.15)

U4a,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2∆B0(s1,1,3)∆B0(s2,6,8)B

(2)
0 (p2,s1,s2) , (A.16)

U5a(p
2,1,3,5,6,7)=U5a(0,1,3,5,6,7)+p2U ′

5a(0,1,3,5,6,7)

+B0(0,1,3)T
(1)
3a (p2,5,6,7)+B0(0,6,7)T

(1)
3a (p2,1,3,5)

+U5a,sub(p
2,1,3,5,6,7) , (A.17)

U5a,sub(. . .)=−

∫
∞

0
ds∆B0(s,1,3)B

(0)
0 (s,6,7)B

(1)
0 (p2,s,5)

−

∫
∞

0
ds∆B0(s,6,7)B

(0)
0 (s,1,3)B

(1)
0 (p2,s,5) , (A.18)

U5b(p
2,2,3,4,6,7)=U5b(0,2,3,4,6,7)+p2U ′

5b(0,2,3,4,6,7)

+B0(4,6,7)T
(1)
3a (p2,2,3,4)

+U5b,sub(p
2,2,3,4,6,7) , (A.19)

U5b,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2

∆B0(s1,6,7)

s1−m2
4−iε

∆B0(s2,2,3)B
(1)
0 (p2,s1,s2) , (A.20)

U5c(p
2,1,2,3,6,7)=U5c(0,1,2,3,6,7)+p2U ′

5c(0,1,2,3,6,7)

+T3a(1,3,6,7)B
(1)
0 (p2,1,2)

+U5c,sub(p
2,1,2,3,6,7) , (A.21)

U5c,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2

∆B0(s1,s2,3)

s1−m2
1−iε

∆B0(s2,6,7)B
(1)
0 (p2,s1,2) , (A.22)

U6a(p
2,1,3,4,5,6,7)=U6a(0,1,3,4,5,6,7)

+B0(4,1,3)T
(0)
4a (p2,4,5,6,7)+B0(4,6,7)T

(0)
4a (p2,4,5,1,3)

−B0(4,1,3)B0(4,6,7)B
(0)
0 (p2,4,5)

+U6a,sub(p
2,1,3,4,5,6,7) , (A.23)

U6a,sub(. . .)=−

∫
∞

0
ds

∆B0(s,1,3)

s−m2
4−iε

[B0(s,6,7)−B0(4,6,7)]B
(0)
0 (p2,s,5)

−

∫
∞

0
ds

∆B0(s,6,7)

s−m2
4−iε

[B0(s,1,3)−B0(4,1,3)]B
(0)
0 (p2,s,5) , (A.24)

3Explicit formulae are included in the Mathematica part of TVID 2.
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U6b(p
2,1,3,4,5,6,8)=U6b(0,1,3,4,5,6,8)

+B0(4,1,3)T
(0)
4a (p2,5,4,6,8)+B0(5,6,8)T

(0)
4a (p2,4,5,1,3)

−B0(4,1,3)B0(5,6,8)B
(0)
0 (p2,4,5)

+U6b,sub(p
2,1,3,4,5,6,8) , (A.25)

U6b,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2

∆B0(s1,1,3)

s1−m2
4−iε

∆B0(s2,6,8)

s2−m2
5−iε

B
(0)
0 (p2,s1,s2) , (A.26)

U6c(p
2,1,2,3,4,6,7)=U6c(0,1,2,3,4,6,7)

+[T4a(1,4,3,6,7)−B0(1,3,4)B0(4,6,7)]B
(0)
0 (p2,1,2)

+B0(4,6,7)T
(0)
4a (p2,1,2,3,4)

+U6c,sub(p
2,1,2,3,4,6,7) , (A.27)

U6c,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2

∆B0(s1,s2,3)

s1−m2
1−iε

∆B0(s2,6,7)

s2−m2
4−iε

B
(0)
0 (p2,s1,2) , (A.28)

U6m(p
2,1,2,3,4,6,8)=U6m(0,1,2,3,4,6,8)

+B0(0,6,8)T
(0)
4a (p2,1,2,3,4)+T4a(0,0,0,6,8)B

(0)
0 (p2,1,2)

+U6m,sub(p
2,1,2,3,4,6,8) , (A.29)

U6m,sub(. . .)=−

∫
ds∆B0(s,6,8)

[
T
(0)
5a (p2,1,2,3,4,s)

−
1

s

[
B0(0,0,s)B

(0)
0 (p2,1,2)−T

(0)
4a (p2,1,2,3,4)

]]
, (A.30)

U6n(p
2,1,2,3,6,7,8)=U6n(0,1,2,3,6,7,8)

+B0(0,3,6) [B0(p
2,1,2)B0(p

2,7,8)−B0(0,1,2)B0(0,7,8)]

+T4a(0,0,0,3,6) [B
(0)
0 (p2,1,2)+B

(0)
0 (p2,7,8)]

+U6n,sub(p
2,1,2,3,6,7,8) , (A.31)

U6n,sub(. . .)=−

∫
ds∆B0(s,3,6)

[
T
(0)
5a (p2,1,2,s,7,8)

−
1

s

[
B0(0,0,s)

(
B

(0)
0 (p2,1,2)+B

(0)
0 (p2,7,8)

)

−B0(p
2,1,2)B0(p

2,7,8)+B0(0,1,2)B0(0,7,8)
]]
, (A.32)

U7m(p
2,1,2,3,4,5,6,8)=B0(5,6,8)T5a(p

2,1,2,3,4,5)+U7m,sub(p
2,1,2,3,4,5,6,8) , (A.33)

U7m,sub(. . .)=−

∫
∞

0
ds

∆B0(s,6,8)

s1−m2
5−iε

T5a(p
2,1,2,3,4,s) . (A.34)

U7a and U8a are UV finite.

U4a1(p
2,1,3,6,8)=

∂

∂m2
1

U4a(0,1,3,6,8)+p2
∂

∂m2
1

U ′

4a,m1
(0,1,3,6,8)

+U4a1,sub(p
2,1,3,6,8) , (A.35)

U4a1,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2∆B0,m1

(s1,1,3)∆B0(s2,6,8)B
(1)
0 (p2,s1,s2) ,

(A.36)
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U4a2(p
2,1,3,6,8)=

∂2

∂m2
1∂m

2
3

U4a(0,1,3,6,8)+U4a2,sub(p
2,1,3,6,8) , (A.37)

U4a2,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2∆B0,m1

(s1,1,6)∆B0,m1
(s2,3,8)B

(1)
0 (p2,s1,s2) ,

(A.38)

U4a3(p
2,1,3,6,8)=

1

2

∂2

∂(m2
1)

2
U4a(0,1,3,6,8)+

p2

2

∂2

∂(m2
1)

2
U ′

4a(0,1,3,6,8)

+U4a3,sub(p
2,1,3,6,8) , (A.39)

U4a3,sub(. . .)=
1

2

∫
∞

0
ds1

∫
∞

0
ds2∆K3(s1,1,3)∆B0(s2,6,8)B

(1)
0,m1

(p2,s1,s2) ,

where K3(s,m
2
a,m

2
b)=

s−m2
a−m2

b

m2
a

√
λ(s,m2

a,m
2
b)

Θ
(
s−(ma+mb)

2
)
, (A.40)

U5a1(p
2,1,3,5,6,7)=

∂

∂m2
5

U5a(0,1,3,5,6,7)

+B0(0,1,3)T
(0)
3a1(p

2,5,6,7)+B0(0,6,7)T
(0)
3a1(p

2,5,1,3)

+U5a1,sub(p
2,1,3,5,6,7) , (A.41)

U5a1,sub(. . .)=−

∫
∞

0
ds∆B0(s,1,3)B

(0)
0 (s,6,7)B

(0)
0,m1

(p2,5,s)

−

∫
∞

0
ds∆B0(s,6,7)B

(0)
0 (s,1,3)B

(0)
0,m1

(p2,5,s) , (A.42)

U5a2(p
2,1,3,5,6,7)=

∂

∂m2
1

U5a(0,1,3,5,6,7)+B0(0,6,7)T
(0)
3a1(p

2,1,3,5)

+U5a2,sub(p
2,1,3,5,6,7) , (A.43)

U5a2,sub(. . .)=−

∫
∞

0
ds∆B0,m1

(s,1,3)B
(0)
0 (s,6,7)B

(0)
0 (p2,5,s)

−

∫
∞

0
ds∆B0(s,6,7)B

(0)
0,m1

(s,1,3)B
(0)
0 (p2,5,s) , (A.44)

U5b1(p
2,2,3,4,6,7)=

∂

∂m2
4

U5b(0,2,3,4,6,7)+B0(4,6,7)T
(0)
3a1(p

2,4,2,3)

+U5b1,sub(p
2,2,3,4,6,7) , (A.45)

U5b1,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2

∆B0(s1,6,7)

(s1−m2
4−iε)2

∆B0(s2,2,3)

×[B
(0)
0 (p2,s1,s2)−B

(0)
0 (p2,4,s2)] , (A.46)

U5b2(p
2,2,3,4,6,7)=

∂

∂m2
2

U5b(0,2,3,4,6,7)+B0(4,6,7)T
(0)
3a1(p

2,2,3,4)

+U5b2,sub(p
2,2,3,4,6,7) , (A.47)

U5b2,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2

∆B0(s1,6,7)

s1−m2
4−iε

∆B0,m1
(s2,2,3)B

(0)
0 (p2,s1,s2) ,

(A.48)
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U5c1(p
2,1,2,3,6,7)=

∂

∂m2
7

U5c(0,1,2,3,6,7)+T3a1(1,7,6,3)B
(0)
0 (p2,1,2)

+U5c1,sub(p
2,1,2,3,6,7) , (A.49)

U5c1,sub(. . .)=

∫
∞

0
ds1

∫
∞

0
ds2

∆B0,m1
(s1,7,s2)

s1−m2
1−iε

∆B0(s2,3,6)B
(0)
0 (p2,s1,2) ,

(A.50)

U6m1(p
2,1,2,3,4,6,8)=

∂

∂m2
3

U6m(0,1,2,3,4,6,8)+B0(0,6,8)T
(0)
4a3(p

2,1,2,3,4)

+U6m1,sub(p
2,1,2,3,4,6,8) , (A.51)

U6m1,sub(. . .)=
∂

∂m2
3

U6m,sub(. . .) , (A.52)

U6m3(p
2,1,2,3,4,6,8)=

∂

∂m2
2

U6m(0,1,2,3,4,6,8)

+B0(0,6,8)T
(0)
4a2(p

2,1,2,3,4)+T4a(0,0,0,6,8)B
(0)
0,m1

(p2,2,1)

+U6m3,sub(p
2,1,2,3,4,6,8) , (A.53)

U6m3,sub(. . .)=
∂

∂m2
2

U6m,sub(. . .) , (A.54)

U6n2(p
2,1,2,3,6,7,8)=

∂

∂m2
2

U6n(0,1,2,3,6,7,8)+T4a(0,0,0,3,6)B
(0)
0,m1

(p2,2,1)

+B0(0,3,6) [B0,m1
(p2,2,1)B0(p

2,7,8)

−B0,m1
(0,2,1)B0(0,7,8)]

+U6n2,sub(p
2,1,2,3,6,7,8) , (A.55)

U6n2,sub(. . .)=
∂

∂m2
2

U6n,sub(. . .) , (A.56)

where

T4a2(p
2,1,2,3,4)=

∂

∂m2
2

T4a(p
2,1,2,3,4)

=
1

m2
1+m2

2−p2

{[
2m2

3(m
2
1−m2

3+m2
4)√

λ(1,3,4)

[
T3a1(p

2,3,2,4)+(D−3)T4a(p
2,1,2,3,4)

−B0(0,3,3)B0(p
2,1,2)

]]
+

[
3↔ 4

]

−T3a1(p
2,2,3,4)+(2D−7)T4a(p

2,1,2,3,4)

−2m2
1T4a1(p

2,1,2,3,4)

}
, (A.57)

T4a3(p
2,1,2,3,4)=

∂

∂m2
3

T4a(p
2,1,2,3,4)

=
1√

λ(1,3,4)

{
(m2

1−m2
3−m2

4)
[
B0(0,3,3)B0(p

2,1,2)−T3a1(p
2,3,2,4)

−(D−3)T4a(p
2,1,2,3,4)

]

+2m2
4

[
B0(0,4,4)B0(p

2,1,2)−T3a1(p
2,4,3,2)

]}
(A.58)
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can be obtained from integration-by-parts identities. As described in section 4,
∂

∂m2

3

U6m,sub(. . .),
∂

∂m2

2

U6m,sub(. . .) and
∂

∂m2

2

U6n,sub(. . .) are evaluated by means of a numeri-

cal differentiation in TVID 2.

U6m2 and U6n1 are UV finite.

U6m2(p
2, 1, 2, 3, 4, 6, 8) = −

∫
ds ∆B0,m1

(s, 6, 8)T5a(p
2, 1, 2, 3, 4, s) , (A.59)

U6n1(p
2, 1, 2, 3, 6, 7, 8) = −

∫
ds ∆B0,m1

(s, 3, 6)T5a(p
2, 1, 2, s, 7, 8) . (A.60)

B TVID 2 manual

Program name and version. TVID, version 2.0 (August 2019).

System requirements. Linux-compatible platform; GNU C compiler gcc 4.4 or sim-

ilar; Mathematica 10.x [46].

Copyright. The TVID source code may be freely used and incorporated into other

projects, but the authors ask that always a reference to this document and to ref. [30]

be included.

External code elements. TVID includes the Gauss-Kronrod routine QAG from the

Quadpack library [47], translated into C++, and the C++ package doubledouble for

30 digit floating point arithmetic [48].

It further requires the package LoopTools [49], version 2.10 or higher, which must

be installed by the user separately.

Code availability. The TVID source code is available for download at

http://www.pitt.edu/∼afreitas/.

B.1 Numerical part

The numerical part of TVID is programmed in C and evaluates the finite remainder func-

tions defined in appendix A. It is called with the command

ucall infile outfile

where infile is the name of the input file, and outfile is the name of the file where the

results shall be placed. By default, ucall is located in the subdirectory ccode.

infile may contain a list of lines, separated by line breaks, where each line has the form

fname parA parB . . .

Here fname is the name of the function to be evaluated, see tables 4 and 5, and parA,

parB, etc. are the numerical momentum and mass parameters supplied. For example,

U4 1 2 3 4

U5a 20 1 1 1.5 2 2
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Symbol fname Symbol used

Function Input parameters used by numerical by algebraic

code ucall Mathematica code

U4,sub m1,m2,m3,m4 U4 U4sub

U4,sub,0 m2,m3,m4 U40 U4sub0

U5,sub m1,m2,m3,m4,m5 U5 M21121

U5,sub,0 m3,m4,m5 U50 M1p1121

U6,sub m1,m2,m3,m4,m5,m6 U6 U6sub

Table 4. Symbols for basic finite remainder functions used in numerical and algebraic parts of

TVID 1 [31].

asks for the evaluation of U4,sub(1, 2, 3, 4) and of U5a,sub(20, 1, 1, 1.5, 2, 2). When ucall is

completed, it fills outfile with a list of the numerical results, again separated by line breaks.

For instance, the example above will return

-5.555128856244808e1 0.0

0.306188821751692 -6.207131465925367

Here the first and second number in each row are the real and imaginary part of the result,

respectively.

The option -e allows the user to also receive information about the integration error:

ucall infile outfile -e

In this case, a third number is added to each row in outfile, which provides the integration

error. For the example above, one obtains

-5.555128856244808e1 0.0 0.771470006356965e-10

0.306188821751692 -6.207131465925367 0.564457354626832e-11

Internally, the numerical code uses the Gauss-Kronrod routine QAG from the Quad-

pack library [47] to evaluate the dispersion integrals. This routine has been translated

into C++ from the original FORTRAN code, and amended to facilitate 30 digit floating

point arithmetic from the package doubledouble [48].

B.2 Algebraic part

The algebraic part of TVID runs in Mathematica 10 [46] and performs the separation of

divergent and finite pieces of the master integrals. The program is loaded in Mathematica

with

<< mcode/i3.m

The two main user functions are PrepInt and UCall (and the variant UCallE of the latter).
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Symbol fname Symbol used

Function Input parameters used by numerical by algebraic

code ucall Mathematica code

T3a,sub p2,m2,m3,m4 T3a T3asub

T3a1,sub p2,m2,m3,m4 T3a1 T3a1sub

T4a,sub p2,m1,m2,m3,m4 T3a T3asub

T4a1,sub p2,m1,m2,m3,m4 T3a1 T3a1sub

T5a p2,m1,m2,m3,m4,m5 T5a T5a

U4a,sub p2,m1,m3,m6,m8 U4a U4asub

U5a,sub p2,m1,m3,m5,m6,m7 U5a U5asub

U5b,sub p2,m2,m3,m4,m6,m7 U5b U5bsub

U5c,sub p2,m1,m2,m3,m6,m7 U5c U5csub

U6a,sub p2,m1,m3,m4,m5,m6,m7 U6a U6asub

U6b,sub p2,m1,m3,m4,m5,m6,m8 U6b U6bsub

U6c,sub p2,m1,m2,m3,m4,m6,m7 U6c U6csub

U6m,sub p2,m1,m2,m3,m4,m6,m8 U6m U6msub

U6n,sub p2,m1,m2,m3,m6,m7,m8 U6n U6nsub

U7m,sub p2,m1,m2,m3,m4,m5,m6,m8 U7m U7msub

U7a p2,m1,m2,m3,m4,m6,m7,m8 U7a U7a

U8a p2,m1,m2,m3,m4,m5,m6,m7,m8 U8a U8a

U4a1,sub p2,m1,m3,m6,m8 U4a1 U4a1sub

U4a2,sub p2,m1,m3,m6,m8 U4a2 U4a2sub

U4a3,sub p2,m1,m3,m6,m8 U4a3 U4a3sub

U5a1,sub p2,m1,m3,m5,m6,m7 U5a1 U5a1sub

U5a2,sub p2,m1,m3,m5,m6,m7 U5a2 U5a2sub

U5b1,sub p2,m2,m3,m4,m6,m7 U5b1 U5b1sub

U5b2,sub p2,m2,m3,m4,m6,m7 U5b2 U5b2sub

U5c1,sub p2,m1,m2,m3,m6,m7 U5c1 U5c1sub

U6m1,sub p2,m1,m2,m3,m4,m6,m8 U6m1 U6m1sub

U6m2 p2,m1,m2,m3,m4,m6,m8 U6m2 U6m2

U6m3,sub p2,m1,m2,m3,m4,m6,m8 U6m3 U6m3sub

U6n1 p2,m1,m2,m3,m6,m7,m8 U6n1 U6n1

U6n2,sub p2,m1,m2,m3,m6,m7,m8 U6n2 U6n2sub

U7a1 p2,m1,m2,m3,m4,m6,m7,m8 U7a1 U7a1

U7a2 p2,m1,m2,m3,m4,m6,m7,m8 U7a2 U7a2

Table 5. New symbols for basic finite remainder functions defined in TVID 2.
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PrepInt takes as input any master integral in figures 1, 2 and 3, as well as the three-

loop vacuum master integrals U4, U5 or U6, or a linear combination thereof. It returns

a series expansion in ǫ, whose coefficients contain the finite remainder functions listed in

tables 4 and 5. For example

In[2]:= PrepInt[SetPrecision[U4a[40, 1.1, 1.3, 1.6, 1.8], 30]];

In[3]:= N[%]

4.15667 8.1407 11.2135

Out[3]= (-734344. + 0. I) + ------- - ------ + ------- +

3 2 $eps

$eps $eps

> U4asub[40., 1.1, 1.3, 1.6, 1.8] - 9767.45 U4sub[1.1, 1.3, 1.6, 1.8] -

> 9844.68 U4sub[1.3, 1.1, 1.6, 1.8] - 9844.53 U4sub[1.6, 1.1, 1.3, 1.8] -

> 9767.1 U4sub[1.8, 1.1, 1.3, 1.6]

Here the directive SetPrecision has been used to mitigate numerical rounding errors

within Mathematica. PrepInt can also be called with symbols for the momentum and

mass parameters, e.g. PrepInt[U4a[ps,m1s,m3s,m6s,m8s]], although this can lead to

fairly large expressions.

UCall invokes the numerical code ucall (see previous subsection) to evaluate the finite

remainder functions in the output of PrepInt. For the example above this leads to

In[4]:= UCall[%]

4.15667 8.1407 11.2135

Out[4]= (-149.694 + 9.60991 I) + ------- - ------ + -------

3 2 $eps

$eps $eps

Technically, the executable ucall is called through an external operating system command,

using the Mathematica function Run. The function UCall looks for the executable ucall

in the subdirectory ccode of the TVID installation. If the user places ucall in a different

directory, the variable $Directory in mcode/i3.m must be adjusted. For passing input

and output to and from the executable, UCall uses the filenames specified in the variables

$FileIn and $FileOut, respectively. In most cases, the user will not need to change any

of these global variables.

– 22 –



J
H
E
P
0
1
(
2
0
2
0
)
0
2
4

The variant UCallE also returns integration errors for the various numerical master

functions (by using the option -e when calling ucall). For the example above this yields

In[4]:= UCallE[%]

4.15667 8.1407 11.2135

Out[4]= (-734287. + 9.60991 I) + ------- - ------ + ------- -

3 2 $eps

$eps $eps

-11

> 9767.45 (-22.9769 + 2.58504 10 pm[1]) -

-11

> 9844.68 (-20.0775 + 2.30287 10 pm[2]) -

-11

> 9844.53 (-16.7633 + 2.00197 10 pm[3]) -

-11 -9

> 9767.1 (-15.0534 + 2.55672 10 pm[4]) + 3.71208 10 pm[5]

In this output, the numbers in front of pm[n] denote the errors of the five finite remainder

functions that are visible in the output Out[3] on page 22.

Examples for the use of TVID 2 can be found in the directory mcode.

examples vaccum.m demonstrates the use of 3-loop vacuum integrals, whereas

examples self.m reproduces the numbers in tables 2 and 3.

B.3 Installation

TVID 2 comes in a compressed tar archive. After saving it in the desired directory, it can

be unpacked with the command

tar xzf tvid.tgz

The program contains the following subdirectory structure:

ccode the C/C++ files for the numerical part of TVID 2;

ccode/doubledouble the doubledouble for 30 digit floating point arithmetic [48];

mcode the Mathematica files for the algebraic part of TVID 2,

as well as examples.

Before compiling, the user must ensure that LoopTools version 2.10 or higher is installed

on the system. It may be necessary to adjust the LoopTools path in ccode/makefile.
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To compile the numerical C part of TVID, execute the commands

cd ccode

make

The make file provided has been tested on Scientific Linux 6. It makes use of the fcc script

included in LoopTools, which should help to facilitate compilation on a range of UNIX-

type operating systems. The authors cannot guarantee that the installation process is

successful on any operating system, but they appreciate any helpful suggestions, comments

and bug reports.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Freitas, Numerical multi-loop integrals and applications, Prog. Part. Nucl. Phys. 90

(2016) 201 [arXiv:1604.00406] [INSPIRE].

[2] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15

(2000) 725 [hep-ph/9905237] [INSPIRE].

[3] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res.

Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

[4] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Planar

topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

[5] T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic

polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].

[6] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys.

Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].

[7] A. Levin, Elliptic polylogarithms: an analytic theory, Compos. Math. 106 (1997) 267.

[8] A. Levin and G. Racinet, Towards multiple elliptic polylogarithms, math/0703237.

[9] S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theor.

148 (2015) 328 [arXiv:1309.5865] [INSPIRE].

[10] L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph in two space-time

dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55 (2014)

102301 [arXiv:1405.5640] [INSPIRE].

[11] L. Adams and S. Weinzierl, Feynman integrals and iterated integrals of modular forms,

Commun. Num. Theor. Phys. 12 (2018) 193 [arXiv:1704.08895] [INSPIRE].

[12] J. Ablinger et al., Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams, J.

Math. Phys. 59 (2018) 062305 [arXiv:1706.01299] [INSPIRE].

[13] J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic

Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev.

Lett. 120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].

– 24 –



J
H
E
P
0
1
(
2
0
2
0
)
0
2
4

[14] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals

on elliptic curves. Part I: general formalism, JHEP 05 (2018) 093 [arXiv:1712.07089]

[INSPIRE].

[15] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals

on elliptic curves II: an application to the sunrise integral, Phys. Rev. D 97 (2018) 116009

[arXiv:1712.07095] [INSPIRE].
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