THE SLOPE CONJECTURE FOR MONTESINOS KNOTS

STAVROS GAROUFALIDIS, CHRISTINE RUEY SHAN LEE, AND ROLAND VAN DER VEEN

ABSTRACT. The slope conjecture relates the degree of the colored Jones polynomial of a
knot to boundary slopes of essential surfaces. We develop a general approach that matches
a state-sum formula for the colored Jones polynomial with the parameters that describe
surfaces in the complement. We apply this to Montesinos knots proving the slope conjecture
for Montesinos knots, with some restrictions.
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1. INTRODUCTION

1.1. The slope conjecture and the case of Montesinos knots. The slope conjecture
relates one of the most important knot invariants, the colored Jones polynomial, to essential
surfaces in the knot complement |Garllb]. More precisely, the growth of the degree as a
function of the color determines boundary slopes. Understanding the topological information
that the polynomial detects in the knot is a central problem in quantum topology. The
conjecture suggests the polynomial can be studied through surfaces, which are fundamental
objects in 3-dimensional topology.

Our philosophy is that the connection follows from a deeper correspondence between
terms in an expansion of the polynomial and surfaces. This would potentially lead to a
purely topological definition of quantum invariants. The coefficients of the polynomial should
count isotopy classes of surfaces, much like in the case of the 3D-index [GHHRI16]. As a first
test of this principle, we focus on the slope conjecture for Montesinos knots. In this case
Hatcher-Oertel [HO89| provides a description of the set of essential surfaces of those knots.
In particular they give an effective algorithm to compute the set of boundary slopes of
incompressible and 0-incompressible surfaces in the complement of such knots.

We provide a state-sum formula for the colored Jones polynomial that allows us to match
the parameters of the terms of the sum that contribute to the degree of the polynomial with
the parameters that describe the locally essential surfaces. The key innovation of our state
sum is that we are able to identify those terms that actually contribute to the degree. The
resulting degree function is piecewise-quadratic, allowing application of quadratic integer
programming methods.

We interpret the curve systems formed by intersections with essential surfaces on a Conway
sphere enclosing a rational tangle in terms of these degree-maximizing skein elements in the
state sum. In this paper we carry out the matching for Montesinos knots but the state-sum
(11)) is valid in general. In fact using this framework, one could determine the degree of the
colored Jones polynomial and find candidates for corresponding essential surfaces in many
new cases beyond Montesinos knots.

While the local theory works in general, fitting together the surfaces in each tangle to
obtain a (globally) essential surface has yet to be done. The behavior of the colored Jones
polynomial under gluing of tangles has similar patterns, which may be explored in future
work.

The Montesinos knots, together with some well-understood algebraic knots, are knots that
have small Seifert fibered 2-fold branched covers [Mon73|, [Zie84]. For our purposes, we will
not use this abstract definition, and instead construct Montesinos links by inserting rational
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tangles into pretzel knots. More precisely, a Montesinos link is the closure of a list of rational
tangles arranged as in Figure [I] and concretely as in Figure 2 See Definition [2.4]

FIGURE 1. A Montesinos link.

FIGURE 2. The Montesinos link K(—3, —+, 1, 2).

Rational tangles are determined by rational numbers, see Section thus a Montesinos
link K (rg,71,...,7m) is encoded by a list of rational numbers r; € Q. Note that K (rg,r1,...,7n)
is a knot if and only if either there is only one even denominator, or, there is no even denom-
inator and the number of odd numerators is odd. When r; = 1/¢; is the inverse of an integer,
the Montesinos link K (1/qo,...,1/qy) is also known as the pretzel link P(qq, ..., qmn)-

1.2. Our results. Recall the colored Jones polynomial Jx ,(v) € Z[v*?] of a knot K colored
by the n-dimensional irreducible representation of sl [Tur88]. See Definition Our
variable v for the colored Jones polynomial is related to the skein theory variable A [Prz91]

and to the Jones variable ¢ [Jon87] by v = A™! = g~1. With our conventions, if 3; =
P(1,1,1) denotes the left-hand trefoil, then Js, 5(v) = v'® — v1® — 0% — v2. For the n-colored

v2n_v72n

unknot we get Jo, = 5=

Let dx(n) denote the maximum v-degree of the colored Jones polynomial Jg ,(v). It
follows that dx(n) is a quadratic quasi-polynomial [Garllal. In other words, for every knot
K there exists an Ng € N such that for n > Ng:

Ox(n) = jsi(n)n® + jx(n)n + cx (n) (1)

where jsy, jXx, and cx are periodic functions.

—2 -

Conjecture 1.1. (The strong slope conjecture)
For any knot K and any n > N, there is an n/ and an essential surface S C 5%\ K with
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|0S| boundary components, such that the boundary slope of S equals jsi(n) = p/q (reduced

to lowest terms and with the assumption ¢ > 0), and ?“ég') = jxg(n).

The number ¢|0S| is called the number of sheets of S, denoted by #5S, and x(5) is the
Euler characteristic of S. See the discussion at the beginning of Section [6] for the definition
of an essential surface and boundary slope. We call a value of the function js, a Jones
slope and a value of the function jx, a normalized Fuler characteristic. The original slope
conjecture is the part of Conjecture that concerns the interpretation of js, as boundary
slopes [Garllb|], while the rest of the statement is a refinement by [KT15]. The reader may
consult these two sources [Garllb|, [KT15] for additional background. By considering the
mirror image K of K and the formula Jk,(v™") = Jg,(v), the strong slope conjecture is
equivalent to the statement in [KT15] that includes the behavior of the minimal degree.

The slope conjecture and the strong slope conjecture were established for many knots
including alternating knots, adequate knots, torus knots, knots with at most 9 crossings, 2-
fusion knots (in this case only the slope conjecture is proven), graph knots, near-alternating
knots, and most 3-tangle pretzel knots and 3-tangle Montesinos knots [Garllbl [FKP11),
GvdV16, LvdV16, MT17, BMTIS, [Lee, LYLI19, [How]. However the general case remains in-
tractable and most proofs simply compute the quantum side and the topology side separately,
comparing only the end results.

Since the strong slope conjecture is known for adequate knots [Garl1b, [FKP11l [FKP13],
we will ignore the Montesinos knots which are adequate. When m > 2, a non-adequate
Montesinos knot K (rg,71,. .., 7,) has precisely one negative or positive tangle [LT88|, p.529].
Without loss of generality we need only to consider js,(n) and jx,(n) for a Montesinos knot
with precisely one negative tangle. The positive tangle case follows from taking mirror image.

Before stating our main result on Montesinos knots we start with the case of pretzel knots
as they are the basis for our argument. In fact Theorem is the bulk of our work. For
P(qo,---,qm) to be a knot, at most one tangle has an even number of crossings, and if each
tangle has an odd number of crossings, then the number of tangles has to be odd. In the
theorem below, the condition on the parities of the ¢;’s and the number of tangles may be
dropped if one is willing to exclude an arithmetic sub-sequence of colors n.

Theorem 1.2. Fiz an (m + 1)-vector q of odd integers q = (qo, - .., Gm) with m > 2 even
and qo < —1<1<q,...,qm. Let P = P(qo,-..,qm) denote the corresponding pretzel knot.
Define rational functions s(q), s1(q) € Q(q):

1 Coylai g —2) (g — 1) ‘

s(q) =14+ q + Z:-il(%' — 1)~ s1(q) = Z;ilwi —1)-1

(2)

For all n > Ng we have:
(a) If s(¢) < 0, then the strong slope conjecture holds with

jsp(n) = —2s(q), jxp(n) = —2s1(q) +4s(q) — 2(m — 1). (3)
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In particular, jsp(n) and jxp(n) are constant functions.

(b) If s(¢) = 0, then the strong slope conjecture holds with
~2(m — 1) if 51(g) > 0
—251(q) —2(m —1) ifs;(q) <0

jsp(n) =0, xp(n) = {

In particular, jsp(n) and jxp(n) are constant functions.
(c) If s(q) > 0, then the strong slope conjecture holds with

Fsp(n) =0, jxp(n) = —2(m —1). 5
In particular, jsp(n) and jxp(n) are constant functions.

Next, we consider the case of Montesinos knots. Recall that by applying Euclid’s al-
gorithm, every rational number r has a unique positive continued fraction expansion r =
[bo, - .., ber], see (§), with ¢ < oo, by € Z, |bj| > 1for 1 < j < '—1, |by| > 2, and b;’s all of the

same sign as r. From this we define an even length continued fraction expansion [ao, . .., ay, ]
of r to be equal to [by, ..., by] if ¢ is even, and we define it to be equal to [by,...,by — 1, 1]
(resp. [bo,...,by + 1,—1]) if ¢ is odd and r > 0 (resp. r < 0) . Note [ag,...,as,] is
well-defined. We will call [ag,...,as| the unique even length positive continued fraction
expansion for r. Define r[j| = a; for j =0,...,¢,, and define
Me= > rll o= D> vl =+ o
3<j<l,, j=even 3<j<l,y, j=odd

For example, the fraction 63/202 = [0, 3,4, 1, 5, 2] has the unique even length positive contin-
ued fraction expansion [0,3,4,1,5,1,1]. Adding up all the partial quotients of the continued
fraction expansion with even indices > 3, we get [63/202], = 5+ 1 = 6. Similarly, adding up
all the partial quotients with odd indices > 3, we get [63/202], =1+ 1 = 2.

Given a Montesinos knot K (ro, ..., n), define D to be the diagram obtained by summing
rational tangle diagrams corresponding to the unique even length positive continued fraction
expansion for each r;, and then taking the numerator closure. See Section for how a
rational tangle diagram is assigned to a continued fraction expansion of a rational number
and definitions for the tangle sum and numerator closure.

By the classification of Montesinos knots by [Bon79|, and the existence and use of reduced
diagrams of Montesinos links [LT88] based on the classification, we will further restrict to
Montesinos knots K (rg, ..., r,) where |r;| < 1 for all 0 < i < m. See Section for the
discussion of why we may do so without loss of generality.

Let (ro,...,7m) € Q™' denote a tuple of rational numbers, and let (qo,. .., ¢n) € Z™!
denote the associated tuple of integers where ¢; = r;[1] + 1 for 1 <4 < m and

B ro[l] — 1 if £,, = 2 and ro[2] = —1, and
= ro[1] otherwise

from the unique even length positive continued fraction expansion of r;’s. Again, for the

following theorem the condition on the parities of the ¢;’s and the number of tangles (m > 2

even) may be dropped if one is willing to exclude an arithmetic sub-sequence of colors n,
thus proving a weaker version of the conjecture for all Montesinos knots.
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Theorem 1.3. Let K = K(rg,71,...,Tm) be a Montesinos knot such that ro <0, r; > 0 for
all <1< m, and |r;| <1 for all 0 < i < m with m > 2 even. Suppose qp < —1 < 1 <
Q.- qm are all odd, and ¢, is an integer that is defined to be 0 if ro = 1/qo, and defined
to be ro[2] otherwise. Let P = P(qo,...,qm) be the associated pretzel knot, and let w(Dg),
w(Dp) denote the writhe of Dk, Dp with orientations. Then the strong slope conjecture
holds. For all n > Ng we have:

m m

Jsre(n) = jsp(n) — gy = [ro] —w(Dp) + w(Dk) + Z(ﬁ'[Q] -+ Z[mL

Xk (n) = jxp(n) — 27"3[02] + 2[rolo — QZ(Ti[Q] —-1)— QZ[ri]e.

In particular, jsp(n) and jxp(n) are constant functions.

Example 1.4. Consider the Montesinos knot K = K (—%, %, %, %, %) Applying Theo-
rem [I.2] and we compute the Jones slope js; by using Euclid’s algorithm to obtain the
unique even length continued fraction expansion for each rational number in the definition

of K. We have for the first rational number —46/327,

46 1 1 1 1
- =0+ =0+ ——-=0+ =0+ ——5—=1[0,-7,-9,-5].
327 T —7+ (—3) —7+_—45j —7+—_9+(_%)
This is of odd length, so the unique even length continued fraction expansion for —% is
46

—E - [0, —7, —9, —4, —1]
The rational numbers together with their unique even length continued fractions expansions
are

46 35 5 16 1
——=10,-7,-9,—-4,-1|, — =10,4,3,5,2|, — =10,6,5], — =10,2,5,2,1], - = (0,4, 1].
327 [ ? J J ? ]7 151 [ ? J 9 9 ]7 31 [ 9 9 ]7 35 [ 9 9 ? ) ]7 5 [ ) ) ]
The associated pretzel knot is P(—7,5,7,3,5). Theorem applied to the pretzel knot gives

that

36 32
s(q) = —= < 0 and s1(q) = -
So
jsp(n) = (=2)(~2) = 2 and jrp(n) = -2~ 2) + 4(- 2) 24 1) = — 1=

Dunfield’s program [Dun01], which computes boundary slopes and other topological prop-
erties of essential surfaces for a Montesinos knot based on Hatcher and Oertel’s algorithm,
produces an essential surface S whose boundary slope equals jsp(n) = —2s(q) = 72/7, and
such that 2x(S5)/(7]0S|) = jxp = —122/7. Now we compute jsy(n) and jx(n) using Theo-
rem [I.3] To aid in presentation, we replace each symbol in the equations in the theorem by
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the number computed from the example. We have

m m

i i 100
isg(n) =jsp(n) —ro2] — [ro] —w(Dp)+w(Dk)+ Z(nm -1+ Z[Tz] -
Vv ~ ~~~ N N — P — 7
72/7 -9 —44-1 -13 —43 R , N ,
(2)+(4)+4) (54+2)+(2+1)

jXK(n) = jXP(n) —242 [TQ]O —2 zm:(TZ[Q] — ]_) -2 Zm:[ri]e — _3_74

N—— ~~— — P 7

—122/7 —4

2)+(@)+4) (2)+(1)

For the Montesinos knot, Dunfield’s program also produces an essential surface S which
realizes the strong slope conjecture, with boundary slope 100/7 and 2x(S)/7|0S| = —374/7.

1.3. Plan of the proof. We divide the proof of Theorem and Theorem into two
parts, first concerning the claims regarding the degree of the colored Jones polynomial, and
the second concerning the existence of essential surfaces realizing the strong slope conjecture.

First we use a mix of skein theory and fusion, reviewed in Section [2.3] to find a formula for
the degree of the dominant terms in the resulting state sum for the colored Jones polynomial
in Section [3] Using quadratic integer programming techniques we determine the maximal
degree of these dominant terms in Section [4} and this is applied to find the degree of the
colored Jones polynomial for the pretzel knots we consider in Section [£.3] In Section [5] we
determine the degree of the colored Jones polynomial for the Montesinos knots we consider in
Theorem [I.3] by reducing to the pretzel case. Finally, we work out the relevant surfaces using
the Hatcher-Oertel algorithm in Section [0 and we match the growth rate of the degree of
the quantum invariant with the topology, using the analogy drawn between the parameters
of the state sum and the parameters for the Hatcher-Oertel algorithm by Lemma [6.3] We
explicitly describe the essential surfaces realizing the strong slope conjecture in Sections [6.5
and [6.7], and the proofs of Theorem and Theorem are completed in Section and

Section respectively.

2. PRELIMINARIES

2.1. Rational tangles. Let us recall how to describe rational tangles by rational numbers
and their continued fraction expansions. Originally studied by Conway [Con70], this material
is well-known and may be found for instance in [KL04, BS]. An (m,n)-tangle is an embedding
of a finite collection of arcs and circles into B3, such that the endpoints of the arcs lie in the
set of m +n points on B3 = S%. We consider tangles up to isotopy of the ball B? fixing the
boundary 2-sphere. The integer m indicates the number of points on the upper hemisphere
of 52, and the integer n indicates the number of points on the lower hemisphere. We may
isotope a tangle so that its endpoints are arranged on a great circle of the boundary 2-sphere
S? preserving the upper/lower information of endpoints from the upper/lower hemisphere.
A tangle diagram is then a regular projection of the tangle onto the plane of this great circle.
We represent tangles by tangle diagrams, and we will refer to an (m,m)-tangle as an m-
tangle. Our building blocks of rational tangles are the horizontal and the vertical 2-tangles
shown below, called elementary tangles in [KL04].

e A horizontal tangle has n horizontal half-twists (i.e., crossings) for n € Z.
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2 —2 0

e A vertical tangle has n vertical half-twists (i.e., crossings) for n € Z.

Q

The horizontal tangle with 0 half-twists will be called the 0 tangle, and the vertical tangle
with 0 half-twists will be called the oo tangle.

o

Definition 2.1. A rational tangle is a 2-tangle that can be obtained by applying a finite
number of consecutive twists of neighboring endpoints to the 0 tangle and the oo tangle.

For 2m-tangles we define tangle addition, denoted by @, and tangle multiplication, denoted
by *, as follows in Figure |3 We also define the numerator closure of a 2m-tangle as a knot
or link obtained by joining the two sets of m endpoints in the upper hemisphere, and by
joining the two sets of m endpoints in the lower hemisphere.

[ < )m o
. . N m .' “ “
< ", 4 PEERRD . T H ' H
G S T T T
m m :' ‘ll \_.____/ e
LS H m m -
T®S m ( w m

TxS
FIGURE 3. 2m-tangle addition, multiplication, and numerator closure.

The following theorem is paraphrased from [KL04] with changes in notations for the
elementary rational tangles.

Theorem 2.2. [KL04, Lemma 3| Every rational tangle can be isotoped to have a diagram in
standard form, obtained by consecutive additions of horizontal tangles only on the right (or
only on the left) and consecutive multiplications by vertical tangles only at the bottom (or
only at the top), starting from the 0 tangle or the oo tangle.

More precisely, every rational tangle diagram may be isotoped to have the algebraic pre-

sentation . )
Dapo)*x--kx—)Dag, 6
(1) 52) 1) 0 ()

(((ar *
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if € is even, or
1 1
(=@ ap1) xar—2) ®---x —) D a, (7)
Ay aq
if € is odd, where a; € Z for 0 < j </{, and a; #0 for 1 <j <.
Recall the notation of the positive continued fraction expansion [KL04, BS]:

1

lag, ... ,as] = ag+
a; +

1
as + 1

a3+...+_
Qy

for integers a; # 0 of the same sign for 1 < j < ¢ and ag € Z. We define the rational number
r associated to a rational tangle in standard form with algebraic expression @ or to be

r=lag,...,a.

Conversely, given a positive continued fraction expansion of a rational number r = [ay, . . . , a]
we may obtain a diagram of a rational tangle given by the corresponding algebraic expression

@ or . See Figure 4] for an example.

&

@

~

FIGURE 4. A rational tangle diagram T associated to the continued fraction
expansion [0, 2, 1,3, 3] = 13/36.

A rational tangle is determined by their associated rational number to a standard diagram
by the following theorem.

Theorem 2.3. [Con70] Two rational tangles are isotopic if and only if they have the same
associated rational number.

See [KL04, Theorem 3] for a proof of this statement.

Definition 2.4. A Montesinos link K(rg,ry,...,7,) is a link that admits a diagram D
obtained by summing rational tangle diagrams 7.,,7,,...,T,, then taking the numerator
closure:

D=N(((To, o T.)®T,)® - &T,).
Here ¢; for each 0 <7 < m is a choice of a positive continued fraction expansion of r;, and 7,
is the rational tangle diagram constructed based on ¢; via @ or , depending on whether
the length of ¢; is even or odd, respectively.
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Note that a different choice of positive continued fraction expansion for each r; in the sum
of Definition produces a different diagram of the same knot by Theorem To simplify
our arguments, we will fix a diagram for the Montesinos knot K (rg, 71, ..., n) by specifying
the choice of a positive continued fraction expansion for each rational number 7;.

2.2. Classification of Montesinos links. The book [BZ03] has a complete account of the
classification of Montesinos links, originally due to Bonahon [Bon79]. The following version
of the classification theorem comes from [FKP13].

Theorem 2.5. [BZ03| Theorem 12.29] Let K(ro,...,7n) be a Montesinos link such that
m >3 and ro,...,rm € Q\Z. Then K is determined up to isomorphism by the rational
number Y " Tm and the vector ((ry mod 1),(r; mod 1),...,(r, mod 1)), up to cyclic
permutation and reversal of order.

We will work with reduced diagrams for Montesinos knots as studied by Lickorish and
Thistlethwaite [LT88]. Here we follow the exposition of [FKP13, Chapter 8].

Definition 2.6. Let K be a Montesinos link. A diagram is called a reduced Montesinos
diagram of K if it is the numerator closure of the sum of rational angles Ty, ..., T, corre-
sponding to rational numbers ry,...,r,, with m > 2, and both of the following hold:

(1) Either all of the r;’s have the same sign, or 0 < |r;| < 1 for all 1.
(2) For each i, the diagram of T; comes from a positive continued fraction expansion
lag, a1, ..., a)] of r; with the nonzero a;’s all of the same sign as r;.

It follows as a consequence of the classification theorem that every Montesinos link K (ro, . . .
with m > 2 has a reduced diagram. For example, if r; < 0 while r; > 1, we can subtract 1
from r;; and add 1 to r; until condition (1) is satisfied. This does not change the link type of
the Montesinos link by Theorem[2.5] Since we are focused on Montesinos links with precisely
one negative tangle we may assume that 0 < |r;| < 1. Thus 7;[0] = 0 for all 0 <7 < m.

2.3. Skein theory and the colored Jones polynomial. We consider the skein module of
properly embedded tangle diagrams on an oriented surface F' with a finite (possibly empty)
collection of points specified on the boundary 0F. This will be used to give a definition of
the colored Jones polynomial from a diagram of a link. For the original reference for skein
modules see [Prz91]. We will follow Lickorish’s approach [Lic97, Section 13| except for the
variable substitution (our v is his A~ to avoid confusion with the A for a Kauffman state).
See [OhtO1] for how the skein theory gives the colored Jones polynomial, also known as the
quantum sly invariant. The word “color” refers to the weight of the irreducible representation
where one evaluates the invariant.

Definition 2.7. Let v be a fixed complex number. The linear skein module S(F) of F' is
a vector space of formal linear sums over C, of unoriented and properly-embedded tangle
diagrams in F', considered up to isotopy of F fixing 0F, and quotiented by the skein relations

(i) DUO = (—v?—2v?)D, and

s _ —

(ii) > =w 1) ( +v = .
Here () denotes the unknot and D LI () is the disjoint union of the diagram D with an
unknot. Relation (ii) indicates how we can write a diagram with a crossing as a sum of two
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diagrams with coefficients in rational functions of v by locally replacing the crossing by the
two splicings on the right.

We consider the linear skein module S(D? n,n’) of the disk D? with n+n/-points specified
on its boundary, where the boundary is viewed as a rectangle with n marked points above and
n' marked points below. We will use this to decompose link diagrams into tangles. By the
skein relations in Definition , every element in S(D? n,n’) is generated by crossingless
matchings between the n points on top and n’ points below. For crossingless matchings
D, € §(D* n,n') and D, € S(D?,n/,n"), there is a natural multiplication operation D; x
Dy € §(D? n,n") defined by identifying the bottom boundary of D; with the top boundary
of Dy and matching the n’ common boundary points. Extending this by linearity to all
elements in S(D? n,n) makes it into an algebra TL!, called Temperiey-Lieb algebra. For the
original references see [TL71] [KL94]. We will simply write TL,, for TL]. There is a natural
identification of 2n-tangles with diagrams in TLs,. Pictorially, a non-negative integer such
as n next to a strand represents n parallel strands.

As an algebra, TL, is generated by a basis {|,,el,...,e" !}, where |, is the identity with

rn

respect to the multiplication, and e’ is a crossingless tangle diagram as specified below in
Figure

1 2 n 17 2+1n

i

’n en

FIGURE 5. An example of the identity element |, (left) and a generator e,
(right) of TL,, for n =5 and i = 2.

Suppose that v=* is not a kth root of unity for k& < n. There is an element, which we will
denote by c7,, in TL, called the nth Jones-Wenzl idempotent. For the original reference
where the idempotent was defined and studied, see [Wen87]. Whenever n is specified we will
simply refer to this element as the Jones-Wenzl idempotent.

The element = is uniquely defined by the following properties. (Note ==, = |;. )

(i) 07, x e =e, x7 =0for 1 <i<n-—1.

i) &/, — ]n belongs to the algebra generated by {el,e?,... e 1}

( ) n? n7 n
(111> ;‘j X Tn - Elkjn
(iv) The image of =7 in S(R?), obtained by embedding the disk D? in the plane and then
joining the n boundary points on the top with those on the bottom with n disjoint
planar parallel arcs outside of D?, is equal to
—1)" —2(n+1) _ ,,2(n+1)
(=1 v ) - the empty diagram in R

02 _ 12
We will denote the rational function multiplying the empty diagram by A,,.
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Definition 2.8. Let D be a diagram of a link K C S® with k components. For each
component D; fori € {1,..., k} take an annulus A; = S' X I containing D via the blackboard
framing. Let S(S! x I) be the linear skein module of the annulus with no points marked on
its boundary, and let

fo:S(A)) x -+ x S(A) = S(R?)

7

g

Cartesian product

be the map which sends a k-tuple of elements (s; € S(A),...,sr € S(Ax)) to S(R?) by
immersing in the plane the collection of skein elements in S(A;) such that the over- and
under-crossings of components of D are the over- and under-crossings of the annuli. For
n > 1, the n + 1th unreduced colored Jones polynomial Jx ,11(v) may be defined as

k times

where (S) for a linear skein element in S(R?) is the polynomial in v multiplying the empty
diagram after resolving crossings and removing disjoint circles of S using the skein relations.
This is called the Kauffman bracket of S. To simplify notation, we will write

A Kauffman state [Kau87], which we will denote by o, is a choice of the A- or B-resolution
at a crossing of a link diagram.

XM X

A-resolution B-resolution

FIGURE 6. A- and B-resolutions of a crossing. The dashed segment records
the location where the crossing was.

Definition 2.9. Let ¢ be a Kauffman state on a skein element with crossings, define
sgn(o) = (# of B-resolutions of o) — (# of A-resolutions of o).
This quantity keeps track of the number of A- and B-resolutions chosen by o.

Definition 2.10. Given a skein element S with crossings in S(R?), the o-state denoted
by S, is the set of disjoint arcs and circles, possibly connecting Jones-Wenzl idempotents,
resulting from applying a Kauffman state o to S. The o-state graph S¢ is the set of disjoint
arcs and circles, possibly connecting Jones-Wenzl idempotents, resulting from applying a
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Kauffman state o to S along with (dashed) segments recording the original locations of the
crossings as shown in Figure [6]

We summarize standard techniques and formulas for computing the colored Jones poly-
nomial using Definition that are used in this paper. Given a diagram D" decorated with
a single Jones-Wenzl idempotent from a link, a state sum for the Kauffman bracket (D") of
D™ is an expansion of (D™) into a sum over skein elements (D™), resulting from applying
a Kauffman state o on a subset of crossings in D". As an example, one can compute the
second colored Jones polynomial of the trefoil knot 3; by writing down the following state
sum in Figure [7]

S-S
D
o

o a Kauffman state
FIGURE 7. A state sum for the 2nd colored Jones polynomial of the left-
hand trefoil 3;. In this example, Kauffman states are taken over the set of all
crossings of the diagram.

We are left with disjoint arcs and circles connecting the Jones-Wenzl idempotent. These
may be removed by applying skein relations and by applying properties of the idempotent
to obtain the polynomial. Note that we can also write down a state sum for a skein element
with crossings which may be decorated by Jones-Wenzl idempotents.

Since we are interested in bounding degrees of the Kauffman brackets of skein elements in
the state sum, we will define a few more relevant combinatorial quantities and gather some
useful results.
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The degree of a rational function L(v), denoted by deg,(L(v)), is the maximum power of
v in the formal Laurent series expansion of L(v) with finitely many positive degree terms.

Let S, be a skein element coming from applying a Kauffman state o to a skein element S
with crossings and decorated by Jones-Wenzl idempotents in S(R?). Then S, is the set of
disjoint circles obtained from S, by replacing all idempotents with the identity.

Definition 2.11. A sequence s of states starting at o; and ending at oy on a set of crossings
in a skein element S is a finite sequence of Kauffman states oy,...,0, where o; and 0,44
differ on the choice of the A- or B-resolution at only one crossing x, so that ¢;,1 chooses the
A-resolution at z and o; chooses the B-resolution.

Let s = {o1,...,0¢} be a sequence of states starting at oy and ending at oy. In each step
from o; to 0;41 either two circles of § merge into one or a circle of § splits into two. When
two circles merge into one as the result of changing the B-resolution to the A-resolution, the
number of circles of the skein element decreases by 1 while the sign of the state decreases by
2. More precisely, let S, be the skein element resulting from applying the Kauffman state
o, we have

Sgn(gi-f-l) + degv <80'i+1> = Sgn(ai) + degv <SU'1'> -4 )
when a pair of circles merges from S,, to S,, ..~ This immediately gives the following corollary.

Lemma 2.12. Let s = {0y,...,0¢} be a sequence of states on a skein element S with
crossings, then

sgu(o) + deg,(Sy,) = sgn(oy) + deg,(Sy,)

if and only if a circle is split from S,, to S,, ., forevery 1 <i < f — 1. Otherwise

sgn(o1) + deg, (S,,) > sgn(oy) + deg,(S,).

We will also use standard fusion and untwisting formulas involving skein elements deco-
rated by Jones-Wenzl idempotents for which one can consult [Lic97] and the original reference

IMV94].

> i
- 0(a,b,c
c:(a,b,c) ( )
admissible

FIGURE 8. Fusion formula: the skein element which locally looks like the
left-hand side is equal to the sum of skein elements on the right-hand side with
corresponding local replacements.
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(10)

F1GURE 9. Untwisting formula: the skein element which locally looks like the
left-hand side is equal to the skein element on the right-hand side with the
local replacement.

We say that a triple (a, b, ¢) of non-negative integers is admissible if a + b + ¢ is even and
a<b+c, b<c+a,and c <a+b. For k a non-negative integer, let Ap! := ApAp_1--- Ay,
with the convention that Ag = A_; = 1. In Figure [§| above, the function 6(a, b, ¢) is defined
by
A:Jcherz!Axfl!Ayfl!Azfl!

Aerzfl!Aerzfl!Aav+yfl! ’

where x,y, and z are determined by a =y + 2, b=2z+ 2z, and c =z + y.

0(a,b,c) =

3. THE COLORED JONES POLYNOMIAL OF PRETZEL KNOTS

From this point on we will always consider the standard diagram K when referring to the
pretzel knot K = P(qqo,...,qm), with |¢;| > 1. Throughout the section the integer n > 2 is
fixed, and we will illustrate graphically using the example P(—5,3,3,3,5).

The colored Jones polynomial for a fixed n of a knot is by Definition the Kauffman
bracket of the n-blackboard cable (n-cable for short) of a diagram of K decorated by a
Jones-Wenzl idempotent, multiplied by a monomial in v raised to the power of the writhe of
the diagram with orientation. We write the colored Jones polynomial as

T (v) = ((=1)"0) D (1) (K™).

The Jones-Wenzl idempotent is a sum of tangle diagrams with coefficients rational func-
tions of v in the algebra TL,,. A skein element in TL}, decorated by Jones-Wenzl idempotents
is thus also a sum of tangle diagrams with coefficients rational functions of v by locally re-
placing idempotent with its sum. We extend the tangle sum operation & to skein elements
S in TLy, decorated by Jones-Wenzl idempotents, written

S = Z s(v)T,

TETLy,
as
Sas = Z s(v)s' (V)T e T'.
T,T'€TLay,
Graphically, this will be the same as joining the top right and bottom right 2n-strands of S
to the top left and bottom left 2n-strands to 8" as in Figure [3 except with the presence of
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the idempotent and possibly crossings indicating that this is actually a sum of such diagrams
in TLs,. Similarly, we extend the numerator closure to skein elements in TLs,.

We will represent the diagram K™ = N(K" @ K) as the numerator closure of the sum
of two 2n-tangles decorated by Jones-Wenzl idempotents, with the label n indicating the
number of parallel strands. This decomposition of K™ reflects the original splitting of K =
N(K_ @& K,) into two 2-tangles K_ and K,. A twist region is a vertical 2-tangle with
a nonzero number of crossings all of the same sign. Let K_ be the negative twist region
consisting of —¢qo crossings, and K the rest of the diagram K. For a fixed n double the
idempotents in K" so that four are framing the n-cable of the negative twist region consisting
of —qp crossings, and four are framing the n-cable of the rest of the knot diagram. The 2n-
tangle K" is the n-cable of K_ along with the four idempotents, and K7 is the rest of K",
which is the n-cable of K., also decorated with four idempotents. See the middle figure in

Figure [10]

FI1GURE 10. From left to right: K™, doubling the idempotents and the split-
ting K" = N(K" @ K7), and N(I;;, ® (K})s,), where o4 is the Kauffman
state that chooses the A-resolution on all the crossings in K. The dotted
boxes enclose the skein elements in S(D?, 2n, 2n), which are sums of 2n-tangles.

It is convenient to compute the bracket of these 2n-tangles first. For any tangle T" write
(T™) to mean cabling each component by a Jones-Wenzl idempotent of order n and evaluating
in the Temperley-Lieb algebra TL,, using the Kauffman bracket.

We write (K") = >, G, (v)I, for 2n-tangles Iy, with four Jones-Wenzl idempotents
of size n connected in the middle by two Jones-Wenzl idempotents of size 2k, arranged
in an [-shape using the fusion and untwisting formulas. Apply the fusion formula @D to
two strands of K" going into (or coming out of) the n-cabled negative twist region. Then,
apply the untwisting formula to get rid of all the negative crossings. The function

G, (v) = %((—1)”*’“01}2”*2’“0*"2*2’“3)‘10 is a rational function that is the product of two
coefficient functions in v multiplying the replacement skein elements. The other tangle K7 is
expanded into a state sum by taking Kauffman states over all the crossings in K7, leaving the
four Jones-Wenzl idempotents of size n. Let (K7), denote the skein element resulting from

applying a Kauffman state o to all the crossings of K. Then, (K?) = Y _v*2)((K7),) as
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discussed in Section . The state sum we consider is indexed by pairs (kg, o) and we write

= 3 GO N (I, @ (K7),)). (11)

k07

See the rightmost figure of Figure (10| for an example of N (I, ® (K%),). Using the notion of
through strands, we collect like terms together in our state sum.

Definition 3.1. Consider the Temperley-Lieb algebra TL;, with n inputs and n’ outputs.
Let T be an element of TL?, with no crossings. Viewing dD? as a square, an arc in 7' with
one endpoint on the top boundary of the disk D? defining TL”, and another endpoint on the
bottom boundary is called a through strand of T.

We can organize states (ko, o) according to the number of through strands at various levels.
The global number of through strands of o, denoted by ¢ = ¢(o), is the number of through
strands of (K7 ), in TLy, inside the box framed by four idempotents in K, see Figure
for examples of Kauffman states (K7 ), and their through strands.

For 1 <i < m, we will also define ¢;(0) to be the number of ith local through strands when
restricting o to the ith twist region, that are also global through strands. The parameter k;
corresponding to a Kauffman state o for each twist region ¢; will be defined as k;(0) = f#}
The intuition for these parameters is that they will be used to bound the degree of each term
in the state sum relative to each other, which is crucial to determining the degree of the nth
colored Jones polynomial Jx ,,41.

With the notation k = (ko, ..., k) we set

Ger=, Y, Gru=N, @ (KL),). (12)

ko o:ki(o)=ki,c(o)=c

Note 0 < k; < n and define the parameters ¢, k to be tight if ko = ky + -+ + k,, = 5. We
prove the following theorem.

Theorem 3.2. Assume |g;| > 1 and write (K™) = >__, Ger. using (11) and (12). For tight
¢, k we have G, = (—1)0n—ko)tntho+ 3L, (n—ki)(g;—1)d(nk) 4 l.o.tH | and 6(n, k) =

- n—|—2
—2<(QO+1)/€§+Z( —11€2+Z (=2 +qo0 + qi)ki — Zqz
i=1

(13)
If ¢, k are not tight then there exists a tight pair |k’ (coming from some Kauffman state)
such that deg, G, < deg, Ge j.

This theorem will be used in the next section to find the actual degree of Jk 41 using
quadratic integer programming.

3.1. Outline of the proof of Theorem [3.2] Let ¢,k be tight and let st(c, k) be the set
of states (ko, o) with ¢(0) = c and k;(0) = k; for all 1 < i < m. A state in st(c, k) is said
to be taut if its term G, (v)v#" (N (I, & (K?),)) in ([2) maximizes the v-degree within
st(e, k). For any fixed tight ¢, k we plan to construct all taut states. The first examples we

IThe abbreviation l.0.t. means lower order terms in v.
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FIGURE 11. Top: an example of (K7}), with n = 3 and c¢(o) = 4. Middle:
when restricting o to i = 4th twist region, we have c¢4(¢) = k4(c) = 2. Bottom:
we show an example of a state o where c4(0) = 1 and therefore ky(0) = [1] =
1.

construct will be minimal states, from which we will derive all taut states. A state in st(c, k)
is minimal if it chooses the least number of A-resolutions.

We will first show that minimal states are characterized by having a certain configuration,
or position, on the set of crossings where they choose the A-resolution, called pyramidal.
This will also be used to show that ¢, £ not tight implies deg, G, < deg, G v for some tight
pair ¢, k.
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Then, with the construction of all taut states from minimal states, we show that §(n, k)
is the degree of a taut state with parameters k£, and

é:llgiight _ (_1)qo(n—k0)+n+k‘0+2ﬁ1("‘ki)(qi_l)v‘s(n’k) +l.o.t.,

where G9',.1,; is the double sum of G, only over taut states with tight c, k. This will lead
to
Ge k tight = (—1) (ko) +ntho+d iy (n—hi)(@:=1)0(nk) 4 16 ¢,

and conclude Theorem B.21

Conventions for representing a Kauffman state. Throughout the rest of Section [3]
we will indicate schematically a crossingless skein element S,, resulting from applying a
Kauffman state to a skein element S with crossings, by the following convention. Let S§
be the all-B state graph of S. For a Kauffman state o let A, be the set of crossings of S
on which o chooses the A-resolution, and define |A,| to be the number of crossings in A,.
The skein element S, is represented by S§ with colored edges, such that the edge in S§
corresponding to a crossing in A, is colored red, and all other edges remain black. The skein
element S, may then be recovered from S§ by a local replacement of two arcs with a dashed

segment. See Figure [12] below.
) -(

FIGURE 12. A red edge in S§ indicates the choice of the A-resolution for a
Kauffman state o on S.

3.2. Simplifying the state sum and pyramidal position for crossings. We will denote
by S(ko, o) the skein element N (I, ® (K7),) as in (12).

Lemma 3.3. Fix (ko, o) determining a skein element S(ko, o) with k; = k;(0) and ¢ = ¢(0).
If k)() > Z;il k’z‘, then S(k(),()') =0.

Proof. Note that ", k; > 5. Thus if kg > 7" ki, then kg > §, and the lemma follows

from |Lee, Lemma 3.2]. O

With the information of through strands ¢(o) and {k;(0)}, we describe the structure of A,
for a Kauffman state o. It is necessary to introduce a labeling of the crossings with respect
to their positions in the all-B Kauffman state graph S%(ko, B) = N (I}, ® (K")%).

We first further decompose K7 = 8' x §* x 8 where x is the multiplication by stacking
in TL, and let the crossings contained in those skein elements be denoted by C*, C%, and
C®, respectively. See Figure [13| for an example.

See Figure [14] for a guide to the labeling. The skein element (K7)p consists of n arcs on
top in the region defining S?, n arcs on the bottom in the region defining S°, and ¢; — 1
sets of n circles for the ith twist region in the region defining S*. The n upper arcs are
labeled by S¥,...,S% and the n lower arcs are labeled by S, ..., St respectively. C} is the
set of crossings whose corresponding segments in (Kﬁ)g lie between the arcs S} and S7,;.
Similarly we define Cf by reflection.
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FIGURE 13. Skein element S = N (I, ® (S' x S x 8%)) of the pretzel knot
P(-5,3,3,3,5). We have S* € TLY" . SY € TLapn, and S® € TL3™ where
m = 4.

For the crossings in the region defining §%, we divide each set of n state circles into upper
and lower half arcs as also shown in Figure [14], and use an additional label s for 1 < s < g;.
Thus the notation C%%, where 1 < s < g; for each twist region with ¢; crossingsand 1 < j <n

Z?j ’
.. . . . . . Y] Y]
indicating a circle in the n-cable, means the crossings between the state circles 5; ’; and S,

7,541
see Figure [14]
It is helpful to see a local picture at each n-cabled crossing in K.

S5

SRR 54

FIGURE 15. Local labeling of n? crossings on the all-B state of an n-cabled
crossing. In this example n = 3.
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: : : o St
T ™ - oy 5
T T T o 5
P — P —" PR 3 Sy
IR IR,

1 1 Sli /r—:\ /I(—:\ ......

O12 Ceto
St .
Si{;uﬂh
SRR
\:N:‘":':/S‘ql::l:w:qz::l::
PR PR PR PR PR PR Sé
A A " 5 i
.: .:. .: .:. .: .:. C?[Z Sg
.:. .:. .:. Ci Sé
M L N 1 Sf

FIGURE 14. Labeling of crossings, arcs, and circles from applying the all-B
state to K. In this example n = 4.

The goal of this subsection is to prove the following theorem.

Theorem 3.4. Suppose a skein element S(ko, o) has parameters k; = k(o) and ¢ = ¢(0).
Then there is a subset AL C A, of crossings on which the Kauffman state o chooses the
A-resolution, such that we have Al = AL U AY U A® denoting the crossings in the regions
determining St, 8, and S, respectively, and the following conditions are satisfied.

(i) |A¥] = >°7 (¢ — 2)k7. The set AY = UL, UL, Ur_, o (uf; U L) is a union of
crossings with uf; C C;'5 and (5 ; C C’ﬁ’js, such that
— For eachn —k; +1 <j <mn, u;;, £;; each has j —n +k; crossings.
— For eachn—k;+2 < j < n and a pair of crossings x,x" in ui; (resp. {3 ;) whose
corresponding segments e, €' in (K™)§ are adjacent (i.e., there is no other edge

, S / ; . " S S
in uj ; between e and €'), there is a crossing x" in uf; | (resp. £, ), where the

end of the corresponding segment e” on S;-“ff (resp. Sf’s) lies between the ends of

’.j

e and €.
2 /4 m (1205 . . .
(i) |AL| = |Ab| = </ C/2+§1:1(k2 k) The set AL = U, /241t B8 a union of crossings
u; C CF, and the set Al = Ui o1ty is a union of crossings £; C C’f satisfying:

— Forn—5+1<j<n,u; (resp. {;) has j —n+ 5 crossings.

— For each n — 5§+ 2 < j < n and a pair of crossings x,x" in u; (resp. (;)
whose corresponding segments e, e’ in (K'')§ are adjacent (i.e., there is no other
crossing in u; whose corresponding segment is between e and €'), there is a
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crossing x" in uj_q (resp. {;_1), where the end of the corresponding segment e”
on S} (resp. Sf) lies between the ends of e and €.

It follows that |A!| = |AL| + |AY| + |Ab| = % — S+ (K2 + k) + 2 (@i — 2)k7. The
set of crossings A/ is said to be in pyramidal position.

Proof. Statement (i) is a direct application to every set of n-cabled crossings in each twist
region of S of the following result from [Lee].

Lemma 3.5. [Leel Lem. 3.7] Let S be a skein element in TLs,, consisting of a single n-cabled
positive crossing x™ with labels as shown in Figure [15]

If (z™), for a Kauffman state o on z™ has 2k through strands, then o chooses the A-
resolution on a set of k* crossings C, of 2", where C; = UJ_, . (u; U{;) is a union of
crossings u; C C’;‘ and ¢; C C’f, such that

e For each n —k+1 < j <n, uj, {; each has j —n + k crossings.

e For each n —k+2 < j < n, and a pair of crossings x,2’ in u; (resp. ¢;) whose
corresponding segments ¢, in the all-B state of 2" are adjacent (i.e., there is no
other edge in C, between ¢ and ), there is a crossing " in u;_; (resp. ¢;_1), where
the end of the corresponding segment ¢’ on S¥ (resp. Sf) lies between the ends of ¢
and ¢.

The same proof applies to the crossings in the strip St to show the existence of a set of
crossings A% satisfying (ii), see Figure Reflection with respect to the horizontal axis will

show (ii) for S°.
n\ n n\ /n
NN AN

F1GURE 16. The arrow indicates the direction from left to right of the cross-
ings in S°.

O

We will now apply what we know about the crossings on which a state o chooses the A-
resolution from Theorem to construct degree-maximizing states for given global through
strands ¢(o) and parameters {k;(c)}. See Figure |17|for an example of a pyramidal position
of crossings.

3.3. Minimal states are taut and their degrees are J(n, k). The contribution of the
state (ko,o) to the state sum is Gy, (v)v*3* (N (I, & (K7),)) as in (12). We denote its
v-degree by d(ko, o).

Recall the skein element S(ko,0) = N (I, ® (K}),). Also recall A, denotes the set of
crossings on which o chooses the A-resolution, and |A,| is the number of crossings in A,.
A minimal state with tight parameters c,k (i.e., kg = k1 + -+ + Kk, = §) has the least

|A,| in st(c,k). Let o(A,) denote the number of circles of S(ko, o), which is the skein
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FIGURE 17. A minimal state 7 is shown with n = 3 and ¢(7) = 6 global
through strands. In the top picture one can see the pyramidal position of the
crossings A, as described by Theorem The skein element S(ko,7) with
k = (ko,0,0,2,1) resulting from applying 7 is shown below.

element obtained by replacing all the Jones-Wenzl idempotents in S(kg, o) by the identity,
respectively.

Lemma 3.6. A minimal state (ko,7) with ¢(7) through strands and tight ¢, & has A, in
pyramidal position as specified in Theorem and distance |A,| from the all-B state given
by

A, =2 <<Z wy ik D 5 hlh 1D ”) +3 (g -2k

i=1 i=1
Moreover,

Gro (v)vsg“(")<N(Iko O (K}),)) = (_1)qo(n—ko)+n+ko+22’;1(n—ki)(qi—l)vé(nﬁk) +lot. (14)
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Proof. Observe that minimal states 7 have corresponding crossings A, in pyramidal position.
Moreover, if A, is pyramidal, then |A,| determines the number of circles o(A;). The skein
element S(ko, 7) is adequate as long as ko < Y, k;. This means that no circles of S(ko, 7)
goes through a location where there was an idempotent twice. Thus by [Arm13, Lem. 4],
we have

deg, poen(n) (S(ko, 7)) = deg, voen(n) (S(ko, 7)),

and we simply need to determine the number of circles in S(ko, 7) and sgn(7) in order to com-
pute the degree of the Kauffman bracket. This is completely specified by the pyramidal posi-
tion of A; by just applying the Kauffman state. With the assumption that kg = > 1" k; = §
since ¢, k is tight, the degree is then

o) = S an — 20 ((ZTI ) (S k) D) | 5 M) F3 a2

2 ,
=1 =1 ,
sgnv(f)
=1 i=1
20(4,)
2n? — 4k?
+qo(2n — 2k + ——"20) 4 9k — 2.
fusion anc??Jntwisting
The sign of the leading term is given by
qo(n — ko) +n+ko+  o(Ar)
(_ 1) fusion anmntwisting number of circles — (_ 1>qO(n*k0)+n+ko+Zﬁ1 (nsz)(qlfl) .

Lemma 3.7. Minimal states are taut. In other words, given c, k tight, we have

max d(ko,0) = d(ko, T),

o:c(o)=c,k;(0)=k;
where 7 is a minimal state with ¢(7) = ¢ and k;(7) = k;.
Proof. Note that for any state o with corresponding skein element S(kg, o), we have
A; C A,

for a minimal state 7 with the same parameter set (c, k) by Theorem and d(ko,T) =
d(ko, ") for two minimal states 7, 7" with the same parameters ¢(7) = ¢(7') and k;(7) = k;(7’
by Lemma This implies d(ko, o) < d(ko,T) by Lemma [2.12] O

3.3.1. Constructing minimal states.

Lemma 3.8. A minimal state exists for any tight ¢, k, where ¢ is an even integer between 0
and 2n and ko = > ki = §.
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Proof. 1t is not hard to see that at an n-cabled crossing ™ in a twist region with ¢; crossings
in §Y, for any 0 < k; < n there is always a minimal state giving 2k; through strands. For an
n-cabled crossing #" in S or &Y, it is also not hard to see that we may take the pyramidal
position for the minimal state for the upper half (or bottom half, for S°) of each crossing in
2" in C¥ (or C%) and in Cﬁ 7 (or C77) for each twist region.

What remains to be shown is that a minimal state overall always exists, given the set
of parameters {k;} and ¢ total through strands for crossings in the top and bottom strips
delimited by {S}}7_, and {Sf 1. To see this, we take the leftmost position for the crossings
2" in (UL, U7, Cﬁ jl) UCY with {2k;} through strands, which we already know to exist. Given
two crossings x and z’ in C! whose corresponding segments in S(ko, B) have ends on S* we
can always find another crossing z” in C_,, the end of whose corresponding segment on S}
lies between those of x and ', because the previously chosen crossings in C} are leftmost.
Pick the leftmost possible and repeat to choose crossings in C}-‘ forn—k+1<j7<n-2 We
pick crossings in the bottom strip by reflection. For the remaining n-cabled crossings =™ in
SY in a twist region corresponding to ¢;, any subset of crossings in pyramidal position with
2k; through strands will complete the description of a minimal state satisfying the conditions
in the lemma. O

Lemma 3.9. Let 0 be a state with ¢ = ¢(0) and k; = k;(0) which is not tight, that is,
Yoy ki > § or kg < §, then d(ko,0) < d(ko,7) , where 7 is a minimal state with ¢(7) = ¢
through strands.

Proof. For the case Y " k; > 5, we can apply Theorem to conclude that there is a

minimal state 7 (there may be multiple such states) such that
A, CA,,

with k;(7) < k;(o) for each i. There must be some ¢ for which k;(7) < k;(0). Applying the
B-resolution to the additional crossings to obtain a sequence of states from 7 to o, we see
that it must contain two consecutive terms that merge a pair of circles.
If kg < §, since d(ko,o) increases monotonically in ko in Gy,(v) from the fusion and
untwisting formulas, we can see that d(ko, o) < d(c/2, 7). O
3.4. Enumerating all taut states. By Lemma [3.7] we have shown that every taut state
contains a minimal state. Next we show that every taut state is obtained from a unique
such minimal state 7 by changing the resolution from B-to A-on a set of crossings F,. We
show that any taut state o with ¢(o) = ¢(7) and k;(0) = k;(7) containing 7 as the leftmost
minimal state, to be defined below, satisfies A, = A, U p, where p is any subset of F,.

All the circles here in the definitions and theorems are understood with possible extra
labels u, £, 5,1, j indicating where they are in the regions defining S?, ¥, and S°. To simplify
notation we do not show these extra labels.

Definition 3.10. For each z € A, between S;_; and §j, let R, be the set of crossings to
the right of « between S;_; and S}, but to the left of any 2’ € A, between S;_, and S;_;,
and any z” € A, between S; and S;;;. We define the following (possibly empty) subset F.
of crossings of K.

F.,- = UxeA-rRx .
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See Figure [I§] and [19] for examples.

Si

F1GURE 18. Only the blue edge is in R, because of the presence of the top
and bottom red edges.

FIGURE 19. An example of F, with edges shown in blue with the minimal
state 7 shown as red edges.

Definition 3.11. Given a set of crossings C' of K™, a crossing x € C, and 1 < j < n, define
the distance |x|c of a crossing x € C from the left to be

|z|c := For = € Cj, the # of edges in S (ko, B) to the left of z between S; and S; ;.
The distance of the set C' from the left is defined as
> _lale
zeC

Given any state o with tight parameters c, k, we extract the leftmost minimal state 7,
where A, C A,, i.e., there is no other minimal state 7’ such that A, C A,, and the distance
of A, from the left is less than the distance of A, from the left.

Lemma 3.12. A Kauffman state o with tight parameters ¢(o), {k;(c)} is taut if and only
if A, may be written as

A, =A,, Up

where 7, is the leftmost minimal state from o such that A, C A,, and p is a subset of
F, . See Figure [20| for an example of a taut state that is not a minimal state, and how it is
obtained from the leftmost minimal state that it contains.

Proof. By construction, if a state ¢ is such that
AO’ - ATU Up

where p is a subset of F}_, then o is a taut state.
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FiGURE 20. On top, a taut state having the same degree as a minimal state
but is not equal to it. The bottom picture shows the resulting skein element
from applying the state. We have ¢ =6, ky =0, ko =0, k3 =2, and ky = 1
as the minimal state in Figure [I7, and the thickened red edges indicate the
difference from a minimal state with the same parameters. Choosing the A-
resolution at each of the thickened red edges splits off a circle.

Conversely, suppose by way of contradfiction that o is taut, which means that it has the
same parameters (¢, k) as its leftmost minimal state 7, with the same degree, but that there
is a crossing z € A, and = ¢ F, . Then there are two cases:
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(1) x is to the left or to the right of all the edges in A,,
(2) x € C; is between 2/, 2" € C; in A, for some j.
In both cases we consider the state ¢’ where
AU/ = ATU U {.T},

and we assume that taking the A-resolution on z splits off a circle from the skein element
S(ko,0). Otherwise, by Lemma applied to a sequence from 7, to ¢ starting with
changing the resolution from B to A on =,

deg, voen(o) (S(ko,0)) < deg, vsgn(T")(S(ko, o)) s

a contradiction to ¢ being taut.

In case (1), the state o' has parameters (c, k') such that > &} < > k;. If each step of
a sequence from ¢’ to o splits a circle in order to maintain the degree, then the parameters
for o, and hence the number of global through strands of S(kg, o) will differ from S(ko, 75),
a contradiction.

In case (2), we have that = ¢ F, must be an edge of the following form between a pair of
edges 2/, 2" as indicated in the generic local picture shown in Figure since 7, is assumed

to be leftmost.

1

FIGURE 21. The crossing x corresponds to the green edge.

Choosing the A-resolution at x merges a pair of circles in S(ko,7,) which means that
d(ko, o) < d(ko, T,), a contradiction. O

3.5. Adding up all taut states in st(c, k). Note that in general there may be many taut
states o with fixed parameters (¢ = ¢(0), k = k(0)).

Theorem 3.13. Let ¢, k = {k;}*, be tight. The sum
Z poen(e (S(k‘o, o)) = (— 1)qo(n—ko)+n+ko+Z§'L1(n—ki)(qi—l) (ko:7) 4 [ o.t., (15)

o taut:c(o)=c,k;(0)=k;

where T 18 a minimal state in the sum.
We are finally ready to prove Theorem [3.13|

Proof. Every minimal state with parameters ¢, k may be obtained from the leftmost minimal
state of the entire set of minimal states M by transposing to the right. Now we organize
the sum by putting it into equivalence classes of states indexed by the leftmost minimal
state 7,. We may write

Y Sk = Y Y (SR o).

o taut:c(o)=c,k;(c)=k; 7 minimal 0 :T;=T
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By Lemma |3.12] this implies

|Fr|

Z Usgn < k(), Z Z (‘ T‘) sgn(7)— 23( U2 . U—Q)o(A,—)-f—j ]
o taut:c(o)=c,k;(0)=k; 7 minimal j=0
If F, # (), then by a direct computation,
- (17
deg, | Y ( ) ()2 (2 ?)oA | = sgn() + 20(4,) — 4/F|
J
7=0

< deg, (vsg“(T) (S(k,7))) = d(n, k)

by Lemma
Every taut state can be grouped into a nontrivial canceling sum except for the rightmost
minimal state. Thus it remains and determines the degree of the sum. 0

3.6. Proof of Theorem . Recall that Jk i1 = Y1 Ger and

Gek =Y CGrlv) > vOUN(Iy @ (KD),))

o:ki(o)=ki,c(o)=c

By the fusion and untwisting formulas we have

Do, 212
G — (=1 qo(n—Fko) 2ko qo(2n—2ko+n —ko)'
o (v) ( ) 9(”7 n, QkO)U

We apply the previous lemmas to compute for each ¢, k the v-degree of the sum

> vECONN (I, & (KT),))-

o:ki(0)=ki,c(o0)=c

When ¢, k is tight the top degree part of the sum is ngk“t. By Theorem , we have that the
coefficient and the degree of the leading term are given by a minimal state 7 with parameters
¢, k. The degree is computed to be §(n, k) in Lemma , which also determines the leading
coefficient.

When o is a state such that ¢, k is not tight, and ky > ¢(0)/2 or kg > > | ki(0), Lemma
says that S(kg,o) is zero. Otherwise, Lemma says that there exists a taut state
corresponding to a tight ¢/, ¥’ that has strictly higher degree. 0

4. QUADRATIC INTEGER PROGRAMMING

In this section we collect some facts regarding real and lattice optimization of quadratic
functions.
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4.1. Quadratic real optimization. We begin with considering the well-known case of real
optimization.

Lemma 4.1. Suppose that A is a positive definite m x m matrix and b € R™. Then, the
minimum

1

min —z'Az +b-x (16)

zeR™
is uniquely achieved at x = —A~'b and equals —%btAb.
Proof. The function is proper with the only critical point at x = —A~'b which is a local
minimum since the Hessian of A is positive definite. O

For a vector v € R™, we let v; for ¢ = 1,...,m denote its ¢th coordinate, so that v =

(v1,...,vm). When v;’s are nonzero for all i, we set v™' = (v;',..., v 1).

The next lemma concerns optimization of convex separable functions f(z), that is, func-
tions of the form

f(z) = Zfi(%% filw:) = aix} + by (17)
i=1
where a; > 0 and b; are real for all . The terminology follows Onn [Onnl0, Sec.3.2].

Lemma 4.2. (a) Fix a separable convex function f(z) as in and a real number ¢ € R.
Then the minimum
min{f(z) | Y x;=t, = € R"} (18)

is uniquely achieved at x*(t) where
B a; 't + 530 (b; — bi)a; ayt

z; (t = —, (19)
i %
and ; .
. I, ca”

P (0) = 1oyt + Tyt + s0(ab) (20)
where 1 € Z™ denotes the vector with all coordinates equal to 1, and so(a,b) is a rational
function in coordinates a = (aq,...,a,) and b = (by,...,by).

(b) If t > 0, then the minimum
min{ f(z) | in:t,IERm,OSxi, i=1,...,m} (21)

is uniquely achieved at and given by .

Note that the coordinates of the minimizer x*(t) are linear functions of ¢ for ¢t > 0; we
will call such minimizers linear. It is obvious that the minimal value is then quadratic in ¢
for t > 0.

Proof. Let f(x) =3, a;z7 + bjx; and g(x) = 3. x; and use Lagrange multipliers.

Vf=AVg
g=t.
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So, 2ajx; + b; = X for all j, hence z; + b;/(2a;) = A/(2a;) for all j. Summing up, we get

a7t
t+>2;0;/(2a;) = A3, 1/(2a;). Solving for A, we get A = % and using
LA 2t + 7. (b — bi)a; _ a; 't + 5 >0 (b; — bi)a; ayt
i ] 1 )
2a; 2a; ;05 ;@

Equation follows. Observe that x*(t) is an affine linear function of ¢. It follows that
f(z*(t)) is a quadratic function of . An elementary calculation by plugging in z* into f
gives for an explicit rational function sqg(a, b), which is the portion of f(z*(t)) that does
not involve t.

If in addition ¢ >> 0 observe that z*(t) = —a~' + O(1), therefore z*(¢) is in the simplex

1.a-1

x; >0 for all ¢ and ), x; = t. The result follows. d

4.2. Quadratic lattice optimization. In this section we discuss the lattice optimization
problem

min{f(z) | Az =t, x€Z™, 0<x <t} (22)
for a nonnegative integer ¢, where A = (1,1,...,1) is a 1 X m matrix and f(x) is a convex
separable function with a,b € Z™ with a > 0. We will follow the terminology and
notation from Onn’s book [Onnl0]. In particular the set = € Z™ satisfying the above
conditions Az =t and 0 < z; <t is called a feasible set. Lemma 3.8 of Onn [Onnl0] gives
a necessary and sufficient condition for a lattice vector x to be optimal. In the next lemma,
suppose that a feasible x € 7Z™ is non-degenerate, that is, x; < t and z; > 0 for all 4, 7.
Note that this is not a serious restriction since otherwise the problem reduces to a lattice
optimization problem of the same shape in one dimension less.

Lemma 4.3. [Onnl0] Fix a feasible x € Z™ which is non-degenerate. Then it is optimal
(i.e., a lattice optimizer for the problem ) if and only if it satisfies the certificate

2(a;z; — ajz;) < (a; +aj) — (b — b;). (23)

Proof. Lemma 3.8 of Onn [Onnl10] implies that z is optimal if and only if f(x) < f(x + g)
for all g € G(A) where G(A) is the Graver basis of A. In our case, the Graver basis is given
by the roots of the A,,_; lattice, i.e., by

G((1,1,...,1) ={e; —e; |1 <i,j <m, i #j}.
Let g =e; —e; € G(A) and f(z) as in (I7). Then f(z) < f(z + g) is equivalent to (23). O
Below, we will call a vector quasi-linear if its coordinates are linear quasi-polynomials.

Proposition 4.4. (a) Every non-degenerate lattice optimizer x*(¢) of is quasi-linear of

the form
a; !
zi(t) = =——t+c(t) (24)
i %

for some w-periodic functions ¢;, where

1 i
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(b) When ¢ > 0 is an integer, the minimum value of is a quadratic quasi-polynomial

1 b-a!
e » a_lt + so(a, b)(t) (26)

where sg(a, b) is a w-periodic function of ¢.
(c) For all ¢ > 0 the minimum value of is

1 b-a !
t? t 1). 2
1-a! +1~a—1 +00) (27)

Part (c) of Proposition is what we will apply to the degree of the colored Jones
polynomial. Note that in general there are many minimizers of . Comparing with
it follows that any lattice minimizer of is within O(1) from the real minimizer.

2
Tt +

Proof. Let A; = H#i a;=ay...0;...an, then w = A, +---+ A,,. Suppose z* satisfies the
optimality criterion and Ax* =t where A = (1,1,...,1). Let 2™ = a* 4+ (Aq,..., A,).
Since a;A; — ajA; = 0 for ¢ # j, it follows that

) =2(a;x]" — a;x").

*
2(aix} — ajx :

*
J
Hence x* satisfies the optimality criterion (23)) if and only if 2** does. Moreover, Az** =

Az*+w = t+w. Since a;l/(zj aj_l) = A;/w, it follows that every minimizer x*(¢) satisfies
-1

the property that x}(t) — Za_"a__lt is a w-periodic function of ¢. Part (a) follows. For part
(b), write z*(t) = 2=ra~" + ¢(t) and use the fact that Ac(t) = 0 to deduce that f(z*(t)) is

a quadratic quasi-polynomial of ¢ with constant quadratic and linear term given by . For
part (c), note that by (b) there is a constant C' > 0 such that we get for all t > C by
taking the maximum absolute value of the periodic s¢(a,b). For 0 < ¢ < C both the function
f and the quadratic are bounded by a constant so the conclusion still holds. U

4.3. Application: the degree of the colored Jones polynomial. Recall that our aim
is to compute the maximum of the degree function d(k) = d(n, k) of the states in the state
sum of the colored Jones polynomial with tight parameters kg = > ., k;, see Theorem .
Here k = (ko, k1, ..., km) and ¢ = (qo, q1, - - - , gm) are (m—+ 1)-vectors and we make use of the
assumption that ¢; is odd for all 0 < i < m. We will compute the maximum in two steps.

Step 1: We will apply Proposition to the function d(k) (divided by —2, and ignoring
the terms that depend on n and ¢ = (qo, . .., ¢m) but not on k):

1 o ) m 2
- 55(k) = ;(Qz — D)kj + (CI0+1)<; k‘z) +;ki(_2+QO+Qi) (28)
under the usual assumptions that ¢ < 0, ¢; > 0 for i« = 1,...,m. We assume that k =

(k1,...,km) € Z™. Restricting §(k) to the simplex k; > 0 and t = ky + -+ - + k,,, we apply
Proposition (c). It follows that for ¢ > 0,
min §(k) = min Qo(t) +O0(1),
> ki<n

where
Qo(t) = s(@)t* + s1(q)t (29)
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and s(q), s1(q) are given by (2).

Step 2: Next it follows that Qy(t) is positive definite, degenerate, or negative definite if
and only if s(q) > 0, s(q) =0, or s(q) < 0, respectively.

Case 1: s(q) < 0. Then Qo(t) is negative definite and the minimum is achieved at the
boundary ¢ = n. It follows that

min d(k) = s(g)n’ + s1(g)n + O(1).
S, ki<n

Case 2a: s(q) =0, s1(q) # 0. Then Qy(t) is a linear function of ¢ and the minimum is

achieved at ¢ = 0 or ¢t = n depending on whether s,(¢) > 0 or s1(g) < 0, so we have

i §(k) — O(1) ?f s1(q) >0
lekz(%n si(g)n+ O(1) if s1(q) < 0.

Case 2b: s(q) =0 = s1(q). Now t = 0 and t = n both contribute equally so cancellation
may occur. It does not because the sign of the leading term is constant due to the parities
of the ¢;’s.

Case 3: s(q) > 0. Then Qo(t) is positive definite and Proposition implies that the
lattice minimizers are near —si(q)/(2s(q)) or at 0, when s1(q) < 0 or s1(q) > 0 and the
minimum value is given by:

min o
Je; >0
> ki<n
Note that cancellation of multiple lattice minimizers is ruled out because the signs of the
leading terms are always the same due to the assumption on the parities of the ¢;’s. Note

also that the uncomputed O(1) term above does not affect the proof of Theorem [1.2]

(1) = { —HE 00 s <0
0(1) if s1(q) > 0.

Remark 4.5. It may be of interest to note that there are very few pretzel knots with s(q) > 0
and s1(g) = 0. These are cases 2b and 3 above where cancellations might occur if we had no
control on the sign of the leading coefficients. The case P(—3,5,5) is mentioned in [LvdV]
for its colored Jones polynomial with growing leading coefficient.

Lemma 4.6. (Exceptional Pretzel knots)
The only pretzel knots with ¢o < —2 <3 < ¢y, ..., qn for which s(¢) > 0 and s;(¢) = 0 are
(1) P(=3,5,5), P(=3,4,7), P(~2,3,5,5), with s(q) = 0.
(2) P(—2,3,7), with s(q) = 1.
Proof. Changing variables to f; = ¢; — 1 turns the two equations s(q) > 0 and s1(q¢) = 0

into: fo(fi'+---+f-)+m=0and 2+ fo + ﬁ = ¢ for some ¢ > 0. Solving for
fo yields fo = (¢ —2)-5. Since fo < —3 we must have 0 < ¢ < 2 — 32=L. This means
there can only be such ¢ when m = 2 or 3. Suppose m = 2 then ¢ =0 or ¢ = % In the first
case we find fy = f?:g so the positive integer solutions are (fi, fo) € {(3,6),(4,4),(6,3)}.

In the case ¢ = § we find f, = 2;’1’33 so (f1, f2) € {(2,6),(3,3),(6,2)}. Finally the case

m=3,¢c=0, fo = =3 yields (f1, fa, f3) € {(2,4,4),(2,3,6),(3,3,3)} and permutations. [




34 STAVROS GAROUFALIDIS, CHRISTINE RUEY SHAN LEE, AND ROLAND VAN DER VEEN

5. THE COLORED JONES POLYNOMIAL OF MONTESINOS KNOTS

In this section we will extend Theorem [3.2] to the class of Montesinos knots. For a Mon-
tesinos knot K = K(ro,r1,...,7m), we will always consider the standard diagram, also
denoted by K, coming from the unique continued fraction expansion of even length of each
rational number as in the case of pretzel knots. Recall that our restriction to Montesinos
links with precisely one negative tangle and the existence of reduced diagrams for Montesinos
links means that we can assume r;[0] = 0 for all 0 < i < m, see Section . To build the dia-
gram from simpler diagrams we introduce the tangle replacement move (in short, TR-move),
and study its effect on the state-sum formula for the colored Jones polynomial.

5.1. The TR-move. A TR-move is a local modification of a link diagram D. Suppose D
contains a twist region 7. Viewing 1" as a rational tangle 7' = % for some integer ¢ we may
consider a new diagram D; obtained by replacing T' by the rational tangle T} = r x % for
some non-zero integer r with the same sign as t. Alternatively, viewing T as an integer
tangle t we replace it with T, = % @ t, also with r having the same sign. Collectively these
two operations are referred to as the TR-moves. Recall from Section Equations @,
that we can construct a diagram of any rational tangle by a combination of TR-moves, see
also Figures 22] and 23] We extend this to n-cabled tangle diagrams by labeling each arc in
the diagram by n.

. %
R R

FI1GURE 22. Two types of TR-moves.

& 1<

FIGURE 23. Any rational tangle is produced by a combination of TR-moves.
In the picture shown, we have performed three TR-moves: first on 1/¢, then r,
then 1/7'.

We will use the TR-moves to reduce a Montesinos knot to the associated pretzel knot by
first reducing it to a special Montesinos knot.
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5.2. Special Montesinos knot case. We start by considering the case of Montesinos links
K(rg,...,rm) where ¢,, = 2 for all 0 < ¢ < m. This includes the pretzel links by choosing
the unique even length continued fraction expansion with 74[2] = —1 and r;[2] = 1 for each
1 < ¢ < m. We call these links special Montesinos links. We prove the main theorem,
Theorem [5.1] for special Montesinos links.

FIGURE 24. A special Montesinos knot K = K(—% = —11—,% =

7i7) = N(E_ & Ky), and K" = N(K* & KY).

As in the case of pretzel links we use a customized state sum to compute the colored
Jones polynomial, splitting K = N(K_ @ K ). In this case K_ is the single vertical 2-tangle
1/(ro[1] — 1) and K is the 2-tangle that is the rest of the diagram. As before we apply the
fusion and untwisting formulas @D, to K" and the Kauffman state sum to K7 after
cabling with the nth Jones-Wenzl idempotent for the nth colored Jones polynomial. See
Figure [24]

The methods used previously on the pretzel links also apply to this case with minor
modifications. In particular the notion of global through strands ¢(o) for a Kauffman state
o on K7 still makes sense and k;(o) is still well-defined by restricting o to the ith tangle. In
this case ¢;(0) means the number of through strands of the ith tangle of K7 that are also
global through strands, and as before k; = [$]. Let

Ger = Y Y GO NIy, @ (K1),)),
ko o:ki(o)=ki,c(o)=c
where as in the case of pretzel links, I, is the skein element in TLs, in the sum obtained
by applying the fusion and untwisting formulas to K", and Gy, (v) are the coefficients in
rational functions of v.

We have
(K™ = Gro(0)0™® O (N(Ity & (K1)g)) = Y Gew
( ) c,k

ko,o

We prove the following theorem.

Theorem 5.1. Consider K = K(Tomi%, r1[1]}r 1[2},...,Tm[1}i 1[2]). Assume |r;[1]] > 1,
— 1 m

73[2]] > 0, ro[1] <0 < r;[1], and define gqo = 1o[l] =1, ¢ = r;[1] +1 for 1 <i <m, ¢ = r;[2]
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for 1 <i < m. Referring to the state sum (K™) = )., G.r we have the following: For a
Kauffman state o, define the parameters ¢ = c(o),k = k(o) to be tight if ko = k14 -+ km =
£, For tight ¢,k we have G, j, = (—1)®0(n—ko)ltntko 3%, (nki)(gi=1)y,0(nk) 4 l.o.t. and M =

<qo+1>k§+;<qi—1>k3+2<—2+q0+qi>ki—wZqﬁ(m—l)n—% 1) (30

i=1 =0 i=1

If ¢,k are not tight then there exists a tight pair ¢, k' (coming from some Kauffman state)
such that deg, G < deg, Go j.

Proof. The proof is analogous to that of Theorem for pretzel links. As in the pretzel case
we identify the minimal states and show that they maximize the degree and do not cancel
out. Since these arguments are exactly the same we focus on describing the minimal states,
one for each set of tight parameters of through strands ¢, k. The minimal states are produced
by choosing a minimal state 7p for the pretzel link P = P(qo, ..., qn) and extending it to
a minimal Kauffman state 7 of (K%). The set A, on which 7 chooses the A-resolution is
a union of the restriction of A,, on the twist region (1/r;[1])" and a set of k? crossings in
pyramidal position with k; through strands in (r;[2])", 1 < ¢ < m. This set exists whenever
|7:[2]| > 0. We have

m

d(k,7) = d(k,7p) +1* 3 (g — 1),

=1

to account for the additional crossings from 7;[2] for 1 < ¢ < m on which 7 chooses the
B-resolution. This gives d(n, k) in the theorem.

2The abbreviation l.0.t. means lower order terms in v.
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{/
]
Extension to 7 \
&/
@n

5

> Restriction from 7p

FIGURE 25. An example with n = 4 showing a minimal state with 3 through
strands through a rational tangle r where ¢, = 2 and r[2] > 1. One can see the
extension of the minimal state on the vertical twist region 1/r[1]. We choose
3? = 9 crossings in pyramidal position in the twist region (r[2])™.

O

5.3. The general case. Given K = K(rg,r1,...,Tmy), we decompose the standard diagram
K = N(K_®&K,), where K_ is the single negative tangle, and K, is the rest of the diagram.
We further decompose K_ = D_UV_ where D_ consists of the negative twist region 1/r[1]
if 79[2] # —1, or 1/(ro[1] — 1) if r[2] = —1 and ¢,, = 2, while V_ is the rest of K_. Note D_
and V_ are joined as they are in the diagram K. For the 2-tangle diagram corresponding
to r; in K, where i <1 < m, let the tangle diagram T; be the portion corresponding to the
first two (with respect to the continued fraction expansion) twist regions 1/r;[1] and r;[2]. If
l,, = 2, then T; = r;[2] % %[1] Otherwise if ¢,, > 2, then T} is a (4, 2)-tangle diagram obtained
by joining the upper right strand of n'l[l] to the lower right strand of r;[2]. We decompose K,
as Ky = D, UV, where D, = U",T; is the portion of the standard diagram K obtained by
arranging 7T; side by side in a row in order, and joining each pair 7T;,T; 1 for 1 <7 <m —1
according to the rules as follows:
o Ifl,, ={, , =2, then T; and Tjy; are both 2-tangles. The lower right strand of T;
is joined to lower left strand of T}, and the upper right strand of T; is joined to the
upper left strand of T}, .
olfl,=2and ¥, , >2 0rf, >2and/
joined to the lower left strand of 7;.;.
e If/,, > 2 and {,,, =2, then the upper right strand of T; is joined to the upper left
strand of T;.1, and the lower right strand of 7; is joined to the lower left strand of
Tin.

> 2, only the lower right strand of T; is

Tit1
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Define V to be the rest of K. See Figure for examples of T;’s and Figure for an
illustration of the decomposition of a Montesinos knot K. The union defined extends to the
n-cable of the tangle diagrams by decorating each strand with n, so (DL UV,)" = D} UV}
and (D_UV_)"=D"ruyvn.

Tangle r; Tangle T;

LL LR B T

F1GURE 26. Two cases of the T;’s corresponding to the r;’s are shown. UL
stands for upper left; U R stands for upper right; LL stands for lower left; LR
stands for lower right.

Ficure 27. We show the decomposition K = N(K_ & K,) of a Mon-
7 _ 1

: 3 12 12 1 7
inos knot K = K(—% = £ = 2 = L =1 7 _
tesinos ot ( 7 _2+%377 3+%77 3+%717 2+2+11 ' 17
2+1
51— 7= 3.7) Inthe figure, K. = D_UV_ (decomposed on the left) is
1 3

the 2-tangle enclosed in the dashed rectangular box on K. On the right, D, is
the tangle enclosed in the dashed curve on K., and V, is the rest of the
diagram K.
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Let
_ T0[1]+_L1 ifgro ZQand 7’0[2] = —1.
o= ro[1] otherwise
The link L = K(+ L — ..., —=L——) is a special Montesinos link. We approach the

w0ty el g
general case as insertion of the union of rational tangles V' = V_ U V, into this special
Montesinos link via TR-moves. The essential feature of V' is that its all-B state acts like the
identity on (L) plus some closed loops, see Figure .

Lemma 5.2. Suppose we have the standard diagram of a Montesinos knot K = K (ro,r1,...,7) =
N(K,EBKJF):N((D,UV,)EB(DJrUVJr)),WhereL:K(qlo,Tm}r —, ey [1}41r —) is a
T Im T

special Montesinos knot. Let V = V_ UV, joined as they are in the diagram K. If ¢y < —1
is odd, and ¢; = r;[1] +1 > 1 is odd for every i > 0, then we have

deg, (K™ = deg, (L") + c(V)n® + 2n o(V3),

where ¢(V') is the number of crossings in V' and o(Vp) is the number of disjoint circles
resulting from applying the all-B state to V.

Proof. Decompose the n-cable of the standard diagram L™ = N(L™ @ L%) as in Figure
24 Applying quadratic integer programming to the formula of Theorem for the degree-
maximizing states of (L"), discarding any terms that depend only on ¢;, ¢ and n and not
on k;, we see that there are minimal states of the state sum of any special Montesinos knot
that attain the maximal degree. Fix one such minimal state 7.

We decompose K" = N(K" @ K}) = N((D* U V") @ (D} UVY)) and write down a state
sum for (K™) by applying the fusion and untwisting formulas to the n-cable of the single
negative twist region in D™ and applying Kauffman states on the set of crossings in the rest
of the diagram K™. Let o Uo’ denote a Kauffman state on K™ where o is a Kauffman state
on D% and ¢’ is a Kauffman state on V" = (VU V}"). We have

(K" = Y Gi)o® NI, U (Vo) @ (D)o U (V])o0)))-

(ko,0Uc”)

Because V' = V_ UV, is a (possibly disjoint) union of alternating tangles, applying the
all-B state on V" results in a set O(V}) of n o(Vp) disjoint circles, and

NIy U (VZ)5) @ (D)o U (VE)B)) = Ny, @ (L1)s) UO(V)
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by visual inspection of the diagrams involved. Letting By denote the all-B state on V", we
get

(K™ :(k UZ):/;AB Glro (V)OI N (T U (V™)) @ (D7) U (V)0)))
. (Z )Gkov OB (N (T U (V) 50) © (D)o U (V) )
_ : G N (B (V2)0) 8 (D), 0 02),)
N (Z o B G & (E)) LOVE)
:(O XV% Gy (V)BT (N (T U (V™)) @ (D7) U (V)0)))
e

Let
ko, 7 o) = des, (Giy (0™ N (T, U (V2)or) & (D), U (V) )

The diagram V' being a union of alternating tangles also implies that a state on V" that is
not the all-B state merges a circle from O(V}). Therefore, by an application of Lemma m,

d(ko, 0 U By) > d(ko, o U "),

for any ¢’ # By.
Thus for a pair (kg, 7) where d(ko, 7) maximizes the degree in the state sum of (L"), the
term

G (V)= T BIN (1, @ (L)) U O(VE)

also maximizes the degree in the state sum for (K™). The leading terms all have the same
sign because of the assumption on the parities of the ¢;’s and Theorem [5.1] Thus there is no
cancellation of these maximal terms, and we can determine deg, (K") relative to deg, (L")
by counting the number of disjoint circles in O(V3p), giving the formula in the lemma. [

It is useful to reformulate Lemma in a more relative sense, pinpointing how the degree

changes as a result of applying a TR-move. Let TR] denote the TR-move that sends % to

r % +. We define two composite moves TRy (T') = (% @ry)* T, and TRT(T) = (ry * %) eT.
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FIiGURE 28. Examples of applying the all-B state to V' and the resulting
disjoint circles for moves sending tangles % to (% D ro) * % and sending t to

(ry * %) @ t. The tangles that form part of V' are encircled.

Lemma 5.3. Suppose two standard diagrams K, L of Montesinos knots satisfy the conditions
of Lemma where K is obtained from L by applying one of the moves TR;, TR, , TR™,
locally replacing tangle (7°)" by (7")", then the degree of the colored Jones polynomial
changes as follows. See Figure |28 for examples of the moves TR, , TR,

TR{ -move: Suppose r,t < 0, and 7' = % is a vertical twist region, and 7" = r * %, then

deg(K™) = deg(L™) — rn® 4+ 2(—r — 1)n.

1

TR; -move: Suppose 11,79, <0, T = 5

is a vertical twist region, and T" = (;- @ ry) * 1, then
deg(K"™) = deg(L™) — (r| + r9)n* — 2ryn.

TR -move: Suppose 1,79, > 0, T =t is a horizontal twist region, and 7" = (r; * %) @ t, then
deg(K™) = deg(L™) + (r + ro)n? + 2ron.

Proof. Applying Lemma [5.2] we count the number of crossings and the number of state
circles from applying the all-B state to the newly added tangle V' in each of these cases, and
determine the resulting degree. U

We use Lemma [5.3] to prove the part of Theorem [I.3] concerning the degree of the colored
Jones polynomial for the Montesinos knots that we consider.

Theorem 5.4. With the same definitions for q;’s for 0 < ¢ < m as in Lemma let
K = K(ro,r1,...,7m) be a Montesinos knot such that ro <0, r; > 0 for all 1 <i < m, and
il <1 for all 0 < i < m with m > 2 even. Suppose qo < —1 <1< q,...,qm are all odd,
and g, is an integer that is defined to be 0 if ro = 1/qo, and defined to be ro[2] otherwise. Let
P = P(qo,...,qm) be the associated pretzel knot, and let w(Dg), w(Dp) denote the writhe
of standard diagrams Dy, Dp with orientations. For all n > Nk we have:

Jsg(n) = jsp(n) = gy = [ro] = w(Dp) + w(Dk) + Z(MP] -1+ Z[m],

ixg(n) = jxp(n) — 2-20 1 o], — 2> (rif2] - 1) - QZ[ri]e.

ro[2] i=1
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Proof. Suppose K = K(ro,71,...,"m) = N(K_ @ K+) is a Montesinos knot, then K is
obtained from a special Montesmos knot L= K( : L )=N(L_aL,)
T'm 2]

by a combination of TR-moves on the tangles in L followmg the unique even length positive
continued fraction expansions of r; for 0 < ¢ < m. Recall each rational tangle diagram
corresponding to 7; has an algebraic expression of the form
1 1
il ] ¥ ———— il —2]) %ok ——).
The diagram K, is obtained by applying successive TR -moves to r;[j] in Ly, 1 < i < m,
sending 7;[j] to (r;[j + 2] * 1/r;[j + 1]) @ r;[j] for each even 2 < j </, starting with j = 2.

. ey

Similarly, the rational tangle K_ is obtained from L_ by applying the TR;-moves to #[ﬂ’
sending - H to (ro[3+2} @ rolj —|— 1]) * [W for each odd 1 < j < ¢, starting with j = 1, with
a final TR} -move sending ﬁ to ( o[lro] * m)
Recall
Ple= > bl o= Y. rll =+
3<j<ly, j=even 3<j<tr, j=odd

We have two cases for the degree of (K") relative to (L"), where K™ is obtained from
applying the combination of TR-moves to L™ as described above:

(1) ro = 1/qo. By Lemma , each application of the TR™-move adds (r;[j + 2] + r;[j +
1])n? + 2r;[j + 1]n to the degree for each even 2 < j < /,. where 1 < i < m. We have

deg, (K™)

=deg (L") + Y > (rli+2+rli+1)n’ +2r]j + 1n

1=1 j even, 2<j<ty,
= deg, (L") +n” Y _[ri] +2n > _[rilo.
=1 =1

Applying quadratic integer programming to for deg,(L™) and ignoring the part
of the degree function that only depends on n, g;, and ¢.’s, we see that as long as the
g;’s for 0 < i < m satisfy the hypotheses of the theorem,

deg, (K™)
= —25(q)(n)n* — 2s,(q)(n)n + lower order terms +n” Z(qi —1)+n Z i) + ZnZ Tilo-
~ i=1
deg, (L")

Gathering the coefficients multiplying n? and accounting for the writhes of standard
diagrams Dy, Dp , we get

m m

jsg(n) = jsp(n) — w(D,) +w(Dxg) + Z@; —1)+ ) _[rl.
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Note that ¢, = r;[2], and ¢} = [ro] = 0 for this case, and so trivially

m m

jsw(n) = jsp(n) = dy — [ro] = w(Dp) +w(Dx) + ) (12 = 1)+ Y [ril.

i=1 =1

Now we compute jxx(n) by considering deg, (K™"!) and collecting coefficients of n.
This gives

m m m

ixg(n) = jxp(n) — QZ((J@/‘ -1)-2 Z[ﬂ] +2 Z[Tz’]o-

— jxp(n) =23 (6= 1) =2 [l

Trivially we have

iXg(n) = jxp(n) — 2%{32] + 2[rolo — 2 Z(n[z] —1)—2 Z[”]e'

(2) 7o # 1/qo. In this case, we account for the degree change for the TR™-moves applied
to L7} in the same way as in case (1). It remains to account for the change to the
degree based on applying TR, -moves with a final TR; -move to the n-cabled negative
tangle of the special Montesinos knot L. Each application of the TR;-move adds
—(rolj + 2] + 1ol + 1])n* — 2(rg[j + 1])n to the degree, and the final application of
the TRy -move adds —rg[l,,]n* + 2(—7[l,,] — 1)n. We sum the contribution over j
odd from 1 to ¢,,.

S —lali 2ol + Un? — 20l + 1)n
= —(raf2] + ] — ralt D — 20l — roft] + rof2D)m (31)

We compute similarly the quadratic growth rate and the linear growth rate of the
final TR} -move:

— 1o[lnyIn? + 2(=70[ly,] — 1)n. (32)
Adding , , we have

+B2) = —(rol2] + [ro])n* — 2([role + 70[2] + 1)n. (33)
Plugging in n — 1 for n and expanding, the result is

+ = —(ro[2] + [ro])n® — 2([ro]e + ro[2] + 1 — (ro[2] + [ro]))n- (34)
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When we add the coefficients multiplying n? and the coefficients multiplying n from
from the moves on K, we get in this case

m m

Jsic(n) = (jsp(n) —w(Dy) +w(Dg) + Y (rif2] = 1) + Z[”]> = (ro[2 + [ro]),  (35)

i=1 i=1

and

exc() = (jxp<n> ~2) (il - 1) - QZm]e) 2, - 220, (30)

as in the statement of the theorem.

6. ESSENTIAL SURFACES OF MONTESINOS KNOTS

Let X be a compact, connected, non boundary-parallel, and properly embedded surface in
a compact, orientable 3-manifold Y with torus boundary. We say that Y is essential if the
map on fundamental groups ¢* : m1(2) — 7 (Y) induced by inclusion of ¥ into Y is injective.
The surface Y is incompressible if for each disk D C Y with D NY = 9D, there is a disk
D' C ¥ with D" = 0D. The surface X is called 0-incompressible if for each disk D C Y
with DNY =a, DNJY = B (a and B are arcs), a U = 9D, and a N B = SY, there is a
disk D' € ¥ with 0D’ = o/ U 8/ such that o/ = « and g’ C 0X.

Orient the torus boundary Y with the choice of the canonical meridian-longitude basis
i, A from the standard framing (so the linking number of the longitude and the knot is 0)
given an orientation on the knot. The boundary curves 0¥ of an essential surface > with
boundary in 0Y" are homologous and thus determines a homology class [pu+ ¢A| in H1(9Y).
The boundary slope of ¥ is the fraction p/q € QU {1/0}, reduced to lowest terms. Hatcher
showed that the set of boundary slopes of a compact orientable irreducible 3-manifold with
torus boundary (in particular a knot exterior) is finite [Hat82].

An orientable surface is essential if and only if it is incompressible. On the other hand,
a non-orientable surface is essential if and only if its orientable double cover in the am-
bient manifold is incompressible. In an irreducible orientable 3-manifold whose boundary
consists of tori (such as a link complement), an orientable incompressible surface is either 0-
incompressible or a d-parallel annulus [Wal67]. Therefore, the problem of finding boundary
slopes for Montesinos knots may be reduced to the problem of finding orientable incompress-
ible and 0-incompressible surfaces, and we will only consider such surfaces for the rest of the
paper.

In this section, we summarize the Hatcher-Oertel algorithm for finding all boundary slopes
of Montesinos knots [HO89], based on the classification of orientable incompressible and 0-
incompressible surfaces of rational (also known as 2-bridge) knots in [HT85]. For every
Jones slope that we find in Sections and we will use the algorithm to produce an
orientable, incompressible and d-incompressible surface, whose boundary slope, number of
boundary components, and Euler characteristic realize the strong slope conjecture. This
completes the proof of Theorem [I.2] and Theorem [I.3]
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We will follow the conventions of [HO89] and [HT85]. For further exposition of the al-
gorithm, the reader may also consult [IM0O7]. It will be useful to introduce the negative
continued fraction expansion [BS, Ch.13]

[ag, ai, ..., ad] = [ag, —a, ..., (=1)’as] = ag — (37)

a; —
g — 1

a3—...—_
Qy

with a; € Z and a; # 0 for i > 0.

6.1. Incompressible and 0-incompressible surfaces for a rational knot. A notion
originally due to Haken [Hak61], a branched surface B in a 3-manifold Y is a subspace
locally modeled on the space as shown on the left in the Figure This means every point
has a neighborhood diffeomorphic to the neighborhood of a point in the model space. A
properly embedded surface X in Y is carried by B if ¥ can be isotoped so that it runs nearly
parallel to B, i.e., S lies in a fibered regular neighborhood N (B) of B, and such that S meets
every fiber of N(B) [}

= =

FiGUurRE 29. Left: local picture of a branched surface, with the blue lines
indicating the singularities. Right: a surface carried by the branch surface.

Using branched surfaces, Hatcher and Thurston [HT85] classify all orientable, incompress-
ible and d-incompressible surfaces with nonempty boundary for a rational knot K, = K(1/r)
where 7 € QU {1/0} in terms of negative continued fraction expansions of r. For each neg-
ative continued fraction expansion [[bg, b1, ..., bx]] of r as in they construct a branched
surface 3(by, . .., b;) and associated surfaces Sy (M, ..., My) carried by X(by, ..., bg), where
M >1and 0 < M; < M.

We will now describe their representation of a surface Sy;(My, ..., M) carried by a
branched surface ¥ (by,...,b;) in terms of an edge-path on a one-complex D. Here, D is
the Farey ideal triangulation of H? on which PSLy(Z) is the group of orientation-preserving
symmetries, see Figure Recall that the vertices (in the natural compactification) of D

3In [FO84] and [Hat82], a surface is carried by a branched surface if it lies in a fibered regular neighborhood
of the branched surface. A surface is carried by a branched surface with positive weights if in addition the
surface intersects every fiber of the fibered regular neighborhood of the branched surface. Here we add the
condition that the surface meets every fiber of the fibered regular neighborhood of the branched surface to
simplify the summary of results from [FO84], [Hat82].
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are (QUoo and we set 0o = % in projective coordinates. A typical vertex of D will be denoted
by (§> for coprime integers p,q with ¢ > 0. There is an edge between two vertices <§) and

(%), denoted by (£)=——=(%), whenever [ps —rq| = 1. An edge-path is a path on the 1-skeleton
of D which may have endpoints on an edge rather than on a vertex.

Given a negative continued fraction expansion [[by, ..., bx]] of r, the vertices of the corre-
sponding edge-path are the sequence of partial sums
Hbg, bl, ey bk]], Hbo, bl, ey bk,ﬂ], Ceey [[bo, bl]], Hbo]], Q.

Given a choice of integers M > 1 and 0 < M; < M, we construct a surface Sy (M, ..., M)
in the exterior of K, from this edge-path as follows. We isotope the 2-bridge knot presentation
of K, so that it lies in S? x [0, 1], with the two bridges intersecting S? x {1} in two arcs of
slope oo, and the arcs of slope r lying in S? x {0}. See [HTS5, p.1 Fig. 1(b)]. The slope here
is determined by the lift of those arcs to R?, where S? x {i} \ K is identified with the orbit
space of I', the isometry group of R? generated by 180°-degree rotation about the integer
lattice points.

Given an edge-path with vertices {(v)}, choose heights {i,}, i, € [0,1] respecting the
ordering of the vertices in the path. At S? x {0}, we have 2M arcs of slope 7, and at
S% x {1} we have 2M arcs of slope co. For a fixed M, each vertex (v) of an edge-path
determines a curve system on S? x {i,}, consisting of 2M arcs of slope v with ends on the
four punctures representing the intersection with the knot. The surface Sy (M, ..., My) is
constructed by having its intersections with S? x {i,} coincide with the curve system at (v).
Between one vertex (v) to another, say (v) connected by an edge, M saddles are added to
change all 2M arcs of slope v to 2M arcs of slope v', with A/; indicating one of the two
possible choices of such saddles. At the end of the edge-path, 2M disks are added to the
slope oo curve system, which corresponds to closing the knot by the two bridges.

/1 93
2/1 1/2
1/0 0/1
~3/1
on ~1/2
~1/1

F1GURE 30. Some edges of the 1-complex D.

Hatcher and Thurston have shown that every non-closed incompressible, 0-incompressible
surface in S* \ K, is isotopic to Sy (Mjy,..., My) for some M and M,’s . Furthermore, a
surface Sy (M, ..., My) carried by 3(by,...,bx) is incompressible and J-incompressible if
and only if |b;| > 2 for each 1 < j < k [HT85, Theorem 1.(b) and (c)]. For more details on
the construction of the branched surface X(by, ..., bx), and how it is used in the proof, see
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[HT85]. Floyd and Oertel have shown that there is a finite, constructible set of branched
surfaces for every Haken 3-manifold with incompressible boundary, which carries all the
two-sided, incompressible and O-incompressible surfaces [FO84]. For the general theory
of branched surfaces applied to the question of finding boundary slopes in a 3-manifold,
interested readers may consult these references. We will continue to specialize to the case of
knots.

Let B be a branched surface in a 3-manifold Y with torus boundary, and let S be a
properly embedded surface in Y carried by B. There is an orientation on 0B such that
all the boundary circles of S, oriented with the induced orientations from the orientation
on 0B, are homologous in the torus boundary of Y. See [Hat82, p.375, Lemma] for the
full statement and a proof of this result that generalizes to the case where an orientable,
compact, and irreducible 3-manifold has boundary the union of multiple tori. Thus to
compute a boundary slope it suffices to specify a branched surface, and hence the edge-path
representing the surface as described above in the case of rational knots. This is how we will
describe the surfaces we consider for computing the boundary slopes of a Montesinos knot
for the rest of this paper.

6.2. Edge-paths and candidate surfaces for Montesinos knots. Hatcher and Oertel
[HOSK9| give an algorithm that provides a complete classification of boundary slopes of Mon-
tesinos knots by decomposing K(rg,r1,...,7) via a system of Conway spheres {S?}7,,
each of which contains a rational tangle 7). Their algorithm determines the conditions un-
der which the incompressible and the d-incompressible surfaces in the complement of each
rational tangle, as classified by [HT85] and put in the form in terms of edge-paths as dis-

cussed in Section [6.1] may be glued together across the system of Conway spheres to form

an incompressible surface in S*\ K(ro,71,...,7mn).
To describe the algorithm, it is now necessary to give coordinates to curve systems on a
Conway sphere. The curve system SN S? for a connected surface S C S3\ K(rg,r1,...,7m)

may be described by homological coordinates A;, B;, and C; as shown in Figure [31| [Hat88].

FiGURE 31. The Conway sphere containing the tangle corresponding to r;
and the curve system on it.

Since an incompressible surface S must also be incompressible when restricting to a tan-
gle inside a Conway sphere, the classification of [HT85] applies, and the representation by
Hatcher-Thurston of such a surface in terms of an edge-path also carries over. However, the
edge-paths lie instead in an augmented 1-complex D in the plane obtained by splitting open

D along the slope oo edge and adjoining constant edge-paths <§>_<§>' See [HO89, Fig.
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1.3]. The additional edges in D incorporate the new possibilities of curve systems that arise
when gluing the surfaces following the tangle sum.

Again, an edge-path in D is a path in the 1-skeleton of D which may or may not end on
a vertex. It describes a surface in the complement of a rational tangle in K(rg,r1,...,7mn)
consisting of saddles joining curve systems corresponding to vertices, as described in the
last paragraph of Section [6.1] The main adjustment is that the endpoint of an edge-path
may not end at (oco). In order for the endpoint representing the curve system to come from

the intersection with an incompressible and 0-incompressible surface, it must be on an edge

(§>—<§> and has the form

Kp. M-K.r
O+ 0
for integers K € Z, M > 0. If § # -, this describes a curve system on a Conway sphere
consisting of K arcs of slope p/q, of (A, B,C)-coordinates K(1,q — 1,p), and M — K arcs
of slope r/s, of (A, B,C)-coordinates (M — K)(1,s — 1,r). The coordinate of the point is
the sum: (M, K(q—1)+ (M — K)(s—1), Kp+ (M — K)r). If 2 = %, this describes a curve
system on a Conway sphere consisting of (M — K) arcs of slope p/q, of (A, B, C')-coordinates
(M —-K)1,q—1,p) =M —-K,(M —-K)(g—1),(M — K)p), and K circles of slope p/q,
of (A, B, C)-coordinates K (0, q,p) = (0, Kq, Kp). The coordinate of the point is again the
sum: (M — K, (M — K)(qg—1)+ Kq, Mp).
The algorithm is as follows.

(1) For each fraction r;, pick an edge-path ~; in the 1-complex D corresponding to a
continued fraction expansion

Ty = Hboabla'--abk]]abj eZ,’bj’ 22f01" 1 S] Sk

As discussed in Section these continued fraction expansions correspond to essen-
tial surfaces in the complement of the rational knot K,,. For example, for 1/3 the
choices are either [[0, —3]] or [[1,2,2]]. Or, choose the constant edge-path (r;)=—(r;).
(2) For each edge (2)—(%) in 7;, determine the integer parameters {K;}y, {M;}iZ,
satisfying the following constraints.
(a) A; = A; and B; = Bj for all the A-coordinates A; and the B-coordinates B; of
the point
%<£> %<C>_
i g i S
(b) >, Ci = 0 where C; is the C-coordinate of the point

K; p M; — K; r
VAT VAR
i g i S
The edge-paths chosen in (1) with endpoints specified by the solutions to (a) and (b)
of (2) determine a candidate edge-path system {~;}, corresponding to a connected

and properly embedded surface S in S3\ K (rg,71,...,7,). We call this the candidate
surface associated to a candidate edge-path system.
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(3) Apply incompressibility criteria [HO89, Prop. 2.1, Cor. 2.4, and Prop. 2.5-2.9] to
determine if a candidate surface is an incompressible surface and thus actually gives
a boundary slope.

Remark 6.1. We would like to remark that Dunfield [Dun01] has written a computer pro-
gram implementing the Hatcher-Oertel algorithm, which will output the set of boundary
slopes given a Montesinos knot and give other information like the set of edge-paths repre-
senting an incompressible, d-incompressible surface, Euler characterstic, number of sheets,
etc. The program has provided most of the data we use in our examples in this paper.
Interested readers may download the program at his website https://faculty.math.illinois.
edu/~nmd/montesinos/index.html.

We will write S({7;}/",) to indicate a candidate surface associated to a candidate edge-path
system {7;}7,. Note that for a candidate edge-path system without constant edge-paths,
M; is identical for ¢ = 0,...,m by condition (2a) in the algorithm. We will only consider
this type of edge-path systems for the rest of this paper, and simply write M for M; for a
candidate surface S.

We will mainly be applying [HO89, Corollary 2.4], which we restate here. Note that for
an edge <§>—%<§> + M=K (1) the V-value (called the “r-value” in [HOR9]) is 0 if E=2%
or if the edge is vertical, and the V-value is |¢ — s| when 2 7 .

Theorem 6.2. [HO89, Corollary 2.4] A candidate surface S({v:}",) is incompressible un-
less the cycle of V-values for the final edges of the v;’s is of one of the following types:
{0,Ve,...,Vo b, {1,1,..., 1,V }, or {1,...,1,2,V,,, }.

6.3. The boundary slope of a candidate surface. The twist number tw(S) for a candi-
date surface S({~;}1,) is defined as

tw(S) = o (s — s =2 ) (er — ), (39)

=0

where s; is the number of slope-decreasing saddles of 7;, s;" is the number of slope-increasing
saddles of 7;, and M is the number of sheets of S [HO89, p.460]. Let an edge be given by
(E)=—(%), we say that the edge decreases slope if T < %, and that the edge increases slope

if = > §. In terms of edge-paths, tw(S) can be written in terms of the number e; of edges

of 7; that decreases slope and e;, the number of edges of 7; that increases slope as shown.
If v; has a final edge

P K; p M — K;
then the final edge of ; is called a fractional edge and counted as a fraction % Finally,
the boundary slope bs(S) of a candidate surface S is given by

bs(S) = tw(S) — tw(Sp) (39)

r

S

where Sy is a Seifert surface that is a candidate surface from the Hatcher-Oertel algorithm.
For the relation of the twist numbers to boundary slopes, see [HO89, p.460].
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6.4. The Euler characteristic of a candidate surface. We compute the Euler charac-
teristic of a candidate surface S = S({7;}",), where none of the 7;’s are constant or end in
(00) as follows. M is again the number of sheets of the surface S. We begin with 2M disks
which intersect S? x {0} in slope r; arcs in each 3-ball B} containing the rational tangle
corresponding to r;.

e From left to right in an edge-path 7;, each non-fractional edge (£)——(%) is constructed
by gluing M saddles that change 2M arcs of slope § (representing the intersections
with S? x {iz}) to slope L (representing the intersections with S? x {iz}), therefore

q s

decreasing the Euler characteristic by M.

e A fractional final edge of ~; of the form (§>—%(§> + M=K (1) changes 2(M — K)
out of 2M arcs of slope %’ to 2(M — K) arcs of slope £ via M — K saddles, thereby

decreasing the Euler characteristic by M — K.

This takes care of the individual contribution to the Euler characteristic of an edge-path
{7i}. Now the identification of the surfaces on each of the 4-punctured spheres will also
affect the Euler characteristic of the resulting surface. In terms of the common (A, B, C)-
coordinates of each edge-path, there are two cases:

e The identification of hemispheres between neighboring balls B} and B}, identifies
2M arcs and B; half circles. Thus it subtracts 2M + B; from the Euler characteristic
for each identification.

e The final step of identifying hemispheres from Bj and B2 on a single sphere adds B;
to the Euler characteristic.

6.5. Matching the growth rate to topology for pretzel knots. We consider two can-
didate surfaces from the Hatcher-Oertel algorithm whose boundary slopes and the ratios of
Euler characteristic to the number of sheets will be shown to match the growth rate of the
degree of the colored Jones polynomial from the previous sections as predicted by the strong
slope conjecture.

6.5.1. The surface S(M,x*). For 1 <i <m write

R 1)
Coy (g -y

The z}’s come from the coefficients of ¢ in in the real maximizers z}(t) of the degree
function d(n, k) from the state sum of the nth colored Jones polynomial. Let M be the least
common multiple of the denominators of {z}}™,, reduced to lowest terms. For example,
suppose we have the pretzel knot P(—11,7,9), then

(40)

* _ * __ _
Z‘l — — 9 :CQ — 1 — 9
9-1

3
7

N
-+ |ooi

1
7—1
1 1 1
71T 51 7—1

and M is 7. We show that {zf} and M determine a candidate surface from the Hatcher-
Oertel algorithm.
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Recall for ¢ = (qo, q1,- -, Gm),
1

>l — 1)~

Lemma 6.3. Suppose ¢ = (qo, ¢1, - - -, ¢m) is such that s(q) < 0. There is a candidate surface
S(M, xz*) from the Hatcher-Oertel algorithm with M > 0 sheets and C-coordinates

{—M, Mz, Mz}, ... Mz}

s(q) =1+ q +

Proof. Directly from the proof of Lemma the elements of the set {z;}", satisfy the
following equations.

zi(qi — 1) = x3(g; — 1), for i # j, and

> ar=1. (41)

Consider the edge-path systems determined by the following choice of continued fraction
expansions for {1/¢;}1",.
/g =1-1,-2,-2,..., —%]], and

-~

—qo—1
1/q; =[]0, —¢q]], for 1 <i<m.

Note that they represent locally incompressible surfaces since | — 2| > 2 and ¢; > 2 for
1 <i < m as discussed in Section Let K; = Mz} for 1 <14 < m, and suppose we have
0< Ky <M, 2<qg< —qpsuch that

This condition is the same as requiring By = B; from (a) of Step (2) of the Hatcher-Oertel
algorithm. We specify a candidate surface S(M,z*) in terms of edge-paths {v; }1":
The edge-path ~, for ¢q is
-1 -1 Ky, —1 M—-K,, —1
(o (o Ty M R T
% G —1 q q—1

(y—iy+ TR, (13)

Provided that Ky, q satisfying exist, together with this edge-path system satisfies
the equations coming from (a) and (b) of Step (2) of the algorithm. Thus, there is a candidate
surface with {—M, Ma3, Mz}, ..., Mz}, } as the C-coordinates in the tangles corresponding
to r;’s.

[t remains to show that the assumption s(¢) < 0 implies the existence of Ky, ¢ satisfying

)



52 STAVROS GAROUFALIDIS, CHRISTINE RUEY SHAN LEE, AND ROLAND VAN DER VEEN

Write .

xr. =

' Z;n:l(qj' R DI (g5 — 1)

Recall s(q) < 0 means

Z?;(Qi — 1)

1 =i\ 7
Tt 7 (g — 1)

— =1+q+ <0.

1
Z:il(% —1)
Multiply both sides by M, we get
72, (g — 1)

This implies that a pair of integers Ky, ¢ such that 0 < Kg < M, ¢y < q¢ < —2 exist such
that is satisfied, since by definition

Z;’il(% — 1)
M 2, (¢ — 1)

which is the same as saying

M1+ q)+M

= Mzi(q1 — 1) = Ki(qn — 1),

M(1+q) + Ki(q1 — 1) <0.

So if M > Ki(q1 — 1), we can choose ¢ = 2 and Ky = K;(¢1 — 1). Otherwise, we choose
some ¢y < —q < —2 such that

0<Ki(qn—1)—M(g—2) <M.
Let Ky be the difference Ki(¢y — 1) — M(q — 2). O

The twist number of S(M,z*). With the given edge-path system in the proof of
Lemma [6.3| and applying the formula for computing the boundary slope in Section |6.3], we
compute the twist number of S(M, z*). For the edge-path 7 of qo, since gy < 0, each edge of
the edge-path is slope-decreasing. Similarly, each edge in ~; for ¢; is slope-decreasing (since
¢; > 0, the edge (1/¢;) ==(0/1) is decreasing in slope). Each non-fractional path contributes
1, and then the single fractional edge at the end contributes (M — K;)/M for 0 < i < m.
Thus

tw(S(M, z*))
2

M — K,
M

contribution of the single fractional edge at the end of ~g

= (—¢ — qo) +
—

contribution of the non-fractional edges of 7o

" M- K,
=1 M
N e’

contribution of the single fractional edge for each of the ;’s for 1 < i < m.

+

By construction, Y 1", £ =1 and —¢ — &2 = —L1(¢; — 1) — 2 from ([42), so

tw(S(M,z*)) = 2(—qo — xj(q1 — 1) + m — 2). (44)
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The Euler characteristic of S(M,z*). With the given edge-path system and applying
the formula for computing the Euler characteristic in Section [6.4] we compute the Euler
characteristic over the number of sheets for S(M, z*). We start with 2M disks for each tangle.
Each non-fractional edge of an edgepath in {7, }7, subtracts M from the Euler characteristic,
while the final fractional edges subtract ) ;" ; M — K; from the Euler characteristic. At the
final step of gluing surfaces across Conway spheres, we subtract 2M + B; for each identification

out of m identifications, then add a single B; back. We have, since B, = K;(¢; — 1) = B,

> B =mK(g; - 1). (45)
i=1
All together, the Euler characteristic over the number of sheets of S(M, z*) is given by
2US5(M, ) _ o 2M (m + 1) ()M (M - K)
#S(M, z¥) M R M

NV
contribution from 2M disks in each tangle  contribution from the edges of the edge-path system

(46)
- (Zm: (2M + B)) > .

i=1

)

S

/

contribution from the final identification
contribution from the m identifications

Using , , and to simplify, we get
2x(S(M, z"))
———— = =4 —tw(S(M,z")) —2(m — 1)z} (g1 — 1

=4—-2(—q—xi(n—1)4+m—=2)—2(m—1Dai(qg — 1)
=8 —2m+2qy —2(m — 2)zi (g1 — 1). (47)
The cycle of V-values of S(M,z*). For i = 0, the last edge of the edge-path g is
—1 Ky ,—1 M—-Ky, —1
(—)—=(—)+ S(—),
q M " q M q—-1

so the V-value for this edge-path is |¢ — (¢ — 1)| = 1. For 1 < i < m, the final edge of the

edge-path ~; is of the form

<—>_M<—>+ i <I>'

So the value of each 1 < i < m is ¢; — 1 following the discussion preceding Theorem .
The cycle of V-values for the edge-path system is (1,¢1 — 1,go — 1,...,¢m — 1).

6.5.2. The reference surface R. Note that the sequence of parameters (0)", also trivially
satisfy the equations from Step 2(a) and 2(b) of the Hatcher-Oertel algorithm with the
choice of continued fraction expansion 1/¢; = [[0, —¢;]] for 0 <7 < m, and therefore defines
a connected candidate surface in the complement of K(1/qo,...,1/qm). We will call this
surface the reference surface R.
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In the framework of the Hatcher-Oertel algorithm, the edge-path corresponding to the
reference surface has the following form for each ¢;, 0 < < m:

<E> — (0).

The twist number of R. With the exception of 7y, which has a single slope-increasing edge
(reading from left to right, the edge increases in slope from 1/¢y < 0 to 0), each edge-path
7 is slope-decreasing (the edge decreases in slope from 1/g; > 0 to 0) of length 1, thus the
twist number of the reference surface R is

tw(R) = 2(m — 1). (48)

The Euler characteristic of R. The surface R has 1 sheet. The Euler characteristic is
computed similarly as for S(M, z*), , except that there are only non-fractional edges in
the edge-path system.

2x(R) 2M(m+1) <M “2M +0 0
ﬁ:“T—;M—(; 3 )*W

=2(1—m).

The cycle of V-values of R. The cycle of V-values of Ris (—qo — 1,q1 — 1,...,qm — 1).

6.5.3. Matching the Jones slope. The results of Section applied to the class of pretzel
knots we consider gives the degree of the nth colored Jones polynomial. We show that the
quadratic growth rate with respect to n matches the boundary slope of an incompressible
surface. The claim is that the Jones slope is either realized by the surface S(M,x*) or the
reference surface R in Section depending on s(g) and s;(¢). Note that both S(M,z*)
(if s(¢) < 0) and R are incompressible by an immediate application of Theorem since
m > 2 and |¢;| > 2 for all i. By the Hatcher-Oertel algorithm, the reference surface is
incompressible for a Montesinos knot except K(—%, %, %), K(—%, %, i), and K(—%, %, %)
Lemma 6.4. Suppose s(q) < 0. Let R be the reference surface and S(M, z*) the surface by
Lemma [6.3) with boundary slopes bs(R) and bs(S(M, z*)), respectively. If
—2s(q) = tw(S(M,z")) — tw(R),

then —2s(q) equals the boundary slope of the surface S(M, x*).
Proof. Note that R is a Seifert surface from the Hatcher-Oertel algorithm, so bs(R) = 0, and

bs(S(M, x*)) = tw(S(M,z")) — tw(R)

by . 0

Theorem 6.5. Suppose s(q) <0, we have:
—2s(q) = tw(S(M,z")) — tw(R).
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Proof. From Equations and we have
tw(S(M,z")) —tw(R) = 2(—qo — 21(q1 — 1) + m — 2) — 2(m — 1).

By the definition of z7,

tw(S(M,z*)) — tw(R) = —2(qo +

6.5.4. Matching the Euler characteristic. Recall that for ¢ = (qo, q1,- -, Gm),

gt —2)(g—1)"
B SUN S Ve

Lemma 6.6. We have
X(S(M, z*))
#S(M,z*)’

where x(S(M, x*)) is the Euler characteristic and #S(M, z*) is the number of sheets M of
the surface S(M, x*).

—251(q) +4s(q) —2(m — 1) =2

Proof. We have by and substituting for =} by definition,

%ﬂm =8 —2m+2qy — 2(m — 2)z;(q1 — 1)
(-1
2l — 1)
1

2l =17

On the other hand, also substituting s(q), s1(q) by definition,

=8 —2m+ 2qy — 2(m — 2)

1(91—1)

=8 —2m + 2qy — 2(m — 2)

—2s1(q) +4s(q) —2(m — 1) = —2(22’21(%;?&:_2)1()%1_ 2 )+ 41+ qo + Zm_l(c; — 1),1)
—2(m—1)
T i +go— 1) +4(1+ g+ ! )
I ATV -
—2(m—1).

The last line is easily seen to be equal to (*) by expanding and gathering like terms. O
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6.6. Proof of Theorem Now we prove Theorem Fix odd integers qq, . . . , ¢,, with
Qo < -1<1<gq,...,qn Let P = P(q,...,qn) denote the pretzel knot. By Theorem
6.2 both of the surfaces S(M, z*) (if s(g) < 0) and R are incompressible by examining their
edge-paths and computing their V-values. Lemma (6.4, Theorem |6.5, and Lemma show
that —2s(q) = bs(S(M, x*)) and —2s1(q) +4s(q) —2(m —1) = 2’;#5(—]”))) For the reference
surface R, it is immediate also from the Hatcher-Oertel algorithm that its boundary slope
bs(R) = 0 and 2 =—-2(m—1).

From Section , we have the following cases for the degree of the colored Jones polynomial
Jpn(v). The choice of the surface detected by the Jones slope swings between the surface
S(M,z*) and the reference surface R.

Case 1: s(¢) < 0. We have that the maximum of §(n, k) is given by

—25(q)n* — 2s1(q)n — 2(m — 1)n + (n* + 2n) Z ¢ +0O(1),

where recall that s(¢) and s1(q) are explicitly defined by (2)). We see that s(q) and s;(q) for
any n > 0 are actually constant in n. The fact that jsp = —2s(q) = bs(S(M, z*)) and JXP =
—2s1(q)+4s(q)—2(m—1) = 22(&5((% (by considering Ji,, = (—1)" ! ((—=1)"~ )2 =D nt))

verifies the strong slope conjecture in this case.

Case 2: s(q) = 0, si1(q) # 0. If s1(¢) > 0, the maximum of d(n, k) has no quadratic
term, but its linear term is —2(m — 1)n, so the reference surface R verifies the conjecture.
If s1(q) < 0, then the maximum

—251(g)n — 2(m — 1)n + (n* + 2n) zm: ¢ +0(1)

1=0

of d(n, k) is found at maximizers 7" with parameters n, k*, again all satisfying n = kf =
ki +---+ k. Thus the surface S(M, x*) verifies the conjecture.

Case 3: s(q) > 0. In this case the maximum of d(n, k) also does not have quadratic term
but has a linear term —2(m — 1)n, and the reference surface R verifies the conjecture.

6.7. Matching the growth rate to topology for Montesinos knots. Let K(rg, ..., )
be a Montesinos knot satisfying the assumptions of Theorem [1.3] and let P(qo, ..., qn) be
the associated pretzel knot. Similar to the case of pretzel knots, we define a surface S(M, z*)
where

SR k) R (49)

' Z;n:1(qa‘ -1
We give the explicit description of the surface in terms of an edge-path system from the
Hatcher-Oertel algorithm below. We will see that these surfaces are built from extending
the surfaces of the associated pretzel knots.

6.7.1. The surface S(M,x*). The edge-path system of S(M,z*) is described as follows.
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For i = 0, say 79 = [0, a1, ay, .. .,ay,] the unique even length continued fraction expansion
for a; < 0,1 < j < ¥, we take the following continued fraction expansion

ro=[-1,-2,...,=2,a—1—1,-2,...,—2,a9; — 1 = 1, =2,..., =2 ,...,a,, —1]], (50)
~—_— ——— ———
—a1—1 times —a3—1 times —azj4+1—1 times

with corresponding edge-path (reading backwards from the continued fraction expansion)

([-1,-2,...,a0, = 1)) — - —([[-1, -2, =2]) —([[- 1, -2]) — (- 1).
For 1 <i < m, say r; = [0,a1,ay,...,a,] for a; >0, 1 < j < £, we take the following
continued fraction expansion
ri = [[0, —a4 —1,—2,...,—2,—a3—1—1,—2,...,—2,—a2j+1—1—1,—2,...,—2,...,—2,...,—%]],
—_——— —_———— ~ P - ~ ~
az—1 times aq—1 times azj4+2—1 times as,, —1 times
(51)

with corresponding edge-path (reading backwards from the continued fraction expansion)

<[[O,—a1 — 1,...,—2,...,—2}>—~~—([[O, —ay — 1, =2]]) —([[0, —a; — 1]]) —(0) .

ar,, —1 times
We let M be the least common multiple of the denominators of {x}}. We similarly have

Lemma 6.7. Let qq, q1, . . ., g be defined as they are for Theorem [1.3]for a Montesinos knot
K = K(rg,...,Tm). Suppose ¢ = (o, 1, - - - ,qm) is such that s(q) < 0. There is a candidate
surface S(M, z*) for K from the Hatcher-Oertel algorithm with M sheets and C-coordinates

{—-M, Mz}, Mz5,..., Mz }.
Proof. Let K; = Mz} for 1 <i<m,and 0 < Ky < M, 2 < g < —qp such that
Ko+ M(q—2) = Ki(q: — 1), (52)

We specify a candidate surface S(M, z*) in terms of edge-paths {v;}™,, by tacking onto the
existing edge-path system for the associated pretzel knot P(qq, q1, .-, Gm):
The edge-path 7 for ry from (50)) is

1 —1 Ky —1. M-K, —1
1.9 | A —_ _ 0 .
(=12, e, — 1) (Eo—(——) T+ N
For i # 0, we have the edge-path ~; from (51)):
1 K; 1 M — K; 0
—ai—1. =2 N N e 2y
<H07 ay ) ) ) ) ]> <qz> M<qZ>+ M <1>

ar,, —1 times

Provided that Ky, g satisfying exist, this edge-path system satisfies the equations com-
ing from (a) and (b) of Step (2) of the algorithm. We have already verified that Ky, ¢ exist
when s(¢) < 0in Lemmal6.3] Thus, there is a candidate surface with {—M, Mz}, Ma3, ..., M)}
as the C-coordinates in the tangle corresponding to 7;. 0]
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We also define a reference surface R for K(rg,71,...,7m)-

6.7.2. The reference surface R. For the reference surface R, we have for each r;, the edge-
path system corresponding to the following continued fraction expansion

For ro = [0, aq, as, ... ,(lgm] for a; < 0,1 <7 </{,,, we take the following continued fraction
expansion.
To = [[O,—al,ag—l,—Q,...,—2,a4—1—1,—2,...,—2,a2j—1—1, —2,...7—2,...,6Lgro—1]],
————— ————— —————
—a3—1 times —as—1 times —agji11—1 times
(53)
with corresponding edge-path
([0, —as, ..., ap, = 1])—-—([[0, —a1]]) —(0) .
For 1 <i <m, say r; = [0,a1,0a2,...,a,] for a; > 0,1 < j </, we take the following
continued fraction expansion.
ri =1[0,—a1—1,-2,..., =2, —a3—1-1,-2,..., =2, —ag; ;1 —1—1,-2,..., =2, ..., =2, ..., —2]],
——— ——— N———
az—1 times as—1 times azj+2—1 times ae,, —1 times
(54)

with corresponding edge-path

<[[0,—a1 — 1,...,—2,...,—2]>—~~—([[O, —ay — 1, =2]]) =—{([[0, —a; — 1]]) =—1(0) .

ar,, —1 times
Again, both R and S(M, z*) are incompressible by a direct application of Proposition [6.2]

6.8. Proof of Theorem [1.3] Putting everything together we prove Theorem

Proof. Let K = K(rq,...,7m). Recall ¢ = (qo,...,qn) € Z™ denotes the associated tuple
of integers to (rg,...,7,) where ¢; = r;[1] + 1 for 1 <7 < m and

_ To[l] - 1 lf gro = 2 and 7”0[2] — —1’
- ro[1] otherwise :

from the unique even length positive continued fraction expansions of r;’s, and ¢ is an integer
that is defined to be 0 if 7o = 1/qo, and defined to be r¢[2] otherwise. Theorem |5.4| gives jsy
and jxx in terms of the Jones slope jsp and the normalized Euler characteristic jxp of the
associated pretzel knot P = P(qo,q1,---,qm). Depending on the signs of s(q) and s1(q) we
have three cases by Theorem [1.2]

(1) If s(¢q) <0, then

jsp(n) = =2s(q),  jxp(n) = —2s1(q) +4s(q) — 2(m — 1).
(2) If s(q) = 0, then
—2(m — 1) if s1(q) 2 0
—251(q) —2(m —1) ifs;(q) <0

jsp(n) =0, xp(n) = {
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(3) If s(q) > 0, then

jsp(n) =0, xp(n) =—=2(m—1).
When s(q) = 0 and s1(q) > 0, or s(¢q) > 0, applying Theorem we get

Jsw(n) = —go — [ro] = w(Dp) +w(Dk) + Y (rif2] = 1) + ) [r]

i=1 i=1

and

) q
= 9m—1)—2 9 2§ Z —1—2§ ..
X (n) (m ) rol2] + 2[ro]o Ti 7]

The reference surface R is easily seen to verify the strong slope conJecture using [FKP11],
by viewing it as a state surface. Since this material is well-known, we will briefly describe
what a state surface is and indicate the state surface corresponding to the reference surface
R.

A state surface from a Kauffman state ¢ on a link diagram D is a surface that comes
from filling in the state circles of the o-state graph D, by disks and replacing the segments
recording the original locations of the crossings by twisted bands.

With the standard diagram that we are using for a Montesinos knot K(rg,...,r,,) with
ro < 0 <7ry,...,7 n,, the reference surface R is the state surface that comes from the Kauffman
state which chooses the A-resolution on the negative twist region 1/ro[1] (or 1/(ro[1] — 1) if
ro = 1/qo) in the negative tangle corresponding to ry, and the B-resolution everywhere else.
Using [FKP11], [Lee] shows that

m m

bs(R) = —q), — [ro] — w(Dp) + w(Dk) + Z(n[z] — 1)+ Z[ri],
and

2

X(R) a0 -
SR - —2(m—1) — 2T0[ + 2[rolo 22 rf2] = 1) — 2;[7«1}6.

We use this fact to prove that S(M, x*) realizes the strong slope conjecture when the reference
surface R does not realize the Jones slope.

When s(¢) < 0 or s(¢) = 0 and s1(q) < 0, the candidate surface S(M, z*) exists by Lemma
[6.3] Tt suffices to verify that

—bs(R) = tw(S(M,z*)) — tw(R)

for the part of the strong slope conjecture concerning relationship of js, to boundary slopes.
This is because if the equation is true, then

s — (tw(R) — tw(Sp)) = tw(S(M, z*)) — tw(R),

where Sy is a Seifert surface from the Hatcher-Oertel algorithm, by . Rearranging terms
in the equation gives

jsg = tw(S(M,z")) — tw(Sp) = bs(S(M, z")).
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By Theorem [5.4],

Jse = | =t — [ro] —w(Dp) +w(Dxk) + Z(ﬁ@] -+ Z[m] = Jsp-

bs(R)

Notice that the edge-path systems of the two surfaces S(M,z*) (from (50), (51))) and R
(from , ) coincide beyond the first segments of their edge-path systems, which define
candidate surfaces Sp(M,z*) and the reference surface Rp for the associated pretzel knot
P. Now by Theorem [6.5, we have

jsp = tw(Sp(M,2")) — tw(Rp).
Since S(M,z*) and R are identical beyond the first edges of their edge-path systems, we get
tw(Sp(M, 2")) — tw(Rp) = tw(S(M, 2")) — tw(R),

and we are done.

The proof that jx, = 2X5027)

S (M 2] is similar. O
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