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   Abstract—In  smart  industrial  systems,  in  many  cases,  a  fault
can  be  captured  as  an  event  to  represent  the  distinct  nature  of
subsequent  changes.  Event-based  fault  diagnosis  techniques  are
capable  model-based  methods  for  diagnosing  faults  from  a
sequence  of  observable  events  executed  by  the  system  under
diagnosis.  Most  event-based  diagnosis  techniques  rely  on  perfect
observations  of  observable  events.  However,  in  practice,  it  is
common to miss an observable event due to a problem in sensor-
readings  or  communication/transmission  channels.  This  paper
develops a fault diagnosis tool, referred to as diagnoser, which can
robustly detect, locate, and isolate occurred faults. The developed
diagnoser  is  resilient  against  missed  observations.  A  missed
observation  is  detected  from  its  successive  sequence  of  events.
Upon  detecting  a  missed  observation,  the  developed  diagnoser
automatically  resets  and  then,  asynchronously  resumes  the
diagnosis  process.  This  is  achieved  solely  based  on  post-
reset/activation  observations  and  without  interrupting  the
performance  of  the  system  under  diagnosis.  New  concepts  of
asynchronous  detectability  and  asynchronous  diagnosability  are
introduced.  It  is  shown  that  if  asynchronous  detectability  and
asynchronous  diagnosability  hold,  the  proposed  diagnoser  is
capable  of  diagnosing  occurred  faults  under  imperfect
observations. The proposed technique is applied to diagnose faults
in a manufacturing process. Illustrative examples are provided to
explain the details of the proposed algorithm. The result paves the
way towards fostering resilient cyber-physical systems in Industry
4.0 context.
    Index Terms—Cyber-physical systems, discrete event systems, fault
diagnosis,  imperfect  communication,  imperfect  observation,  Industry
4.0, resilience.
 

I.  Introduction

ADVANCES  in  technologies  are  revolutionizing
traditional  industries  by  an  increasing  shift  toward

integrated and distributed cyber-physical systems, in so-called
Industry 4.0 era [1], where the complexity is moved from the

mechanical  structures  to  sensing,  perception,  planning,
control,  and  decision-making  components  [2]–[4],  and  the
priorities have shifted from pre-planned automation to reliable
autonomy  [5],  [6].  Such  increasingly  complex  engineered
systems,  such  as  industrial  internet  of  things  (IIOT)  for
manufacturing  [7],  require  automatic  diagnostic  mechanisms
with  the  capability  to  cipher  through  these  system’s
complexities  and  provide  a  timely,  clear,  and  concise
diagnostic  output  that  ensures  reliable  and  safe  system
operations in order to achieve cyber-security [8]–[11].

Different diagnosis techniques include but are not limited to
mathematical  model  based  approaches  [12]–[15],  artificial
intelligence  techniques  [16]–[21],  fault  tree  analysis  [22],
[23], template structures [24], [25], model-checking [26], [27],
Bayesian  networks  [28],  and  discrete  event  system  (DES)
methods  [29]–[39].  Among  these  methods,  DES  approaches
use  time-abstract  event-driven  models  of  the  systems  under
diagnosis  and  provide  diagnostic  information  based  on  high-
level  logical  behaviors  of  the  systems,  which  is  an  effective
strategy  particularly  when  dealing  with  complex  systems.
Furthermore,  DES  models  naturally  capture  faults  as  abrupt
changes  (events)  in  the  system,  which  facilitates  the  analysis
of  faulty  behaviors  of  the  system.  More  importantly,  the
topology  of  a  DES  model  is  similar  to  the  human  cognitive
process  on  correlating  systems’ interactions  and  the  effect(s)
of sequences of events [40], [41]. This makes DES framework
very  suitable  for  the  decision-making  layer  of  a  control
structure  to  manage  normal/faulty  situations  toward  a
desired/safe sequence of events.

DES  fault  diagnosis  has  been  applied  to  different  systems
including  power  transmission  networks  [42],  automated
manufacturing  systems  [43],  communication  networks  [44],
[45],  cyber-security  [46],  and  flight  control  systems  [47].  In
[48],  an  event-based  diagnosis  tool,  so-called  diagnoser,  was
developed. Using the abstraction of continuous dynamics of a
system,  an  automaton-based  fault  detection  and  isolation
technique  was  introduced  in  [35].  A  state-based  DES
diagnosis  technique  was  studied  in  [49].  In  [50],  a  learning-
based  diagnosis  technique  is  introduced  for  diagnosis  of  an
unknown  DES  system,  and  in  [51]–[53],  an  asynchronous
diagnosis  technique  is  developed,  relaxing  the  generally
required synchronous initialization between the diagnoser and
the  system under  diagnosis.  Once  a  fault  is  diagnosed,  fault-
accommodation  techniques  can  be  employed  to  recover  the
system [54]–[56].

All  aforementioned DES fault  diagnosis techniques rely on
perfect  observations  of  sequences  of  events  executed  by  the
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system  under  diagnosis.  However,  in  practice,  it  is  common
that due to the problems in sensor-readings or communication/
transmission  channels,  an  observation  is  missed.  In  these
situations, the integrity of the observed sequence may lead to
missed  or  improper  diagnosis.  This  can  result  in  the  system
with  improper  operation  that  it  needs  to  switch  out  of,  or
erroneous  execution  of  an  incorrect  recovery  action.  When
multiple  local  diagnosers  are  available,  [57]  introduced  a
trace-based  diagnosis  process  which  can  handle  timing
mismatch  and  channel  distortion  in  a  distributed  setting.
Reference [58] has addressed the problem of robust diagnosis,
when diagnosers are themselves subject to failures, by taking
the advantage of collective decision-making in a decentralized
structure. In [59], a probabilistic method is developed for fault
diagnosis,  which  captures  the  loss  of  communication/
observation  as  faulty  events  with  a  certain  probability.  An
alternative  solution  to  address  the  robust  fault  diagnosis
problem is to consider the loss of observation of an event at a
particular  part  of  the  model  as  a  fault  and  treat  it  as  an
intermittent  fault  [60],  [61]  or  as  a  permanent  fault  [62].
However, loss of observation may happen anytime anywhere,
and considering an associated intermittent  or  permanent fault
for the loss of observations for all events at different locations
in  the  system  will  significantly  make  the  system’s  analysis
complex.

This paper addresses these challenges by proposing a novel
event-based  fault  diagnosis  technique  which  is  resilient
against  missed  observations.  Here,  the  main  difficulty  is  that
when an observation is missed, the inference of the diagnosis
being  made  based  on  subsequent  observed  events  will  be
compromised. By now, the only solution in this situation is to
restart  the  diagnosis  process  to  track  a  valid  sequence  of
events  in  the  system  under  diagnosis.  However,  by  resetting
the diagnosis process, the past history of information about the
system  under  diagnosis  will  be  missed  at  the  reset  time,
leaving us with a challenge to diagnose occurred faults based
on  post-reset/activation  of  the  diagnoser.  To  tackle  these
problems,  the  proposed  diagnoser  automatically  detects
missed  observations,  resets,  and  then,  resumes  the  diagnosis
process,  without  interrupting  the  operation  of  the  system
under  diagnosis.  The  new  concepts  of  asynchronous
detectability  and  diagnosability  are  introduced.  It  is  also
shown  that  if  the  asynchronous  detectability  and  diagno-
sability hold, the developed diagnoser can detect the occurred
faults under imperfect observations. The developed method is
applied to the diagnosis of faults in a manufacturing system.

The  rest  of  the  paper  is  organized  as  follows.  Section  II
provides  the  preliminaries  and  required  definitions,
descriptions,  and  notations  utilized  in  the  modeling  and
diagnosis of the DES systems. This section is concluded with
a  formal  problem  statement  for  resilient  fault  diagnosis.  In
Section  III,  the  structure  of  the  proposed  diagnoser  is
explained  followed  by  developing  an  algorithm  for
constructing  the  proposed  resilient  diagnoser.  Section  IV
reviews  some  of  the  properties  of  the  developed  diagnoser.
Section  V  derives  the  conditions  for  asynchronous  diagno-
sability  of  occurred  faults  in  a  DES  system  under  imperfect
observations, and finally, Section VI concludes the paper. 

II.  Problem Formulation

GConsider the system under diagnosis , which is modeled as
a non-deterministic finite-state automaton
 

G = (X,Σ, δ, x0) (1)
x0 ∈ X

Σ δ : X×Σ→ 2X

Σ

Σo
Σu

e ∈ t
e s

t |t|
s1 s2 s1.s2

pr(L)
pr(L) = {u | ∃v : u.v ∈ L}

ext(L)
ext(L) = {v | ∃u ∈ L : u.v ∈ L}

Σ

ε Σ∗

where X is the state space of the system,  is the system’s
initial state,  is the finite set of events, and  is
the state transition relation.  The event  set  can be disjointly
partitioned  into  the  observable  event  set  and  the
unobservable  event  set .  A  sequence  of  events  forms  a
string.  With  the  abuse  of  notation,  indicates  that  the
event  is  one  of  the  events  which  form  the  string .  The
length of a string  is  shown by .  The concatenation of two
strings  and  is  shown  by .  A  set  of  strings  forms  a
language.  The  set  denotes  the  prefix  closure  of  the
language L ,  defined  as .  The  set

 is the extension closure of the language L, which can be
defined  as .  The  set  of  all
possible finite strings over the set , including the zero-length
string , is shown by .

δ
δ(x, ε) = x δ(x, s.e) = δ(δ(x, s),e)

x ∈ X s ∈ Σ∗ e ∈ Σ G
L(G) = {s ∈ Σ∗ | δ(x0, s) is defined}

G x0
L(G)/s = {t ∈ Σ∗ | s.t ∈ L(G)} G

s L(G) s
L(G(x)) = {s ∈ Σ∗ | δ(x, s) is defined}

G x ∈ X x̃
x̃′ s x̃

s−→ x̃′ x̃′ ∈ δ(x̃, s)
s x̃

α−→ x̃′ s1 s2
x̃′′ x0

s1−−→ x̃
α−→ x̃′

s2−−→ x̃′′

UR(x) = {y ∈ X | ∃u ∈ Σ∗u, δ(x,u) = y}
x

UE(s, x) = {s.t | t ∈ Σ∗u and s.t ∈ L(G(x))}
s x

t ∈ ext(L(G)) Pre(t) = {s | s.t. ∈ L(G)}
t Prea(t)

t
t

We  can  extend  the  transition  rule, ,  to  a  string  in  a
recursive way as  and  for any

, , and . The language of  can be defined as
,  which  contains  all  strings

that  can  be  generated  by  the  automaton  from the  state .
 includes the set of strings that 

can  generate  after ,  or  namely  after .  The  set
 referrers to the strings that

can  be  generated  by  from the  state .  The  state  can
transit  to  by  the  string ,  shown  by ,  if .
The  string  can  passes  through  if  there  exist , ,
and  such that . The unobservable reach
set  includes  the  states
that are reachable from state  by an unobservable string. The
set  contains all unob-
servable extensions of  that can be generated from the state .
For a string ,  includes the
set  of  strings  that  can  be  the  precedent  of .  is  the
actual  precedent  of  that  has  been  actually  executed  by  the
plant before .

Σ f ⊆ Σu m Σ f1 Σ f2
Σ fm

∪mi=1Σ fi = Σ f t ∈ L(G) Fi
f ∈ Σ fi f ∈ t t ∈ L(G) Fi

f ∈ Σ fi f < t
t ∈ L(G) f ∈ Σ fi i = 1, ...,m
f < t

System’s  faults  can  be  captured  by  a  set  of  unobservable
events, .  Similar  to  [48],  we  consider  sets , ,
...., ,  each  represents  a  particular  fault  type,  where

. A string  is “ -faulty” if there exists an
event ,  such  that .  A  string  is “non -
faulty” if  for  all ,  we  have .  Finally,  a  string

 is “normal” if  for  all  and  for  all ,
.

G
P : Σ∗→ Σ∗o

The  diagnosis  problem  includes  detecting  faults  from  the
observable  events  executed  by  the  system  under  diagnosis.
The observable behavior of  can be captured by the natural
projection  to  observable  events, ,  which  can  be
defined as follows:

P(ε) = ε1) ;
P(e) = e e ∈ Σo2) , if ;
P(e) = ε e < Σo3) , if ;
P(s.e) = P(s)P(e) s ∈ Σ∗ e ∈ Σ4) , for  and .

L1 P(L1) = {P(s) | s ∈ L1}For  a  language , .  The  inverse
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w ∈ Σ∗o P−1(w) = {s ∈ L(G) | P(s) = w}projection of a string  is .
L(G)

∀x ∈ X,∃σ ∈ Σ δ(x,σ)

L(G)
no

Here,  we assume that  the  system’s  language, ,  is  live,
i.e.,  such  that  is  defined.  Further,  we
assume that the faults do not bring the system to a halt mode.
These  assumptions  ensure  that  there  is  sufficient  time  to
diagnose  faults  from  observing  the  executed  events.  Further,
we assume that  the  length of  unobservable  strings  in  is
bounded by , ensuring that the system would not be stuck in
a  cycle  of  unobservable  events,  which  is  a  reasonable
assumption for live systems. On the other hand, we relax the
commonly  required  assumption  on  perfect  communication
links  or  sensor  readings,  and  hence,  our  formalism considers
that  some  observable  events  may  be  missed  in  practice.  The
diagnosis problem is then to detect faults and determine their
types and location based on observing the executed events. In
the case of a missed observation, the successive events would
not  provide  valid  information  until  the  diagnoser  resets  and
resynchronizes with the system under diagnosis. This requires
the  diagnoser  to  detect  faults  based  on  post-reset/activation
observations as described in the following problem:

P(t) G t ∈ ext(L(G))
∃ f ∈ Σ f f ∈ Prea(t).t

Σ fi f ∈ Σ fi ⊆ Σ f
x ∈ X

Prea(t).t

Problem  1: From  a  run-time,  imperfect,  sufficiently  large
observation  of a DES system , , determine
if  such  that .  If  yes,  identify  the  type  of
the occurred fault, , where , and locate the fault
by  finding  the  system  state  subsequently  reached  by

. 

III.  Constructing the Resilient Diagnoser

Gdi = (Qd,Σd, δdi,q0) Qd
Σd δdi

q0

To address Problem 1, we introduce a diagnosis tool, called
a  diagnoser,  which  provides  diagnostics  by  extracting
information  from  the  original  system’s  observable  events  in
order  to  estimate  the  original  system’s  current  state  location
and current  condition (faulty  or  non-faulty)  (See Fig. 1).  The
diagnoser  can  be  represented  by  a  finite-state  automaton

,  where  is  the  diagnoser’s  set  of
states,  is  the  diagnoser’s  event  set,  is  the  diagnoser’s
transition  relation  under  imperfect  observations,  and  is  its
initial state.

Σd = Σo
Qd ⊆ 2X×L qd = {(x1, ℓ1), . . . , (xk, ℓk)}

(x j, ℓ j) ∈ qd
x j ∈ X

ℓ j ⊆ L L = {N}∪2F
F = {F1,F2, . . . ,Fm}

Fi Σ fi i = 1, . . . ,m N

The diagnoser monitors the observable events of the system
under  diagnosis  and  changes  its  estimation  (diagnoser  state)
accordingly.  Therefore,  the  diagnoser’s  event  set  is  the
observable  events, .  The  states  of  the  diagnoser

 are  in  the  form  of ,  in
which the pairs  capture the estimation of the states
of the system under diagnosis, ,  adjoined by their fault
status, .  The set  contains condition labels,
where  is  the set  of fault  labels,  in  which

 is the label for fault type , , and  is the label
for normal system operation.

q = {(x1, ℓ1), . . . , (xM , ℓM)} ∈ Qd
q

Definition  1  [48]: Consider .
Then,  is said to be

ℓk = {N} k = 1, ...,M1) Normal if  for all .
Fi Fi ∈ ℓk k = 1, ...,M2) -certain if  for all .
Fi ∃n,m Fi ∈ ℓn Fi < ℓm3) -uncertain if  such that , but .

∇ : L×Σ∗→ L
The fault condition labels are tracked and propagated via the

function  as
 

∇(ℓ, t) =
{
{N}, if ℓ = {N} and ∀ f ∈ Σ f , f < t,
{Fi ∈ F|Fi ∈ ℓ or ∃ f ∈ Σ f i, f ∈ t}, otherwise.

(2)

q0
Qd δdi

q0

q0
(x0, {N})

q0 = {(x0,N)} q0
x ∈ UR(x0) q0 = q0∪{(x, ℓ)|x ∈ δ(x0,u), u ∈ Σ∗u, ℓ = ∇({N},
u)}

(x, ℓ) q0
e (x, ℓ)

e

Algorithm 1 constructs the initial state of diagnoser, , the
diagnoser states, , and the diagnoser transition relation .
In  the  first  step,  the  algorithm  constructs, .  The  system
under  diagnosis  is  initially  normal.  However,  during  the
diagnosis  process,  the  diagnoser  may  reset  any  time  due  to
missing  an  observation.  Therefore,  at  the  reset/activation
instance,  the  diagnoser  cannot  assume  that  the  system  under
diagnosis  is  normal.  Instead,  since  after  resetting  the
diagnoser,  the  past  history  of  the  system  is  not  missed,  the
diagnoser should consider all states of the system and all their
possible faulty statuses as the initial estimation of the system’s
state and status. Hence, the algorithm constructs  by finding
all  states  reachable  from .  For  this  purpose,  the
algorithm  starts  from ,  and  then,  extends  to

 by 
.  Then,  the  diagnoser  will  continue  this  process  by

searching  over  all  other  possible  reachable  states.  To
implement  this  idea,  for  each  pair  in  and  for  each
observable  event ,  the  algorithm  checks  if  can  transit
via  (and its unobservable extensions) to a new set of pairs
 

δ̄d((x, ℓ),e) := {(y,∇(ℓ, t))|y ∈ δ(x, t) and t ∈ UE(e, x)}. (3)
δ̄d((x, ℓ),e)

q0
The  new  identified  pairs, ,  are  then  included  in
.

δdi Qd
q0

q ∈ Qd
(x, ℓ) ∈ q e ∈ Σo

δ̄d((x, ℓ),e) q′ =
∪

(x,ℓ)∈q
δ̄d((x, ℓ),e)

Qd q
q′

e

The  second  step  of  Algorithm  1  constructs  the  transition
relation  and the  states  of  the  diagnoser .  Starting  from

, the states of the diagnoser and its transition relation can be
recursively constructed.  For  this  purpose,  for  any ,  the
algorithm  checks  if  for  any  and  for  any ,

 is  defined.  If  so,  will  be

added to . At the same time, we add the transition from  to
the  new  state  to  the  list  of  admissible  transitions  of  the
diagnoser, which can happen when  is observed
 

δd p(q,e) =
∪

(x,ℓ)∈q
δ̄d((x, ℓ),e). (4)

Gd p = (Qd,Σo, δd p,

q0)
ext(P(L(G))) =

L(Gd p)
ext(P(L(G))) L(Gd p)

e ∈ Σo (x, ℓ) ∈ q δ̄d((x, ℓ),e)

With this information, we can construct 
 which  can  operate  as  a  diagnoser  under  perfect

observations. As it will be shown in Lemma 3, 
, which means that if there is no missed observation, all

transitions in  can be captured by . Given
that,  if  for an event  and for all ,  is

 

Imperfect
observationL(G)| Natural

projection
Plant Diagnoser

G = (X, Σ, δ, x0)
(xi, li)

P∶Σ*→Σ*
o

Gd = (Qd, Σo, δdi,q0)
 

ℓi

xi

Fig. 1.     The diagnosis process,  in which the diagnoser should diagnose the occurred faults and their type, captured by fault  label ,  and the location of the
system under diagnosis, , from imperfect observation of the system.
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e
q Gd p e

δdr(q,e) = q0
Gdi = (Qd,Σo, δdi,q0)

δdi = δd p∪δdr

Gdi q0

not defined, but the diagnoser observes the event  when it is
in  state ,  cannot  recognize  the  event ,  inferring  that
there has been a missed observation. To handle this situation,
the  diagnosis  process  should  be  restarted,  by  adding

 to  the  list  of  transitions.  With  this  mechanism,
we  can  form  the  diagnoser  with

,  which  can  operate  under  imperfect
observations.  If  a  missed  observation  is  detected,  the
diagnoser  resets to , and resumes the diagnosis process.

Algorithm 1 Constructing a Resilient Diagnoser

G = (X,Σ, δ, x0)　Input: 
Gd p　Output: : the diagnoser under perfect observation

Gdi　　　　 : the diagnoser under imperfect observation
　Initialization:

q0 := {(x0,N)}　 ;
　Step 1: Construct q0

q0 := q0
∪ {(x, ℓ) | x ∈ δ(x0,u), u ∈ Σ∗u, ℓ = ∇({N},u)}　 ;

　repeat
(x, ℓ) ∈ q0 e ∈ Σo　　for  and  do

∃t ∈ UE(e, x) y ∈ δ(x, t)
(y,∇(ℓ, t)) < q0
　 　 　 if  such  that  and

 then
δ̄d((x, ℓ),e) := {(y,∇(ℓ, t))|y ∈ δ(x, t) and t ∈ UE(e, x)}　　　  

q0 = q0∪ δ̄d((x, ℓ),e)　　　　 ;
　　　end if
　　end for

(x, ℓ) q0　until there is no new pair  in 
　Step 2: Construct Qd and δdi

Qd := {q0}　 ,
　repeat

q ∈ Qd e ∈ Σo　　for  and  do
∃ (x, ℓ) ∈ q δ̄d((x, ℓ),e)　　　if  s.t.  is defined then
δd p(q,e) =

∪
(x,ℓ)∈q

δ̄d((x, ℓ),e)　　　　 ;

δd p(q,e) Qd　　　　add  to ;
　　　else

δdr(q,e) = q0　　　
　　end if
　end for

δd p(q,e) e ∈ Σo　until there is no new state  for all .
δdi = δd p∪δdr　
Gd p = (Qd,Σo, δd p,q0)　
Gdi = (Qd,Σo, δdi,q0)　

β

β

β

G1
Σo = {α,β} α

β

β

Example  1: Consider  a  manufacturing  system,  a  part  of
which  conducts  process  on  the  objects  as  shown in Fig. 2.
For  this  purpose,  the  objects  on  the  conveyor  are  pushed  by
the left pusher to the right station to conduct process . In this
station,  there  is  a  detector  which  evaluates  if  the  object  is
processed well or it should be passed through process  again.
Once  the  process  is  completed,  the  right  pusher  pushes  the
object back to the conveyor. The model of this manufacturing
system  is  captured  by  automaton  in Fig. 3,  in  which

 contains the event  for observing the activation of
the  right  and left  pushers  and the  event  for  conducting the
process  on  the  objects.  As  a  part  of  initialization  of  the
system, initially the process  is conducted two times to warm
up  the  system,  and  then  the  pusher  pushes  the  objects  to  be

f1 β f2

Σu = Σ f = { f1, f2} Σ f 1 = { f1} Σ f 2 = { f2}

processed. To illustrate the proposed method, we consider two
types of faults:  which is a failure in the process ,  and ,
which  is  a  failure  in  the  pusher.  These  two  fault  types  are
captured by , , and .

Gdi
G1

(x, ℓ) xℓ
q1 = {(2, {N}) (3, {N}) (5, {N}) (8, {F2})

(11, {F1}) (12, {F1}) (14, {F1})} q1 = {2N,3N,
5N,8F2,11F1,12F1,14F1}

δd p
δdr

Applying Algorithm 1, the diagnoser  is constructed for
,  as  shown in Fig. 4.  In  the  diagnoser’s  figure,  to  ease  the

drawings,  instead  of  showing  the  states  in  the  form  of
collections of pairs ,  we have shown them simply as .
For  example, , , , ,

, , ,  is  shown  as 
.  In  this  diagnoser’s  figure,  the

solid  arrows  represent  and  the  dashed  arrows  show  the
reset transitions, .

1
β
−→ 2

β
−→ 3

α−→ 4
f2−−→ 7

β
−→ 8

α−→ 9
α−→ 10

β
−→ 8

α−→ 9
α−→ 10

ββαβααβαα

q0
β
−→ q1

β
−→ q2

α−→ q3
β
−→ q4

α−→ q5
α−→ q9

β
−→ q10

α−→ q11
α−→ q9 q9

F2 f2

Now  consider  the  transition 
 in  the  system.  Under  perfect

observation, the diagnoser observes  and executes
the  following  sequence: 

. As soon as the diagnoser reaches  as an
-certain state, the diagnoser realizes that  has occurred in

the past.
1
β
−→ 2

β
−→ 3

α−→ 4
f2−−→ 7

β
−→ 8

α−→ 9
α−→ 10

β
−→ 8

α−→ 9
α−→ 10 3

α−→ 4
7
β
−→ 8

Now, imagine that in the system’s run 
,  the  transitions  and

 are missed, and hence, the diagnoser can only observe

 

Left pusher

Conveyor

Process β

Right pusher

 

β

Fig. 2.     The top view of a part of a manufacturing system: the objects on the
conveyor are pushed by the left pusher to the right station to conduct process

. Once the detector confirms that the object is processed well, the process is
completed and the right pusher pushes the object back to the conveyor.
 

 

11 12 13 14

f1 7 8 109

f2
β1 β 2 β

β

β β

3 α

α

α α

α4
β

5 6

β

β
 

Σo = {α,β} α

β

Σu = Σ f = { f1, f2} Σ f 1 = { f1} Σ f 2 = { f2} f1

β f2

Fig. 3.     The DES model of the manufacturing process described in Example 1,
with  the  observable  event  set ,  which  contains  the  event  for
observing  the  activation  of  the  right  and  left  pushers  and  the  event  for
conducting the process on the objects. This system also include unobservable
events ,  with ,  and ,  in  which  stands
for the fault in the detector resulting in the false positive detection of objects
to be passed through process , and  stands for the fault in the right pusher
when it fails to push the object back to the conveyor.
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ββααβαα ββαβααβαα
ββααβαα

q0
β
−→ q1

β
−→ q2

α−→ q3
α−→ q0

β
−→ q1

α−→ q12
α−→ q9

q0
β
−→ q1

β
−→ q2

α−→ q3
q0

q9
F2 f2

 instead  of .  Therefore,  observing
, the diagnoser goes through the following sequence:

.  As  it  can  be
seen,  after  executing ,  the  diagnoser
realizes that an event is missed and will reset to . Then, the
diagnoser continues the diagnosis  process and eventually can
synchronize  itself  and  will  detect  the  fault  by  reaching ,
which  is  an -certain  state,  concluding  that  the  fault  has
occurred in the system. Fig. 5 shows the executed runs in the
plant  and  the  diagnoser,  under  perfect  and  imperfect
observations. 

IV.  Properties of the Constructed Diagnoser

Next,  we  outline  some  properties  of  the  developed
diagnoser and provide several lemmas, which will be used in
future derivations.

Lemma  1: The  constructed  diagnoser  is  a  deterministic
automaton.

δdi
q e

(x, ℓ) ∈ q e
t ∈ UE(e, x) (y,∇(ℓ, t)) y ∈ δ(x, t)

(y,∇(ℓ, t)) q′

q e
q′ q′

δd p(q,e)
δdr δdi = δd p∪δdr

Proof: By  construction  the  diagnoser’s  transition  relation,
,  is  deterministic.  This  can  be  observed  in  (3)  and  (4),  in

which  for  each  state  and  each  event ,  we  search  for  all
 and  for  all  unobservable  extensions  of ,

,  and  will  find ,  where .  We
aggregate all these pairs  as a new diagnoser state .
Since  all  outgoing  transitions  from  by  the  event  and  its
unobservable  extensions  are  already  included  in ,  is  the
only member of . A similar argument can be made for

. Therefore,  is deterministic. ■

q
σ−→ q′ Gd p (x, ℓ) ∈ q

(x′, ℓ′) ∈ q′ x
t−→ x′ G P(t) = σ

Lemma  2: For  any  in ,  there  exist ,
, and a transition  in  such that .

Proof: This can be verified by the construction procedure in
Step 2 of Algorithm 1. ■

G
Gd p

ext(P(L(G))) = L(Gd p)

Lemma 3: The extension closure of the observable behavior
of  the  system  under  diagnosis, ,  and  the  perfect
asynchronous  diagnoser, ,  are  language  equivalent,  i.e.,

.
t ∈ ext(P(L(G))) t = σ1σ2

· · ·σn σi ∈ Σo w = w0e1w1
e2w2 · · ·emwm u = σ1u1σ2u2 · · ·σnun w.u ∈
L(G) ui,w j ∈ Σ∗u σi,e j ∈ Σo i = 1, . . . ,n j =1, . . . ,m

z1, . . . ,zm ∈ X
x1, . . . , xn ∈ X x0

w0−−→ z1
e1w1−−−−→ z2

e2w2−−−−→ ·· · emwm−−−−→ zm
σ1u1−−−−→ x1

σ2u2−−−−→ x2 · · ·
σnun−−−−→ xn

(x0, ℓ0 = {N}) (z1, ℓ1 = ∇(ℓ0,w0)) (z2, ℓ2 = ∇(ℓ1,e1w1))
. . . (zm, ℓm = ∇(ℓm−1,emwm)) q0

(x1, ℓ̄1 = ∇(ℓm,σ1u1)) = δ̄d((zm, ℓm),
σ1) q1 ∈ Qd q1 = δd p(q0,σ1)

(xi, ℓ̄i = ∇(ℓi−1,σiui)) = δ̄d((xi−1,ℓ̄i−1),σi)
qi−1,qi ∈ Qd qi = δd p(qi−1,σi)
q0
σ1−−→ q1

σ2−−→ q2 · · ·
σn−−→ qn t =

σ1σ2 · · ·σn ∈L(Gd p).

Proof: Consider  a  string ,  where 
, .  There  exist  at  least  two  strings 

 and ,  such  that 
, , and  for all , .

Correspondingly,  there  exist  the  states  and
,  such  that 

.  According  to  Step  1  of  Algori-
thm 1, , , ,
and  all are in .  Then, following
Step 2 of Algorithm 1, for 

,  there  exists  a  state  such  that .
Also,  for  all ,  there
exists  states  such  that ,  forming
the  sequence ,  concluding  that 

q0
σ1−−→ q1

σ2−−→ q2 · · ·
σn−−→ qn σ1σ2 · · ·σn ∈ L(Gd p)

x1, x2, x3, . . . , xn+1 ∈ X t1, t2, . . . , tn
P(t1) = σ1 P(t2) = σ2 . . . ,P(tn) = σn x1

t1−→ x2
t2−→ x3 · · ·

tn−→

On the  other  hand,  consider  a  sequence 
, where . Based on Lemma 2, there

exists  and  strings  such  that
, , , and 

 

q0

q1

q2 q12

2N, 3N, 5N, 8F2, 11F1, 12F1, 14F1

4N, 6N, 7F2, 9F2, 13F1

4N, 6N, 7F2, 9F2, 10F2, 13F1

4N, 7F2, 13F1

5N, 8F2, 14F112F1

13F1

14F1

6N, 9F2 10F2

8F2

9F2

5N

6N

3N, 11F1, 12F1

α

α

α

α

α α

α

α

α

α

α

α

α

α

α

q3

β

β

β β

β

β

β

β

β

β

β

β

β

β

q13 

q15 

q14 

q10

q11 
q4

q7

q6

q5

q9

q8

 
G1 δd p δdrFig. 4.     The constructed diagnoser for the plant  given in Fig. 3. The solid arrows represent  and the dashed arrows show the reset transitions, .
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xn+1 G x0
s x0

s−→ x1 P(st1t2 · · · tn) =
P(s)σ1σ2 · · ·σn ∈ P(L(G)) σ1σ2 · · ·σn ∈ ext
(P(L(G)))

. Since, all strings in  are reachable from , there exists
a  string  such  that ,  meaning  that 

,  concluding  that 
.

ext(P(L(G))) L(Gd p)
ext(P(L(G))) = L(Gd p)

As  proven  above,  any  string  in  is  in 
and vice versa, resulting in  ■ 

V.  Asynchronous Diagnosability

G1

q0

q0

In  Example  1,  for  a  particular  sequence  of  events,  the
diagnoser  was  able  to  detect  the  occurred  fault  in  despite
missing  an  observation.  The  question  is,  can  the  diagnoser
always detect all faults in the case of any missed observation?
If  we  look  at  the  diagnosis  mechanism,  the  proposed
diagnoser  detects  a  missed  observation  and  resets  to ,  and
then, resumes the diagnosis process. So, the previous question
can be broken into two questions: 1) can the diagnoser always
detect  the  missed  observations?  2)  can  the  diagnoser  always
diagnose a fault after arbitrary resetting to the initial state ?
Next sections address these two questions. Before that, for the
derivations  in  the  next  sections,  the  following  definitions  are
needed.

Fi
Fi Fi

Definition 2: A cycle in the diagnoser is called -certain if
all of its states are -certain; otherwise, it is called a non- -
certain cycle.

Fi
Fi

Definition 3: A cycle of -uncertain states in the diagnoser
is called an -uncertain cycle.

Fi Fi
q1 q2 . . . qn ∈ Qd Fi

Definition 4 ( -indeterminate Cycle): A set of -uncertain
states , , ,   forms  an -indeterminate  cycle  if
and only if

q1 q2 . . . qn
δd(qk,ek) = qk+1 k = 1, . . . ,n−1 δd(qn,en) = q1 ek ∈ Σo

k = 1, . . . ,n

1) The states , , ,  form a cycle in the diagnoser, i.e.,
, for , , and ,

for .
q1 q2 . . . qn

Fi
Fi G

qk (xk, ℓk) (x′k, ℓ
′
k)

2) The cycle , , ,  in the diagnoser can be inversely
projected back to at least one cycle of non- -faulty states and
one cycle of -faulty states in the original system , i.e., each
state of the cycle, , contains  and  so that

Fi < ℓk Fi ∈ ℓ′k (xk, ℓk) ∈ qk (x′k, ℓ
′
k) ∈ qk

k = 1, . . . ,n
a)  and ,  for  all , ,  and

.
x1 x2 . . . xn G xk+1 ∈ δ(xk, tk)

k = 1, . . . ,n−1 x1 ∈ δ(xn, tn) P(tk) ∈ ek k = 1,
. . . ,n

b) , , ,  form  a  cycle  in  so  that ,
, and , where  for 

.
x′1 x′2 . . . x′n G x′k+1 ∈ δ(x

′
k, t
′
k)

k = 1, . . . ,n−1 x′1 ∈ δ(x′n, t′n) P(t′k) ∈ ek k = 1,
. . . ,n

c) , , ,  form  a  cycle  in  so  that ,
,  and ,  where  for 

. 

A.  Asynchronous Diagnosability Under Perfect Observation
An observation may be missed anytime during the diagnosis

process.  If  the  diagnoser  detects  the  missed  observation,  it

q0resets  to  initial  state ,  missing  the  past  history  of
observations  (as  they  no  longer  are  valid  due  to  a  missed
observation). So, the diagnoser should be able to diagnose the
faults  solely  based  on  the  post-reset/activation  observations.
Since  the  reset  can  happen  anytime,  a  fault  should  be
distinguishable  based  on  all  sufficiently  large  sequences  of
events  observed  after  a  fault  as  stated  in  the  following
definition.

G
L(G) Fi

Fi
s ∈ L(G) f ∈ Σ fi f ∈ s ni ∈ N

t ∈ L(G)/s |t| ≥ ni

Definition  5 (Asynchronous  Diagnosability  Under  Perfect
Observations)[53]: The DES system  with the live language

,  is  said  to  be -asynchronously  diagnosable  with
respect to the fault type  and the natural projection P, if for
all , , , there exists an upper bound ,
such that  for  any string  with ,  the  following
condition holds:
 

{∀uv ∈ L(G),P(v) = P(t)} ⇒ f ∈ uv, f ∈ Σ fi . (5)
G Fi

Fi
i = 1, ...,m

The  system  is  asynchronously  diagnosable  if  it  is -
asynchronously diagnosable with respect to all fault types ,

.

L(G)

Although Definition 5 describes the asynchronous diagnosa-
bility, it is very difficult to check the diagnosability condition
given  in  (5)  over  all  faulty  strings  in .  Theorem  4,
therefore, will provide the necessary and sufficient conditions
to  indirectly  check  the  asynchronous  diagnosability  based  on
the structure of the diagnoser:

G
L(G) Gd p Fi

Fi Gd p
Fi Gd p

Fi G

Lemma  4 (Asynchronous  Diagnosability  Theorem  Under
Perfect Observations)[51]: The plant  with the live language

,  and  with  the  asynchronous  diagnoser ,  is -
asynchronously diagnosable under perfect observations if and
only if, there does not exist an -indeterminate cycle in ,
i.e., there is no cycle of -uncertain states in  that can be
projected back to a cycle of normal and -faulty states in .

Fi
Gd G

G Fi
f ∈ Σ fi

G Fi
G Fi

Gd
G

Fi
G

Remark  1: Whether  or  not -asynchronously  diagnosable,
we can construct the diagnoser  for the plant . If the plant

 is -asynchronously  diagnosable,  then  the  constructed
diagnoser can determine if a fault  has occurred or not
in  a  finite  number  of  transitions.  Therefore,  it  is  preferred  to
have  the  plant  -asynchronously  diagnosable.  But  if  the
plant  is  not -asynchronously  diagnosable,  still  the
diagnoser  can  be  constructed  and  can  provide  its  best
estimation  of  the  failures’ status  in ,  though  in  some  cases
there  might  be  an  ambiguity  in  the  occurrence  of  failures  of
type , and the diagnoser cannot resolve the ambiguity even
after observing a large number of transitions in . 

B.  Asynchronous Diagnosability Under Imperfect Observation
If the diagnoser misses an observation, it  should be able to

 

q0 q1 q2

q0 q1 q2

q3

q3 q0 q1

q4 q5 q9 q9 q9q10 q10q11

q12

q11

q9 q9q10 q11

10 8 9874321 9 10 108 9β β α

β β

β β

α

f2(α)

(b)

(c)

β α α β α α β α α

β α α β α α β α α

α α β α α β α α
 

G1

q0

Fig. 5.     (a) The executed run by the plant ; (b) the corresponding executed runs by the diagnoser in Fig. 4 under perfect observations; (c) the executed runs
by  the  diagnoser  in Fig. 4 under  imperfect  observations.  Under  imperfect  observation,the  diagnoser  automatically  rests  to  after  missing  the  detectable
observations and after few observations re-synchronizes itself with the plant executions.
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detect the missed observation based on the sequence of events
observed  after  the  diagnoser’s  last  reset  or  activation.  Since
the  diagnoser  may  have  been  activated  or  reset  anytime
asynchronous  with  the  system  under  diagnosis,  the  missed
observation  should  be  distinguishable  based  on  its  precedent
events, as stated below.

G
L(G) α α ∈ Σo

G x̃ x̃′ x̃
α−→ x̃′

s ∈ L(G)
x̃
α−→ x̃′ ni ∈ N

t ∈ L(G)/s |t| ≥ ni

Definition  6 (Asynchronous  Detectability  of  a  Missed
Observation): Consider  the  DES  system  with  the  live
language . The miss of observation of the event , ,
when the system  transits from a state  to , , is said
to  be  asynchronously  detectable  with  respect  to  the  natural
projection P,  if  for  any  string  that  passes  through

, there exists  an upper  bound ,  such that  for  any
string  with , the following condition holds:
 

{∀uv ∈ L(G),P(v) = P(t)} ⇒ uv passes through x̃1
α−→ x̃′. (6)

t

ext(L(G))
fm

fm
fm

x̃
α−→ x̃′ α fm

Σ fm = { fm} fm
fm

s ∈ L(G) fm ∈ s
ni ∈ N t ∈ L(G)/s

|t| ≥ ni

This definition indeed requires that after a certain number of
observations,  any  string  that  occurs  after  a  missed  obser-
vation be distinguishable in an asynchronous setting,  i.e.,  not
to be confused with another string in . If we treat the
missed  observation  as  an  unobservable  faulty  event ,  then
the detection of the missed observation is exactly as the same
as  asynchronously  diagnosing ,  when  we  should  diagnose

 solely  based  on  post-fault  occurrence  information.
Therefore, instead of directly checking the detectability of the
transition , one can replace  in this transition with 
and check for its asynchronous diagnosability. Note that with
this practice,  has the single member, . Applying
Definition  5  to  check  whether  is  asynchronously  diagno-
sable  requires  that  for  all , ,  there  should  exist
an upper bound , such that for any string  with

, the following condition holds:
 

{∀uv ∈ L(G),P(v) = P(t)} ⇒ fm ∈ uv, fm ∈ Σ fm . (7)

G1
Σo = {α,β} Σu = Σ f = { f1, f2}
3
α−→ 4 7

α−→ 8
s = ββα ∈ L(G)

3
β
−→ 4 L(G)/s = f2β(ααβ)∗+β(αβ)∗ u = ββ

v = f1βαβ t = βαβ
P(v) = P(t) fm < uv

v = f1βαββ t ∈ L(G)/s
P(v) = P(t)

L(G)/s ⊂ ext(L(G))

α 3
α−→ 4 β

7
β
−→ 8 fm Σ f = { f1, f2, fm} Σ f 1 = { f1}
Σ f 2 = { f2} Σ f m = { fm}

Fm Fm
fm

3
α−→ 4 7

α−→ 8

Example 2: Consider the manufacturing system in Example 1
whose  model  is  captured  by  automaton  in Fig. 3 with

 and .  Missing  the  transitions
 and  are asynchronously detectable. According to

Definition  6,  consider  which  passes  through
,  where .  Consider 

and ,  which  might  be  confused  by ,  for
which , but . However, if we wait for more
observation, then , for which there is no 
such  that  to  create  confusion.  This  can  be  tested
for all other strings in , which in general, it
is  not  feasible  to  be  tested  for  all  strings.  Alternatively,  as
shown  in Fig. 6,  we  replace  the  events  in  and  in

 with ,  and  let  with ,
, .  Then,  we  can  construct  an  asynch-

ronous diagnoser  as  shown in Fig. 7,  which has two cycle of
-certain  states,  shown  on  orange,  but  has  no  cycle  of -

uncertain  states.  Hence,  is  asynchronously  diagnosable,
concluding  that  missing  the  transitions  and  are
asynchronously detectable.

fm
fm

Same  procedure  can  be  applied  when  there  are  multiple
missed  transitions  by  replacing  them  with ,  and  check  for
the diagnosability of . Next lemma explains that if a missed

Gdiobservation  is  detectable,  the  developed  diagnoser  resets
after a finite number of observations.

α
x̃
α−→ x̃′

Gdi α x̃
α−→ x̃′

Gdi

Lemma 5: Assume that the miss of event  in the transition
 is asynchronously detectable. Upon the activation/reset

of the diagnoser , if the event  in the transition  is
missed,  will reset after a finite number of transitions.

G s
s

G x̃ Gdi
x̃
α−→ x̃′ s1 s2 x̃′′ x̂

s = s1.α.s2 x̂
s1−−→ x̃

α−→ x̃′
s2−−→ x̃′′

x̃
α−→ x̃′ P(s = s1.α.s2)

P(u = s1.s2) G

ext(P(L(G))) n t1
G P(t1) = e1e2...en

t2 P(t2) = en+1 P(s.t1) ∈ ext(P(L(G)))
P(s.t1.t2) < ext(P(L(G)))
v = t1.t2 ∈ L(G)/s ⊆ ext(P(L(G))) uv = s1.s2.t1.t2

x̃
α−→ x̃′

α t ∈ pr(t1) P(s.t) ∈ ext
(P(L(G))) ext(P(L(G))) = L(Gd p)

t ∈ pr(t1) P(s.t) ∈ L(Gd p)
P(s.t1) ∈ L(Gd p) q1 = δd p
(q0,P(s.t1)) P(s.t1.t2) =
P(s.t1).en+1 < ext(P(L(G))) = L(Gd p) δd p(q0,P(s.t1.t2)) =
δd p(q1,en+1) δdi(q1,
en+1) = δdr(q1,en+1) = q0 Gdi

Proof: Consider  that  the  plant  has  executed  the  string 
since the activation/reset  of  the  diagnoser,  and  has  brought

 to ,  but  the  diagnoser  has  missed  the  observation
. This means that there exist , , , and  such that

 and .  However,  due  to  missing
the  observation ,  instead  of ,  the
diagnoser  has  observed .  Then,  the  plant 
continues  execution  of  events  which  results  in  strings  in

. There is a finite number , so that for a string ,
generated by  with , and its precedent string

 with ,  we  have ,  but
. Otherwise, for an infinite size string

,  does not pass
through ,  violating  condition  (6)  and  contradicting  the
fact  that  is  detectable.  Since  for  all , 

, and since based on Lemma 3 ,
for  all ,  we  have .  In  particular,

,  bringing  the  diagnoser  to  a  state 
. Since the diagnoser is deterministic and 

,  then 
 is  not  defined.  Based  on  Algorithm  1, 

, resetting . ■
Putting all together, next theorems derive the conditions for

diagnosing faults under imperfect observations.

G
L(G) Gdi Fi

Fi Gdi

Theorem  1 (Asynchronous  Diagnosability  Theorem  Under
Imperfect  Observation): The  plant  with  the  live  language

,  and  with  the  asynchronous  diagnoser ,  is -
asynchronously  diagnosable  under  imperfect  observation  if
there  does not  exist  an -indeterminate  cycle  in  and the
missed observations are asynchronously detectable.

δdr
G Fi Gdi

Fi Gd p Gdi
G Fi

Fi
Gdi

Proof: Since the transitions  corresponds to no transition
in , there will be no additional -indeterminate cycle in ,
i.e., the -indeterminate cycles in  and  are the same.
Therefore, if there is no missed observation, the plant  is -
asynchronously  diagnosable  if  there  is  no -indeterminate
cycle in . However, if there are missed observations and if
missed  observations  are  detectable,  after  a  finite  number  of
observations,  the diagnoser will  reset  as proven in Lemma 5,
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Fig. 6.     To check if missing the transitions  and  in  in Fig. 3
are  detectable,  we  replace  them  with  to  check  their  asynchronous
detectability.  Int  his  way,  and ,  with 

, , and .
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Gdi

and then will resume the diagnosis process. Since the plant is
live  and  asynchronously  diagnosable,  after  resetting,  the
asynchronous diagnoser  can diagnose the occurred faults,
even if they have occurred before resetting the diagnoser. ■

Gdi G1

3
α−→ 4 7

α−→ 8

G1

3
α−→ 4 7

β
−→ 8
f2

3
α−→ 4 7

β
−→ 8

Example  3: The  diagnoser  for  the  plan ,  shown  in
Fig. 4,  has  no  cycle  of  uncertain  states.  Also,  as  shown  in
Example  2,  the  transitions  and  are  asynchro-
nously  detectable.  Therefore,  according  to  Theorem  1, the
plant  is  asynchronously  diagnosable  if  missing  the
transitions  and . For instance,  as  it  is  shown  in
Example  1,  the  fault  is  detected  despite  missing  the
transitions  and .
 

VI.  Conclusion

This  paper  developed  a  diagnosis  technique  which  is
capable  of  diagnosing faults  under  imperfect  observations.  A
new  concept  of  asynchronous  detectability  was  introduced,
which,  if  holds,  allows  to  detect  a  miss  observation  from  its
post  observations.  Upon  detecting  a  missed  observation,  the
diagnoser  resets  and  resumes  the  diagnosis  process.  It  was
proven  that  if  the  missed  observations  are  asynchronously
detectable  and  if  the  faults  are  asynchronously  diagnosable,
the developed diagnoser can detect  the occurred fault  despite
missing the observations of asynchronously detectable events. 
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