IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 5, SEPTEMBER 2020

1279

Resilient Fault Diagnosis Under Imperfect
Observations—A Need for Industry 4.0 Era

Alejandro White, Member, IEEE, Ali Karimoddini, Senior Member, IEEE, and Mohammad Karimadini

Abstract—In smart industrial systems, in many cases, a fault
can be captured as an event to represent the distinct nature of
subsequent changes. Event-based fault diagnosis techniques are
capable model-based methods for diagnosing faults from a
sequence of observable events executed by the system under
diagnosis. Most event-based diagnosis techniques rely on perfect
observations of observable events. However, in practice, it is
common to miss an observable event due to a problem in sensor-
readings or communication/transmission channels. This paper
develops a fault diagnosis tool, referred to as diagnoser, which can
robustly detect, locate, and isolate occurred faults. The developed
diagnoser is resilient against missed observations. A missed
observation is detected from its successive sequence of events.
Upon detecting a missed observation, the developed diagnoser
automatically resets and then, asynchronously resumes the
diagnosis process. This is achieved solely based on post-
reset/activation observations and without interrupting the
performance of the system under diagnosis. New concepts of
asynchronous detectability and asynchronous diagnosability are
introduced. It is shown that if asynchronous detectability and
asynchronous diagnosability hold, the proposed diagnoser is
capable of diagnosing occurred faults under imperfect
observations. The proposed technique is applied to diagnose faults
in a manufacturing process. Illustrative examples are provided to
explain the details of the proposed algorithm. The result paves the
way towards fostering resilient cyber-physical systems in Industry
4.0 context.

Index Terms—Cyber-physical systems, discrete event systems, fault
diagnosis, imperfect communication, imperfect observation, Industry
4.0, resilience.

I. INTRODUCTION

DVANCES in technologies are revolutionizing
traditional industries by an increasing shift toward
integrated and distributed cyber-physical systems, in so-called
Industry 4.0 era [1], where the complexity is moved from the

Manuscript received May 21, 2020; accepted June 25, 2020. This work was
supported by the National Science Foundation (NSF) (1832110 and 2000320)
and Air Force Research Laboratory (AFRL) and Office of the Secretary of
Defense (OSD) (FA8750-15-2-0116). Recommended by Associate Editor
Giuseppe Franze. (Corresponding author: Ali Karimoddini.)

Citation: A. White, A. Karimoddini, and M. Karimadini, “Resilient fault
diagnosis under imperfect observations—A need for Industry 4.0 era,”
IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1279-1288, Sept. 2020.

A. White is with Vehicle Technology Directorate, CCDC Army Research
Laboratory, Aberdeen Proving Ground, MD 21005 USA (e-mail:
alejandro.p.white2.civ@mail.mil).

A. Karimoddini is with the Department of Electrical and Computer
Engineering, North Carolina Agricultural and Technical State University,
Greensboro, NC 27411 USA (e-mail: akarimod@ncat.edu).

M. Karimadini is with the Department of Electrical Engineering, Arak
University of Technology, Arak 3818146763, Iran (e-mail: karimadini@
arakut.ac.ir).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2020.1003333

mechanical structures to sensing, perception, planning,
control, and decision-making components [2]-[4], and the
priorities have shifted from pre-planned automation to reliable
autonomy [5], [6]. Such increasingly complex engineered
systems, such as industrial internet of things (IIOT) for
manufacturing [7], require automatic diagnostic mechanisms
with the capability to cipher through these system’s
complexities and provide a timely, clear, and concise
diagnostic output that ensures reliable and safe system
operations in order to achieve cyber-security [8]-[11].

Different diagnosis techniques include but are not limited to
mathematical model based approaches [12]-[15], artificial
intelligence techniques [16]-[21], fault tree analysis [22],
[23], template structures [24], [25], model-checking [26], [27],
Bayesian networks [28], and discrete event system (DES)
methods [29]-[39]. Among these methods, DES approaches
use time-abstract event-driven models of the systems under
diagnosis and provide diagnostic information based on high-
level logical behaviors of the systems, which is an effective
strategy particularly when dealing with complex systems.
Furthermore, DES models naturally capture faults as abrupt
changes (events) in the system, which facilitates the analysis
of faulty behaviors of the system. More importantly, the
topology of a DES model is similar to the human cognitive
process on correlating systems’ interactions and the effect(s)
of sequences of events [40], [41]. This makes DES framework
very suitable for the decision-making layer of a control
structure to manage normal/faulty situations toward a
desired/safe sequence of events.

DES fault diagnosis has been applied to different systems
including power transmission networks [42], automated
manufacturing systems [43], communication networks [44],
[45], cyber-security [46], and flight control systems [47]. In
[48], an event-based diagnosis tool, so-called diagnoser, was
developed. Using the abstraction of continuous dynamics of a
system, an automaton-based fault detection and isolation
technique was introduced in [35]. A state-based DES
diagnosis technique was studied in [49]. In [50], a learning-
based diagnosis technique is introduced for diagnosis of an
unknown DES system, and in [51]-[53], an asynchronous
diagnosis technique is developed, relaxing the generally
required synchronous initialization between the diagnoser and
the system under diagnosis. Once a fault is diagnosed, fault-
accommodation techniques can be employed to recover the
system [54]-[56].

All aforementioned DES fault diagnosis techniques rely on
perfect observations of sequences of events executed by the

1280

system under diagnosis. However, in practice, it is common
that due to the problems in sensor-readings or communication/
transmission channels, an observation is missed. In these
situations, the integrity of the observed sequence may lead to
missed or improper diagnosis. This can result in the system
with improper operation that it needs to switch out of, or
erroneous execution of an incorrect recovery action. When
multiple local diagnosers are available, [57] introduced a
trace-based diagnosis process which can handle timing
mismatch and channel distortion in a distributed setting.
Reference [58] has addressed the problem of robust diagnosis,
when diagnosers are themselves subject to failures, by taking
the advantage of collective decision-making in a decentralized
structure. In [59], a probabilistic method is developed for fault
diagnosis, which captures the loss of communication/
observation as faulty events with a certain probability. An
alternative solution to address the robust fault diagnosis
problem is to consider the loss of observation of an event at a
particular part of the model as a fault and treat it as an
intermittent fault [60], [61] or as a permanent fault [62].
However, loss of observation may happen anytime anywhere,
and considering an associated intermittent or permanent fault
for the loss of observations for all events at different locations
in the system will significantly make the system’s analysis
complex.

This paper addresses these challenges by proposing a novel
event-based fault diagnosis technique which is resilient
against missed observations. Here, the main difficulty is that
when an observation is missed, the inference of the diagnosis
being made based on subsequent observed events will be
compromised. By now, the only solution in this situation is to
restart the diagnosis process to track a valid sequence of
events in the system under diagnosis. However, by resetting
the diagnosis process, the past history of information about the
system under diagnosis will be missed at the reset time,
leaving us with a challenge to diagnose occurred faults based
on post-reset/activation of the diagnoser. To tackle these
problems, the proposed diagnoser automatically detects
missed observations, resets, and then, resumes the diagnosis
process, without interrupting the operation of the system
under diagnosis. The new concepts of asynchronous
detectability and diagnosability are introduced. It is also
shown that if the asynchronous detectability and diagno-
sability hold, the developed diagnoser can detect the occurred
faults under imperfect observations. The developed method is
applied to the diagnosis of faults in a manufacturing system.

The rest of the paper is organized as follows. Section II
provides the preliminaries and required definitions,
descriptions, and notations utilized in the modeling and
diagnosis of the DES systems. This section is concluded with
a formal problem statement for resilient fault diagnosis. In
Section III, the structure of the proposed diagnoser is
explained followed by developing an algorithm for
constructing the proposed resilient diagnoser. Section IV
reviews some of the properties of the developed diagnoser.
Section V derives the conditions for asynchronous diagno-
sability of occurred faults in a DES system under imperfect
observations, and finally, Section VI concludes the paper.

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 5, SEPTEMBER 2020

II. PROBLEM FORMULATION

Consider the system under diagnosis G, which is modeled as

a non-deterministic finite-state automaton

G = (X,%,6,x0) @)
where X is the state space of the system, xy € X is the system’s
initial state, X is the finite set of events, and 6 : X XX — 2X is
the state transition relation. The event set £ can be disjointly
partitioned into the observable event set X, and the
unobservable event set X,. A sequence of events forms a
string. With the abuse of notation, e € ¢ indicates that the
event e is one of the events which form the string s. The
length of a string ¢ is shown by [¢f|. The concatenation of two
strings s; and s, is shown by s;.s2. A set of strings forms a
language. The set pr(L) denotes the prefix closure of the
language L , defined as pr(L)={u|3v:u.vel}. The set
ext(L) is the extension closure of the language L, which can be
defined as ext(L)={v | Jue L:uvelL}. The set of all
possible finite strings over the set X, including the zero-length
string &, is shown by X*.

We can extend the transition rule, §, to a string in a
recursive way as 8(x,&) = x and 6(x, s.e) = 6(6(x, 5),e) for any
xeX, seX’ and e € X. The language of G can be defined as
L(G) = {s € ¥* | 8(xp, s) is defined}, which contains all strings
that can be generated by the automaton G from the state xg.
L(G)/s ={t € £* | 5.t € L(G)} includes the set of strings that G
can generate after s, or namely L(G) after s. The set
L(G(x)) ={s € " | 6(x, 5) is defined} referrers to the strings that
can be generated by G from the state x € X. The state X can
transit to X’ by the string s, shown by i>S¥, if¥e (%, s).
The string s can passes through X % % if there exist S1, 2,

and X’ such that x 2 55 ¥ 25 %7, The unobservable reach
set UR(x)={yeX|JueX], 6(x,u)=y} includes the states
that are reachable from state x by an unobservable string. The
set UE(s,x) ={s.t|t€ X} and 5.t € L(G(x))} contains all unob-
servable extensions of s that can be generated from the state x.
For a string t € ext(L(G)), Pre(t) = {s| s.t. € L(G)} includes the
set of strings that can be the precedent of t. Pre,(t) is the
actual precedent of ¢ that has been actually executed by the
plant before ¢.

System’s faults can be captured by a set of unobservable
events, X C X,. Similar to [48], we consider m sets X5, Xp,
.., Xf,, each represents a particular fault type, where
U Zr =Xy A string 1 € L(G) is “Fi-faulty” if there exists an
event f € Xy, such that fer. A string € L(G) is “non Fj-
Saulty” if for all feX;, we have f¢r. Finally, a string
t€ L(G) is “normal” if for all f€XZy and for all i=1,...,m,
fét.

The diagnosis problem includes detecting faults from the
observable events executed by the system under diagnosis.
The observable behavior of G can be captured by the natural
projection to observable events, P:X* — X7 which can be
defined as follows:

1) P(e) = ¢;

2) P(e)=e,ifecX,;

3)P(e) =¢,ife ¢ X,;

4) P(s.e) = P(s)P(e), for se X*and e € X.

For a language L, P(L))={P(s)|se€ L;}. The inverse

WHITE et al.: RESILIENT FAULT DIAGNOSIS UNDER IMPERFECT OBSERVATIONS-A NEED FOR INDUSTRY 4.0 ERA

Plant L(G)| N%llLlrlal
projection
G=(X L, 6, x) P:YoY

Fig. 1.
system under diagnosis, x;, from imperfect observation of the system.

projection of a string w € ¥ is P l(w) ={s € L(G) | P(s) = w}.

Here, we assume that the system’s language, L(G), is live,
i.e.,, Yxe X,do € X such that 6(x,0) is defined. Further, we
assume that the faults do not bring the system to a halt mode.
These assumptions ensure that there is sufficient time to
diagnose faults from observing the executed events. Further,
we assume that the length of unobservable strings in L(G) is
bounded by n,, ensuring that the system would not be stuck in
a cycle of unobservable events, which is a reasonable
assumption for live systems. On the other hand, we relax the
commonly required assumption on perfect communication
links or sensor readings, and hence, our formalism considers
that some observable events may be missed in practice. The
diagnosis problem is then to detect faults and determine their
types and location based on observing the executed events. In
the case of a missed observation, the successive events would
not provide valid information until the diagnoser resets and
resynchronizes with the system under diagnosis. This requires
the diagnoser to detect faults based on post-reset/activation
observations as described in the following problem:

Problem 1: From a run-time, imperfect, sufficiently large
observation P(f) of a DES system G, ¢ € ext(L(G)), determine
if Af € Xr such that f € Pre,(t).t. If yes, identify the type of
the occurred fault, Xy, where f € X5 C Xy, and locate the fault
by finding the system state x € X subsequently reached by
Pre,(1).t.

III. CONSTRUCTING THE RESILIENT DIAGNOSER

To address Problem 1, we introduce a diagnosis tool, called
a diagnoser, which provides diagnostics by extracting
information from the original system’s observable events in
order to estimate the original system’s current state location
and current condition (faulty or non-faulty) (See Fig. 1). The
diagnoser can be represented by a finite-state automaton
Gyi =(0Q4,Z4,04i,90), Where Qg is the diagnoser’s set of
states, X; is the diagnoser’s event set, d4; is the diagnoser’s
transition relation under imperfect observations, and gq is its
initial state.

The diagnoser monitors the observable events of the system
under diagnosis and changes its estimation (diagnoser state)
accordingly. Therefore, the diagnoser’s event set is the
observable events, £;=2%,. The states of the diagnoser
Q4 C 2L are in the form of gqg={(x1,¢1),...,(x, €}, in
which the pairs (x;,£;) € g4 capture the estimation of the states
of the system under diagnosis, x; € X, adjoined by their fault
status, £; C L. The set L ={N}U 2F contains condition labels,
where F ={F|,F3,...,Fy} is the set of fault labels, in which
F; is the label for fault type X, i=1,...,m, and N is the label
for normal system operation.

Definition 1 [48]: Consider g = {(x1,€1),...,(xp,€m)} € Qq.
Then, ¢ is said to be

1281

Imperfect
observation

Diagnoser

(i 1)
G,= (0%, 5[/;‘/0)

The diagnosis process, in which the diagnoser should diagnose the occurred faults and their type, captured by fault label ¢;, and the location of the

1) Normal if £, = {N} forallk=1,....M.

2) Fi-certain if F; € ¢ forallk=1,..,M.

3) Fj-uncertain if 3n,m such that F; € £,, but F; ¢ £,,,.

The fault condition labels are tracked and propagated via the
function V: LXX* — L as

{N},if (={N} andVfeXs, f¢t, @)
{Fie F|IF;elordf €Xy, f€t}, otherwise.

Algorithm 1 constructs the initial state of diagnoser, go, the
diagnoser states, Qy, and the diagnoser transition relation d ;.
In the first step, the algorithm constructs, gg. The system
under diagnosis is initially normal. However, during the
diagnosis process, the diagnoser may reset any time due to
missing an observation. Therefore, at the reset/activation
instance, the diagnoser cannot assume that the system under
diagnosis is normal. Instead, since after resetting the
diagnoser, the past history of the system is not missed, the
diagnoser should consider all states of the system and all their
possible faulty statuses as the initial estimation of the system’s
state and status. Hence, the algorithm constructs gg by finding
all states reachable from (xg,{N}). For this purpose, the
algorithm starts from gg = {(xg,N)}, and then, extends ¢gq to
x € UR(xo) by go=qoU{(x,0)|x € 6(xo,u), ue X, £ =V({N},
u)}. Then, the diagnoser will continue this process by
searching over all other possible reachable states. To
implement this idea, for each pair (x,¢) in go and for each
observable event e, the algorithm checks if (x,£) can transit
via e (and its unobservable extensions) to a new set of pairs

64((x,0),€) = {(,V(€,0)ly € 6(x,1) and 1 € UE(e,)} (3)

The new identified pairs, 64((x,¢),e), are then included in
q0-

The second step of Algorithm 1 constructs the transition
relation ¢4; and the states of the diagnoser Q. Starting from
qo, the states of the diagnoser and its transition relation can be
recursively constructed. For this purpose, for any g € Qy, the
algorithm checks if for any (x,{) g and for any eeZX,,
04((x,0),e) is defined. If so, ¢ = | d4((x,0),e) will be

(x,0)eq
added to Qg. At the same time, we add the transition from ¢ to

the new state ¢’ to the list of admissible transitions of the
diagnoser, which can happen when e is observed

Sap(g-0)= |) Su((x,0,0). &

(x,0)eq

V(1) = {

With this information, we can construct Gy, = (Qu,%0,0dp,
qo) which can operate as a diagnoser under perfect
observations. As it will be shown in Lemma 3, ext(P(L(G))) =
L(Gp), which means that if there is no missed observation, all
transitions in ext(P(L(G))) can be captured by L(G4p,). Given
that, if for an event e € £, and for all (x,€) € q, 64((x,£),e) is

1282

not defined, but the diagnoser observes the event e when it is
in state g, G4, cannot recognize the event e, inferring that
there has been a missed observation. To handle this situation,
the diagnosis process should be restarted, by adding
da,(g,€) = qo to the list of transitions. With this mechanism,
we can form the diagnoser Gy; = (Qg4,%5,04iq0) With
0d; = 04, Y64y, which can operate under imperfect
observations. If a missed observation is detected, the
diagnoser Gy, resets to go, and resumes the diagnosis process.

Algorithm 1 Constructing a Resilient Diagnoser

Input: G = (X,Z%,6, x9)
Output: G),: the diagnoser under perfect observation
Gy;: the diagnoser under imperfect observation
Initialization:
q0 = {(x0,N)};
Step 1: Construct g,
40 := qo U{(x,O)| x € 6(x0,u), u € X, £ =V({N}Luw)k;
repeat
for (x,)egopand e € Z, do
if Jdte UE(e,x)
(0, V(£,1)) ¢ qo then
6a((x,0),€) :={(y, V&, 1)ly € 5(x,t) and t € UE(e, x)}
q0 = qo Uda((x,0),e);
end if
end for
until there is no new pair (x,¢) in go
Step 2: Construct O, and J;
Qu :={qo0},
repeat
forge Qsandec X, do
if A(x,£) € g s.t. 54((x,0),e) is defined then

such that yed(x,f) and

Sap(g0)= U ba((x,0),e);
(x.0)eq
add 64p(q,e) to Qu;
else
6dr(q» e) =40
end if
end for
until there is no new state 64,(q,e) for all e € %,
64; =0dp Y0,

Gap = (QdsZ00dp>40)
Gy =(Q4,Z0,94i,90)

Example 1: Consider a manufacturing system, a part of
which conducts process 8 on the objects as shown in Fig. 2.
For this purpose, the objects on the conveyor are pushed by
the left pusher to the right station to conduct process . In this
station, there is a detector which evaluates if the object is
processed well or it should be passed through process 8 again.
Once the process is completed, the right pusher pushes the
object back to the conveyor. The model of this manufacturing
system is captured by automaton G; in Fig. 3, in which
¥, = {a,B} contains the event « for observing the activation of
the right and left pushers and the event 8 for conducting the
process on the objects. As a part of initialization of the
system, initially the process 8 is conducted two times to warm
up the system, and then the pusher pushes the objects to be

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 5, SEPTEMBER 2020

I
I. T Left pusher

Process
JII Right pusher

The top view of a part of a manufacturing system: the objects on the

Conveyor mp

Fig. 2.
conveyor are pushed by the left pusher to the right station to conduct process
B. Once the detector confirms that the object is processed well, the process is
completed and the right pusher pushes the object back to the conveyor.

B 3

7 DO O®
/i (7)(8 »o(9 »-a>(10)
A Ty

—{(1 Fp(2 (3 a4 (5 a>(6)

i
Fig. 3.
with the observable event set X, = {a

The DES model of the manufacturing process described in Example 1,
,B}, which contains the event « for
observing the activation of the right and left pushers and the event 8 for
conducting the process on the objects. This system also include unobservable
{1, 2}, with 27, = {f1}, {f2}, in which f; stands

for the fault in the detector resulting in the false positive detection of objects

events X, =Xy = and Xf, =
to be passed through process 3, and f> stands for the fault in the right pusher
when it fails to push the object back to the conveyor.

processed. To illustrate the proposed method, we consider two
types of faults: f] which is a failure in the process 8, and f5,
which is a failure in the pusher. These two fault types are
captured by X, =Xy = {f1, 2}, Zy, = {fi}, and Z¢, = {f2}.

Applying Algorithm 1, the diagnoser Gy4; is constructed for
G, as shown in Fig. 4. In the diagnoser’s figure, to ease the
drawings, instead of showing the states in the form of
collections of pairs (x,£), we have shown them simply as x{.
For example, g1 ={2,{N}), G.N}, G.AND, B.,{F2}),
(11,{F1}), (12,{F1}), (14,{F1})}, is shown as gq; = {2N,3N,
5N,8F,,11F,12F,14F}. In this diagnoser’s figure, the
solid arrows represent 04, and the dashed arrows show the
reset transitions, d,..

Now c0n51der the transition 1 —> 2 —> 354 —> 7 —> 8509
the system. Under perfect
observation, the diagnoser observe'g B,Ba,é’aaﬁcm and executes

5105859510 in
the followmg sequence q0 = q1 > @2 g q3 —> q4 g qs g q9
i q10 g q11 g go. As soon as the diagnoser reaches gg as an
F;-certain state, the diagnoser realizes that f; has occurred in
the past.

Now 1mag1ne that i In the system’s run 1 —> 2 —> 3 —> 4 —) 7
585951058595 10, the transitions 3 %54 and
7 — 8 are missed, and hence, the diagnoser can only observe

WHITE et al.: RESILIENT FAULT DIAGNOSIS UNDER IMPERFECT OBSERVATIONS-A NEED FOR INDUSTRY 4.0 ERA

1283

A A A [| A A A A A
i o
/+ f
9] 2N, 3N, 5N, 8F,, 11F,, 12F,, 14F, ‘ 4N, 6N, 7F,, 9F,, 10F,, 13F, \ qs
| |
s o
v v
9 | 3N, 11F,, 12F, [4N, 6N, TF,, 9F,, 13F,
q7
a 1 6N o
[K
q | g
3 \
..... e LA/ kT @ B
2

> 7 O
()t ‘110/}
l

a \ i{ i
"\w{9F2}~~ R

qn

5N, 8F,, 14F, |

93 vy
........... B %&ﬁ |
y
................. pp—— ”u},FquH B
o [4F}g,,
Fig. 4.
BPaafaa instead of PBBafaafaa. Therefore, observing

Bﬂaaﬁaaﬁ, the dlagnoser goes through the following sequence:
q0 — 41 _’412—’Q3—’510_>511 —’QIZ_’CI9 As
seen, after executing go— g1 — ¢2 N q3, the diagnoser
realizes that an event is missed and will reset to gg. Then, the
diagnoser continues the diagnosis process and eventually can
synchronize itself and will detect the fault by reaching g,
which is an F,-certain state, concluding that the fault f, has
occurred in the system. Fig. 5 shows the executed runs in the
plant and the diagnoser, under perfect and imperfect
observations.

it can be

IV. PROPERTIES OF THE CONSTRUCTED DIAGNOSER

Next, we outline some properties of the developed
diagnoser and provide several lemmas, which will be used in
future derivations.

Lemma 1: The constructed diagnoser is a deterministic
automaton.

Proof: By construction the diagnoser’s transition relation,
ddi» 1s deterministic. This can be observed in (3) and (4), in
which for each state ¢ and each event e, we search for all
(x,{)egq and for all unobservable extensions of e,
te UE(e,x), and will find (y,V(£,1)), where y e §(x,t). We
aggregate all these pairs (y, V(£,1)) as a new diagnoser state ¢’.
Since all outgoing transitions from g by the event e and its
unobservable extensions are already included in ¢’, ¢’ is the
only member of 64,(¢,e). A similar argument can be made for
04, Therefore, 64; = 64, U 64, is deterministic. [|

The constructed diagnoser for the plant G, given in Fig. 3. The solid arrows represent d,,, and the dashed arrows show the reset transitions, 6,

Lemma 2: For any q—> q in Gy, there exist (x,) €q,
(¥, ") € ¢’, and a transition x— ¥’ in G such that Pit)=0.
Proof: This can be verified by the construction procedure in
Step 2 of Algorithm 1. []
Lemma 3: The extension closure of the observable behavior
of the system under diagnosis, G, and the perfect
asynchronous diagnoser, Gy, are language equivalent, i.e.,
ext(P(L(G))) = L(Ggp).
Proof: Consider a string t € ext(P(L(G))), where t =010
-0y, i €X,. There exist at least two strings w = wpe|w;

eowy-repW,, and u=oujoauy -0, such that w.au €
L(G), uj,w;€Z;,and oj,ej€ X, foralli=1,...,n, j=1,.
Correspondingly, there ex1st the states ISP € X and
ew emWm
X1,...,x, € X, such that xo—>z1 = 22 . Zm
ouy Uy Onlp .
X1 Xp-- Xp. According to Step 1 of Algori-
thm 1, (xo,€0 = {N}), (z1,61 = V(lo,w0)), (22,62 = V(L1,e1w1)),
and ... (zm, €n = Vmu-1,emwm)) all are in gg. Then, following

Step 2 of Algorithm 1, for (x1,f; = V€, 1u1)) = 64((Zms Em),
o1), there exists a state g; € Qy such that q1 =0dp(qo,01).
Also, for all (x;,¢; = V({i—1,0u;)) = 64((xi-1,€i-1),07;), there
exists states g;— 1,q, € Qd such that g; = 64,(qi-1,07), forming
the sequence ¢o —>q1 —>q2 U—>qn, concluding that ¢ =
0 €L(Gayp).

On the other hand, consider a sequence g AN q1 2, qr
LN qn, Where 01073 ---0 € L(Gy,,). Based on Lemma 2, there
exists xp,x2,X3,...,X,+1 € X and strings #;,¢ %, . ? such that
P(t) =01, P(t) =0, ...

0102

,P(t)) =0, and x; — xp — x3-

1284
@—H (223 a>(4
© @ |5 0 || 4.

Fig. 5.

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 5, SEPTEMBER 2020

a>'4 —f—ﬂ 7 —[;’* 8 ra—N‘) >—av10~/fv 8~a—>(9 »—avlo)— > 8 o> 9 mﬂlO»

ﬂ ' L2 G Fa> gy
o> 43 %(X*.-ﬂ—*] q, }»(l* Gz 03 45 P> G0 —a* o> Gy

(a) The executed run by the plant Gy; (b) the corresponding executed runs by the diagnoser in Fig. 4 under perfect observations; (c) the executed runs

q —p qIO

by the diagnoser in Fig. 4 under imperfect observations. Under imperfect observation,the diagnoser automatically rests to go after missing the detectable

observations and after few observations re-synchronizes itself with the plant executions.

Xn+1. Since, all strings in G are reachable from xo, there exists
a string s such that xg 5 x1, meaning that P(stity---1,) =
P(s)o03 - -0y, € P(L(G)), concluding that oj0-- -0, € ext
(P(L(G))).

As proven above, any string in ext(P(L(G))) is in L(G4)p)
and vice versa, resulting in ext(P(L(G))) = L(Ga4)) [|

V. ASYNCHRONOUS DIAGNOSABILITY

In Example 1, for a particular sequence of events, the
diagnoser was able to detect the occurred fault in G| despite
missing an observation. The question is, can the diagnoser
always detect all faults in the case of any missed observation?
If we look at the diagnosis mechanism, the proposed
diagnoser detects a missed observation and resets to go, and
then, resumes the diagnosis process. So, the previous question
can be broken into two questions: 1) can the diagnoser always
detect the missed observations? 2) can the diagnoser always
diagnose a fault after arbitrary resetting to the initial state go?
Next sections address these two questions. Before that, for the
derivations in the next sections, the following definitions are
needed.

Definition 2: A cycle in the diagnoser is called F;-certain if
all of its states are F;-certain; otherwise, it is called a non-F;-
certain cycle.

Definition 3: A cycle of F;-uncertain states in the diagnoser
is called an F;-uncertain cycle.

Definition 4 (F;-indeterminate Cycle): A set of F;-uncertain
states g1, ¢2, ..., qn € Qg forms an Fj-indeterminate cycle if
and only if

1) The states ¢, g2, ..., g, form a cycle in the diagnoser, i.e.,
0a(qr,ex) = qre1, fork =1,...,n—1,84(qn,e,) = q1, and e € Z,,
fork=1,....,n

2) The cycle g1, g2, ..., g, in the diagnoser can be inversely
projected back to at least one cycle of non-F;-faulty states and
one cycle of F;-faulty states in the original system G, i.e., each
state of the cycle, g, contains (xi,) and (x;, ;) so that

a) Fi ¢ { and F; € €, for all (xi, k) € gk, (x;,¢}) € g, and
k=1,...,n

b) x, xp, ..., x, form a cycle in G so that xz.| € 6(xx,),
k=1,...,n—1, and x; € 6(xp,t,), where P(t;) € e, for k=1,

..

) xj, x5, ..., X, form a cycle in G so that x;, €6(x;,1),
k=1,...,n—1, and x| € 6(x;,t,), where P(t,)eek for k=1,

.

A. Asynchronous Diagnosability Under Perfect Observation

An observation may be missed anytime during the diagnosis
process. If the diagnoser detects the missed observation, it

resets to initial state ¢qo, missing the past history of
observations (as they no longer are valid due to a missed
observation). So, the diagnoser should be able to diagnose the
faults solely based on the post-reset/activation observations.
Since the reset can happen anytime, a fault should be
distinguishable based on all sufficiently large sequences of
events observed after a fault as stated in the following
definition.

Definition 5 (Asynchronous Diagnosability Under Perfect
Observations)[53]: The DES system G with the live language
L(G), is said to be Fj-asynchronously diagnosable with
respect to the fault type F; and the natural projection P, if for
all s € L(G), f €Zy, f € s, there exists an upper bound n; €N,
such that for any string t € L(G)/s with |¢| > n;, the following
condition holds:

{Yuv € L(G), P(v) = P(t)} = f € uv, f € 5. 5)

The system G is asynchronously diagnosable if it is Fj-
asynchronously diagnosable with respect to all fault types F;,
i=1,...m

Although Definition 5 describes the asynchronous diagnosa-
bility, it is very difficult to check the diagnosability condition
given in (5) over all faulty strings in L(G). Theorem 4,
therefore, will provide the necessary and sufficient conditions
to indirectly check the asynchronous diagnosability based on
the structure of the diagnoser:

Lemma 4 (Asynchronous Diagnosability Theorem Under
Perfect Observations)[51]: The plant G with the live language
L(G), and with the asynchronous diagnoser Gg,, is Fj-
asynchronously diagnosable under perfect observations if and
only if, there does not exist an Fj-indeterminate cycle in Gy,
i.e., there is no cycle of F;-uncertain states in G4, that can be
projected back to a cycle of normal and F;-faulty states in G.

Remark 1: Whether or not F;-asynchronously diagnosable,
we can construct the diagnoser G, for the plant G. If the plant
G is Fj-asynchronously diagnosable, then the constructed
diagnoser can determine if a fault f € X has occurred or not
in a finite number of transitions. Therefore, it is preferred to
have the plant G F;-asynchronously diagnosable. But if the
plant G is not Fj-asynchronously diagnosable, still the
diagnoser G, can be constructed and can provide its best
estimation of the failures’ status in G, though in some cases
there might be an ambiguity in the occurrence of failures of
type F;, and the diagnoser cannot resolve the ambiguity even
after observing a large number of transitions in G.

B. Asynchronous Diagnosability Under Imperfect Observation
If the diagnoser misses an observation, it should be able to

WHITE et al.: RESILIENT FAULT DIAGNOSIS UNDER IMPERFECT OBSERVATIONS-A NEED FOR INDUSTRY 4.0 ERA

detect the missed observation based on the sequence of events
observed after the diagnoser’s last reset or activation. Since
the diagnoser may have been activated or reset anytime
asynchronous with the system under diagnosis, the missed
observation should be distinguishable based on its precedent
events, as stated below.

Definition 6 (Asynchronous Detectability of a Missed
Observation): Consider the DES system G with the live
language L(G). The miss of observation of the event a, a € X,
when the system G transits from a state X to X', X EN X, 1s said
to be asynchronously detectable with respect to the natural
projection P, if for any string s € L(G) that passes through

5 X', there exists an upper bound #n; € N, such that for any
string t € L(G)/s with |¢| > n;, the following condition holds:

{Yuv € L(G), P(v) = P(f)} = uv passes through X 5%, 6)

This definition indeed requires that after a certain number of
observations, any string ¢ that occurs after a missed obser-
vation be distinguishable in an asynchronous setting, i.e., not
to be confused with another string in ext(L(G)). If we treat the
missed observation as an unobservable faulty event f;,, then
the detection of the missed observation is exactly as the same
as asynchronously diagnosing f;,,, when we should diagnose
fm solely based on post-fault occurrence information.
Therefore, instead of directly checking the detectability of the
transition ¥ — ¥, one can replace « in this transition with f,
and check for its asynchronous diagnosability. Note that with
this practice, X, = {f»} has the single member, f,,. Applying
Definition 5 to check whether f;, is asynchronously diagno-
sable requires that for all s € L(G), f, € s, there should exist
an upper bound #n; € N, such that for any string t € L(G)/s with
| > n;, the following condition holds:

{Yuv € L(G),P(v) = P(t)} = f € uv, f € Xf,,. N

Example 2: Consider the manufacturing system in Example 1
whose model is captured by automaton G; in Fig. 3 with
2o ={a,p} and X, =ZX;={f1,f2}. Missing the transitions
35 4and 7S 8are asynchronously detectable. According to
Definition 6, consider s =fBa € L(G) which passes through
3 i 4, where L(G)/s = fr(aaf)" +L(ap)". Consider u= LB
and v = fiBaB, which might be confused by t=paf, for
which P(v) = P(t), but f,, ¢ uv. However, if we wait for more
observation, then v = f;8a83, for which there is no t € L(G)/s
such that P(v) = P(t) to create confusion. This can be tested
for all other strings in L(G)/s C ext(L(G)), which in general, it
is not feasible to be tested for all strings. Alternatively, as
shown in Fig. 6, we replace the events « in 3 %4 and B in
758 with f,, and let T ={fi.fofu) with X, = (fil
Zry =1{f2}, Zr,, ={fm}. Then, we can construct an asynch-
ronous diagnoser as shown in Fig. 7, which has two cycle of
F,,-certain states, shown on orange, but has no cycle of F,,-
uncertain states. Hence, f,, is asynchronously diagnosable,
concluding that missing the transitions 3 L4 and 758 are
asynchronously detectable.

Same procedure can be applied when there are multiple
missed transitions by replacing them with f,,, and check for
the diagnosability of f,,. Next lemma explains that if a missed

1285

- V - B
SO D@ ®
7 ()8 (9)-a(10)
] f'/ - L
s oe A2 N B ’*B*’

—(1)22)53 o4 Y55 }-a>(6)
.

Fig. 6. To check if missing the transitions 3 L 4and7 i 8 in Gy in Fig. 3
are detectable, we replace them with f,, to check their asynchronous
detectability. Int his way, X, ={e,8} and X, =Xy ={fi, f2, fu}, With 7, =
(it Zpy ={fa), and 2y, = {fin}.

observation is detectable, the developed diagnoser G; resets
after a finite number of observations.

Lemma 5: Assume that the miss of event « in the transition
5 ¥ s asynchronously detectable. Upon the activation/reset
of the diagnoser Gy;, if the event « in the transition X 5% is
missed, G4; will reset after a finite number of transitions.

Proof: Consider that the plant G has executed the string s
since the activation/reset of the diagnoser, and s has brought
G to X, but the diagnoser G, has missed the observation
% #. This means that there exist s1, 2, X"/, and % such that
s=s.a.5p and % NN N 2 However, due to missing
the observation ¥-— X, instead of P(s=sj.a.sp), the
diagnoser has observed P(u = si.sp). Then, the plant G
continues execution of events which results in strings in
ext(P(L(G))). There is a finite number n, so that for a string ¢y,
generated by G with P(t]) = eje;...e,, and its precedent string
ty with P(t;) =e,+1, we have P(s.f;) € ext(P(L(G))), but
P(s.t1.1y) ¢ ext(P(L(G))). Otherwise, for an infinite size string
v=1t1.tp € L(G)/s C ext(P(L(G))), uv = s1.57.t1.t» does not pass
through % 5 X', violating condition (6) and contradicting the
fact that « is detectable. Since for all r € pr(t;), P(s.t) € ext
(P(L(G))), and since based on Lemma 3 ext(P(L(G))) = L(Ga)),
for all t€pr(r), we have P(s.t) € L(Ggp). In particular,
P(s.t1) € L(Ggp), bringing the diagnoser to a state g =dq4),
(g0, P(s.11)). Since the diagnoser is deterministic and P(s.t1.ty) =
P(s.11).enn1 & ext(PL(G))) = L(Gay). then 64,(qo.P(s.01.12)) =
0dp(q1,en+1) is not defined. Based on Algorithm 1, 64i(q1,
ent1) = 04,(q1,€n+1) = qo, resetting Gy;. u

Putting all together, next theorems derive the conditions for
diagnosing faults under imperfect observations.

Theorem 1 (Asynchronous Diagnosability Theorem Under
Imperfect Observation): The plant G with the live language
L(G), and with the asynchronous diagnoser Gg;, is Fj-
asynchronously diagnosable under imperfect observation if
there does not exist an F;-indeterminate cycle in G4; and the
missed observations are asynchronously detectable.

Proof: Since the transitions &4, corresponds to no transition
in G, there will be no additional F;-indeterminate cycle in Gg;,
i.e., the Fj-indeterminate cycles in G4, and G; are the same.
Therefore, if there is no missed observation, the plant G is F;-
asynchronously diagnosable if there is no Fj-indeterminate
cycle in G4;. However, if there are missed observations and if
missed observations are detectable, after a finite number of
observations, the diagnoser will reset as proven in Lemma 5,

1286

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 5, SEPTEMBER 2020

I

[

g o
v L
a| 2N, 3N, 4F,,, SF,, TFSF,, 8F.F,, 11F,, 12F , 14F, | | 6F 9FF,, 10F,F,, 13F, s
B |
4: BN, 4F,, SF,, TF,F,, 8F3F,, 11F,, 12F] / o l
f (24
’ a o a | SF.8FF,14F, |4
9qs SF,, 14F, a “‘ T e
o
‘ B
a \
v 9 v 4 \ 4 ‘ _@
4| 6F,, 13F, | |_6F. 9F,F,, 13F, |————a N 10F,F, J—a 6F,, OF,F,
I [a 410
p A p
I 5F,, 14F, o »(6F, }-5-5(5F,
s di2 R Jdn
B e
v
qi; [12F 1|\
I g
a ;
B
G4 L
I /¢

B
as AR}

Fig. 7. The asynchronous diagnoser for the modified G in Fig. 3, when replacing 3 S 4and7 i 8 with f;,. The constructed diagnoser has two cycles of F,-

. a
uncertain states, shown in orange, but has no F,-indeterminate cycle. Hence, f,, is asynchronously diagnosable, concluding that missing the transitions 3 — 4

and 75 8 are asynchronously detectable.

and then will resume the diagnosis process. Since the plant is
live and asynchronously diagnosable, after resetting, the
asynchronous diagnoser G,4; can diagnose the occurred faults,
even if they have occurred before resetting the diagnoser. W

Example 3: The diagnoser Gg4; for the plan G, shown in
Fig. 4, has no cycle of uncertain states. Also, as shown in
Example 2, the transitions 3 54 and 758 are asynchro-
nously detectable. Therefore, according to Theorem 1, the
plant G; is asynchronously diagnosable if missing the

.- B
transitions 3 — 4 and 7 > 8. For instance, as it is shown in
Example 1, the fault f, is detected despite missing the

transitions 3 — 4 and 7 i 8.

VI. CONCLUSION

This paper developed a diagnosis technique which is
capable of diagnosing faults under imperfect observations. A
new concept of asynchronous detectability was introduced,
which, if holds, allows to detect a miss observation from its
post observations. Upon detecting a missed observation, the
diagnoser resets and resumes the diagnosis process. It was
proven that if the missed observations are asynchronously
detectable and if the faults are asynchronously diagnosable,
the developed diagnoser can detect the occurred fault despite
missing the observations of asynchronously detectable events.

ACKNOWLEDGMENT
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions

contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF, AFRL,
OSD or the U.S. Government.

REFERENCES

[1] A. Schumacher, T. Nemeth, and W. Sihn, “Roadmapping towards
industrial digitalization based on an industry 4.0 maturity model for
manufacturing enterprises,” Procedia CIRP, vol.79, pp.409-414, 2019.

[2] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. 11th
IEEE Int. Symp. Object and Component-Oriented Real-Time
Distributed Computing, Orlando, USA, 2008, pp. 363-369.

[3] R. Baheti and H. Gill, “Cyber-physical systems,” in The Impact of
Control Technology, T. Samad and A. M. Annaswamy, Eds. New York,
USA: IEEE Control Systems Society, 2011, pp. 161-166.

[4] D. O. M. Sanchez, “Sustainable development challenges and risks of

industry 4.0: A literature review,” in Proc. Global IoT Summit, Aarhus,
Denmark, 2019, pp. 1-6.

[5] M. M. Alani and M. Alloghani, “Security challenges in the industry 4.0
era,” in Industry 4.0 and Engineering for a Sustainable Future, M.
Dastbaz and P. Cochrane, Eds. Cham, Germany: Springer, 2019, pp.
117-136.

[6] V. Alcacer and V. Cruz-Machado, “Scanning the industry 4.0: A
literature review on technologies for manufacturing systems,” Eng. Sci.
Technol., Int. J., vol.22, no. 3, pp.899-919, Jun. 2019.

[7] S. Jeschke, C. Brecher, T. Meisen, D. Ozdemir, and T. Eschert,
“Industrial internet of things and cyber manufacturing systems,” in
Industrial Internet of Things, S. Jeschke, C. Brecher, H. B. Song, and D.
B. Rawat, Eds. Cham, Germany: Springer, 2017, pp. 3—19.

[8] R. M. Murray, K. J. Astrom, S. P. Boyd, R. W. Brockett, and G. Stein,
“Future directions in control in an information-rich world,” IEEE
Control Syst. Mag., vol.23, no.2, pp.20-33, Apr. 2003.

[9] A. D. Pouliezos and G. S. Stavrakakis, Real Time Fault Monitoring of
Industrial Processes. Dordrecht, Netherlands: Springer, 1994.

WHITE et al.: RESILIENT FAULT DIAGNOSIS UNDER IMPERFECT OBSERVATIONS-A NEED FOR INDUSTRY 4.0 ERA

[10] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy: A survey and some new results,”
Automatica, vol. 26, no. 3, pp.459—-474, May 1990.

[11] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion and
machine learning for industrial prognosis: Trends and perspectives
towards industry 4.0,” Inf. Fusion, vol.50, pp.92—111, Oct. 2019.

[12] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for
Dynamic Systems. Boston, USA: Springer, 1999.

[13] V. Venkatasubramanian, R. Rengaswamy, K. W. Yin, and S. N. Kavuri,
“A review of process fault detection and diagnosis: Part I: Quantitative
model-based methods,” Comput. Chem. Eng., vol.27, no.3,
pp-293-311, Mar. 2003.

[14] A. Bhagwat, R. Srinivasan, and P. R. Krishnaswamy, “Fault detection
during process transitions: A model-based approach,” Chem. Eng. Sci.,
vol. 58, no.2, pp.309-325, Jan. 2003.

[15] R. Isermann, “Model-based fault-detection and diagnosis - status and
applications,” Annu. Rev. Control, vol.29, no. 1, pp. 71-85, 2005.

[16] S. Rajakarunakaran, P. Venkumar, D. Devaraj, and K. S. P. Rao,
“Artificial neural network approach for fault detection in rotary
system,” Appl. Soft Comput., vol. 8, no. 1, pp. 740-748, Jan. 2008.

[17] Y. F. Zhou, J. Hahn, and M. S. Mannan, “Fault detection and
classification in chemical processes based on neural networks with
feature extraction,” ISA Trans., vol.42, no.4, pp.651-664, Oct. 2003.

[18] Y. M. Zhang and J. Jiang, “Issues on integration of fault diagnosis and
reconfigurable control in active fault-tolerant control systems,” in Fault
Detection, Supervision and Safety of Technical Processes 2006, H. Y.
Zhang, Ed. Oxford, UK: Elsevier Science Ltd, 2007, pp. 1437-1448.

[19] X. D. Zhang, T. Parisini, and M. M. Polycarpou, “Adaptive fault-
tolerant control of nonlinear uncertain systems: An information-based
diagnostic approach,” I[EEE Trans. Autom. Control, vol.49, no.8,
pp. 1259-1274, Aug. 2004.

Y. Zheng, H. J. Fang, and H. O. Wang, “Takagi-sugeno fuzzy-model-
based fault detection for networked control systems with Markov
delays,” IEEE Trans. Syst., Man, Cybern., Part B Cybern., vol.36, no.4,
pp. 924-929, Aug. 2006.

[21] P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection model
and strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom.
Sinica, vol.5, no.2, pp.445-456, Mar. 2018.

[22] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault tree
analysis, methods, and applications - a review,” IEEE Trans. Reliab.,
vol.R-34, no. 3, pp. 194203, Aug. 1985.

[23] J. D. Andrews and S. J. Dunnett, “Event-tree analysis using binary
decision diagrams,” [EEE Trans. Reliab., vol.49, no.2, pp.230-238,
Jun. 2000.

[24] D. N. Pandalai and L. E. Holloway, “Template languages for fault
monitoring of timed discrete event processes,” IEEE Trans. Autom.
Control, vol.45, no. 5, pp. 868—882, May 2000.

[25] S. R. Das and L. E. Holloway, “Characterizing a confidence space for
discrete event timings for fault monitoring using discrete sensing and
actuation signals,” [EEE Trans. Syst., Man, Cybern. - Part A: Syst.
Hum., vol. 30, no. 1, pp. 52-66, Jan. 2000.

[26] M. Gromov and T. A. C. Willemse, “Testing and model-checking
techniques for diagnosis,” in Testing of Software and Communicating
Systems, A. Petrenko, M. Veanes, J. Tretmans, and W. Grieskamp, Eds.
Berlin, Heidelberg, Germany: Springer, 2007, pp. 138-154.

[20

[

[27

[

F. Cicirelli, A. Furfaro, and L. Nigro, “Model checking time-dependent
system specifications using time stream petri nets and uppaal,” Appl.
Math. Comput., vol.218, no. 16, pp.8160-8186, Apr. 2012.

U. Lerner, R. Parr, D. Koller, G. Biswas, “Bayesian fault detection and
diagnosis in dynamic systems,” in Proc. 17th Nat. Conf. Artificial
Intelligence and Twelfth Conf. Innovative Applications of Artificial
Intelligence, Austin, USA, 2000, pp. 531-537.

[29] Z. Simeu-Abazi, M. D. Mascolo, and M. Knotek, “Fault diagnosis for
discrete event systems: Modelling and verification,” Reliab. Eng. Syst.
Saf., vol.95, no.4, pp.369-378, Apr. 2010.

[30] M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection for discrete
event systems using petri nets with unobservable transitions,”
Automatica, vol.46, no.9, pp. 1531-1539, Sept. 2010.

[31] R. Ammour, E. Leclercq, E. Sanlaville, and D. Lefebvre, “Datation of
faults for markovian stochastic dess,” IEEE Trans. Autom. Control,

[28

=

1287

vol. 64, no.7, pp.2961-2967, Jul. 2019.

[32] J. Lunze, “Discrete-event modelling and fault diagnosis of discretely
controlled continuous systems,” in Analysis and Design of Hybrid
Systems 2006, C. Cassandras, A. Giua, C. Seatzu, and J. Zaytoon, Eds.
Amsterdam, Netherlands: Elsevier, 2006, pp. 229-234.

[33] K. Schmidt, “Abstraction-based failure diagnosis for discrete event
systems,” Syst. Control Lett., vol.59, no. 1, pp.42—47, Jan. 2010.

[34] G. G. Rigatos, “Fault detection and isolation based on fuzzy automata,”
Inf. Sci., vol.179, no. 12, pp. 18931902, May 2009.

[35] P. Philips, K. B. Ramkumar, K. W. Lim, H. A. Preisig, and M. Weiss,
“Automaton-based fault detection and isolation,” Comput. Chem. Eng.,
vol.23, no. Suppl, pp. S215-S218, Jun. 1999.

[36] G. P. Bhandari and R. Gupta, “Fault diagnosis in service-oriented
computing through partially observed stochastic petri nets,” Serv.
Oriented Comput. Appl., vol. 14, no. 1, pp.35-47, Mar. 2020.

[37] F. Lin, “Diagnosability of discrete event systems and its applications,”
Discrete Event Dyn. Syst., vol.4, no.2, pp. 197-212, May 1994.

[38] N. Ran, H. Y. Su, and S. G. Wang, “An improved approach to test
diagnosability of bounded petri nets,” IEEE/CAA J. Autom. Sinica,
vol.4, no.2, pp.297-303, Apr. 2017.

[39] R. Su and W. M. Wonham, “Global and local consistencies in
distributed fault diagnosis for discrete-event systems,” [EEE Trans.
Autom. Control, vol. 50, no. 12, pp. 1923-1935, Dec. 2005.

[40] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. 2nd ed. New York, USA: Springer, 2008.

[41] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol.77, no. 1, pp. 81-98, Jan. 1989.

[42] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella, “Diagnosis of a
class of distributed discrete-event systems,” IEEE Trans. Syst., Man,
Cybern.-Part A: Syst. Hum., vol. 30, no. 6, pp. 731-752, Nov. 2000.

[43] A. Philippot, M. Sayed-Mouchaweh, and V. Carré-Ménétrier,
“Unconditional decentralized structure for the fault diagnosis of discrete
event systems,” in /JFAC Proc. Volumes, vol. 40, no. 6, pp. 6772, 2007.

[44] S. Bhattacharyya, R. Kumar, and Z. Huang, “A discrete event systems
approach to network fault management: Detection and diagnosis of
faults,” Asian J. Control, vol.13, no.4, pp.471-479, Jul. 2011.

[45] S. Bhattacharyya, Z. Huang, V. Chandra, and R. Kumar, “A discrete
event systems approach to network fault management: Detection &
diagnosis of faults,” in Proc. American Control Conf., Boston, USA,
2004, pp. 5108-5113.

[46] M. Agarwal, S. Purwar, S. Biswas, and S. Nandi, “Intrusion detection
system for PS-Poll DoS attack in 802.11 networks using real time
discrete event system,” [EEE/CAAJ. Autom. Sinica, vol.4, no.4,
pp-792-808, 2017.

[47] A. White and A. Karimoddini, “Event-based diagnosis of flight
maneuvers of a fixed-wing aircraft,” Reliab. Eng. Syst. Saf., vol.193,
pp. 106609, Jan. 2020.

[48] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, “Diagnosability of discrete-event systems,” [EEE Trans.
Autom. Control, vol.40, n0.9, pp. 1555-1575, Sept. 1995.

[49] S. Hashtrudi Zad, R. H. Kwong, and W. M. Wonham, “Fault diagnosis
in timed discrete-event systems,” in Proc. 38th IEEE Conf. Decision
and Control, Phoenix, USA, 1999, pp. 1756-1761.

[50] M. M. Karimi, A. Karimoddini, A. P. White, and I. W. Bates, “Event-
based fault diagnosis for an unknown plant,” in Proc. IEEE 55th Conf.
Decision and Control, Las Vegas, USA, 2016, pp. 7216-7221.

[51] A. White and A. Karimoddini, “Asynchronous fault diagnosis of
discrete event systems,” in Proc. American Control Conf., Seattle, USA,
2017, pp. 3224-3229.

[52] A. White and A. Karimoddini, “Semi-asynchronous fault diagnosis of
discrete event systems,” in Proc. IEEE Int. Conf. Systems, Man, and
Cybernetics, Budapest, Hungary, 2016, pp. 3961-3966.

[53] A. White, A. Karimoddini, and R. Su, “Fault diagnosis of discrete event
systems under unknown initial conditions,” IEEE Trans. Autom.
Control, vol. 64, no. 12, pp. 52465252, Dec. 2019.

[54] R. Fritz and P. Zhang, “Overview of fault-tolerant control methods for
discrete event systems,” /FAC-PapersOnLine, vol.51, no.24, pp.88-95,
2018.

[55] J. Dai, A. Karimoddini, and H. Lin, “Achieving fault-tolerance and

1288

safety of discrete-event systems through learning,” in Proc. American
Control Conf., Boston, USA, 2016, pp. 4835-4840.

[56] M. Karimadini, A. Karimoddini, and A. Homaifar, “A survey on fault-
tolerant supervisory control,” in Proc. IEEE 61st Int. Midwest Symp.
Circuits and Systems, Windsor, Canada, 2018, pp. 733-738.

[57] R. Su, “Distributed trace estimation under timing mismatch and channel
distortion,” IEEE Trans. Autom. Control, vol.53, no. 10, pp.2409-2414,
Nov. 2008.

[58] J. C. Basilio and S. Lafortune, “Robust codiagnosability of discrete
event systems,” in Proc. American Control Conf., St. Louis, USA,
2009, pp. 2202-2209.

[59] D. Thorsley, T. S. Yoo, and H. E. Garcia, “Diagnosability of stochastic
discrete-event systems under unreliable observations,” in Proc.
American Control Conf., Seattle, USA, 2008, pp. 1158-1165.

[60] L. K. Carvalho, J. C. Basilio, and M. V. Moreira, “Robust diagnosis of
discrete event systems against intermittent loss of observations,”
Automatica, vol.48, n0.9, pp.2068-2078, Sept. 2012.

[61] L. K. Carvalho, M. V. Moreira, and J. C. Basilio, “Diagnosability of
intermittent sensor faults in discrete event systems,” Automatica,
vol.79, pp.315-325, May 2017.

[62] S. T. S. Lima, J. C. Basilio, S. Lafortune, and M. V. Moreira, “Robust
diagnosis of discrete-event systems subject to permanent sensor
failures,” IFAC Proc. Volumes, vol.43, no. 12, pp.90-97, 2010.

Alejandro White (M’20) is a Postdoctoral Fellow
within the Mechanics Division of the Vehicle
Technology Directorate of the United States Army
Combat Capabilities Development Command Army
Research Laboratory. He received the bachelor of
science in applied mathematics in 2003, and a
bachelor of science in electrical engineering in 2004,
from North Carolina A&T State University, USA. He
then received the master of science in electrical
engineering with a concentration in controls, from
Virginia Tech in 2007. After completing the master’s degree, he served as a
System’s Engineer in the avionics industry. In 2018 he received the Ph.D.
degree in electrical engineering from North Carolina A&T State University.
His research interests include fault diagnostics of discrete event systems,

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 7, NO. 5, SEPTEMBER 2020

flight control systems, and machine learning.

Ali Karimoddini (SM’15) is an Associate Professor
in the ECE Department at North Carolina A&T State
University, USA. He received the bachelor of
electrical and electronics engineering from the
Amirkabir University of Technology, Iran, in 2003.
He then received the master of science in
instrumentation and automation engineering from
Petroleum University of Technology, Iran, in 2007.
\ In 2008, he joined the National University of

WM& | Singapore, Singapore, to pursue the Ph.D. degree,
and then, he joined the University of Notre Dame, USA, to conduct the
postdoctoral studies. His research interests include cyber-physical systems,
control and robotics, resilient control systems, flight control systems, multi-
agent systems, and human-machine interactions. He is the Director of NC-
CAYV Center of Excellence on Advanced Transportation, Director of ACCESS
Laboratory, and the Deputy Director of TECHLAV DoD Center of
Excellence on Autonomy. His research has been supported by different
federal funding agencies and industrial partners. He is a Member of AIAA,
ISA, and AHS.

Mohammad Karimadini received the bachelor of
electrical and electronics engineering from Azad
University of Tehran, Iran, in 1996. He then joined
industry and had worked as an Engineer and
Supervisor in the Instrumentations and Control
Department of National Iranian Copper Industries
Company (NICICO) from 1996 to 2004. He received
the master of science in control and automation in
2006 and Ph.D. in control engineering in 2012,
respectively, from UPM University of Malaysia and
National University of Singapore (NUS), Singapore, followed by two
postdoctoral fellowships at NUS. He is currently an Assistant Professor in
Department of Electrical Engineering, Arak University of Technology
(ARAKUT), Iran, and Vice-President for Technology and Innovation in Arak
Science and Technology Park (ASTP). His research interests include
supervisory control of discrete event systems, decentralized cooperative
control of multi-agent systems, industrial automation, and data-driven
knowledge discovery and decision making.

