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ABSTRACT ARTICLE HISTORY
Newton'’s method is usually preferred when solving optimization Received 29 March 2020
problems due to its superior convergence properties compared Revised 13 June 2020
to gradient-based or derivative-free optimization algorithms. ~ Accepted 17 June 2020
However, deriving and computing second-order derivatives
needed py Newton’s method ofte.n is not trivial apd, in some cases, BFGS; DFP; optimization in
not possible. In such cases quasi-Newton algorithms are a great infinite dimensions; PDE-
alternative. In this paper, we provide a new derivation of well- constrained optimization;
known quasi-Newton formulas in an infinite-dimensional Hilbert PSB; Quasi-Newton; SR1;
space setting. It is known that quasi-Newton update formulas are variational problems
solutions to certain variational problems over the space of symmet-

ric matrices. In this paper, we formulate similar variational problems

over the space of bounded symmetric operators in Hilbert spaces. ggg:;';ég?g'gs'ﬁ 0

By changing the constraints of the variational problem we obtain 46N10- 35R30: 35093’
updates (for the Hessian and Hessian inverse) not only for the ' ’
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method

but also for Davidon-Fletcher—Powell (DFP), Symmetric Rank One

(SR1), and Powell-Symmetric-Broyden (PSB). In addition, for an

inverse problem governed by a partial differential equation (PDE),

we derive DFP and BFGS “structured” secant formulas that expli-

citly use the derivative of the regularization and only approximates

the second derivative of the misfit term. We show numerical results

that demonstrate the desired mesh-independence property and

superior performance of the resulting quasi-Newton methods.
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1. Introduction

In optimization, quasi-Newton methods are a pragmatic alternative to
Newton-type methods for problems where the Hessian of the objective
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function is difficult to derive (e.g., for optimization problems constrained
by differential equations, which requires a considerable amount of work to
setup the numerical evaluation of the second-order derivatives) or is com-
putationally expensive to evaluate. In computational practice, it is often the
case that quasi-Newton performs similarly or even outperforms Newton’s
method: while the iteration count is generally higher for quasi-Newton
methods than for Newton-type methods, the cost of one iteration of quasi-
Newton methods is generally lower than the cost of a Newton iteration,
which may offset the disadvantage of a higher iteration count.

Quasi-Newton methods received considerable attention in the optimiza-
tion community in the last decades [1]. When applied to the minimization
of a twice continuously differentiable function f(x) : R” — R, that is

min f(x), (1.1)

xeR"
a quasi-Newton method generates a sequence of iterates x;, k = {0,1,...}, by
computing a search direction of the form Ax; = aB; 'Vf(x), and by choos-
ing an appropriate scalar step size oy that ensures a mininum decrease of the
objective f(x) along the direction Axy. Alternatively, the search direction can be
in the form Axy = oxHiVf(xx). The n x n matrices By and Hy are approxima-
tions of the Hessian V*f(xx) and its inverse, respectively. The salient idea of

quasi-Newton methods is to maintain these approximations by enforcing the
secant condition in the form Bisy = yx or Hiyx = sk, where

sk = Xkr1 — Xk and yx = Vf (xkp1) — VI (xk).

The Davidon-Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) rank-two update formulas have emerged in the last decades [1]
as the most efficient and, as a consequence, most comonly used Hessian approxi-
mations in a quasi-Newton framework. These formulas have closed-form alge-
braic forms, namely,

BLEY = (T—yoest ) Be(I — visiyi ) + vy
Hiyiyi H
HPFP — g — 2 4y st
k+1 )’;{Hk)’k kokok
BkSkSTBk
BBFGS — B _ k _|_ T’ and
k1 k —Sg Byst VKV i
HPEP = (I— sy ) Hi(I— s ) + 7isesi»

where 7, = . Other secant formulas that have been proposed and
k=T,

investigated in the past are the symmetric rank-one (SR1) [1] and
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Powell-Symmetric-Broyden (PSB) updates [2]. They also have closed-form
expressions in the form of

skk — Best) " + (v — Bisi)st k= Bissk)  r

BB — Bi + SkS1»
A <5k; 5k> <sk,sk>2 k
T T
k(sk — Hiyr) + (sc — Hiye sk — Hiyr yi
H,ffi:HkJ( k) ( Yk ¢ y y>ykyz,

o Yi) <)’k>)’k>2

(yk — Bisi) (i — Bise) "
(Sk> ¥k — Bisk)

(s — Hyye) (se — Ho)
k> sk — Hiyr)

Related work. In this paper we consider the optimization problem (1.1) over a
separable Hilbert space H, possibly infinite-dimensional, e.g., a function space
such as L% and derive infinite-dimensional versions of the update formulas
above. Central to our derivation is the use of a variational, least-squares
approach that was first introduced by Giiler et al. for finite-dimensional opti-
mization problems [3]. To this extent the present work can be seen as a gener-
alization of the work presented in [3] to an infinite-dimensional optimization
setting. Some of the infinite-dimensional quasi-Newton formulas we derive in
this work have previously appeared in the literature. In [4], for example, the
authors use the class of variable metric methods, of which the BFGS, DFP, and
Symmetric Rank One (SR1) formulas are members, for control problems over
function spaces, while Broyden updates are proposed in [5] for solving nonlin-
ear operator equations in Hilbert spaces. In [6] the authors derive the BFGS
formula in infinite dimension starting from finite-rank updates and by impos-

, and

Biill = B+

SR1
Hly = He +

ing symmetry and positivity to arrive to desired form. More recently, a survey
of quasi-Newton methods in Hilbert spaces is given in [7] with a case study
for Riccati matrix equations. The BFGS and DFP formulas are used for opti-
mization problems in a Hilbert space setting also in [8,9]. In [8-10] the authors
present an instructive example of the impact of taking into account the infin-
ite-dimensional nature of the underlying optimization problem on the perform-
ance of the numerical algorithm leading to mesh-independence. However,
these quasi-Newton formulas are typically simply constructed/conjectured in
analogy with the finite-dimensional counterparts.

Contributions. To the best of our knowledge, the present work is the first to
introduce a formal derivation of BFGS, DFP, SR1, and PSB formulas for infin-
ite-dimensional optimization problems. We note that our derivation can be
also used to formally generalize the finite-dimensional limited-memory compact
quasi-Newton representations of Byrd et al. [11] to Hilbert spaces. We suc-
cinctly do so in Section 4.1. Furthermore, in this paper we also illustrate how
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the infinite-dimensional least-square variational approach can be used to derive
new and improved quasi-Newton formulas that exploit structured Hessians
present in some specific classes of optimization problems; in particular, we
look at inverse problems governed by partial-differential equations, derive new
structured updates that explicitly incorporate the computationally affordable
part of Hessian, and show that the new “structured” quasi-Newton formulas
improve considerably over the unstructured counterparts.

The remaining sections of this paper are organized as follows. After present-
ing the requisite background material in section 2, we derive a series of tech-
nical results that are crucial for the main results in section 3. In section 4, we
derive formally the update formulas for various standard secant formulas over
infinite-dimensional Hilbert spaces. In the same section we also show that the
limited-memory compact representations for BEGS and DFP can be generalized
to Hilbert spaces using the technical results presented in section 3. Finally, in
section 5 we exploit the structure present in certain classes of infinite-dimen-
sional inverse problems and show how structured, more efficient secant formu-
las, can be obtained using the variational approach developed in sections 3 and
4. Here we also show numerical results. Section 6 provides concluding remarks.

2. Preliminaries

In this section, we summarize the terminology and background material
required for the derivation of the quasi-Newton formulas in infinite-dimen-
sional setting. In what follows, we consider H and K separable Hilbert
spaces, i.e., they have a countable basis [12].

Definition 2.1. [13, p. 187] The space of all bounded linear operators from
H to K is denoted by B(H,K). In particular, the space of all bounded lin-
ear operators from H to itself is denoted by B(H).

Definition 2.2. [14, p. 60] Let H be a separable Hilbert space and {e;},,
be an orthonormal basis for . A bounded operator A € B(H) is a
Hilbert-Schmidt (HS) operator if

2
1Allgs = ) [1Aei]* < co. (2.1)

il
We denote the set of all Hilbert-Schmidt operators by By (H).

Definition 2.3. [14, p. 60] For any A and B € By(H), the Hilbert-
Schmidt inner product is defined as

(AB)ys =Y (Ae;,Be;), (2.2)

icl

where {e;},.; is an orthonormal basis of H.
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Definition 2.4. [15, p. 97] The adjoint of an operator A € B(H) is denoted
by A* and is defined as an operator from B(H) that allows the transform-
ation (Ax,y) = (x,A*y) for all x and y in H.

Proposition 2.5. [14, p. 62] The Hilbert-Schmidt operators form a two-sided

ideal in the Banach algebra of bounded operators on 'H, that is, for any A €
Boo(H) and B € B(H), one must necessarily have AB € By (H),BA €
B()()(H), and A* € B()()(H)

Definition 2.6. [16, p. 132] A linear bounded operator A € B(H) is posi-
tive if (x, Ax) > 0 for all x € H.

Definition 2.7. [16, p. 263] The square root operator R of symmetric posi-
tive A is defined as a symmetric operator such that R* = A.

Theorem 2.8. [16, p. 265] If A € B(H) is a symmetric positive operator,
then there exists a unique positive square root R of A. Furthermore, R com-
mutes with any bounded operator that commutes with A.

Theorem 2.9. [16, p. 266] Given any A € B(H), the following conditions
are equivalent:

i) A is invertible;
ii) there exists a constant o> 0 such that A*A > aly and AA* > ady;
iii)  there exists a constant oo > 0 such that

(A*Ax,x) > of|x|| and (AA™x,x) > af|x|[;
iv)  both operators A*A € B(H) and AA* € B(H) are invertible.

Following [5, 7, 17], we next define the outer (dyadic) product, which is
the correspondent of the rank-one update used with finite-dimensional
secant formulas.

Definition 2.10. [14, p. 55] Let x,y € ‘H. The outer or dyadic product of x
and y is the (linear) operator, denoted by x ® y, that satisfies

(x®y)z = (y,2)x,Vz € H. (2.3)

We note that x ® y is a bounded linear operator.
Definition 2.11. [18, p. 41] An operator T is of finite-rank if its range is

finite-dimensional.

Example 2.12. The operator x ® y is a rank-one operator since it has the
range equal to the one-dimensional subspace of H that is spanned by x.
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Remark 2.13. For the vectors {x;};_, and {y;}._,, the operator > ", x; ® y;
has finite rank of most n.

Remark 2.14. It can be proven that every finite-rank operator is a
Hilbert-Schmidt operator [14].

Definition 2.15. [13, p. 110] A linear operator T : H — K is compact if
and only if for every bounded sequence {x,} € H there exists a subse-
quence {x,, } such that T({x,, }) converges in K.

Theorem 2.16. [18, p. 41] If T is a compact operator, then there exists a
sequence of finite rank operators {T,} such that ||T — T,|| — 0.

We now state the Hilbert Projection Theorem, which is one of the key
results used by our least-squares variational approach.

Theorem 2.17. [19, p. 50] Let H be a Hilbert space and M a closed subspace
of ‘H. For any vector x € H, there is a unique vector my € M such that
||x — mo|| < ||x —ml]| for all m € M. Furthermore, a necessary and sufficient
condition to characterize my € M is that x — my is orthogonal to M.

Finally, the following Theorem states the Sherman-Morrison-Woodbury
formula in Banach spaces of linear operators [20]; for compactness, we
consider such linear operators to be defined over Hilbert spaces H and X,
however, they can be defined in general over Banach spaces.

Theorem 2.18. [20, p. 1] Let A € B(H) and G € B(K) both be invertible
and Y,Z € B(K,’H). The operator A+ YGZ* is invertible if and only if
G~ '+ Z*A~'Y is invertible. Furthermore,

(A+YGZ) '=A 1A WY(G ' +z7 a7 Y) TzrA L (2.4)

3. Least-squares variational characterization framework for deriving
quasi-Newton updates

This section derives intermediary results needed in Section 4 to derive vari-
ous quasi-Newton update formulas as analytical solutions to infinite-dimen-
sional variational problems. Let us first denote by B°(H) the set of
bounded linear operators that are self-adjoint and consider the linear sub-
space L = {X € B(H) : Xs = 0}, which corresponds to the affine subspace
given by the secant equation, namely to A= {X¢€ B(H):Xs=y}.
Furthermore, we define the operators S; =s®e; + ¢ ®s for each i€,
where {e;},.; is an (countable) orthonormal basis of the (separable) Hilbert
space ‘H.
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Lemma 3.1. If s,y € 'H with s # 0, then the following statements are true:

i) L={XeBH): X.S)ys=0, Viell;
i) L= span{{Si},c;};
i) Lr={s®@i+i®s : L€ H}
Proof.
(i) We first remark that

XSie; = X(s @ e;)ej + X(e; @ s)ej = (e, €j)Xs + (s, ej) Xe; (3.1)

for any X € B'(H) and i€l Since (X Si)ys= ) 7, (Xe;Siej) =
Zj(ej, XS;e;), identity (3.1) allows us to write

(X.Si) s = Z [(e,-, ej) (ej» Xs) + (s, ej)(ej,Xe,->]. (3.2)
j=1

Since X is self-adjoint, (e;,e;) = 0 for i # j, and (ej, ej) = 1, one can
subsequently write that

0S5 = e X9+ (Sl e

=1
= (e, Xs) + (s, Xe;) = (e, Xs) + (Xs,e;) = 2(Xs, ¢;).

This shows that X € £ if and only if (X.S;);s =0 for all i € I.

(i) Let Y € span{{S;}~;}, namely Y = °, o;S;. Then consider (X,Y) for
any X € £, one can write

(X,Y) = <X, Zoc,-Si> = %X, $) =0
i=1 i=1
obtaining L D span{{S;}:°,}. For the other inclusion, let Y €
span{{S;}>°,}", this implies (Y,S;) =0 for all S, ie, Y € £. This
shows that span{{$;}>°,}" C £, taking the orthogonal complement
we obtain span{{S;}>°,} D L.

(iii) Consider Y € LYY = Efil o;S;, which we can rewrite as

o0

Zoc,-S,-:Zoci(s®ei+e,~®s):(s®/1+)u®s) (33)
i=1

i=1

for some 1 = > ae;. This shows that L5 C {s®@ 1+ 1®s : 1€ H}.
On the other hand, if Y € {s® A+ A®s : A€ H}and X € £ we have
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o0 o0
X,Y)=(X,s@A+.®s) = <X,s® E oe; + E oe; ®s>
i=1 i=1

=) u(Xs@e+e@s) =Y w(X,S;) =0.
i=1 i=1

This completes the proof that L+ = {s@ A+ 1 ®s : A€ H}. O

We now consider a generic least-squares problem that is closely related
to the variational problem used to derive the various quasi-Newton formu-
las in Sections 4 and 5.

Theorem 3.2. Given s,y € H, the variational problem

1 2
in —||X 34
Xrerllﬁ'l(l;li)ZH 125 (34)
st.Xs=y (3.5)

has a self-adjoint solution operator X € By (H) given by

sQy+y®s  (s)

X = ) (5.9 s®s. (3.6)

Proof. We note that the set A= {X € B(H) | Xs =y} is closed. Let X
denote a solution of (3.4)-(3.5); such solution necessarily exists per Hilbert
projection Theorem [21, p. 80]. We remark that for any A € £ and for any
t € R, the function X + tA satisfies the secant equation (3.5). Let us con-
sider an arbitrary A € £. Then we obtain by the minimality of X that
IX| 2 < |IX + tA| |5 or, equivalently, that (X, X) s < (X 4 tA, X + tA)
for any t € R. A simple manipulation of this inequality reveals that one
must necessarily have — 2¢(X, A) s < *(A, A) ¢ for any t € R. For positive
t, the previous inequality is equivalent to (X, A),c > — £ (A, A)y¢ and can
hold for arbitrarily small ¢ only if (X,A)ys > 0. Similarly, by taking ¢ to be
negative and arbitrarily close to zero, one must necessarily have (X, A) ¢ <
0. Therefore, we have that (X, A),s = 0. Since A was chosen arbitrary from
L, this implies that X € L and thus, based on iii) of Lemma 3.1 that X =
S A+A®s, for some 1 € H.
Next we find an explicit expression for 1. Since Xs = y, we can write
(,s) = (Xs,s) = (s @ A+ L ® 3]s, s)
= ([s® Als,s) + ([A @ s]s,s) = ((A,5)s,5) + ({s,5),5)
= (L s)s,s) + lIsl|*(%s) = 2Isl[*(%.),
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to obtain that (4,s) :%. This can be used in conjunction with the

secant equation to write that y=Xs =[s@ A+ A ®s]s = (s, )2 + (L, s)s =

IIs| >4 + 29 5 from which 4 is obtained to be

2|[s]]
1 (y,$)

P4 1S
|Is] 2|Jsl]

Equation (3.6) follows readily by substituting the above expression for / in X =
4 ® s+ s ® A. Finally, we remark that X given by (3.6) is self-adjoint; also, one
can easily verify that has rank two, which implies that X € By [22]. O

The following corollary offers an analytical expression for the solution of
a prototype variational problem and will be the basis of the derivation of
quasi-Newton update formulas in generic Hilbert spaces.

Corollary 3.3. For any given operator Xy € B°(H) and positive and invertible
“weight” operator W € B*('H), the variational problem

1
in —||[WY3(X — X,)WY2|? 3.7
Xg(%)zll ( )W s (3.7)

stXs=y (3.8)
admits a solution X € B°('H) in the form
W ls® (y— Xos) + (y — Xos) @ W Is

X=X
ot (s, W—1s)
— X,s,
_ O/—OSSEW—IS(@ wls.
(s, W—1s)

Furthermore, the operator X — X, lies in Boo(H).

Proof. The corollary is a direct consequence of Theorem 3.2. More specifically,
since W is invertible and positive, we can write the secant equation (3.8) as

WX — Xo)WY2(W~12) = W2 (y — Xys).

Then Theorem 3.2 implies that a minimizer X of (3.7)-(3.8) exists and satisfies
W25 @ W2 (y — Xos) + W2 (y — Xos) @ W12
(W—1/25, W~ 1/2)

(W2(y — Xos), W= 1/25)

—1/2 —-1/2
T oo W e W

WX — X)W =

The form of X from the corollary follows from the above identity by multi-

1/2

plying from left and right with W ~"/“ and performing appropriate simple
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algebraic manipulations. We remark that Theorem 3.2 also implies that
WY2(X — Xg)W'2 € Byo(H). This implies that X —X,= W~1/2Ww!/2
(X — Xo)W'2W 12 € Byy(H) since Hilbert-Schmidt operators form an
ideal in B('H) (see Proposition 2.5). O

4, Derivation of various secant update formulas

In this section we derive the quasi-Newton update formulas for approxi-
mating a second-order derivative operators defined over generic Hilbert
spaces. Corollary 3.3 is used with specific choices for the “weight” operator
W to obtain in this section the classical BFGS, DFP, PSB, and SR1 formulas
in their operator form.

Proposition 4.1 (DFP formula for Hessian operator). Let us consider an
operator By € B'(H), a positive and invertible operator W € B°(H) such
that Wy, = s, and s and yy nonzero elements of 'H.

i. The solution to the variational problem

. 1
min - [|WY2(B — B W2

BeB(H) (4.1)
s.t Bsp = yk
is given by
Bir1 = (I—9(yk @ ) Bi(I — y(sk @ yx)) + 7k @ k), (4.2)

where y = m; in addition, By, € B (H) and By, — By € Boo(H).
ii. If By is positive and invertible, and the positive curvature condition

(k> k) >0 holds, then By, is positive and invertible.

Proof.
i. By Corollary 3.3, we have that

W ls ® (yk —Bksk) + (yk —Bksk) ® W 1s;

By, =B
k+1 kTt (50 W~ 15g)
— Bisp,
_ k= Bises) S’;) Wl @ Wl
<Sk, W~— 15k>
Since yx = W~ 'sy and by letting y = -, the above identity becomes

Bit1 = Be+ [k © (vk — Bisk) + (k — Bisk) © yi]

2 (4.3)
— 7" (x — Bisio sk) Uk @ yi)-

We note that the last term in the above equality can be simplified as
follows
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ii.

7 (Y — Bisio sk) 7k © yi) = 77 [k k) — (Bisio sk | vk @ )

5 (4.4)
= Y7k @ yx) — 7" (Brsk k) (Vk ® k)

With the above simplification, Equation (4.3) above can be manipu-
lated to obtain the following

Biy1 = B+ 7 [y © (& — Bis) + (7 — Bist) @ yi — (k © yi)|
+ 9% (Bkskr sk) (Vk © Yk)»
and hence

Bis1 = [Bx— 7(yk ® Bisk) — 7(Bisk ® k) + 7* (Bisk» sk) 0k © yi)]
+ 7k @ ).
(4.5)

One can further manipulate the last identity to get the desired
Equation (4.2) as follows

Bir1 = (Bx — 79k @ Bisk) (I — sk @ yx) + 7 (0k @ yx)
= (I — 7 @ si)Be(I — 75k @ yi) + (7 @ yi)-

From (4.5) we note that By, — By is a finite rank operator as it has
at most rank four, therefore it is a Hilbert-Schmidt operator [14].
Finally, since y; ® Bisy is the adjoint of Bisy ® yx, and yx ® yi is
self-adjoint, by using the properties of the dyadic product and the
fact that By is self-adjoint we conclude that By, is self-adjoint.

Let us write By ; = GG+ F where G = B,lc/z(I—ysk ® yk), and F =
7(yk ® yk). Since By is positive, one can prove that (x, G*Gx) > 0 for all
x € H. Furthermore, 0 = (x, G*Gx), or equivalently, 0 = (Gx, Gx) if and
only if Gx=0, which in turn holds if and only if x — y(sx ® yx)x = 0 by
the positiveness of B,. We leave the proof of the fact that {x € H :
x—P(sk @yr)x =0} = {asx : « € R} as an exercise to the reader, and
conclude that 0 = (x, G*Gx) if and only if x = as; for some real scalar o.
On the other hand, it is straightforward to prove that (x, Fx) > 0 for all
x € H when the positive curvature holds (and, as a result, y>0).
Furthermore, we remark that (osy, Fasy) = o®(sg, %) >0 for all non-
zero o € R.

(4.6)

With the above, we have that (x,Bi;1x) >0 for all nonzero x, which
shows the positive definiteness of By;. Finally, the invertibility of By,
follows from the Sherman-Morrison-Woodbury formula. We note that
the latter is shown in detail in the proof of Proposition 4.5. O
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Proposition 4.2 (BFGS formula for the inverse Hessian operator). Let us con-
sider an operator Hy € B*('H), a positive and invertible operator W € B*('H)

such that Wsy. = yy, and sy and yy nonzero elements of H.

i. The solution to the variational problem

1

in  —||[WY2(H—H)WY?||? 4.7
Jmin WY - H)W 47)
st Hy,= sk (4.8)

is given by
Hip1 = (I = 7(sk @ yi) ) He(I — 7 (yk @ ) + 7(sk @ sk), (4.9)
where 7y = <5k>1}/k>; in addition, Hy., € B(H) and Hyyy —Hy lies

in Boo(H)

ii. If Hy is positive and invertible, and the positive curvature condition
(YK sk) > 0 holds, then Hy., is positive and invertible.

Proof. The proof is identical to the proof of Proposition 4.1. O

We next show that different choices of the “weight” operator W inside
the Hilbert-Schmidt norm lead to different quasi-Newton formulas for the
Hessian or its inverse. The Powell-Symmetric-Broyden formula is obtained
using the trivial weight W=1I as we show next in Proposition 4.3.
Surprisingly, the symmetric rank-one update can be also obtained (when it
exists) with a particular choice of W, as shown in Proposition 4.4.
Furthermore, notable from these two examples is that W does not have to
satisfy the secant equation (as it does in Propositions 4.1 and 4.2 for the
DFP and BFGS formulas).

Proposition 4.3 (Powell-Symmetric-Broyden Update). Let us consider an
operator By € B'(H) and s, and yy nonzero elements of H. The solution to
the variational problem

. 1
min =B = Bil

BeB(H)
st Bsp = yx
is given by
Sk ® (Yk — Bisk) + (Vk — Bisk) @ sk & — BiSks Sk
Biy1 = By + b )+ ) _(y 5 >5k®5k~

(k> 5K) (k. k)

Furthermore, By, is self-adjoint and Byy1 — Bx € Boo(H).

Proof. The proof follows by taking W to be the identity in Corollary 3.3. O
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Proposition 4.4 (Symmetric Rank-One Update). Let us consider an operator
By € B'(H) and assume that a positive and invertible operator W € B°('H)
exists such that W~ sy = yx — Bysy for si and yy nonzero elements of H. The
solution to the variational problem

1
in = ||W'/2(B — B)W'?|}
pmin S lIWHC DWW s
st Bsp = yx
is the operator
k — Bisk) @ (yx — Bisk
b g D B0 © 01— Bis)

(Sk» yk — Bsk)
which is self-adjoint and satisfies By, — Bx € Boo(H).

Proof. By Corollary 3.3 we have that
W~ ls; @ (yk — Brsk) + (yk — Bisp) @ W~ sy
<Sk, W~ 1Sk>

Byy1 = Br +

% — Biswo k)
<Sk, wW- 15k>2

Since W~ sy = yx — Bysk, we simplify the above identity as follows:
(7 — Bksk) ® (¥k — Bisk) + (Vk — Bisk) @ (yx — Besk)

(Sk> ¥k — Brsk)
_ m (7 — Bisk) ® (7 — Bisy)
(Sk Yk — Bisk)
(¥ — Bisk) ® (yk — Bxsk)
(Sk> ¥k — Brsk)
which completes the proof. O

W_lsk ® W_lsk.

Biy1 = Br +

= By +

In the remainder of this section we derive the inverse formulas for the
DFP and BFGS formulas presented above in Propositions 4.1 and 4.2 using
a generalization of Sherman-Morrison-Woodbury formula [20] given in
Theorem 2.18.

Proposition 4.5 (BFGS formula for Hessian operator). Let us consider the
positive definite and invertible operators By € B(H) and W € B(H) such
that Wy, = s, where s; and yy are nonzero elements of H.

i. The solution to the variational problem

1
min =~ IWY2(B~! — B-LYyw/2|]2
min o [IWBT B W w1o)
st Bsp = yx

is given by
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Bisk @ Bisk - Yk @ Yk
(sksBrsk) (S k)

Bii1 = Bi— (4.11)

in addition, By, € B(H), Bxr1 — Bk € Boo(H), and By is invertible.
ii. If the positive curvature condition (s, yx) > 0 holds, then By, is positive.

Proof.

i. The salient idea of the proof is to obtain (4.11) by inverting the inverse
Hessian BFGS formula B} = Hiy1 from Proposition 4.2 using the
Sherman-Morrison-Woodbury (SMW) formula of Theorem 2.18.

Let the linear operator Y:R xR — H be defined by Y(x f) =

ask + PHiyk. We remark that Y € B(R x R,H) and that the adjoint oper-
ator Y* € B(H,R x R) is given by

% <Sk>x>
Yix = [(Hkyk,x> } (4.12)

Also, let G: R x R — R x R be given by

G(o, ) = {V‘x + V2<Hi)’;:xyk>“ - Vﬁ} ‘

Above, we used the notation y = ({s, y%)) . We remark that G is a linear
bounded invertible operator and has a bounded inverse in the form of

14

Gil(w’V): w v Y

1+ y(Hiyk Yk
, y( (Heyi yx))

One can show that [G™!'+ Y*H,_ 'Y](a, ) = [oc(s,Bk5> - ﬂ, which
implies that G~ + Y*H, 'Y is invertible and

1
_ rr— Lo — — 0
(G '+2 H, 'Y) 1 _ [<Sk,gk5k> ] (4.13)
-7

Note we chose Z=1Y. In the above we used the matrix notation to be close
to the the standard finite dimensional notation, but one can write this in
operator notation as well. We next notice that
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(Sk> %)
(Hyy, x)
P(k0 ) + 72 (Hicpo yi) (k0 %) — 7 (Higp, ) ] )

[Hi + YGY]x = Hyx + Y(G(Y'x)) = Hix+ Y(G

= Hix+ Y(

— (k%)

= Hix + (75 %) + 7> (Hiyo ) (st %) — 7(Hiyio %)) s
— 7(Sk> X)Hyy

= Hix — (s @ Hiyx)(x) — 7(Hiyx @ sk)(x)
+ (5k @ Y (Hiyro yi) i) (%) + 7 (sx © s) (x).

On the other hand, the inverse Hessian BFGS formula from Proposition
4.2 can be manipulated as follows:

Hip1 = (I—7(sk ® yi) ) He(I = y(yx @ sx)) + 7(sx @ sx)
= Hy — (st @ yx)Hi — y(Hiyk @ sk) + 7> (sk @ yi) He 0k © si) + (s @ sx).

Therefore Hy+ YGY* =Hj,. Finally, from the Sherman-Morrison- Woodbury
formula formula and by using the fact that H, ' =By we obtain that

B =H ) =H ' —H'Y(G '+ Y'H'Y) 'V H!
—Bi—BiY(G '+ Y*B.Y) ' Y*B.

The definition of Y, Equations (4.12) and (4.13), and the properties of
dyadic products can be used to write for any x € H that

1 0 (sk, Bxx)
- k> Dk
k+1X = Brx — By <Skx§k5k> , {(Hk}’k)kaJ
(st Bix)
(Sk> Bisk)
I (k> YK)
(k> Bysv) (s> yi)

<Sk, ka> B <Hk)/ka ka>

= Bix — kSk
(sk, Bys) (Sk> Vi)
B

— B~ KD Skp g IO
(sk» Bksk) (Sk> Vi)

— Bix— Bisk ® Bys .\ Yk ® Y
(s> Brsk) sk k)
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This completes the proof of (4.11) and also shows that Bi; is invertible. It
remains to show Biy € B(H), Biy1 — Bx € Boo(H) and part (ii) ie., to
show By, is positive. Both are consequence of Proposition 4.2 which gives
us Hiyy € BY(H), Hiy1 — Hi € Boo(H) and Hy, is positive. One way to
show both in one step is to use the fact Byo(H) and the space of positive
bounded linear operators are an ideal in the space of bounded operators.

Proposition 4.6 (DFP formula for the inverse Hessian operator). Let us
consider the positive definite and invertible operators Hy € B'(H) and W €
B*(H) such that Wy, = si, where s, and y, are nonzero elements of 'H.

(i)  The solution to the variational problem

1
in —||[WY2(H '—H_ YWY 4.14
nin, S IIWH( x OW s (4.14)
st Hy,= si (4.15)
is given by
H, H
Heo, :Hk_( Wk @ Hyye) (s ® sg) (4.16)

(> Hiyk) (skoyk)

Furthermore, Hyy, is invertible and Hy, — Hy lies in By (H).
(i) If the curvature condition is met (yi,sx) >0, then Hiy1 € Boo(H) is
self-adjoint and positive definite.

Proof. The proof is similar to the proof of Proposition 4.5 and uses
Theorem 2.18 for the inverse Hessian operator given by Proposition 4.1. O

4.1. Note on the limited-memory compact representation formulas

The popular limited-memory compact representations introduced by Byrd
et al. [11] have similar forms for Hessian operators defined over general
Hilbert spaces. For completeness, we succintly present them below. Their
derivation is analogous to the finite-dimensional case [11] and relies on the
Sherman-Morrison-Woodbury formula (Theorem 2.18) along the lines of
the proof of Proposition 4.5. In what follows, given s; € H and y; € H,i =

{0,1,...,1—1}, let S : R — H be given by S;(v) = Zi:_ol Viy1si, and Yj:
R' — H given by Y;(v) = Zﬁ:_ol vii1y;» where v; denotes the i component
of a vector v € R'. Furthermore, define R; as a I x [ matrix as

(Rl)ij _ { (sicnyj-1) if <),

0 otherwise.
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Theorem 4.7. Let Hy € B*(H) be positive and invertible. Furthermore, let H,
be given by updating H, | times using the inverse BFGS formula obtained in
Proposition 4.2. If all the pairs {s;, y,}ﬁ;ol satisfy the positive curvature condi-
tion (s;,y;) >0, then

_ R (Di+ (HoY)'YDR ™' — R T S/
Hl_H()+ |:Sl HOYI] <|: _lel 0 (HOYI)* >

where Dy is the | x | diagonal matrix given by
_ S sy 3 i=g
D), ={ 5

0 otherwise.

Theorem 4.8. Let By € BS(H) be positive and invertible. Furthermore, let B,
be given by updating B, | times using the BFGS formula obtained in

Proposition 4.5. If all the pairs {s;, yi}i;ol satisfy the positive curvature condi-
tion (s;,y;) >0, then

—1 *
S'ByS; L (BoS1)
Bi=Fo- s i ([ 0
where L; is the | X | matrix with entries

N

0 otherwise.

5. Incorporating hessian structure in Quasi-Newton formulas: a case
study for inverse problems governed by partial
differential equations

As an illustration of potential uses of the results introduced by this paper,
we consider the class of regularized inverse problems governed by partial
differential equations (PDEs) and derive DFP and BFGS “structured” secant
formulas that explicitly use the derivative of the regularization and only
approximates the second derivative of the misfit term. To this end, we con-
sider the inversion of a coeftficient field in an elliptic PDE. Depending on
the interpretation of the inputs and the type of measurements, this problem
arises, for instance, in inversion for the permeability field in a subsurface
flow problem, for the conductivity field in a heat transfer problem, or the
stiffness parameter field in a membrane deformation problem [23].

We formulate the inverse problem over Q = [0,1] x [0,1] as follows:
given possibly noisy observations d € R? of the state solution u in Q, we
wish to infer the coefficient field m that best reproduces the observations.
Mathematically, this can be formulated as the nonlinear least-squares mini-
mization problem
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(Ou(m) — d, Ou(m) — d)ga + g (Vm, Vm) ., (5.1)

s.t. m<m<m, (5.2)

N[ —

min J(m) :=

where u solves the state (or forward) problem
— V- (mVu)=f in Q and u =0 on 0Q. (5.3)

Above, d € R? denotes the observations, with g denoting the number of
observation spoints, f € H ™ '(Q) is a given volume force, O : L*(Q) — R
is a linear observation operator that extracts measurements from u, and
m,m € L*°(Q) are the lower and upper bounds of the unknown coefficient
field m, respectively. The first term in the objective of (5.1) is the data mis-
fit term, which we will denote by M (m), and the second term, which we
will denote by R(m), is a regularization term with regularization parameter
7>0 added to render the inverse problem well-posed [24, 25]. We note
that when we discretize the regularization term, this will take the form of
m?Km, where m is the vector of finite element coefficients of the param-
eter field m, and K is the stiffness matrix [26, 27].

We solve (5.1) using a quasi-Newton interior-point method [28]. We
assume that only the second derivative of the regularization term is avail-
able, while the second derivative of the misfit term is not (e.g., we target
application problems for which this terms is expensive to evaluate).
Therefore, to take advantage of this structure, in what follows, we derive
and apply so-called structured DFP and BFGS formulas.

5.1. Derivation of structured DFP and BFGS formulas

To derive structured DFP and BFGS formulas for the Hessian matrix, we
consider a structured variant of Proposition 4.1. More specifically, since we
are looking for a DFP update in the form B =R+ A, where A approxi-
mates the second-derivative of the misfit term M, in the spirit of
Proposition 4.1 we require that a formula for A satisfies

oL 1/2(2
min || WA — AW "
st Asg =Y
where y, = VM (my1) — VM(my). In words, the variational form (5.4)
builds the structured update A based only on the change in the gradient of

the misfit. Analogous to the proof of Proposition 4.1, one can show that
the structured DFP formula for the Hessian is

A1 = (I =77 @ 1)) AT =7 (sk @ ¥5)) + 7 @ Yi)s (5.5)
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where 7 = 1/(st, ;). Similarly, the structured BFGS formula for the Hessian
can be obtained by considering the structured version of Proposition 4.5 in
the form of

1 - -
min WA+ R) 7" — (A +R) W,

(5.6)
st Asg =y,
which gives the structured BFGS formula
Ar+R Ar+R V. +R V. +R
A = Ay (A + R)s @ (A + R)sk , Gk + Rsi) ® Gy + Rx) (5.7)

(Sk> Rsi +7,.) (Sk> Rsk +7,.)

We remark that the Hessian formula By = R + Ay with A, given by (5.7)
above is identical to the unstructured BFGS given by Proposition 4.5 as
long as the two formulas are initialized with By = R+ Ay and A,. This is
not the case for the structured and unstructured DFP formulas (5.5) and
(4.2), respectively.

5.2. Numerical results

We compare the performance of structured update formulas derived in
Section 5.1 with their unstructured counterparts for the inverse problem
governed by the Poisson equation given by (5.1)-(5.3). The numerical algo-
rithm we use is a filter line-search interior-point method for constrained
optimization problems [29, 30] in which we replace the Hessian of the
objective (5.1) with quasi-Newton approximations similarly to the state-of-
the-art Ipopt solver [31]. The stopping criteria for the interior-point
method consist of a stringent 10 ~# tolerance for the norm of gradient (of
the Lagrangian function of (5.1), for more details see [31]) and a maximum
number of 100 iterations. We derive the gradient (i.e., the firs-derivative
information) using an adjoint-based approach [27, 32, 33]. The underlying
PDE:s are solved with the finite element method using Comsol with Matlab,
while the interior-point method is implemented in Matlab. The problem
was solved on five uniform 2D meshes and on one nonuniform 2D mesh
with rectangular elements. For the discretization of the state and ajoint var-
iables we used quadratic and for the parameter linear finite elements. The
state dimension was increased form 441 to 5227 and the parameter dimen-
sion (i.e., the dimension of the optimization problem) from 121 to 1328.
The numerical experiments were performed on an Intel Ivy Bridge 2.5 GHz
8-Core Linux machine with 128 GB RAM memory.

In what follows, the structured quasi-Newton formulas are denoted with
acronyms starting with “S-”. These are compared with unstructured coun-
terparts, which are prefixed by “U-". For a both fair play and
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Table 1. Summary of the formulas investigated numerically in this section. The algorithmic
parameter gy is the Barzilai-Borwein spectral estimate [34] discussed in the text.

Acronym Formula for By Initial Hessian Notes

U-BFGS-U (4.11) By = oM unstructured BFGS with
uninformed initialization

U-BFGS-I (4.11) By = ox(M+R) unstructured BFGS with
informed initialization

S-BFGS By =Ax+R Ay = oM structured BFGS

A given by (5.7)

U-DFP-U (4.2) By = oM unstructured DFP with
uninformed initialization

U-DFP-I 4.2) By = ox(M+R) unstructured DFP with
informed initialization

S-DFP By =Ac+R Ay = oM structured DFP

Ay given by (5.4)

comprehensive comparison, the unstructured quasi-Newton formulas are
used with an uninformed (suffixed by “-U”) and informed (suftixed by “-I”)
initial Hessian approximations. The uninformed initial approximations cor-
respond to a plain, fully unstructured formula, while the informed initial
approximation correspond to unstructured formulas that take into account
the known part of the Hessian (that is, the Hessian of the regularization
term). Table 1 summarizes this discussion and presents the algorithmic
parameters used in the numerical experiments. The parameter multiple of
the identity oy is the Barzilai-Borwein spectral estimate [34] that changes at
each optimization iteration according to ax = (sk, k) /(s ¥k). This estimate
is also used in Ipopt; in our experiments it gave the smallest number of
iterations for all formulas from Table 1.

In Table 2, we report on the number of iterations for unstructured
informed and uninformed and structured BFGS and DFP formulas. We
have used these formulas with (si, yx) pairs from the last ¢ iteration for ¢ =
8 (a), £ =16 (b), and ¢ =32 (c). Our numerical experiments reveal that
the standard unstructured updates with uninformed initialization, namely
U-BFGS-U and U-DFP-U, exhibit a number of iterations that increases for
finer or non-uniform meshes. This mesh dependence behavior is present
for all three memory sizes ¢ = 8,¢ = 16, and ¢ = 32 we have used. On the
other hand, the standard unstructured formulas with informed initialization,
namely U-BFGS-I and U-DFP-I, do not show this mesh dependent behav-
ior; instead, the iteration count for these updates remains relatively con-
stant for all meshes. Our point is that in order to obtain mesh
independence, one needs not only to use the infinite-dimensional BFGS
and DFP formulas but also to carefully choose the initial quasi-Newton
approximation operator. Intuitively, for the inverse problem we solve here,
the use of an informed initialization with U-BFGS-I and U-DFP-I, namely
a multiple of the identity operator plus the stiffness operator, circumvents
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Table 2. Shown are the number of optimization iterations obtained with formulas from Table
1 with quasi-Newton memory for £ = 8 (a), £ = 16 (b), and ¢ = 32 (c).

(@) Number of iterations for £ = 8

Mesh U-BFGS-U U-BFGS-I S-BFGS U-DFP-U U-DFP-I S-DFP
10x 10 41 35 37 39 30 34
20 x 20 87 43 39 95 38 37
30 x 30 >100 41 38 >100 39 36
40 x 40 >100 42 39 >100 45 52
50 x 50 >100 46 39 >100 44 36
non-unif. >100 43 40 >100 46 39
(b) Number of iterations for ¢/ = 16
10x 10 39 29 30 38 27 29
20 x 20 78 36 34 90 35 32
30 x 30 >100 36 33 >100 39 32
40 x 40 >100 36 33 >100 39 32
50 x 50 >100 39 35 >100 38 34
non-unif. >100 36 34 >100 38 39
(c) Number of iterations for ¢ = 32
10 x 10 37 28 28 37 26 29
20 x 20 77 34 29 87 33 32
30 x 30 >100 35 30 >100 37 30
40 x 40 >100 38 30 >100 37 35
50 x 50 >100 37 30 >100 37 37
non-unif. >100 37 30 >100 36 34

the need to approximate the stiffness operator; instead these formulas
approximate only the Hessian of the misfit, which is known to be compact
[35,36] and, therefore, can be approximated relatively well (both in a mesh
independent manner and within a relatively small number of iterations) by
the finite-rank operators built using the infinite-dimensional BFGS and
DFP formulas derived in this paper.

We now turn to the structured BFGS and DFP formulas, ie., S-BFGS
and S-DFP, which we derived in this section to explicitly incorporate add-
itional Hessian information (namely the stiffness operator). We remark
from Table 2(a)-(c) that these structured formulas improve over the
unstructured informed formulas U-BFGS-I and U-DFP-I in terms of num-
ber of iterations (by up to 20%) and, also, exhibit mesh independence
behavior. In particular, we remark that S-BFGS shows a more consistent
iteration count over all meshes when compared to S-DFP; and, for larger
quasi-Newton memory sizes (¢ = 32), S-BFGS seems slightly faster than S-
DFP, while for smaller memory sizes the two compare similarly.

6. Conclusions

We have presented a new derivation of well-known quasi-Newton formulas
in an infinite-dimensional Hilbert space setting needed for example for
solving optimization problems governed by differential equations. In par-
ticular, we have generalized the variational, least-squares framework of
Giiler et al. [3] to operators defined over general separable Hilbert spaces.
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The framework we present was used to derive classical BFGS, DFP, PSB,
and SR1 formulas in operator form. Furthermore, we illustrated how the
variational framework can be employed to derive improved DFP and BFGS
updates for a class of inverse problems governed by PDEs. To illustrate the
importance of using these infinite-dimensional quasi-Newton formulas we
formulated and solved an inverse problem governed by partial differential
equations (PDEs) via a quasi-Newton interior-point method on progres-
sively finer uniform meshes and on a nonuniform mesh. In addition, we
derived structured DFP and BFGS formulas for the Hessian operator,
where we considered parts of the Hessian known and only approximate the
remaining part (e.g., the second-derivative of the term corresponding to the
misfit). Numerical results showed that in order to obtain mesh independ-
ence, it is essential not only to use the infinite-dimensional BFGS and DFP
formulas but also to carefully choose the initial quasi-Newton approxima-
tion operator. In addition, we compared the performance of the structured
update formulas with their unstructured counterparts and found that taking
into account the structure of the problem leads to reducing further the
computational cost.
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