
Foundations and Trends R© in Electronic Design

Automation

On-Chip Dynamic Resource
Management

Suggested Citation: Antonio Miele, Anil Kanduri, Kasra Moazzemi, Dávid Juhász, Amir
M. Rahmani, Nikil Dutt, Pasi Liljeberg and Axel Jantsch (2019), “On-Chip Dynamic
Resource Management”, Foundations and Trends R© in Electronic Design Automation:
Vol. 13, No. 1-2, pp 1–144. DOI: 10.1561/1000000055.

Antonio Miele
Politecnico di Milano, Italy

Anil Kanduri
University of Turku, Finland

Kasra Moazzemi
University of California, Irvine, USA

Dávid Juhász
TU Wien, Vienna, Austria

Imsys AB, Stockholm, Sweden

Amir M. Rahmani
University of California, Irvine, USA

TU Wien, Vienna, Austria

Nikil Dutt
University of California, Irvine, USA

Pasi Liljeberg
University of Turku, Finland

Axel Jantsch
TU Wien, Vienna, Austria

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

Acronyms 3

1 Introduction 7

2 On-chip resources 13
2.1 Resources . 14
2.2 Metrics . 16
2.3 Objectives and constraints 17
2.4 Observing and predicting 18

3 Performance 20
3.1 Compute . 21
3.2 Memory . 26
3.3 Network . 30
3.4 Input/Output . 36
3.5 Summary . 38

4 Power, energy, and thermal management 39
4.1 Dynamic management objectives 40
4.2 Dynamic power management techniques 43
4.3 Run-time energy efficient managers 48

4.4 Dynamic thermal-aware management methods 51
4.5 Summary . 54

5 Reliability 55
5.1 Lifetime management . 56
5.2 Soft error susceptibility management 70
5.3 Online fault management 74
5.4 Summary . 83

6 Quality of Service 84
6.1 Performance bound QoS 86
6.2 Accuracy bound QoS . 91
6.3 Summary . 97

7 Limitations of current approaches and recent trends 98

8 Conclusions 103

References 105

On-Chip Dynamic Resource
Management
Antonio Miele1, Anil Kanduri2, Kasra Moazzemi3, Dávid Juhász4,5,
Amir M. Rahmani3,4, Nikil Dutt3, Pasi Liljeberg2 and Axel Jantsch4

1Politecnico di Milano, Italy;
2University of Turku, Finland;
3University of California, Irvine, USA;
4TU Wien, Vienna, Austria;
5Imsys AB, Stockholm, Sweden;

ABSTRACT

The need for dynamic resource management has shadowed
the exponential growth of on-chip transistor capacity, and
the challenge is accentuated by the heterogeneity of re-
sources, and the bewildering variety of constraints and re-
quirements of applications, platforms and users. The field
has started with a few research papers in the early 1990s
but has grown today to over hundred yearly publications,
leading to an accumulated body of literature presumable far
above 1000 papers.

We focus on the dynamic (run-time) management of on-
chip resources and mostly ignore design-time techniques and
off-chip resources of larger electronic systems. Moreover, we
do not attempt a complete review of all published work on
the topic. Rather, this survey provides a structured review
and discussion of the state of the art and is divided along
the primary objectives of resource management techniques:
performance, power, reliability and quality of service, each

Antonio Miele, Anil Kanduri, Kasra Moazzemi, Dávid Juhász, Amir M. Rahmani,
Nikil Dutt, Pasi Liljeberg and Axel Jantsch (2019), “On-Chip Dynamic Resource
Management”, Foundations and TrendsR© in Electronic Design Automation: Vol. 13,
No. 1-2, pp 1–144. DOI: 10.1561/1000000055.

2

of which has its dedicated chapter. We observe that many
works describe dedicated techniques for point problems, like
minimizing power or maximizing lifetime. In recent years
more and more methods have started to appear that address
two, three or more different goals of resource management,
but work with a holistic scope that attempts to address and
balance all relevant objectives is still rare. An exception is
the area of reliability and life-time management. There we
see that a large majority of approaches may be considered
as holistic.

Observing current limitations and recent trends we assume
that global and holistic approaches will make the most
valuable contributions to this field in the years to come and
therefore we expect that the focus of research will gradually
shift to systematic methods combining point techniques in
order to pursue and balance all relevant system goals of
highly dynamic, adaptive systems.

Acronyms

ALU Arithmetic Logic Unit. 15

AVF Architectural Vulnerability Factor. 73, 74

BIST Built-In Self-Test. 79

BPIO Balanced Placement I/O. 37

CPU Central Processing Unit. 15, 28, 38, 57, 68, 69, 87, 98

DMA Direct Memory Access. 16

DPM Dynamic Power Management. 16, 19, 41, 43, 44, 45, 46, 47, 48,
49

DRAM Dynamic Random-Access Memory. 29, 93

DRM Dynamic Reliability Management. 59, 62, 63, 65, 68, 69, 70, 71

DSP Digital Signal Processor. 13, 15

DTM Dynamic Thermal Management. 41, 51, 52, 59

DVFS Dynamic Voltage and Frequency Scaling. 16, 40, 44, 46, 51, 53,
57, 62, 63, 64, 65, 67, 68, 71, 73, 83

3

4 Acronyms

DWC Duplication With Comparison. 76, 78, 81

EDF Earliest Deadline First. 48

EDP Energy Delay Product. 49

EM Electromigration. 57, 58, 60, 61, 65, 67, 68, 70

EPI Energy Per Instruction. 49

FeRAM Ferroelectric Random-Access Memory. 29

FinFET Fin Field-effect. 61, 64

FPGA Field Programmable Gate Array. 15, 52, 83, 93

FPU Floating-Point Unit. 63, 82

GPP General Purpose Processor. 13, 15

GPU Graphics Processing Unit. 15, 19, 28, 38, 59, 68, 69

HCI hot carrier injection. 58, 68, 69

HMP Heterogeneous Multi-core Processors. 47

HPC High Performance Computing. 49, 55, 78

I/O Input/Output. 13, 15, 16, 20, 21, 24, 36, 37, 38, 84, 85, 86, 88, 89

ILP Integer Linear Programming. 45

IPS Instruction Per Second. 26

ISA Instruction Set Architecture. 41, 93

MIMO Multiple-Input Mutiple-Output. 47

MRAM Magnetic Random-Access Memory. 29

MTTF Mean Time To Failure. 59, 60, 61, 62, 63, 64, 65

Acronyms 5

NBTI Negative Bias Temperature Instability. 57, 58, 60, 61, 66, 67,
68, 69, 70

NMR N-Modular Redundancy. 77

NoC Networks-on-Chip. 8, 16, 30, 31, 33, 42, 46, 53, 59, 60, 62, 65, 67,
77, 81

PCM Phase-Change Memory. 29

PE Processing Element. 13, 15, 16

PI Proportional-Integral. 64

PID Proportional-Integral-Derivative. 64

PLR Process-Level Redundancy. 77

QoR Quality of Result. 94

QoS Quality of Service. 8, 10, 11, 14, 17, 18, 81, 84, 85, 86, 87, 88, 89,
90, 91, 94, 95, 97, 99, 103

RRAM Resistive Random-Access Memory. 29

RTOS Real-Time Operating Systems. 50

SBST Software-Based Self-Test. 79, 80

SMT Simultaneous Multi-Threading. 51, 77

SoC Systems-on-Chip. 13, 42, 45

SRAM Static Random-Access Memory. 29, 50

SSD Solid State Disk. 36, 37, 38

STP System Through-Put. 26

STT-RAM Spin-Transfer Torque Random-Access Memory. 29

TDDB Time Dependent Dielectric Breakdown. 57, 58, 60, 70

6 Acronyms

TMR Triple Modular Redundancy. 77, 78, 79, 81

WCET Worst-Case Execution Time. 45

1
Introduction

Resource management has a long history in computing, from the early
days of time-shared machines with pioneering fundamental work on
run-time systems, distributed systems, real-time operating systems and
middleware. The evolution in computing architectures – from single- to
multi- and many-core platforms – has resulted in a Cambrian explosion
in the diversity of computing architectures, applications and end-use
cases, due to:

• Chips are getting more complex, with:

– Increasing core count
– Increasing core heterogeneity
– Novel memory technologies and architectures
– Disparate interconnects and I/O

• Workloads are getting more diverse and unpredictable (e.g., mobile
to edge to data center)

7

8 Introduction

• There is a renewed move towards programmable architectures
tuned to certain domains (e.g., mobile, edge, cloud) and appli-
cations (neural networks, deep learning, security, cryptography,
etc.)

• Computing systems must increasingly satisfy multi-dimensional
constraints that straddle multiple metrics: performance,
power/energy, temperature, reliability, lifetime, Quality of Service
(QoS), etc. Furthermore, these constraints themselves may evolve
over time (e.g., high-performance at times, throttling for impend-
ing thermal emergencies, and strategies for extending lifetime in
the face of wear-out)

These trends have generated an incredibly large body of work for
on-chip resource management in the past two decades, that have focused
on many different combinations of architectures, workloads, constraints
and use-cases. Indeed, due to large variations in the assumptions, use of
different terminology, metrics, goals, and use-cases, anyone attempting
to review the literature can easily get overwhelmed by the volume,
diversity, and sometimes even seemingly contradictory approaches for
on-chip resource management. Furthermore, advances in program analy-
ses, system modeling, run-time monitoring, model building, and machine
learning have generated new lines of research in dynamic and adaptive
on-chip resource management that further complicate a global under-
standing of the current state-of-the-art and emerging directions for
on-chip resource management.

A number of surveys offer systematic overviews of parts of the top-
ics, challenges and techniques that we are concerned with. Some of
them focus on specific subsystem of a many-core chip like Networks-
on-Chip (NoC) (Bjerregaard and Mahadevan, 2006; Marculescu et al.,
2009; Rahmani et al., 2010; Radetzki et al., 2013) or caches (Scolari
et al., 2014), others deal systematically with particular metrics like
power, energy (Maiterth et al., 2018), or aging (Khoshavi et al., 2017).
Also, scheduling, mapping and task allocation have received a fair
amount of attention in surveys (Singh et al., 2013a, 2017; Zhuravlev
et al., 2012; Burns and Davis, 2017), with focus either on performance

9

Table 1.1: A selection of surveys.

Approximate computing Mittal (2016); Xu et al. (2016a)
NoC Bjerregaard and Mahadevan (2006)
NoC design Marculescu et al. (2009)
3D NoC Rahmani et al. (2010)
Fault tolerant NoC Radetzki et al. (2013)
Cache management Scolari et al. (2014)
Power management in high
performance systems

Liu and Zhu (2010)

Energy and power aware job
scheduling

Maiterth et al. (2018)

Thermal management Kong et al. (2012)
Aging mitigation Khoshavi et al. (2017)
Dark silicon Shafique and Garg (2017)
Self-aware SoCs Jantsch et al. (2017)
Energy and power aware job
scheduling

Maiterth et al. (2018)

Mapping in many core
systems

Singh et al. (2013a)

Resource allocation in hard-
and soft- real-time systems

Singh et al. (2017)

Scheduling Zhuravlev et al. (2012)
Mixed Criticality systems Burns and Davis (2017)
Resource management in
clouds

Jennings and Stadler (2015)

or real-time behavior. Current trends and opportunities like approxi-
mate computing (Mittal, 2016; Xu et al., 2016a), the dark silicon phe-
nomenon (Shafique and Garg, 2017) and comprehensive self-monitoring
on-chip (Jantsch et al., 2017) have recently inspired researchers to
review, analyze and compare relevant work. But none of them, as Ta-
ble 1.1 illustrates, covers all the aspects of on-chip resource management
in a holistic way and many of them also include both design time and
run time methods. It should be noted that any resource allocation

10 Introduction

approach contributes to multiple metrics (e.g., energy, temperature,
QoS, etc.) and cannot be adequately discussed in isolation. Therefore, a
comprehensive review is needed to discuss the relation between different
categories of on-chip resource management techniques and the metrics
of interests in a holistic fashion.

This article attempts to cover all aspects of on-chip run-time resource
management to facilitate understanding of recent trends in dynamic
and adaptive strategies. We have organized the article into three major
sections (also visualized in Figure 1.1):

1. Chapter 2 presents a taxonomy of on-chip resources, design metrics,
objectives and constraints. This categorization helps the reader
visualize the relationship between different resource categories
(e.g., computing, storage, communication) and design metrics (e.g.,
performance, power/energy, temperature, QoS, lifetime, etc.). This
chapter also relates the role of objectives and constraints that
guide resource management policies.

2. Chapters 3 through 6 survey literature in dynamic on-chip resource
management through the lens of the primary metrics that drive
these bodies of work:

• Chapter 3 reviews efforts focused on the traditional metric of
optimizing system performance. Historically performance has
been the major driving metric for computing platforms, and
for many scenarios it continues to be an important design
metric

• Chapter 4 covers resource management techniques that ad-
dress the metrics of power, energy and temperature. As the
core count increased, the move to multi- and many-core ar-
chitectures rapidly hit the power wall, resulting in a large
body of work on power-aware resource management strategies
via both hardware and software techniques. Concurrently,
research on run-time energy efficiency gained traction via
mapping and scheduling approaches. Thermal management
techniques began to appear in the past decade, with the goal

11

of operating chips at a safe temperature via dynamic thermal
management techniques.

• Chapter 5 surveys the large body of work on reliability,
via the facets of lifetime management, soft-error resilience,
and online fault management. Modern chips are increasingly
susceptible to failures from a diverse set of causes, leading
to premature lifetime failure (due to aging and wear-out) or
intermittent/transient failures (due to soft errors). Numerous
techniques have been developed to mitigate these failures.
Additionally, there is a large body of work covering online
fault management that dynamically detects, and proactively
applies fault management strategies to prevent failures.

• Chapter 6 addresses QoS metrics that drive several impor-
tant classes of applications. While QoS can be a nebulous
“qualitative” term, we first give specific examples of QoS for
different applications, and relate it to the specific metrics
that drive the QoS. Here we survey resource management
techniques from two angles: a) performance-bound QoS tech-
niques that achieve desired QoS by controlling resources
(e.g., compute, memory, I/O), and b) accuracy-bound QoS
for applications that can tolerate some loss of accuracy in
exchange for sacrificing resources and/or metrics via both
static and dynamic strategies.

Note, that each chapter includes several tables listing all the
approaches discussed in the various sections. The goal of these
tables is to summarize the discussion and provide the taxonomy
of the various approaches based on the specific aspects discussed
in the text. Since the discussion in each section is specific to
the aspects of the presented subtopic, each table has a custom
organization of the rows and columns.

3. Chapter 7 addresses the limitations of existing work and outlines
recent trends in enabling adaptive resource management in the
face of dynamically varying workloads, system properties, and
unforeseen environmental effects. Samples of emerging topics in

12 Introduction

dynamic resource management are highlighted as examples of
ongoing challenges facing researchers in this domain.

Chapters 3, 4, 5, and 6 can be read independently of each other
and in any order. Hence, 2, 4, 7 would be reasonable flow of reading as
would be 2, 6, 7, depending on the interest of the reader.

While we have attempted to do a comprehensive survey, it is by no
means complete, but should provide the reader with a framework within
which to navigate both existing, as well as evolving research efforts in
on-chip dynamic resource management.

Chapter 2: Terminology
Chapter 3: Performance

Compute
Memory
Network
I/O

Chapter 4: Power, energy, thermal management
Power consumption
Energy efficiency
Thermal management

Chapter 5: Reliability
Lifetime management
Soft error susceptibility management
Online fault management

Chapter 6: Quality-of-Service
Performance bound QoS
Accuracy bound QoS

Chapter 7: Limitations and trends

Figure 1.1: Article structure.

2
On-chip resources

As processing capacity and complexity of Systems-on-Chip (SoC) in-
creases, the number, and, most importantly, the types of resources
increase. State-of-the-art SoCs consist of tens or hundreds of Processing
Elements (PEs) ranging from General Purpose Processor (GPP) cores
to Digital Signal Processors (DSPs) to special purpose video encoders
and encryption engines. Data flow is facilitated by a set of connected
buses and packet switched networks that deliver the data to PEs at the
rate and time needed. A variety of storage elements such as register
files, caches and buffers smooths the flow of data through the system
and makes sure the system does not have to grind to a halt when just
one data item has not yet arrived. In addition, Input/Output (I/O)
resources connect the on-chip processing to the vast off-chip memories
and external sensors and actuators.

For understanding the scope of on-chip resource management, we
need an inventory of the concepts that are related to resource manage-
ment. We identify two main concepts in Figure 2.1:

1. resources are subject to allocation choices and control decisions;

2. metrics describe non-functional characteristics of the system.

13

14 On-chip resources

MetricsQoS

Lifetime

Bandwidth

Power, Energy

Temperature

Resources
Computing

Storage

Communication

Figure 2.1: The upper plane represents resources, e.g. specific hardware, while
the lower plane shows metrics. The allocation and usage of each resource throws
shadows into the plane below, representing how it contributes to different metrics.
The drawing illustrates a few shadows only but each and every resource contributes
to the actual values of metrics. Whether any particular metric is positive or negative
depends on the context i.e., the considered problem.

When a resource (Section 2.1), an actual hardware block, is activated
and executes a task, its operation can be characterized by various
metrics (Section 2.2), like consumed energy, generated heat, latency,
bandwidth, or a Quality of Service (QoS) metric.

For understanding resource management techniques, we need an
inventory of concepts that are used for defining and solving resource
management problems. For a given resource management problem, a
metric may serve as objective or constraint (Section 2.3). The same
metric may be used in different roles for different problems. Resource
management techniques utilize observation to collect information of
the current state of the system and prediction to estimate its future
behavior (Section 2.4).

2.1 Resources

Resources are physical entities that can be allocated to tasks by resource
management. Control decisions of resource management also tune the

2.1. Resources 15

operation of resources, which affects operation of the system and hence
the metrics.

Allocation choices of resource management are binary: a resource is
either allocated to a task at a time or not. However, a resource may have
the capacity to serve more than one task if the hardware is provided.
Each resource has a maximum capacity of tasks that it can serve at
a given time, which depends on its hardware structure. For instance,
a Central Processing Unit (CPU) with two Arithmetic Logic Units
(ALUs) could process two instructions at the same time.

Examples of resources are cores, buses, I/O pins, links, and memory
locations. A link between two routers can be allocated to only one packet
at any given time. As another example, a router in a communication
network can only process four packets simultaneously coming from its
four input ports. An on-chip network may be used by several tasks
simultaneously at an abstract level but each physical component such as
a register, a link, or a switch-box can serve only one or a limited number
of packets at any moment. The network as a whole can transmit many
packets and it can be considered as one communication resource with
a maximum capacity of C bits/sec. Fractions of C can be allocated to
individual users of the network by resource management which initiates
communication over the network but the actual route and scheduling
of the transmission is managed by the routers.

Table 2.1: Examples of resources

Category Examples
Computation resources CPU, GPU, DSP, FPGA

Communication resources buses, networks, I/O pins, interrupt controllers
Memory resources main memory, cache, register file

Resources can be divided into 3 sub-categories (Table 2.1) according
to the functionality they provide as follows.

Computation resources are PEs which perform tasks. A PE can be a
GPP, a dedicated accelerator e.g., Graphics Processing Unit (GPU) and
DSP, or reconfigurable e.g., Field Programmable Gate Array (FPGA),

16 On-chip resources

that are able to serve different purposes. Different PEs support vari-
ous control features which are to be decided by the resource manage-
ment. PEs may support different Dynamic Power Management (DPM)
techniques, some provide hardware knobs for tuning the precision of
arithmetic computations, reconfiguration is a point of control for re-
configurable PEs. Computation resources may be managed on the core
level, but are often treated on a more abstract level as a pool of cores
for particular resource management techniques.

Communication resources are utilized by tasks to exchange informa-
tion with other tasks or the environment. Communication resources
include buses, networks, I/O pins, and interrupt controllers. On-chip
networks are complex resources, which are built up from several physical
blocks implementing the functionality. Those internal resources, like
buffers and routers, must be revealed for efficient resource manage-
ment. Nevertheless, Networks-on-Chips (NoCs) are also managed as
a whole without considering actual hardware blocks. Communication
resources may support various control features e.g., Dynamic Voltage
and Frequency Scaling (DVFS) for NoCs.

Memory resources are used by tasks to store and retrieve data. Memory
resources are typically organized in a hierarchical structure. some storage
resources, e.g. on-chip main memory and off-chip memories, are under
software control, while others, e.g. the cache hierarchy, operate in a
hardware-defined manner. Off-chip resources are out of the scope of
this survey. It is also noteworthy that while off-chip memory resources
are under software control, interfaces between them might involve logic
beyond that control e.g., hardware-controlled buffers and Direct Memory
Access (DMA) facilities. DPM techniques, typically power gating, may
be supported by memories.

2.2 Metrics

Non-functional characteristics of the system are represented in various
metrics: scales that provide means to evaluate particular aspects of the
operation of the system. The metrics considered in the survey are

2.3. Objectives and constraints 17

• performance (Chapter 3),

• power, energy, temperature (Chapter 4),

• reliability (Chapter 5),

• QoS (Chapter 6).

While the following chapters are named after metrics, the paper is
organized according to objectives rather than metrics. The following
chapters are dedicated to techniques that optimize a metric as objective
(Section 2.3) — rather than to all techniques that relate to a metric in
general. Certain techniques and topics (e.g., mapping and scheduling)
may be relevant for optimizing various metrics and hence may appear
in multiple chapters — with independent description in each chapter.

About the connection between resources and metrics, note that
metrics characterizing one resource are typically interdependent. For
example, scaling up frequency of a computation resource results in
higher power dissipation and temperate but also increases performance.

2.3 Objectives and constraints

The subjects of resource management are the resources which are directly
controlled by allocating tasks and tuning their operation. However, all
actions of resource management are based on metrics that characterize
the operation of the system.

Resource management makes its allocation choices and control deci-
sions with respect to objectives to be accomplished. The objectives are
defined as maximizing or minimizing some metrics. By allocating and
controlling resources properly, resource management steers the system
to meet requirements and target goals on objective metrics.

Allocation and control decisions of resource management might also
have negative consequences. Particularly, over-utilizing the system, lead-
ing to excessive energy consumption and higher temperature, degrades
system health and affects desired objectives negatively. While aiming
at meeting requirements with respect to objective metrics, resource
management must also take constraints on other metrics into account.

18 On-chip resources

Proper resource management is based on heuristics aiming at containing
some metrics below or above given limits and optimizing others.

Note that metrics cannot be generally sorted into groups of ob-
jectives and constraints as their role is dependent on the considered
resource management technique. The surveyed techniques are structured
according to their objective metrics.

2.4 Observing and predicting

Resource management is to optimize and contain some problem-specific
characteristics of the system, that is metrics. Decisions need to be made
so that metrics exhibit a desirable behavior in the future. Also, decisions
can be made based on the current and possibly past states of the system.

The current state of the system is observed by sensors and future
behavior is predicted by models. Note that the terms sensing and
monitoring are used in literature with similar meaning to observation.

Sensors provide means for resource management to observe the current
state of the system as in current values of metrics. Beyond taking notice
of the current state, historical data can be collected over time.

We can identify physical sensors (e.g., power sensor, temperature
sensor, hardware performance counter) and cyber sensors (e.g., ab-
stract QoS, instrumented software, logs). Example of physical sensors
can be the sensors used in SoCs that require several die temperature
sensors (Vogt et al., 2007) to be integrated in a chip to manage the
performance because die temperature directly affects leakage current
level and performance of clock-based digital circuits (Hwang et al.,
2010). Cyber sensors can provide a standard method for an application
to directly communicate its performance and goals. As an example,
Hoffmann et al. (2010) provide a framework that allows applications
to express their performance in terms of a desired heart rate and/or a
desired latency between specially tagged heartbeats.

Models are used to predict the future behavior of the system based
on collected state information and planned control actions. Resource
management uses models to evaluate possible control actions with

2.4. Observing and predicting 19

respect to past behavior, current state, and desired future behavior of
the system.

Models may be used explicitly or implicitly in resource managers. An
explicit model is present as a component of the resource manager and
does compute its predictions whenever required. Different models may
provide different accuracy because of predicting with different levels of
details being taken into account. The more the details and accuracy,
the more the computational complexity. The trade-off between accuracy
of prediction and computational complexity is to be tuned with respect
to the problem at hand.

Predictive models help to tune performance for varying workload.
Gupta et al. (2016) predicts GPU performance online as DPM algorithm
tunes GPU frequency. Proactive techniques are enabled by predictive
models and achieve better quality of control than reactive methods.
Temperature is predicted by Coskun et al. (2009) and the proactive
thermal control that is based on the prediction realizes improved ther-
mal profiles. Prediction may be used in relation to multiple metrics
simultaneously, for example for predictive management of temperature
and power (Singla et al., 2015).

In some cases, accurate-enough and yet relatively simple rules can
be derived from abstract – perhaps simplified or estimate – models.
Resource management may use such rules directly as part of the decision
mechanism. Instead of implementing the underlying model explicitly,
the model – as well as prediction – is implicit behind the incorporated
rules. Such rules are called heuristics.

3
Performance

Execution time of a workload - application, task, thread, basic block
or instruction - represents the performance metric on a given system.
Accelerating a computational block within a workload improves latency
and throughput. Achieving higher performance with efficient resource
utilization has multi-fold impact on other system metrics such as power,
energy and temperature - making performance optimization significant.
Overall execution time of a workload can be broken down into time
spent in computation, accessing memory, acquiring shared resources of
network and Input/Output (I/O) peripherals. Run-time performance
optimization techniques target to minimize at least one or more of these
latencies, by provisioning compute, memory, network and I/O resources.
In this section, we present such run-time techniques with improving
overall performance as their primary objective, classifying them as per
the resource they optimally allocate. Figure 3.1 shows the abstract
classification of performance optimization techniques, detailed in the
following sub-sections.

20

3.1. Compute 21

Performance
Compute

Application mapping
Thread scheduling

Memory
Mapping and scheduling
Hybrid memory technologies management

Network
Topology
Routing and flow control

I/O
Hybrid storage
Placement and scheduling

Figure 3.1: Classification performance through provisioning tangible resources

3.1 Compute

We focus on techniques that bring performance gains through allocation
and provisioning of computational resources. These include application
mapping - techniques to identify and allocate enough cores to the given
task, optimal application placement to minimize network and memory
latency, smart co-scheduling of concurrent applications to minimize
contention, and thread scheduling - techniques to bind thread-to-core
based on application-core match (in case of heterogeneity or asymmetry)
and adjusting parameters such as voltage, frequency, CPU utilization
time.

3.1.1 Application mapping

Given a tiled many-core architecture, placement of applications (or
tasks within an application) on each core significantly effects the overall
performance and energy consumption. Hu and Marculescu (2003) have
identified and formalized the application mapping problem as the appro-
priate choice of task-to-core selection in order to maximize performance,
minimize latency and energy consumption. The combinations of cores,
private caches, shared last cache levels, memory controllers and on-chip

22 Performance

interconnects lead to complex shared resource contention in many-core
systems (Chen et al., 2008). Considering these aspects, the choice of
cores, memory and, importantly, their spatial alignment impacts per-
formance significantly (de Souza Carvalho et al., 2010). While early
solutions to mapping problem focused on minimizing energy consump-
tion Hu and Marculescu (2003), automation of topology and mapping
phases Murali et al. (2004), they are largely static in nature. As the
number of cores and concurrent applications contending for resources
keep increasing, dynamic policies for application-to-core mapping have
become more relevant (Singh et al., 2013a).

Mapping policies’ pre-requisite is core selection - to find a subset
of cores among all the on-chip cores, which can be used to schedule an
application (Bender et al., 2008). Existing mapping techniques largely
rely on monitoring a binary core status - occupied or un-occupied, to
track a list of available cores on the chip (Fattah et al., 2012; Haghbayan
et al., 2015; Fattah et al., 2013) and application characteristics to develop
heuristics for mappings (Xue et al., 2006; Shojaei et al., 2009). Once
suitable number of cores are found, mapping strategies try to optimize
for performance, minimal latency and energy consumption. Among
the available cores, the choice of binding to specific cores depends on
application’s task level parallelism in order to allocate each task/thread
to a core in an efficient manner (de Souza Carvalho et al., 2010). Some
techniques use static profiling Xue et al. (2006) while others use fully
dynamic monitoring for run-time mapping decisions. The common
aspect among majority of run-time mapping frameworks is using a
centralized control for core selection. On the other hand, Faruque et al.
(2008) have proposed a distributed agent-based mapping strategy that
emphasizes on scalability and adaptability.

Core selection is further influenced by other performance objec-
tives such as minimizing total communication volume (Bender et al.,
2008), network congestion among tasks of an application (Carvalho
et al., 2007), interference between concurrent applications (Fattah et al.,
2012) and maintaining regular geometric structure of resources by avoid-
ing dispersion and fragmentation (Fattah et al., 2014). Bender et al.
(2008) have proposed weighted Manhattan distance as a metric to
quantify communication penalty among tasks of an application and

3.1. Compute 23

used this for an iterative task-by-task mapping. Minimizing intra-task
communication distance leads to proximity metrics and reduces internal
congestion (Carvalho et al., 2007). Further, mapping applications in
regular geometric structures, preferably squared, facilitates optimal
core selection for subsequent applications to be mapped, as suggested
by Fattah et al. (2014). This problem was first addressed through an
incremental mapping approach Chou et al. (2008), which considers
other concurrently running applications while deciding on mapping
of an incoming application. Such strategies avoid dispersion among
available set of cores and minimizes the likeliness of fewer isolated cores
which potentially could be under utilized. In a similar vein, mapping
concurrent applications contiguously can also prevent dispersion or
fragmentation of remaining available cores (Fattah et al., 2012). Since
most of the mapping policies attempt to solve an NP-hard problem,
a heuristics based core selection was proposed by Fattah et al. (2013).
This hill climbing approach splits mapping into two steps viz., first node
selection - to identify a potential favorable spatial location on the chip,
followed by task allocation - to bind tasks to cores within the selected
region.

While most of the aforementioned techniques are reactive, a pro-
active mapping strategy was presented by Haghbayan et al. (2015) by
keeping track of a list of available first nodes that can suit any kind
of incoming applications. It is to be noted that application mapping
policies are largely targeted at applications that are task graph and
message passing based, exhibiting higher degree of task level parallelism
and concurrency. Further, adaptive mapping policies have considered
factors such as process variation (Hong et al., 2009). A summary of
application mapping as per their core selection criteria is presented in
Table 3.1.

3.1.2 Thread scheduling

Application mapping techniques focus on identification of a subset of
cores to map, considering application level properties. Thread schedul-
ing lowers the abstraction to identify task-level performance metrics

24 Performance

Table 3.1: Application mapping techniques

Core selection criteria Techniques

Availability
Fattah et al. (2012), Chen et al. (2008),

Bender et al. (2008), Bender et al. (2008),
Haghbayan et al. (2015)

Min. latency Haghbayan et al. (2015), Fattah et al. (2012), Chen et al. (2008),
Castrillon et al. (2012), Kanduri et al. (2015), Shojaei et al. (2009)

Max. throughput
Hong et al. (2009), Singh et al. (2013b),
Singh et al. (2011), Zipf et al. (2009),

Huang and Xu (2010), Kanduri et al. (2015)

Min. energy consumption
Faruque et al. (2008), Hu and Marculescu (2003),

Murali et al. (2004), Chou et al. (2008),
Shafique et al. (2014), Hu and Marculescu (2005)

Preserve regular structure Fattah et al. (2013), Fattah et al. (2014),
Fattah et al. (2012), Haghbayan et al. (2015)

and allocate resources at a per-thread granularity. This becomes rele-
vant particularly with asymmetric, heterogeneous and non-monotonic
cores with a wide range of power-performance characteristics to choose
from (Navada et al., 2013). Scheduling techniques rely on low level met-
rics such as memory, compute and I/O access patterns and bandwidth
requirements, and performance characteristics of underlying hardware to
bind threads to cores for higher performance (Kumar et al., 2005). The
key idea among all scheduling techniques is that thread level properties
of an application guides the choice of suitable compute resources, which
can provide relatively higher performance.

Chen and Guo (2014) have used a history based prediction of applica-
tions’ performance on a core type to determine its suitability for mapping
on a specific type of core. Van Craeynest et al. (2012) collect perfor-
mance metrics of cycles-per-instruction, instruction-level-parallelism
and memory-level-parallelism at run-time to estimate resource require-
ments of an application and then determine suitable thread binding
rules. A similar approach was also used by Gaspar et al. (2014) where
execution time is collected at run-time for potential thread allocation
predictions.

Apart from thread binding based on application’s affinity, a class of
techniques identify bottleneck regions within an application to suitably
allocate resources for acceleration. Kumar et al. (2005) identify serial
regions of an application to allocate high performance larger cores for

3.1. Compute 25

such blocks while smaller cores are allocated for data and task parallel
blocks. Identifying critical sections of code resulting in frequent stalls
with synchronization issues, isolating and accelerating such regions
leveraging asymmetric cores is proposed by Suleman et al. (2009).
A similar approach, used by Joao et al. (2012), targets bottlenecks as the
critical sections within in a thread which also effect other concurrent
threads. Further, applications can exhibit a variation in workload with
interleaved phases of compute and memory intensity, and critical and
non-criticality. Adapting thread allocation to such phase change behavior
by dynamically altering core choice appropriately was presented by
Annamalai et al. (2013).

In addition to application’s properties and thread level performance
metrics, some techniques use a compound utility metric that combines
application properties, threads’ performance metrics, hardware suitabil-
ity and resource efficiency. Saez et al. (2010) proposed comprehensive
thread allocation approach by combining core and un-core compute
capacity required and the degree of parallelism to decide on optimal
thread placement. Koufaty et al. (2010) use profiling to determine a
threads’ bias to a type of core based on performance and the extent of
resource utilization. Joao et al. (2013) used similar resource utilization
measures to determine thread allocation decisions.

While most of the above techniques rely on provisioning, Torng
et al. (2016) proposed work stealing to accelerate long latency threads
and simultaneously utilize available resources efficiently. Scheduling
techniques as per identification thread-to-core affinity are summarized
in Table 3.2.

Table 3.2: Thread scheduling techniques

Core selection strategy Techniques

Static Koufaty et al. (2010), Suleman et al. (2009),
Navada et al. (2013), Kumar et al. (2005)

Adaptive
Torng et al. (2016), Joao et al. (2013),
Saez et al. (2010), Joao et al. (2012),

Gaspar et al. (2014), Annamalai et al. (2013)

26 Performance

3.2 Memory

With increase in frequency and number of cores in emerging systems,
rate and latency of access to data became a deciding factor of system
performance. This data can be accessed from any point in the memory
hierarchy i.e., registers, cache, main memory or disk. There have been
many advances regarding the memory hierarchy in the recent years. We
can categorize these improvements in two main classes. First, the man-
agement algorithms to take advantage of the existing memory structures.
Second, the advancements in technology used in memory components.
Some of these efforts increase the performance and response time of
these components. Srinivasan and Lebeck (1998) discuss the effect of
memory latency on performance of dynamically scheduled processors.
On the other hand, some methods like those proposed by Ha et al.
(2017) and Ahn et al. (2014) benefit from emerging technologies to make
memory devices more energy efficient delivering higher performance. In
this context, we focus on the techniques engineered to improve overall
performance of the system leveraging the inherent characteristics of the
memory hierarchy.

Assessing the performance of multi-program workloads running on a
multi-threaded hardware is difficult because it involves balance between
single program performance and overall system performance. This issue
is common in current multi-core systems. Eyerman and Eeckhout (2008)
argue for developing multi-program performance metrics in a top-down
fashion starting from system-level objectives. This way the impact of
memory accesses on overall performance of the system is considered.
The authors proposed two performance metrics: Average Normalized
Turnaround Time (ANTT) is a user-oriented performance metric and
System Through-Put (STP) is a system oriented performance metric.
STP corresponds to the weighted speedup metric and ANTT corre-
sponds to the reciprocal of the mean metric. These two proposed metrics
can replace Instruction Per Second (IPS) to better represent overall
system performance. In addition, extracting performance metrics of
the systems in a way that doesn’t effect the execution of the programs
might not be trivial. In order to avoid this issue, Nazari et al. (2017) and
Sehatbakhsh et al. (2016) proposed new methods for profiling program

3.2. Memory 27

execution without instrumenting or otherwise affecting the profiled
system.

Table 3.3: Memory management techniques

Memory management Techniques

Mapping Kim et al. (2010), Ghose et al. (2013),
Agarwal et al. (2015)

Scheduling Muralidhara et al. (2011), Kim (2010),
Subramanian et al. (2016)

Technology Meena et al. (2014), Li et al. (2017),
Ebrahimi et al. (2010)

3.2.1 Mapping and scheduling

The memory scheduling algorithm should resolve memory contention
by arbitrating memory access in such a way that competing threads
progress at a relatively fast and even pace, resulting in high system
throughput, fairness and desired performance.

Kim et al. (2010) proposed to divide threads into two separate
clusters and employ various memory request scheduling policies in each
cluster. The proposed thread cluster memory scheduling dynamically
classifies threads with similar memory access pattern into either the
latency-sensitive (memory-non-intensive) or the bandwidth-sensitive
(memory-intensive) cluster. This work prioritized the latency-sensitive
cluster over the bandwidth-sensitive cluster to improve system through-
put. In addition, niceness is introduced and used as a metric that
captures a thread’s propensity to interfere with other threads. Ghose
et al. (2013) argued that performing processor analysis of load instruc-
tions, and providing this analyzed information to memory schedulers,
can increase the sophistication of memory decisions while maintaining
a light-weight memory controller that can have a rapid response to
scheduling actions. This is important as memory operating frequencies
are rising and diversity of workloads running on heterogeneous com-
puting systems is increasing. The HAMEX framework, proposed by

28 Performance

Moazzemi et al. (2016), can be used for design space exploration of
memory access patterns in such systems.

Agarwal et al. (2015) proposed an approach to maximize cost and en-
ergy efficiency in heterogeneous systems integrating Central Processing
Unit (CPU) and Graphics Processing Unit (GPU) which will increas-
ingly use globally-addressable heterogeneous memory systems, making
choices about memory page placement critical to performance. The
proposed bandwidth-aware (BW-AWARE) placement, maximizes CPU
throughput by balancing page placement across the memories based on
the aggregate memory bandwidth available in the overall system.

Muralidhara et al. (2011) presented an alternative approach to re-
ducing inter-application interference in the memory system: application-
aware memory channel partitioning. The idea is to map the data of
applications that are likely to severely interfere with each other to
different memory channels. The data of light (memory non-intensive)
and heavy (memory-intensive) applications are mapped to separate
sections. A second improvement is to allocate the data of applications
with low and high row-buffer locality. In addition, interference can be
further reduced with a combination of memory channel partitioning
and scheduling, which in this work is called integrated memory par-
titioning and scheduling where light applications are prioritized since
these applications cause negligible interference with other applications
and do not reduce the performance of competing applications unduly.

Kim (2010) proposes adaptive per-Thread Least Attainment Service
memory scheduling, a novel memory scheduling technique that improves
system throughput without the need for high level coordination between
memory controllers. The key idea is to periodically order threads based
on the service they have attained from the memory controllers so far,
and prioritize in each period previously discriminated threads. The idea
of favoring threads with least-attained-service is borrowed from the
queuing theory literature.

Similarly, Subramanian et al. (2016) proposed a Blacklisting Memory
Scheduler (BLISS), which achieves high system performance and fairness
with low hardware cost and complexity. BLISS design is based on two
observations. First, to mitigate memory interference, it is sufficient to
separate applications into only two groups, one containing applications

3.2. Memory 29

that are vulnerable to interference and another containing applications
that cause interference, instead of ranking individual applications with
a total order. The vulnerable-to-interference group is prioritized over
the interference-causing group. Second, this grouping can be efficiently
performed by simply counting the number of consecutive requests served
from each application. This low overhead ranking can reduce the overall
interference in memory requests leading to higher performance in the
system.

3.2.2 Hybrid memory technologies

There have been many break-throughs in memory technologies. Emerg-
ing nonvolatile memory technologies such as Magnetic Random-Access
Memory (MRAM), Spin-Transfer Torque Random-Access Memory (STT-
RAM), Ferroelectric Random-Access Memory (FeRAM), Phase-Change
Memory (PCM), and Resistive Random-Access Memory (RRAM) can
combine the speed of Static Random-Access Memory (SRAM), the
density of Dynamic Random-Access Memory (DRAM), and the non-
volatility of Flash memory (Meena et al., 2014). This opens up the
opportunity to combine memory technologies in a system to gain benefit
of a hybrid memory system. Although these technologies have disruptive
potential, all of them have still to overcome some weaknesses in reliabil-
ity, cost or manufacturability before their broad industrial deployment.
But despite the ambiguity of the state of these technologies, researchers
have explored their usage in system architectures and their impact on
memory management policies.

For various hybrid memories Li et al. (2017) proposed a utility-based
hybrid management scheme, which estimates the utility of migrating
a page between different memory types, and uses the gathered infor-
mation to enhance data placement. Ebrahimi et al. (2010) proposed an
approach that provides fairness in the entire shared memory system,
called Fairness via Source Throttling (FST). It estimates the unfairness
in the entire shared memory system and if it is above a certain threshold
set by system software or operating system, FST throttles cores causing
unfairness by limiting the number of resource requests they can issue

30 Performance

and the frequency at which they do. Thus the resources are allocated
more fairly.

3.3 Network

Networks-on-Chip (NoC) enable scalable design of on-chip interconnects
for multi-core and many-core systems, to integrate cores and un-core
components such as memory controller and cache blocks (Hemani et al.,
2000; Dally and Towles, 2001). As the number of cores and on-chip
components scale up, NoC efficiency became another crucial factor
in determining overall system performance (Benini and De Micheli,
2002). A typical NoC infrastructure uses topologically arranged nodes
such that each node has routers that are connected to cores and other
routers. Communication among routers is enabled by switching mech-
anisms that forward packets - a unit of data - from a source to the
specified destination router through communication channels. Several
packets originating from different sources and traversing towards dif-
ferent destinations contend for shared network resources, which are to
be resolved at every node. In view of these factors, network latency
and thus performance are affected by (i) topology, (ii) routing and flow
control.

3.3.1 Topology

Topology features the arrangement of nodes within a network repre-
senting the order of connection and the number of hops that packets
traverse from source to destination (Fattah et al., 2012). Low diameter
and high radix (number of communication ports of a router) topologies
provide lower average hop count and thus higher performance (Balfour
and Dally, 2014). Traditional topologies such as mesh and torus ease
design complexity and are energy efficient, hence widely used in commer-
cial processors (Wentzlaff et al., 2007; Howard et al., 2010). Advanced
topologies include express cubes (Grot et al., 2009a), dragon-fly (Kim
et al., 2008), slim-fly (Besta and Hoefler, 2014), flattened butterfly (Kim
et al., 2007) and clos (Kao et al., 2011) that target high radix routers
and/or low diameter networks. Optimized topologies are largely design

3.3. Network 31

time approaches, while each such topologies feature smart routing and
flow control mechanisms that are run-time adaptations. Most of the
existing topologies follow the convention of finding the shortest possible
path between a source and destination routers (Deo and Pang, 1984).
Even advanced topologies use X-Y routing to retain simplicity and
minimal deadlock free path finding (Grot et al., 2009a; Besta et al.,
2018). However they are also adaptable for other routing algorithms,
given the (high) radix of router architecture. Such run-time adaptations
to improve NoC performance at run-time are discussed in the following
sub-sections.

Table 3.4: Routing and flow control techniques

Level of adaptivity Techniques

Oblivious
Feng and Shin (1997), Glass and Ni (1992),
Seo et al. (2005), Deo and Pang (1984),

Dally and Aoki (1993)

Local-awareness

Nilsson et al. (2003), Millberg et al. (2004),
Dai et al. (2017), Balfour and Dally (2014),
Rantala et al. (2008), Xu et al. (2016b),

Chang et al. (2014), Al Faruque et al. (2012),
Samman et al. (2013), Kim et al. (2007)

Global-awareness

Ma et al. (2011), Ascia et al. (2008),
Zong et al. (2015), Ma et al. (2014),
Mak et al. (2011), Dai et al. (2017),

Besta and Hoefler (2014), Grot et al. (2009a),
Tedesco et al. (2010), Catania et al. (2006),

Carara and Moraes (2010)

3.3.2 Routing and flow control

Communication among different cores in an on-chip parallel processor is
enabled through routing information in the form of packets Valiant and
Brebner (1981). Routing algorithms provide the protocol for transport-
ing packets across the network, considering underlying topology and
router architecture (Singh et al., 2003). Routing strategies determine

32 Performance

end-to-end packet latency, which includes network congestion, shared-
path contention and arbitration, effecting the performance (Wu et al.,
2016). Routing strategies widely follow a two-step approach i.e., (i) path
selection - to determine the next destination and (ii) flow control - to
schedule the packets (Samman et al., 2013). Deterministic routing algo-
rithms follow a fixed path decided at the source node itself, oblivious to
traffic pattern and congestion, for the sake of simplicity (Li et al., 2006).
Adaptive strategies on the other hand try to optimize performance,
deciding the next immediate hop at every node, by monitoring network
characteristics at run-time (Nilsson et al., 2003; Millberg et al., 2004;
Al Faruque et al., 2012). Some adaptive routing techniques are based
on heuristics and are congestion unaware for simplicity, while others
rest on leveraging traffic patterns, application characteristics, conges-
tion information and shared resource contention to decide on optimal
route (Gratz et al., 2008; Feng et al., 2012). We present congestion
oblivious, local aware and global aware adaptive strategies below, also
summarized in Table 3.4.

Oblivious adaptivity

Monitoring different traffic and congestion patterns across the network
and making an optimal choice of routing often turns into an NP-hard
problem (Feng and Shin, 1997). Since adapting to such dynamic scenar-
ios requires extensive router architecture design and includes routing
complexity overhead (Feng and Shin, 1997), a class of algorithms use
generalized adaptation (i) to avoid complexity and overhead, and (ii) to
preserve general applicability and simplicity and (iii) provide worst-
case throughput guarantees. Feng and Shin (1997) extensively tested
different traffic patterns and routing strategies and concluded that no
single routing strategy fits all traffic patterns and thus preferred to use
a random free port direction towards the destination at every node. In a
similar vein, Badr and Podar (1989) advocated to follow a zigzag path
at every node, while Glass and Ni (1992) prefer to avoid turning as much
as possible. Extending on the idea of minimizing number of turns, Sun
et al. (2013) have proposed U2TURN routing, which identifies possible
paths between a source and destination with a maximum of 2 turns

3.3. Network 33

and distributes the traffic accordingly. Other oblivious yet adaptive
routing algorithms include (Seo et al., 2005; Deo and Pang, 1984; Dally
and Aoki, 1993). These routing strategies try to optimize a possible
common case of traffic patterns with minimal router complexity, and
are adaptive only to a fixed degree without congestion awareness.

Local-aware adaptivity

Early work in the NoC space has proposed deflection routing to avoid
congested routers and spread the load more equally in the network
based on local load signals (Nilsson et al., 2003; Millberg et al., 2004).
Hu and Marculescu (2004) have proposed a smart router that switches
between deterministic and adaptive routing, subject to on-chip traffic
patterns. Other adaptive routing strategies used queue length based lo-
cal congestion information such as buffer occupancy and/or bandwidth
available, which reflects in channel, switch and port level congestion
of a given node (Dai et al., 2017). This can in turn be used to avoid
the most congested paths, or select the least congested path for high
priority packets. Li et al. (2006) proposed dynamic X-Y routing (dyXY)
by monitoring local congestion within the proximity of a node and
re-direct packets to the least congested path. A similar approach is
used by Rantala et al. (2008) to identify productive links - the least
congested next nodes - and adapt traditional X-Y routing. Lysne et al.
(2006) have proposed layered routing by virtually grouping channels
into network layers. Each of the layers would be assigned a limited
set of source and destination nodes adaptively to find shortest paths
and for load balancing when needed. Balfour and Dally (2014) dis-
tinguished between packets as long and short and schedule the flows
preemptively by reserving virtual channels ahead. In this case, they use
adaptive X-Y routing to support the speculative flow control. Xu et al.
(2016b) suggested to use also quantitative congestion information to
represent the overall effect of congestion on performance with different
paths, in order to choose the least congested route. Chang et al. (2014)
predicted the least congested paths by monitoring the rate of change in
buffer occupancy, considering both switch and channel level congestion.
Al Faruque et al. (2012) used bandwidth available among all channels of

34 Performance

a node to choose the path with highest bandwidth and then dynamically
re-assign buffers to the chosen route. Samman et al. (2013) followed a
similar approach, considering bandwidth, congestion and congestion by
monitoring buffer availability. Kim et al. (2007) used by-pass channels
to shorten the hop distance to distant routers, yet retaining the principle
of minimal path finding for the rest of the other routers. In contrast to
choosing a suitable output channel, Wu et al. (2006) chose appropriate
input packets to route through specific congested paths by monitoring
upstream switch’s contention.

All the above techniques rely on local information by monitoring
the current node and the immediate neighboring nodes’ congestion
information alone, without global traffic pattern awareness.

Global-aware adaptivity

Using both local and global traffic patterns and congestion information
allows for more efficient routing decisions to avoid potential congested
paths and inter-application interference and provides workload consoli-
dation (Ma et al., 2011). Ascia et al. (2008) identified neighbors-on-path
for each possible direction to the destination node and chose the route
with least possibility of congestion through to the destination node,
having a regional congestion awareness. Zong et al. (2015) improved
the same approach by considering congestion information traced over
equal time intervals for fair estimates. Ma et al. (2011) and Ma et al.
(2014) used both local and global congestion information to estimate
total packet latency for possible paths and then chose the route with
least delay. Both these approaches also provide workload isolation and
avoid inter-application congestion. Similar to these region aware tech-
niques, Chang et al. (2015b) divided the network into congested and
un-congested clusters, and re-directed traffic towards un-congested clus-
ters by monitoring channel history and current buffer vacancy. Mak et al.
(2011) integrated a virtual dynamic programming network along with
the original network, which holds the information on shortest possible
paths from every node and thus to choose the route with minimum
delay.

3.3. Network 35

Adaptive routing combining path diversity and buffer vacancy is
used by Chen et al. (2017) and Dai et al. (2017), also addressing fault
tolerance. Feng et al. (2010) proposed a reinforcement learning strategy
to monitor the network load situation for low latency routing decisions
and to avoid faulty components. Besta and Hoefler (2014) presented
globally adaptive routing relying on local information for minimalist
path finding. They used different sets of virtual channels based on
distance between source and destination routers. Besta et al. (2018)
supported the possibilities of using both the above routing and flow
control mechanisms, deciding between the optimal choice for a given
instance. A similar look-ahead routing for mesh and torus topologies
was used by Grot et al. (2009a), however restricting to only 1 virtual
channel per port.

Along with the network information, leveraging application char-
acteristics to make specific routing decisions based on communication
patterns among any given nodes at IP level has been used by Tedesco
et al. (2010); Catania et al. (2006); Carara and Moraes (2010). Most of
the existing topologies follow the convention of finding the shortest possi-
ble path between a source and destination routers (Deo and Pang, 1984).
Even advanced topologies use X-Y routing to retain simplicity and min-
imal deadlock free path finding (Grot et al., 2009a; Besta et al., 2018).
However they are also adaptable for other routing algorithms, given the
(high) radix of router architecture. While the aforementioned techniques
try to adapt general routing techniques to specific architectures, Scott
et al. (2006) proposed a two-step combination of non-deterministic up
routing and deterministic down routing, based on the Clos architecture.
Grot et al. (2011) followed a similar approach by designing specialized
express channels for high priority packets, and used a re-route phase, if
needed, for such packets. Bakhoda et al. (2010) proposed routers with
limited connectivity, half routers to opportunistically cater for critical
packets while reducing access to non-critical packets using half routers.

In addition to the techniques that dynamically adapt routing and
flow control, source throttling i.e., controlling the rate of packet injection
into the network at the source node itself has been proposed as another
effective strategy. van den Brand et al. (2007) have presented congestion-
controlled best effort (CCBE) architecture, to selectively control the

36 Performance

traffic load onto a router, subject to congestion monitored at run-time.
Ogras and Marculescu (2008) have modeled traffic sources and routers to
predict the amount of congestion potentially possible at each source node,
and then control the packet injection rate at those sources accordingly
in a pro-active manner. Chang et al. (2012) have further classified
workloads into network and compute intensive and (network) bandwidth
and latency sensitive to make adaptive source throttling decisions, to
retain fairness and avoid any potential performance degradation.

3.4 Input/Output

With the advances in performance in multi/many-core systems, access
to data becomes a prominent factor. With the surge in scientific kernels,
deep neural networks and big data workloads that require massive
amount of data, more applications are putting greater demands on end-
to-end I/O performance (Pumma et al., 2017). In order to match speed
of I/O with computational units many efforts both in hardware (i.e.,
Solid State Disk (SSD), hybrid storage) and software (i.e., placement,
load balancing) have been proposed. Table 3.5 shows a classification of
the techniques studied in the following sections.

Table 3.5: I/O management techniques

I/O management Techniques

Hybrid storage
Gupta et al. (2009), Tai et al. (2017),
Yang et al. (2016), Chen et al. (2011),

Pritchett and Thottethodi (2010)

Placement Neuwirth et al. (2016), Neuwirth et al. (2017),
Wang et al. (2014), Elyasi et al. (2017)

Scheduling Ausavarungnirun et al. (2012),
Chang et al. (2015a), Tavakkol et al. (2018)

3.4.1 Hybrid storage

In many emerging heterogeneous systems, Nand-based flash memory is
used as an intermediate level before disk to improve I/O performance

3.4. Input/Output 37

and reduce power. In many cases traditional cache algorithms such as
LRU are used to manage these systems. Gupta et al. (2009) proposed a
Demand based Flash Translation Layer (DFTL) which caches page-level
address mappings in the flash. This would lead to reduced garbage
collection overhead and improved performance. Tai et al. (2017) pro-
posed a virtual flash resource manager which uses use bins with large
spatial size for units of migration in order to update the data between
flash and disk in a more relaxed fashion. This leads to a significant
saving in memory space and reduction in I/O traffic. A similar global
SSD resource management scheme is proposed by Yang et al. (2016).
It splits the SSD into long-term and short-term zones and categorizes
the content of the SSD as a second cache for disk into these zones.
Pritchett and Thottethodi (2010) proposed SieveStore which uses of
solid-state memory to filter access to storage ensembles. The filtering is
used on highly-skewed popularity distribution of disk blocks and popu-
lar block-sets. This enables disk-caching to reduce I/O in an efficient
manner. Similarly, Chen et al. (2011) proposed a hybrid storage scheme
by monitoring I/O access patterns at run-time to identify blocks with
long latency or semantically critical. These blocks will be stored in
SSD for later access. In addition, this speeds up the I/O functioning as
write-back buffer.

3.4.2 Load balancing and placement

Dynamic load balancing can be used in order to mitigate resource con-
tention and improve the overall system performance. Neuwirth et al.
(2016) tackled the imbalanced use of I/O resources to improve the
performance using a topology-aware approach called Balanced Place-
ment I/O (BPIO) to mitigate resource contention benefiting from a
middle-ware. The same authors further improved their work proposing
the TAPP-IO framework with a new placement strategy to support
file-per-process I/O and single shared file I/O as well as intercepting file
creation calls during run-time to balance overall workload on available
storage Neuwirth et al. (2017). Wang et al. (2014) proposed a topology-
aware strategy to enhance the performance of I/O on a per-application

38 Performance

basis using load balancing across the resources. Elyasi et al. (2017) lever-
aged the slack between sub-requests in order to improve response times
of SSDs. Specifically, the paper presents the design and implementation
of a slack-enabled re-ordering scheduler for sub-requests issued to each
flash chip.

3.4.3 Scheduling

Interference in SSD-based shared storage systems has been a major issue.
Chang et al. (2015a) addressed two types of interference, namely, queuing
delay (QD) interference and garbage collection (GC) interference. They
used a credit-based I/O scheduler designed to address QD interference
and the flash translation layer designed to address GC interference.
Staged memory scheduler was proposed by Ausavarungnirun et al.
(2012) as a three-stage memory controller for heterogeneous systems
with integrated CPUs and GPUs. This work groups requests to I/O
based on row-buffer locality and focuses on inter-application request
scheduling. Tavakkol et al. (2018) proposed a flash level interference-
aware scheduler as an I/O request scheduling mechanism. Its goal
is to provide fairness among requests using a three stage scheduling
algorithm mitigating issues causing interference such as differences in
request access patterns, the ratio of reads to writes, garbage collection.

3.5 Summary

We presented run-time techniques that improve system performance
by allocating and provisioning compute, memory, network and I/O
resources. Most of these techniques rely on monitoring application, task
and thread level properties and leverage them at run-time to provide
higher or sufficient amount of resources for higher performance. While
some techniques require application level expression and translation,
others entirely rely on run-time information. Combining monitoring
techniques across different resources for co-optimization can provide
flexible and modular control on performance enhancement.

4
Power, energy, and thermal management

Computer systems design is confronted with the need for high per-
formance under limited power consumption. Diversity in type and
increasing complexity of applications demand for higher computation
power. To deliver this higher performance, designers have to consider
the reasonable autonomy in battery-powered systems, operation cost
of servers as well as reduction in the environmental impacts of power
consumption. With the advances in multi/many-core system energy
efficiency and controllable temperature became a vital metric in design
of the emerging computer systems. Efficient resource utilization with
consideration of power usage, energy efficiency and temperature can
open the way for further optimization and achieving higher performance.
Figure 4.1 represents a classification on resource management methods
used to handle power consumption, energy efficiency and temperature
control. Power management methods minimize or cap the momentary
power consumption at any given time instant. Energy Efficiency focused
approaches reduce the accumulated energy during the system live time.
Thermal management methods resolve thermal issues and contain the
system in a safe temperature while avoiding hot spots. In the rest of
this section we survey some of the efforts in this area.

39

40 Power, energy, and thermal management

Power management
Power consumption

Hardware techniques
Dynamic Voltage and Frequency Scaling (DVFS)
Power gating

Software techniques
Task scheduling
Task mapping
Multi-thread optimization

Energy efficiency
Mapping
Scheduling

Thermal management
Thermal hot spots
Spatial variations
Temporal variations

Figure 4.1: Techniques for power, energy and thermal management

4.1 Dynamic management objectives

In this section, we focus on three important in many ways correlated
objectives in dynamic management of a computing system:

• Power

• Energy

• Thermal

While examining these three metrics used as objective of manage-
ment techniques, we should bear in mind the cinch correlation between
them. Power is consumed in every part of the circuit either as static
power or dynamic power consumed during the active cycles of all re-
sources such described in Section 2.1. This power consumption over
time will lead to energy consumed or in other terms, power is energy
per unit of time. The power consumed in each resource can generate
heat which can increase the temperature in the whole or part of the

4.1. Dynamic management objectives 41

computing system. So why not only focus on reducing power which
might lead to lower energy consumption and temperature? we should
realize that power consumption is not the only deciding factor in energy
consumption or inducing thermal emergencies. As we will see in the
rest of this section, other factors such as operating voltage or frequency,
performance, hotspots can also play a role in the dynamics of the system.
Thus, there is a need for techniques centered toward optimizing each of
these metrics (power, energy and thermal).

Prior to exploring techniques used in Dynamic Power Management
(DPM) (Section 4.2), run-time energy efficient management (Section 4.3)
and Dynamic Thermal Management (DTM) (Section 4.4), we take a
look at measurement methods used in these techniques. This can show
progress of sensors embedded in emerging devices and progress of models
used in estimating power or temperature of a system. Subsequently,
resources that can be managed using through run-time management
techniques are identified and some of the techniques used to manage
each resource is discussed. This can give us a better understanding of
the scope of actuations in each resource that can later on be used in
management of the whole system.

4.1.1 Managed components

As we have seen in the previous chapter on performance management
techniques, the approaches proposed in the literature are fairly different
for the computation, communication and memory subsystems. Hence,
we start by reviewing efforts towards run-time power management of
different computer system components. Management techniques in each
individual component can later on be used to control the holistic system.
Next, we survey the literature regarding the methods for dynamically
managing systems for energy efficiency and reduced power consumption.

Computation: There is an extensive literature on how to improve
the energy efficiency of computation. Power reduction can happen by
means of transistor and gate design, efficient design of the Instruction Set
Architecture (ISA) or control of voltage and frequency levels. Benini et al.
(1999) primarily started devising policies to optimize power consumption

42 Power, energy, and thermal management

of computing devices. Lorch and Smith (2004) proposed a voltage scaling
method for estimating the task work distribution and power estimation
based on workloads dynamic behavior. You and Chung (2014) proposed
a power management scheme to transition to standby and power-off
states to reduce power consumption in embedded processors. Networks-
on-Chip (NoC) platforms can be portioned to islands in order to avoid
hot-spots and deliver smoother power management. This has been
further discussed by David et al. (2011) using an Intel NoC chip. Run-
time software power management methods have been utilized to benefit
from run-time information during software execution. Teodorescu and
Torrellas (2008) proposed an application scheduling technique for power
management for chip multi-processors. Methods proposed by Lorch and
Smith (2004) estimate the task work distribution and approximate the
optimal continuous schedule by modifying the voltage scaling algorithm
to minimize energy use without affecting perceived performance.

Communication: While many early works focused on designing low
power and energy efficient computing units, over the years with the
emergence of multi-core Systems-on-Chips (SoCs) and advances in on-
chip interconnection architectures the share of power consumption in
the communication increased. This motivated many system designers to
develop energy efficient interconnects, e.g. Shang et al. (2003); Soteriou
and Peh (2007). The work presented by Chou et al. (2008) addresses
the energy-aware incremental mapping problem for NoCs with multiple
voltage levels and proposes an efficient approach using the near convex
region selection technique. Passos et al. (2006) took a look at the
systematic design of communication intense devices while Chen et al.
(2013) focuses on design of NoCs have to deliver low latency, high
bandwidth, at low power. Authors in Chen and Joshi (2013) present a
silicon-photonic multi-bus NoCs architecture between private L1 caches
and distributed L2 cache banks which uses weighted time-division
multiplexing. In order to provide an energy/performance aware mapping
in NoCs architecture, Hu and Marculescu (2003) proposed a branch-and-
bound algorithm which maps the IPs onto a generic regular NoC while
guaranteeing to satisfy the specified constraints through bandwidth
reservation. In addition, many efforts have been undertaken on NoC

4.2. Dynamic power management techniques 43

DPM (Banerjee et al., 2009). A recent review of these works is provided
by Guang et al. (2009).

Memory: There have been many advances in memory technology in
the recent years. Some of these efforts increase the performance and
response rate of these components. On the other hand, some methods
like those proposed by Ha et al. (2017) and Ahn et al. (2014) benefit from
emerging technologies to make memory devices more energy efficient.
A range of studies such as (Nakai et al., 2005; Gurumurthi et al.,
2003) aimed at the power consumption of memory devices by reducing
the components voltage, speed or frequency based on the application
demand at run-time.

4.2 Dynamic power management techniques

DPM has been proposed decades ago. Designers used DPM in the 90s
(Chung et al., 1999) with the available run-time configurations such
as scaling the supply voltage to lower the power consumption (Nielsen
et al., 1994). Most opportunities to reduce power consumption comes
from non-optimal configurations in hardware and software components.

Before diving into the analysis of efforts done in this domain, it is
important to make a distinction between power-aware and low-power
systems. The focus of low-power systems design is to minimize power.
On the other hand, for a power-aware system meeting power and
energy goals is a significant design consideration and in which the
system modifies its behavior based on current power/energy availability.
Some power-aware design goals may even increase power or energy
consumption. Consider the case of a design for decreasing peak power
in a processor: one method to attain this goal would be to use schemes
that would intentionally delay the issue of some instructions to smooth
the instruction issue distribution and, thus, decrease the peak consumed
power. However, delaying some instructions could lead to the application
being finished later than it otherwise would, therefore increasing the
energy consumption. Thus, this scheme would be a power-aware, but
not a low-power, design (Unsal and Koren, 2003). In the following we
mainly focus on DPM for power-aware systems summarized in Table 4.1.

44 Power, energy, and thermal management

Table 4.1: DPM techniques

Power management Techniques

Hardware

Kirovski and Potkonjak (1997),
Ishihara and Yasuura (1998), Chen and Marculescu (2015a),

Lee and Sakurai (2000), Krishna and Lee (2000),
Luo and Jha (2001), Liu et al. (2001),

Cheng et al. (1997), Qiu and Pedram (1999),
Isci et al. (2006a), Azevedo et al. (2002),

Pillai and Shin (2001), Shahosseini et al. (2017),
Bogdan et al. (2013), Rahmani et al. (2015),

Ogras et al. (2009), Ogras et al. (2008),
Lackey et al. (2002), Kim et al. (2017),

Cochran et al. (2011), Herbert and Marculescu (2007),
Das et al. (2015)

Software
Li and Wolf (1997), Shin and Choi (1999),
Huang et al. (2009), Kulkarni et al. (1998),

Winter et al. (2010)

4.2.1 Hardware methods

One of the main techniques used in DPM is to use the inherent properties
of hardware components to reduce power consumption. This can be
achieved by reducing the voltage, frequency or even shutting down the
processing units.

DVFS and power gating

DVFS is a common method in DPM. The computing unit (or commu-
nication media) must be augmented with hardware blocks that allow
for changing the supply voltage dynamically. This is common in re-
cent processors. Although, Kirovski and Potkonjak (1997) proved that
task allocation and scheduling optimization problems using DVFS are
NP-complete, heuristics to tune voltage and frequency are widespread
because they save substantial power. However, reducing the frequency
causes a slowdown in the execution of programs with potentially detri-
mental effects. Thus, DVFS heuristics usually trade off power savings
against delay. One of the earliest works on DVFS has been presented
by Yao et al. (1995). Their method to manage frequency and voltage is

4.2. Dynamic power management techniques 45

called the Average Rate heuristic which sets the speed of the processor
to the sum of average rate requirements of tasks in the frame. Theorems
proposed for power-delay optimization in Ishihara and Yasuura (1998)
utilize an Integer Linear Programming (ILP) problem to minimize en-
ergy consumption under an execution time constraint. Lee and Sakurai
(2000) partition each task into time slots which enables DPM to change
voltage at specific intervals. A hybrid method is used by Krishna and
Lee (2000) using two algorithms consisting of an online phase, in which
voltage settings are selected to reduce energy consumption assuming
that tasks complete in their Worst-Case Execution Time (WCET). Con-
sidering that many tasks finish well before their WCET, this method
uses an online phase which adjusts the voltage settings on-the-fly to
reclaim any resources released by such tasks. A mechanism proposed by
Luo and Jha (2001) performs variable-voltage scheduling via efficient
slack time re-allocation, which helps reducing the average discharge
power consumption as well as smooths the discharge power profile.

Liu et al. (2001) focused on power-aware scheduling in mission critical
embedded systems. Their approach is incremental by solving one type
of constraint at a time. First, a time-valid schedule is constructed from
a constraint graph of the task. Next, this schedule is validated against
the maximum power constraint to remove power spikes, and finally
it is compared against the minimum power constraint and tasks are
reordered to reduce power gaps and power utilization. Cheng et al. (1997)
employed a fine-grained offline scheduling approach that saves power by
combining multiple instructions into one complex instruction with lower
power consumption, or by using low-power versions of instructions while
considering task deadlines. Qiu and Pedram (1999) proposed a DPM
method using Markov decision processes. The problem of DPM in such a
system is formulated as a policy optimization problem and solved using
an efficient “policy iteration” algorithm. Idea of managing power of
voltage islands in SoC has been well studied Lackey et al. (2002). In this
domain, Herbert and Marculescu (2007) shows the trade-offs involved
in the choice of both DVFS control scheme and method by which the
processor is partitioned into voltage/frequency islands and presents
potential in using DVFS for dynamic power management in CMPs.
Cochran et al. (2011) proposes a control technique to make DVFS and

46 Power, energy, and thermal management

thread packing control decisions in order to maximize performance
within a power budget using a multinominal logistic regression classifier.
Das et al. (2015) proposes an approach for DVFS in smartphones,
which uses reinforcement learning to explore the trade-off between
power saving opportunities using DVFS and dynamic core selection
and application’s performance at run-time. Architecture-independent
imitation learning methodology is proposed in Kim et al. (2017) for
DVFI control in many-core systems by using controllers that leverage
the structural relationships between VFIs.

Isci et al. (2006a) monitored the run-time application in order
to optimize power consumption by setting per core DVFS using a
global system manager. Azevedo et al. (2002) employed an intra-task
dynamic voltage scaling technique under compiler control using program
checkpoints. Checkpoints are generated at compile time and indicate
places in the code where the processor speed and voltage should be
recalculated. These checkpoints are used at run-time to recalculate
voltage and frequency settings. To reduce the overhead of dynamic
scaling Pillai and Shin (2001) introduced DVFS in operating systems.
Since then, the majority of operating systems have simple settings to
benefit from DVFS even in embedded devices. A feedback control was
used by Shahosseini et al. (2017) to manage the power consumption
using DVFS knobs.

The trend towards multi/many-core platforms requires techniques
that can formally guarantee power management of the system given
a power budget. Bogdan et al. (2013) proposed a paradigm shift from
power optimization based on linear models to control approaches based
on fractal-state equations. Rahmani et al. (2015) developed a multi-
objective DPM method that simultaneously considers limits on the
total power consumption, dynamic behaviour of workloads, processing
elements utilization, per-core power consumption, and the load on the
NoC. This work uses fine-grained voltage and frequency scaling, includ-
ing near-threshold operation, and per-core power gating to optimize the
performance and power consumption. In addition, a disturbance rejecter
is designed that proactively slows down running applications when a
new application commences execution, to prevent sharp power budget

4.2. Dynamic power management techniques 47

violations. Tilli et al. (2015) proposes a low overhead hierarchical model-
predictive controller (MPC) for managing thermally safe sprinting with
predictable resprinting rate, which ensures the correct execution of
mixed-criticality tasks. A methodology for multi-clock/voltage domains
is proposed by Ogras et al. (2009, 2008) by adaptively partitioning
and voltage assignment using state-space feedback control strategy to
dynamically scale the operating voltage and frequency around the static
values and load balance the network traffic in the presence of workload
and parameter variations. Chen and Marculescu (2015a) presents an
On-line Distributed Reinforcement Learning (OD-RL) based DVFS con-
trol algorithm for many-core system performance improvement under
power constraints that uses per-core reinforcement learning method
for frequency management and a control theoretic method for global
power budget allocation. This method takes advantage of fast response
of the per-core reinforcement learning while making sure the global
power consumption remains under the budget using Maximize-the-Max
method. Muck et al. (2018) propose Multiple-Input Mutiple-Output
(MIMO) for controlling various actuators in Heterogeneous Multi-core
Processors (HMP) in order to control both power consumption and
overall system performance.

4.2.2 Software methods

Software power management techniques can be categorized into two
closely related areas of research. First, different studies explored the
properties of workload variations and developed methods to identify
and follow different execution behavior, commonly referred to as “phase
analysis”. Second, a large complementary set of research studied dynamic,
on-the-fly system management techniques that can adaptively respond
to these differences in application behavior (e.g. Isci et al. (2006b)).

Task scheduling and thread optimization

DPM mechanisms in real-time systems become more complex as the
system has to meet certain deadlines while keeping the power below
a certain budget. A synthesis algorithm by Li and Wolf (1997) uses a
software-based cache partitioning and reservation technique to guarantee

48 Power, energy, and thermal management

cache hits for some tasks and therefore improve task schedulability. The
scheduling algorithm used in this work is Earliest Deadline First (EDF).
In EDF, the task with the earliest deadline has the highest priority. The
method proposed by Shin and Choi (1999) and implemented in a kernel
module, yields power reduction by exploiting slack times, both those
inherent in the system schedule and those arising from variations of
execution times. As an example, Huang et al. (2009) propose adaptive
DPM for hard real-time systems. In their work, based on real-time cal-
culus, event arrivals and resource services are modeled by arrival curves
and service curves in the interval domain, respectively, and an online al-
gorithm to adaptively control the power mode of the device is proposed,
that postpones the processing of arrival events as long as possible. In a
similar spirit, many cache aware methods have been proposed, such as
(Kulkarni et al., 1998), to benefit from software optimizations to reduce
power consumed by cache and memory subsystems. Further analysis of
system-level power-aware design techniques is presented by Unsal and
Koren (2003) who cover techniques ranging from the circuit and device
level, to the architectural, compiler, operating system, and networking
layers. In the case of many-core systems, scalability of scheduling algo-
rithm becomes an important factor which Winter et al. (2010) analyzes
some of these algorithms in terms The computational complexities of
thread scheduling and global power management techniques.

4.3 Run-time energy efficient managers

Although for many computer systems, reducing power will lead to re-
duced energy consumption but it does not necessarily mean a resource
management mechanism with the objective of power management will
deploy same policies as a resource management method with energy
efficiency goal. Energy directly relates to both power and performance.
Final goal for energy efficient management methods is to find the optimal
spot in power consumption while delivering the required performance
over time. To this end, we take a closer look at energy efficient man-
agers in this section. Computer systems are designed to deliver peak
performance, but are often idle or used to perform tasks that do not
require such performance.

4.3. Run-time energy efficient managers 49

Energy efficiency has become a major concern while dealing with
high performance computing systems (Ge et al., 2010; Hsu and Feng,
2005). Architectural optimization to achieve a high performance with
minimal power consumption has been a common practice for emerging
applications. Qu et al. (1999) proposed a new pipelining mechanism
with selectable voltage for each pipeline stage to minimize energy con-
sumption. Evaluation of energy efficiency of a system can be related to
both power consumption and performance of the running application.
A common metric for the evaluation of energy efficiency is Energy Per
Instruction (EPI), in Watt/MIPS or Joule/Instruction. Other metrics
such as Energy Delay Product (EDP), which was initially proposed by
Horowitz et al. (1994), and ED2P are used also in latency performance
architectures as they assign a weight to the amount of time needed for
an instruction to be processed (Attia et al., 2017).

Manzak and Chakrabarti (2000) proposed task scheduling algo-
rithms that minimize energy or minimize power for the case when the
tasks have various arrival times, deadline times, execution times and
switching activities. The relation between the operating voltages for
the minimum energy (power) assignment is determined theoretically
and a polynomial time scheduling algorithm that uses this relation is
developed to minimize energy consumption. The authors improved this
method (Manzak and Chakrabarti, 2001) by first applying the existing
task scheduling algorithms (Manzak and Chakrabarti, 2000) to obtain
a feasible schedule and then distribute the available slack using an
iterative algorithm that satisfies the theoretically obtained relation for
minimum energy. Shafique et al. (2013) considered self-adaptive many-
core systems to reduce the energy-delay2 product. To avoid frequent
allocation and de-allocation, this work enables applications to temporar-
ily reserve their resources and to perform local power management
decisions.

Diversity and complexity in High Performance Computing (HPC)
systems require specific solutions for DPM, as presented by Rusu et al.
(2006) for server clusters and by Beloglazov and Buyya (2010) for cloud
systems. Hughes et al. (2001) targeted multimedia applications by using
both architectural adaptation and dynamic voltage scaling. Similarly,

50 Power, energy, and thermal management

Unsal et al. (2001) proposed two complementary media-sensitive energy-
saving techniques that leverage static information. First, a compiler-
controlled data remapping scheme directs scalar accesses to a small
scratchpad Static Random-Access Memory (SRAM) area. Second, a
media-sensitive software-controlled caching framework eliminates cache
tags. The same authors further improve their own results by showing
that media applications are mapped more efficiently when scalar memory
accesses are redirected to a mini-cache (Unsal et al., 2002). Using the
Combined Static/Dynamic scheduler in the operating system as basis,
Ma and Shin (2000) developed an Energy-Adaptive scheduler with
an energy-aware scheduling algorithm that executes tasks to achieve
effective use of limited energy by favoring low-energy and critical tasks.

Baynes et al. (2003) evaluated energy consumption in various Real-
Time Operating Systems (RTOS) including preemptive systems and
cooperative systems. Acquaviva et al. (2001) proposed real-time dy-
namic voltage scaling that modify the operating system’s real-time
scheduler and task management service to provide significant energy
savings while maintaining real-time deadline guarantees. Mishra et al.
(2015) proposes a probabilistic graphical model-based learning system
to provide accurate online estimates of an application’s power and
performance in order to optimize energy efficiency of the system.

Table 4.2: Run-time energy efficient management techniques

Energy management Techniques

Mapping

Baynes et al. (2003), Acquaviva et al. (2001),
Unsal et al. (2001), Unsal et al. (2002),

Manzak and Chakrabarti (2000),
Manzak and Chakrabarti (2001),

Ma and Shin (2000), Shafique et al. (2013),
Attia et al. (2017), Mishra et al. (2015)

Scheduling
Hughes et al. (2001), Ge et al. (2010),

Hsu and Feng (2005), Rusu et al. (2006),
Beloglazov and Buyya (2010)

4.4. Dynamic thermal-aware management methods 51

4.4 Dynamic thermal-aware management methods

Delivering high performance in computation does not only come with
the cost of power consumption. Often circuits that perform at their peak
suffer from thermal issues such as overheating or faults due to thermal
emergencies. Many dynamic management methods try to avoid such
conditions. On the other hand, minimizing power does not necessarily
avoid thermal issues. In many cases, concentrated power usage in a
small part of the electronic circuit can cause high a temperature on
that spot leading to thermal failures although the power usage of the
whole system might not be high.

Thermal induced problems can appear in various forms. Thermal
hot spots accelerate failure mechanisms. Failure cases increase expo-
nentially with temperature (Meterelliyoz et al., 2005). Hot spots also
cause performance loss and lead to higher leakage of power (Vassighi
and Sachdev, 2006). Spatial variations can cause clock skew resulting
in transient or intermittent delay faults. Finally, temporal variations
induce thermal cycling (Coskun et al., 2007) that can cause violation
in completion of the cycle that is large enough to cool the component.

Thermal management techniques try to control the chip temperature.
Many of the power management methods in this chapter are concerned
with temperature while focusing primarily on overall power consumption.
The goal of DTM is to address thermal hotspots or reduce spatial and
temporal temperature variations. Frequency scaling, DVFS, Decode
Throttling, Speculation control and cache toggling are some of the DTM
techniques described by Brooks and Martonosi (2001). Donald and
Martonosi (2005) use temperature aware scheduling for multi-threaded
processors by taking advantage of Simultaneous Multi-Threading (SMT)
unique flexibility of having multiple threads to adaptively counteract
and prevent hot spots by selectively managing the execution of available
threads. Liao et al. (2005) describe how smart performance and power
modeling can reduce the power leakage and limit temperature increase
which can eventually improve performance and power consumption.
Jung and Pedram (2006) propose a framework in which thermal states
are controlled by stochastic processes, i.e., partially observable semi-
Markov decision processes. By using multi-objective design optimization

52 Power, energy, and thermal management

methods such as collaborative optimization operating temperature is
reduced.

Thermal management is an important issue in embedded systems
due to limited area and cooling methods. Utilizing on-line monitoring,
Christoforakis et al. (2015) propose a response mechanism using a
distributed power management algorithm for Field Programmable Gate
Array (FPGA) to evenly reduce and normalize power transients and
achieve a power-and thermal-aware coherent system. Ayoub et al. (2010)
presented a DTM mechanism for memory subsystems which intelligently
allocates workload pages to few memory units and powers down the
rest of the memory.

Thermal management became a prominent challenge in fighting
the expanding dark, nonactive, silicon areas on chip. Hajimiri et al.
(2013) proposed thermal-aware computation using proactive memory-
based computing to reduce the peak temperature of applications. This
technique proactively transfers the instructions with frequent operand
pairs to memory. In Kanduri et al. (2015) a dark silicon aware run-
time mapping method was proposed that activates and deactivates
cores as needed in order to evenly distribute power density across
the chip. The same authors expand this idea Kanduri et al. (2018a)
by providing enough thermal headroom for boosting the frequency of
active cores upon performance surges. Lower operating temperatures
from patterning also allows sustaining the boosting for longer periods,
improving the performance further.

Lee et al. (2015) and Lo et al. (2016) considers 3D stacking ar-
chitectures and the thermal limitations for such chips. The method
proposed by Lee et al. (2015) combines dynamic cache management
such as resource allocation, way-based power gating, and data migration
with dynamic voltage and frequency scaling of processing cores in a
temperature- and energy-aware manner. Lo et al. (2016) propose a
thermal-aware dynamic operating system page allocation using future
access pattern to find a best performance-oriented setting of the above
factors. Also, An analytic model has been proposed to estimate the sys-
tem performance considering the memory interference, the bandwidth
variation, and the throttling impact.

4.4. Dynamic thermal-aware management methods 53

Thermal aware communication systems can reduce the possibility of
thermal emergencies in the system (Wolf et al., 2016). Chou et al. (2017)
proposed a thermal aware method for dynamic buffer allocation for NoC
systems. Zhang et al. (2014) introduces a job allocation technique that
minimizes the temperature gradients among the ring filters to improve
the application performance in silicon-photonic NoCs. In the context
of local temperature hotspots in a load-imbalanced network, Murray
et al. (2014) demonstrated power and thermal profiles improvement by
utilizing congestion-avoidance routing with network-level DVFS in a
mm-wave small-world wireless NoC.

Finally, we can observe a trend in industry towards utilizing machine
learning Kaggle Inc. (2017); Parloff (2016) and neural network in power
and energy management. This has been enabled by easy access to con-
figuration knobs such as power gating, thread scheduling and frequency
scaling. This ease of access to configuration knobs has been granted
due to effectiveness of many of the approaches we discussed in this
section. Therefore, the current trends will open the path for more com-
plex management methods. Possible open challenges in power, energy
or thermal management might be hierarchical management schemes,
adaptive control or hybrid approaches comprised of machine learning,
heuristics and control theoretic methods.

Table 4.3: Thermal management techniques

Thermal management Techniques

Topology-aware mapping

Meterelliyoz et al. (2005), Ayoub et al. (2010),
Vassighi and Sachdev (2006),
Donald and Martonosi (2005),

Coskun et al. (2007), Liao et al. (2005),
Jung and Pedram (2006),

Zhang et al. (2014), Kanduri et al. (2015),
Chou et al. (2017), Kanduri et al. (2018a)

Resource allocation

Brooks and Martonosi (2001),
Skadron et al. (2003), Hajimiri et al. (2013),

Christoforakis et al. (2015),
Lee et al. (2015), Lo et al. (2016),

Wolf et al. (2016), Murray et al. (2014)

54 Power, energy, and thermal management

4.5 Summary

We presented run-time techniques that manage the system overall power
consumption, helps energy efficiency and avoid thermal emergencies.
Most of these techniques rely on monitoring application, partitioning
and mapping to get the best power consumption out of shared resources.
While some techniques heavily rely on hardware sensing, monitoring and
control, others use run-time workload profiling and software approaches
to manage the resources dynamically.

5
Reliability

In the last decade, as discussed in Semiconductor Industry Association
et al. (2011) reliability has become a major issue in digital circuits. The
aggressive scaling to nanoscale CMOS structures has caused a variety
of reliability threats such as aging and wear-out acceleration due to
the increased power densities and consequent thermal stress, higher
susceptibility to soft errors not only in harsh environments but also
at ground level, device variability leading to timing errors and other
effects, etc.

This issue has been even more exacerbated by the pervasiveness
of computing systems in nowadays life. In the past decade, reliabil-
ity was a relevant driver only for the design of digital appliances for
mission-critical applications, such as satellites, medical appliances, nu-
clear facilities or transportation systems. In most of these scenarios,
failures would have caused damages to the humans or to the environ-
ment. Nowadays, computing systems are intensively employed to control
and support any aspect of our life spanning from embedded appliances
enabling smart buildings to High Performance Computing (HPC) sys-
tems used for supporting financial and decision processes. Thus, apart

55

56 Reliability

the serious human and environmental risk, system failure may cause
also considerable financial and monetary loss.

Given these motivations, reliability has become in general a main
driver for digital systems design. In particular, when considering the
focus of this paper on on-chip resource management, reliability needs
to be considered at the same level of relevance of the other already
discussed drivers (performance, power, energy, . . .), thus leading to a
reliability-aware dynamic co-optimization.

Reliability-aware run-time resource management approaches can be
mainly classified according to the specific type of threat they aim at
addressing and the corresponding reliability attribute introduced into
the system. In particular, we may partition the approaches proposed in
the literature as follows:

• Lifetime management. These approaches aim at preventing
aging and wear-out threat by performing a more aging-aware
distribution of the workload and tuning of the architectural pa-
rameters in order to prolong the lifetime of the system.

• Soft error susceptibility management. These approaches aim
at distributing the workload and tuning the architectural param-
eters in order to trade-off the fault occurrence probability also
in relationship with process variability effects and the offered
performance level.

• Online fault management. These approaches aim at dynami-
cally detecting and managing the occurrence of faults by tuning
at run-time available resources, the running workload and the
possibly available fault management mechanism.

The following sections will review the literature for each one of these
aspects.

5.1 Lifetime management

Accelerated device aging causing timing errors or premature permanent
failures is one of the most challenging threats for nowadays computing
devices (Semiconductor Industry Association et al., 2011). Integrated

5.1. Lifetime management 57

Lifetime management
Type of architecture

Single-core Central Processing Unit (CPU)
Homogeneous multi-core CPU
Many-core architecture
Heterogeneous multi-core architecture
..

Considered aging mechanisms
Electromigration (EM), Time Dependent Dielectric
Breakdown (TDDB), ..
Thermal cycling
Negative Bias Temperature Instability (NBTI)

Type of workload
Sequential applications
Parallel applications
Dataflow applications

Actuation knobs
Dynamic Voltage and Frequency Scaling (DVFS) and
per-core power gating
Applications mapping
Applications scheduling
..

Co-optimization strategy
Optimize performance under power and lifetime
constraints
Co-optimize performance and lifetime under power
constraint
Co-optimize lifetime and soft error susceptibility
under performance and power constraints
..

Figure 5.1: Criteria considered for classifying lifetime management approaches.

58 Reliability

circuits suffer of several types of aging mechanisms, such as TDDB,
NBTI, EM, hot carrier injection (HCI) or thermal cycling (JEDEC
Solid State Tech. Ass., 2010). The main causes are jointly the sub-micro
CMOS technologies leading to higher power densities and the intensive
utilization of computing devices thus leading to a considerable thermal
stress. Indeed, Karl et al. (2008) have shown that failure mechanisms
have an exponential relationship with the temperature and an increase
of 10-15◦C may halve the expected lifetime.

The countermeasures adopted by the state-of-the-art approaches to
prolong the system lifetime is to use and manage the available processing
resources in a smarter aging-aware way for executing the workload. This
strategy is particularly effective for multi-core or many-core platforms
(both homogeneous and heterogeneous ones) thanks to the availability
of a large set of “programmable” processing resources, representing
a sort of redundancy, that can be dynamically tuned and selected
for the execution of the various applications composing the workload.
Furthermore, we should consider the fact that this kind of architecture
often experiences a dynamic workload, where applications presenting
different peculiarities and performance requirements enter and leave the
system with unknown load characteristics. As a consequence, run-time
management is even more critical because it can offer adaptivity to
the system to be able to react to evolving running conditions w.r.t.
reliability issues.

The commonly-used reliability-aware resource management approach
is based on a feedback loop for monitoring the aging status of the
various components within the system and subsequently taking decisions
on the utilization of the resources. Ideally, these approaches require
aging sensors (e.g. Blome et al. (2007); Ceratti et al. (2012)) to be
integrated in the device. However, even if widely studied by the research
community they are not commonly available in commercial platforms;
moreover, they are mainly suitable only for the monitoring of timing
errors. For this reason, per-core temperature sensors, that are generally
provided in modern devices, are used as input of a reliability emulation
monitors implementing standard stochastic reliability models described
in JEDEC Solid State Tech. Ass. (2010). Such models can be used by
these approaches to compute the lifetime reliability value Rlifetime(t),

5.1. Lifetime management 59

as the probability of the system not to permanently fail due to aging at
time t, and eventually the Mean Time To Failure (MTTF), estimating
the average lifetime of the class of devices.

It is worth mentioning the fact that the Dynamic Thermal Man-
agement (DTM) approaches discussed in Section 4.4 do not suffice
in managing lifetime reliability. In fact, when considering the charac-
teristics of several aging mechanisms, lifetime reliability is generally
characterized by a stochastic exponential model of the temperature,
considering both temperature levels and the time spent at those levels.
Thus, the straightforward temperature control avoiding thermal peaks
and hotspots or minimizing or smoothing the average thermal behavior
among the cores is not able to capture and control the “cumulative”
degradation behavior of the aging phenomena, thus leading to non-
optimal solutions, as demonstrated in the literature (in particular by
Srinivasan et al. (2004); Song et al. (2015)).

Starting from the first work by Srinivasan et al. (2004) proposing
the Dynamic Reliability Management (DRM) in 2004, in the past fifteen
years a plethora of approaches have been proposed focusing on many
different aspects. Thus, this literature can be classified based on various
criteria presented in Figure 5.1 and discussed in the following paragraphs.
Then, past approaches will be reviewed.

Type of architecture

The first DRM approach by Srinivasan et al. (2004) focused in a single
general purpose processor. After that, following also the architectural
progresses in the subsequent years, different types of platforms have been
considered spanning from the homogeneous multi-core architectures
(e.g. Coskun et al. (2009); Das et al. (2014); Ma and Wang (2012)),
where processing units are connected on a single bus and with a share
memory, to the many-core architecture based on a Networks-on-Chip
(NoC) (e.g. Ma et al. (2017a); Sun et al. (2014); Kim et al. (2016)).
Recently, heterogeneous architectures (e.g. Baldassari et al. (2017); Chen
et al. (2014b); Lee et al. (2018)), integrating asymmetric multi-cores,
Graphics Processing Units (GPUs) or custom accelerators, have been
also addressed in lifetime management.

60 Reliability

It is worth mentioning that lifetime management is generally per-
formed by considering the single processing units as the basic archi-
tectural element, thus without having the possibility to distinguish
computation, communication and memory resources as previously done
in the survey. This is due to the fact that temperature sensors on which
the reliability emulation relies are integrated at core level; thus lifetime
reliability is computed at the granularity of the single processing unit.
Indeed, the processing core is the component in the system which is
more susceptible to thermal hotspots and therefore requiring an aging
monitoring. Nevertheless, it is also worth mentioning that in some types
of distributed architectures, such as NoC-based many-core ones, each
single processing unit integrates its own memory system and network
interface in a single tile.

Considered aging mechanisms

To be effective the lifetime management strategy should integrate a
certain level of knowledge about the considered aging mechanisms in
order to limit the factors of stress. The effects on the lifetime reliability
of most of these phenomena (e.g. EM, TDDB and NBTI) can be
modeled for each single architectural core as an exponential function of
the temperature level. Just as to mention, the MTTF of a single core
working at a constant temperature T can be estimated by means of
the Arrhenius equation as (JEDEC Solid State Tech. Ass., 2010; Xiang
et al., 2010):

MTTF = A0e
Ea
kT (5.1)

with A0 being an empirically fitted constant, Ea the activation energy
of the specific aging mechanism and k the Boltzmann’s constant.

The only exception is thermal cycling; this phenomenon refers to
wear-out effects caused by temperature variations which produce an
inelastic deformation, eventually leading to failure. Thermal cycling
depends on both maximum temperature, and amplitude and frequency
of the temperature variations as shown in Coffin-Mason equation (Xiang
et al., 2010). This equation measures the average number of thermal

5.1. Lifetime management 61

cycles NT C remaining before device failure:

NT C = AT C (δT − Tth)(−b) e
EaT C
kTmax (5.2)

where δT is the thermal cycle amplitude, Tth is the threshold temper-
ature where the inelastic deformation begins, TMax is the maximum
temperature during the cycle, AT C is an empirically determined fitting
constant, b is the Coffin-Mason exponent constant, and EaT C is the
activation energy for thermal cycling. Then the MTTF due to ther-
mal cycling is the product between the number of cycles NT C and the
average period of the cycles, i.e. the reciprocal of the cycle frequency.

As a consequence, we can partition the past approaches in works
considering aging mechanisms subject to temperature levels (e.g. Kim
et al. (2016); Yamamoto and Ababei (2014)) and works considering also
thermal cycling (e.g. Chantem et al. (2013); Ma et al. (2017a); Das et al.
(2014)). In particular, from the first group, most of the approaches focus
on a single mechanism, generally EM since it is one of the predominant
issues, claiming that the effectiveness of the approach can be proved
also for all the other phenomena.

A more accurate model can be adopted for NBTI (Bhardwaj et al.,
2006; Wang and Xu, 2014), capturing the threshold voltage shift and
consequent variation on the propagation delays which eventually cause
timing errors in the system. This model considers not only the effects of
temperature variations but also the transition between stress and recov-
ery phases of the critical logical nets. Thus, a last class of works (Sun
et al., 2014; Karpuzcu et al., 2009) is specialized on NBTI. Finally,
it is worth mention that the vast majority of works consider aging
mechanisms in CMOS technology. Very few works acting at system
level consider different technologies; for instance, the approach in (Cai
et al., 2016) is specifically targeted for multi-cores implemented in Fin
Field-effect (FinFET) transistor technology and consequently adopts
specific models better describing the more complex relationship between
temperature and aging.

As a final note, for a more accurate discussion on models for lifetime
reliability please refer to JEDEC Solid State Tech. Ass. (2010); Xiang
et al. (2010); Bhardwaj et al. (2006); Wang and Xu (2014).

62 Reliability

Type of workload

Workload execution is obviously the main cause of thermal stress in
the device, and workloads are highly dynamic. Therefore, workload
distribution plays an important role in lifetime management and different
strategies are adopted depending on the types of applications. For this
reason, we may classify the past work depending also on the considered
type of applications:

• Sequential applications, composed of a single thread occupying
a single core (e.g. Chantem et al. (2013); Ma et al. (2017a)).

• Parallel applications, (one or many), each one spawning a set
of threads (e.g. Kim et al. (2016)).

• Dataflow applications, that are generally considered in the
NoC-based many-core platform and are modeled as a task graph
(e.g. Sun et al. (2014); Haghbayan et al. (2017)).

Actuation knobs

All the tuning knobs have an effect on the various optimization drivers
(performance, power consumption, temperature, etc.), and, therefore,
also on the aging. DRM approaches can be classified on the basis of the
set of knobs used in the work. The main knobs are:

• DVFS and per-core power gating (e.g. Srinivasan et al. (2004);
Coskun et al. (2009); Das et al. (2014); Ma and Wang (2012)),

• Application mapping (e.g. Sun et al. (2014); Haghbayan et al.
(2017)),

• Application scheduling (e.g. Coskun et al. (2009)).

Co-optimization strategy

The first DRM approach by Srinivasan et al. (2004) focused on the
optimization of MTTF. However, lifetime is only one of the optimiza-
tion drivers. As a consequence, most of the subsequent approaches

5.1. Lifetime management 63

define a multi-objective optimizations involving mainly performance,
power/energy consumption and lifetime. More precisely, various ap-
proaches consider a subset of the drivers to define a requirement to be
satisfied and perform an optimization of the remaining ones. The two
more interesting addressed co-optimization problems are:

• Optimize the performance while satisfying both a power budget
and a lifetime target (e.g. Haghbayan et al. (2017)).

• Co-optimize the trade-off between performance and lifetime, pos-
sibly considering a power budget (e.g. Ma and Wang (2012)).

Finally, few works consider also soft error susceptibility in the co-
optimization (e.g. Ma et al. (2017a,b)); they will be discussed later in
Section 5.2.

Based on the discussed parameters, the literature review is discussed
in the following. Then, Tables 5.1, 5.2, 5.3, 5.4, 5.5 summarize the
discussion based on the aspects highlighted above.

First approaches for single-core CPUs. The idea of a Dynamic Re-
liability Management (DRM) has been proposed for the first time in
2004 by Srinivasan et al. (2004). The paper proposed an architectural
model, called RAMP, to express the MTTF of a single core architecture
running a single-threaded application per time, by considering vari-
ous aging mechanisms. Indeed, the reliability model is quite simplistic
since it is based on simplicity on a non-realistic constant failure rate
allowing to compute the “instantaneous” MTTF based only on the
current working configuration. Then, the paper discusses intuitively
and without a concrete definition a very simple management strategy
adapting the processor (in particular, by tuning DVFS and other archi-
tectural configurations, such as instruction window size or the number
of Floating-Point Units (FPUs)) in response to workload change to meet
the lifetime reliability target while limiting performance loss. Finally a
last relevant contribution of this paper is a first demonstration of how
dynamic temperature management is not optimal to control aging; in
fact, this last one is not able to capture the long-term nature of the

64 Reliability

aging process. In the subsequent years, few other approaches consider a
similar scenario. In particular, Karl et al. (2008) defined an enhanced
reliability model considering aging history. Then, the proposed approach
controls DVFS by means of a Proportional-Integral-Derivative (PID)
controller taking the currently estimated reliability as an input.

Approaches for multi-cores. Subsequent works manage lifetime reli-
ability in multi-core architectures. In particular, Coskun et al. (2009)
investigated the effects of task scheduling and DVFS on the lifetime reli-
ability of a multi-core system executing a workload composed of single-
threaded applications. Various common dynamic policies for scheduling
(called stop_go, migration, balance, etc.), DVFS (DVFS-threshold,
DVFS-performance, etc.), and cores’ selection are systematically com-
bined and evaluated in terms of MTTF, computed by means of RAMP,
energy and performance. It is worth mentioning that this management
strategy does not exploit a reliability-estimation feedback loop to drive
decisions.

A similar scenario is considered in Ma and Wang (2012) where
an approach called PGCapping receives in input from the architecture
about current power consumption, per-core utilization, temperature and
current reliability (computed by means of RAMP) and decide how to act
on per-core power gating and DVFS to avoid exceeding a power budget,
optimize performance, and balance lifetime; PGCapping integrates
a Proportional-Integral (PI) controller and an iterative algorithm to
separately control the two knobs. An interesting aspect of approaches
focusing on multi-core architectures is the aim of balancing aging among
cores in order to intuitively prolong the overall lifetime of the system. In
general, they focus on some variation of the discussed scenario. Finally,
Cai et al. (2016) proposes an approach to control DVFS aimed at
reducing the aging effects in FinFET-based multi-cores.

Many other approaches have been proposed in the scenario of homo-
geneous multi-core systems running a multi-programmed and possibly
parallel application workload. For instance, in Mercati et al. (2017), a
more accurate aging model is considered and DVFS is controlled by
means of a two-stage controller based on predictive models; in particular
a long term controller is able to perform reliability budgeting to allow

5.1. Lifetime management 65

to age faster when performance boost is required and recover in the idle
period. The approach of Simevski et al. (2014) defines a simple round-
robin scheduling strategy selecting the youngest core for the execution of
the subsequent application. Another solution has been proposed by Das
et al. (2014) where machine learning strategies are used to identify
the optimal configuration in terms of workload mapping and DVFS
control to handle both EM and thermal cycling aging. An interesting
aspect of Mercati et al. (2017) and Das et al. (2014) is the fact that the
proposed controller is actually implemented and tested on a real board.
Finally, the approach by Song et al. (2015) systematically evaluated the
use of advanced knobs such as phase-aware thread migration, DVFS
and turbo boosting to trade off performance against lifetime.

Approaches for many-cores. In the recent past, research effort has
been devoted to DRM approaches for novel architectures, such as NoC-
based many-core architectures and heterogeneous multi-core platforms.
Mapping decisions assume a crucial role in many-core platforms since
it is necessary to identify the group of processing cores among the
large availability of resources to be used to execute each application
in an optimal way; more precisely, the topology of the selected cores
has a relevant effect both on the performance, due to the intensive
communications required by the several application tasks and the overall
thermal stress on the various units.

The approaches by Chantem et al. (2013); Ma et al. (2017a) define
run-time mapping policies for single-threaded applications aimed at
optimizing lifetime; these approaches feature a reliability emulation
module computing the current aging status of each core based on
the temperature profile received from the architecture. These works
are interesting since they consider various aging mechanism, including
thermal cycling, and exploit a more accurate reliability model proposed
by Xiang et al. (2010). A similar scenario is considered by Bolchini
et al. (2016) where a systematic investigation of various basic mapping
policies (workload balancing vs. usage of spare unit) has been carried
out to analyze the overall MTTF of a many-core system capable of
providing the minimum required performance level after a given number
of subsequent permanent failures of cores. The strategy by Karpuzcu

66 Reliability

et al. (2009) dynamically acts on Vdd scaling in small steps to control
the aging of the units in a many-core architecture. The technique defines
four different operating modes setting in a different way Vdd and the
current frequency to obtain different compromises among aging, power
consumption and performance. At run-time the controller selects the
best operating mode. The work considers an accurate NBTI aging model
showing the current degradation to the threshold voltage level. However,
single-threaded applications are considered, and the application mapping
and power budgeting are not fully addressed.

Many-core applications frequently execute dataflow applications,
that are generally modeled with task-graphs. Several other approaches
(e.g. Yamamoto and Ababei (2014); Bolchini et al. (2013b); Hartman
and Thomas (2012)) consider this scenario. The approaches proposed
in Yamamoto and Ababei (2014); Bolchini et al. (2013b) propose migra-
tion controllers periodically moving tasks of the application from elder
cores to younger ones. Such an approach is sometimes too fine-grained
since device aging process is slow (in the order of days). Therefore,
a periodic migration of the workload would be necessary only for ap-
plications lasting for days or weeks. Another mapping approach in a
similar scenario has been discussed by Hartman and Thomas (2012).
The decision algorithm performs an almost-exhaustive exploration of
the mapping to balance aging and minimize power consumption. More-
over, an interesting aspect of this work is the fact that, as by Bolchini
et al. (2016) sequences of subsequent core failures until the overall
system denial of service are considered in the evaluation of the approach.
Some other technique by Sun et al. (2014) considers the mapping of
application task-graphs onto many-core architectures focusing on the
NBTI degradation effects. In particular the approach defines a zoning
strategy to select the younger area of the resource grid to deploy the
arrived applications. Indeed this approach performs a performance vs.
lifetime optimization neglecting power consumption. Finally, an inter-
esting aspect of the work presented by Huang et al. (2011) is the mixing
between pre-computed design-time mapping solution for each mutually
exclusive application to be run with an on-line adaptation strategy
capable of refining the mapping according to the actual aging status of
the architectural cores.

5.1. Lifetime management 67

When considering many-core architectures, some works (Bhardwaj
et al., 2012; Wang et al., 2016) have also focused on the NoC infras-
tructure in order to alleviate the switch aging. In fact, while processing
resources are generally interchangeable since, especially in a homoge-
neous architecture, they are equal each other, failures in switches may
cause the interruption in some communication paths. Therefore, such
works define adaptive routing algorithms capable of balancing aging
while preserving low communication latency.

Another relevant aspect in many-core architectures is the so-called
dark silicon problem which dramatically limits the number of processing
units that can be switched on at the same time (Rahmani et al., 2017a).
As shown in many different works (Gnad et al., 2015; Kim et al., 2016),
dark silicon becomes an opportunity for lifetime enhancement since the
tight power budget offers a larger degree of freedom in the mapping
decisions. In this direction, work by Gnad et al. (2015) takes the mapping
policy into account as well as the power budget and the process variation
status of the cores to mitigate NBTI effects. However, the mapping
policy does not consider the topology of the architecture and related
communication issues in threads distribution. A similar contribution
is given by Kim et al. (2016) proposing a machine-learning strategy
to perform aging-aware mapping with respect to the EM phenomenon.
A simplified exponential model is used for lifetime reliability, similar to
RAMP. Nevertheless, also in this case a shared-memory architecture
is considered, and, as a consequence, the mapping strategy is quite
simplistic. Nevertheless, none of these approaches take into account
DVFS tuning for aging mitigation. The most comprehensive and efficient
approach in the scenario of lifetime prolonging for many-cores in the
dark silicon era as been proposed by Haghbayan et al. (2017), where
the run-time policy is able to map several incoming application task-
graphs and acting on DVFS and per-core power-gating to maximize
performance while satisfying both the power budget and the given
lifetime target.

Approaches for heterogeneous multi-cores. Finally, heterogeneous
system architectures have been studied in terms of lifetime efficiency.

68 Reliability

The challenge in this kind of architectures is the presence of differ-
ent types of processing units, such as asymmetric multi-cores, such as
the ARM big.LITTLE, GPUs and hardware accelerators; each one of
them is capable of providing a different trade-off in terms of perfor-
mance/power consumption and presents a different efficiency also w.r.t.
the characteristics of the specific applications in execution. This has a
relevant impact also on the aging of the various components, since most
power-hungry units generally age faster than low power counterparts.
Therefore, the investigated DRM approaches are aimed at dynamically
selecting for each application to be executed on the processing unit
offering the highest efficiency at the minimum cost, both in terms of
power consumption and aging.

In this perspective, the works by Baldassari et al. (2017); Mück
et al. (2017) define two similar reliability-aware run-time resource man-
agement controllers for the big.LITTLE multi-core architecture. As
for many previous works on different architectures, the controller ex-
ploits a feedback loop to sense power consumption, temperature and
workload performance; after that, reliability is computed based on tem-
perature sensing by means of a stochastic model (EM is considered by
Baldassari et al. (2017) while NBTI and HCI by Mück et al. (2017)).
Regarding performance measures, hardware performance counters are
used by Mück et al. (2017), while application-level throughput mea-
sures are performed by Baldassari et al. (2017). Then, both the two
approaches feature a decision policy based on predictive models for
performance, power consumption and aging, aimed at selecting for each
application to be executed the most suitable unit capable of satisfying
reliability constraint and performance requirements and minimizing
the power consumption. As shown by Baldassari et al. (2017), this is
achieved mainly by migrating on the LITTLE cores all low-demanding
performance applications, because such cores present a considerably
lower heating thanks to their low-power characteristics. Simultaneously,
CPU quota and DVFS are also tuned to the minimum level providing
the required application performance to even more reduce the power
consumption and, consequently, temperatures. Finally, also workload
balancing among the units of the same type helps in making the uti-
lization uniform. The final interesting aspect of this work is the fact

5.1. Lifetime management 69

that the defined controller has been implemented on a real big.LITTLE
platform, i.e. the Hardkernel Odroid XU3 board featuring a Samsung
5542 chip.

In the heterogeneous architecture scenario, some other works (Chen
et al., 2014b; Lee et al., 2018) specifically focus on the GPU resources
exploiting the same feedback-loop control approach. Based on the
observation that most of the kernels accelerated on GPU are still
memory bound, the approach by Chen et al. (2014b) defines a run-time
strategy to select the minimum number of streaming multi-cores in
the GPU architecture able to provide the desired performance level.
Then, the youngest streaming multi-cores are selected for the execution
while the rest of the resources are power-gated. In such a way, power
consumption and aging, focusing on NBTI, are dynamically minimized.
Finally, the approach by Lee et al. (2018) considers a broader scenario
w.r.t. the previous work by handling also process variability in the GPU
cores. The proposed workload balancer, based also on some architectural
improvements, aims at minimizing the aging due to NBTI and HCI
mechanisms.

Table 5.1: Summary of lifetime-aware DRM approaches w.r.t. the type of architec-
ture

Architecture Techniques
Single-core CPU Srinivasan et al. (2004), Karl et al. (2008)

Homogeneous
multi-core CPU

Coskun et al. (2009), Ma and Wang (2012),
Simevski et al. (2014), Das et al. (2014), Song et al.
(2015), Cai et al. (2016), Mercati et al. (2017),
Mercati et al. (2017)

Many-core
architecture

Karpuzcu et al. (2009), Hartman and Thomas
(2012), Bhardwaj et al. (2012), Bolchini et al.
(2013b), Chantem et al. (2013), Sun et al. (2014),
Gnad et al. (2015), Wang et al. (2016), Kim et al.
(2016), Ma et al. (2017a)

Heterogeneous
multi-core

Chen et al. (2014b), Baldassari et al. (2017), Mück
et al. (2017), Lee et al. (2018)

70 Reliability

Table 5.2: Summary of lifetime-aware DRM approaches w.r.t. the considered aging
mechanism

Aging
mechanism Techniques

EM, TDDB, . . .

Karl et al. (2008), Bolchini et al. (2013b),
Simevski et al. (2014), Yamamoto and Ababei
(2014), Song et al. (2015), Bolchini et al. (2016),
Haghbayan et al. (2017), Mercati et al. (2017)

EM,
TDDB, . . .+
Thermal cycling

Srinivasan et al. (2004), Coskun et al. (2009),
Chantem et al. (2013), Das et al. (2014), Ma
et al. (2017a)

NBTI
Karpuzcu et al. (2009), Sun et al. (2014), Gnad
et al. (2015), Cai et al. (2016), Mück et al. (2017),
Lee et al. (2018)

Table 5.3: Summary of lifetime-aware DRM approaches w.r.t. the type of workload

Workload Techniques

Sequential
applications

Srinivasan et al. (2004), Karl et al. (2008),
Coskun et al. (2009), Karpuzcu et al. (2009),
Ma and Wang (2012), Chantem et al. (2013),
Bolchini et al. (2016), Ma et al. (2017a)

Parallel
applications

Hartman and Thomas (2012), Bolchini et al.
(2013b), Yamamoto and Ababei (2014), Sun et al.
(2014), Bolchini et al. (2016), Cai et al. (2016),
Kim et al. (2016), Haghbayan et al. (2017)

Dataflow
applications

Sun et al. (2014), Das et al. (2014), Song et al.
(2015), Gnad et al. (2015), Kim et al. (2016),
Mercati et al. (2017), Haghbayan et al. (2017)

5.2 Soft error susceptibility management

Apart from the aging phenomenon, aggressive technology scaling has
caused another reliability issue, i.e. a dramatic increase in the suscepti-
bility for digital devices to soft errors. The main cause is the transistor
miniaturization which has implied a considerable decrease in the critical

5.2. Soft error susceptibility management 71

Table 5.4: Summary of lifetime-aware DRM approaches w.r.t. the actuation knob

Actuation
knob Techniques

DVFS and
power gating

Srinivasan et al. (2004), Karl et al. (2008),
Karpuzcu et al. (2009), Ma and Wang (2012),
Cai et al. (2016), Mercati et al. (2017)

Mapping

Hartman and Thomas (2012), Chantem et al.
(2013), Bolchini et al. (2013b), Simevski et al.
(2014), Yamamoto and Ababei (2014), Bolchini
et al. (2016) Sun et al. (2014)

DVFS, power
gating and
mapping

Das et al. (2014), Kim et al. (2016), Ma et al.
(2017a), Haghbayan et al. (2017)

DVFS, power
gating and
scheduling

Coskun et al. (2009), Song et al. (2015), Baldas-
sari et al. (2017), Mück et al. (2017)

Table 5.5: Summary of lifetime-aware DRM approaches w.r.t. the optimization
strategy

Optimization strategy Techniques

Optimize lifetime
Srinivasan et al. (2004), Karl et al.
(2008), Coskun et al. (2009),Chantem
et al. (2013), Simevski et al. (2014)

Optimize perf. under
power/lifetime limit

Mercati et al. (2017), Haghbayan et al.
(2017)

Optimize lifetime under
power/perf. limit

Bolchini et al. (2013b), Gnad et al.
(2015), Kim et al. (2016), Bolchini et al.
(2016)

Co-optimize
perf./power/lifetime

Karpuzcu et al. (2009), Hartman and
Thomas (2012), Ma and Wang (2012),
Song et al. (2015)

Co-optimize lifetime/soft
errors under power/perf.
limit

Xiang and Pasricha (2015), Ma et al.
(2017a), Ma et al. (2017b)

72 Reliability

charge necessary to make a memory or a logic element to bit flip, i.e.
to commute the stored logic value. Thus, environmental phenomena,
such as radiations (alpha particles or neutrons striking the circuit) or
electro-magnetic interferences and other sources of noise, present a high
probability to cause soft errors thus corrupting the data processing,
even if not causing any disruptive permanent effect in the architecture.

Soft error susceptibility in a given working scenario is generally
characterized with a constant failure rate. Thus, the soft error relia-
bility Rsoft_errors(t), being the probability of a single processing unit
to complete successfully the execution of a given computation, is mod-
eled with an exponential distribution. Then, Rsoft_errors(t) for complex
multi-core systems executing a multiprogrammed multi-task workload
can be computed based on classical serial/parallel system models (Ko-
ren and Krishna, 2007). Advanced soft error reliability model later
proposed (Zhao et al., 2008; Xiang and Pasricha, 2015) capture two
additional aspects:

• the fact that the failure rate of the processing unit has an expo-
nential relationship with the operating voltage/frequency level,
and

• the high process variability affecting modern technologies which
causes a heterogeneous characterization of the various processing
cores within the same device as in terms of failure rate due to soft
errors.

The literature presents some interesting approaches (a limited set
when comparing against the impressive number of contributions devoted
to lifetime optimization) aiming at performing run-time resource man-
agement; their goal is to tune architectural parameters and distribute
the workload in order to maximize the soft error reliability, i.e. the
probability of the system to correctly execute the running workload.

Zhao et al. (2008) considered the problem of distributing the work-
load, composed of various single-task applications and tuning voltage
and frequency levels, to optimize the trade-off between performance,
soft error susceptibility and energy. The proposed solution is statically
generated and later adapted at run-time by means of simple heuristics

5.2. Soft error susceptibility management 73

to refine voltage/frequency tuning. Same research teams have later pro-
posed various other solutions to similar resource management problems
to optimize soft error reliability.

Later, Kapadia and Pasricha (2015) have broadened the working
scenario by considering also (1) process variation which cause different
performance/reliability characteristics in the various processing ele-
ments, and (2) the dark silicon phenomenon, which sensibly constrain
the power budget to avoid chip burnouts. In this scenario, authors pro-
posed a run-time policy aimed at optimizing system performance and
energy consumption while satisfying dark-silicon power constraints, and
application-specific performance and soft error reliability constraints.
The policy consists of a mapping strategy for applications modeled
as task-graphs and DVFS tuning. This work has been later extended
by Xiang and Pasricha (2015) to consider in the same scenario a co-
optimization of also the lifetime reliability. Given the higher complexity
of the extended scenario, a hybrid design-time/run-time solution has
been defined to schedule a periodic workload composed of many task-
graph applications with an energy budget being variable over the time;
the goal is to maximize system performance, lifetime reliability and soft
error reliability. Finally, the considered scenario is even more enhanced
by Ma et al. (2017b) to consider also a heterogeneous platform, based
on the big.LITTLE multi-core paradigm. In this case, the run-time
policy performs mapping and voltage/frequency tuning to maximize
soft error reliability within a given target lifetime requirement.

Another class of works (e.g. Naithani et al. (2017); Rehman et al.
(2016); Rozo et al. (2018)) enhanced the soft error reliability model by
considering the fact that soft error susceptibility varies also according
to the actual application in execution. Naithani et al. (2017) considered
a big.LITTLE architecture and aimed at scheduling applications on the
cores to maximize soft error reliability. The work exploits the fact that
big and LITTLE cores have different failure rates and moreover various
applications present different susceptibility to soft errors. Therefore the
state-of-of-the-art Architectural Vulnerability Factor (AVF) and some
other derived metrics are used to measure the probability of each appli-
cation to fail on a given architecture and the online scheduling policy
selects the most suitable processing unit to maximize the reliability.

74 Reliability

The main idea of this paper is to balance the failure rate by means of
AVF index thus obtaining more accurate estimations.

In a similar way Rehman et al. (2016) considered further indexes
(Instruction Vulnerability Index, IVI, and Functional Vulnerability In-
dex, FVI) similar to the AVF to characterize and implement different
compile-time versions of each application presenting a different trade-
off between soft error reliability and performance. Then, a run-time
mapping policy was used to select which version of the application to
execute and on which resource of the multi-core architecture schedule
it to satisfy execution deadlines and maximize reliability. Finally, Rozo
et al. (2018) defined a hybrid approach combining a preliminary static
scheduling of applications on the multi-core with a dynamic tracing of
the fault occurrence in order to update the Fault Vulnerability Factor
(FVF) and consequently remapping at run-time to improve the soft
error reliability of the system.

Finally, in Naithani et al. (2018), another runtime scheduler is defined
to monitor the reliability characteristics of all applications running on
a heterogeneous multi-core, and dynamically distribute applications
to the different core types to maximize system reliability, in terms of
System Soft Error Rate.

A summary of the discussed techniques is presented in Table 5.6.

Table 5.6: Soft error susceptibility management

Reliability
model Techniques

Soft error rate Zhao et al. (2008), Kapadia and Pasricha (2015),
Xiang and Pasricha (2015), Ma et al. (2017b)

Soft error rate +
AVF

Naithani et al. (2017), Rehman et al. (2016),
Rozo et al. (2018), Naithani et al. (2018)

5.3 Online fault management

The last aspect to be discussed in this section regarding the reliability in
on-chip dynamic management covers the mechanisms and the strategies
to implement online fault management within the device. Indeed, when

5.3. Online fault management 75

Online fault management
Error detection

Timing error
Value error

Error recovery
Checkpointing
Mitigation/Masking

Fault diagnosis
Localization
Type

Fault recovery
Isolation
Reconfiguration

Figure 5.2: Criteria considered for classifying fault management approaches.

a fault occurs, the system has to be able to detect it and execute
some kind of management action both to complete successfully the
elaborations and to investigate the causes of the failure and, if possible,
take some recovery actions. As in the previous cases focusing on lifetime
and soft error susceptibility management, the availability of a large set
of “programmable” processing cores in modern systems can be used
opportunistically to implement some redundancies in the workload
execution thus enabling fault management features.

There is a huge literature on fault tolerant mechanisms for mod-
ern multi/many-core systems. Our choice here is to discuss only those
approaches that exploit the concept of dynamic resource management
for online fault management purposes. In other words, we do not ana-
lyze architectural solutions provided with hardware based mechanisms;
instead, we consider those approaches mainly relying on an accurate
distribution of the workload and eventually some additional redundant
applications on the available resources of a plain/non-hardened archi-
tecture, and tuning of the architectural parameters in order to enable
fault management.

An interesting classification of fault tolerant mechanisms has been
proposed by Mushtaq et al. (2011) considering multi-core systems. We

76 Reliability

here reconsider such taxonomy in order to update and refine it to the
current scenario considering on-chip resource management and we re-
perform the literature review. The refined taxonomy of online fault
management approaches is shown in Figure 5.2. We mainly identify four
different classes discussed in the following sections (actually the first
two classes are discussed together since the techniques are generally
tightly coupled and employed in conjunction), while a summary of the
most relevant analyzed approaches is reported later in Table 5.7.

5.3.1 Error detection and recovery

Error detection mechanisms are devoted to identifying the presence
of an error whenever the fault affecting the system is activated. The
effect of a fault may be of multiple types and consequently different
techniques need to be applied:

• Timing errors. The application does not terminate at the ex-
pected execution time.

• Crashes/Exceptions. The application crashes and/or an excep-
tion causes its interruption.

• Wrong result. The application terminates generating a wrong
result.

Timing errors are generally managed by means of watchdogs (e.g. Mah-
mood and McCluskey (1988)), i.e. hardware timers; the watchdog is
set with a deadline tuned according to the application execution time,
so that its expiration signifies the timing error. Moreover, crashes and
exceptions can be directly managed by the operating system, possibly
with the help of watchdogs. As a consequence such error detection
mechanisms are quite simple and are not very relevant in a discussion
on dynamic resource management.

On the other hand, wrong results are generally identified by means
of redundancies in the execution. The standard approach adopted in
the considered scenario is the Duplication With Comparison (DWC)
applied at software level. Here the challenge from the run-time resource
management point of view is the necessity to distribute and schedule the

5.3. Online fault management 77

software replicas on the available processing units mainly to limit the
overhead due to the additional computations. For instance, Mukherjee
et al. (2002) investigated various thread level duplication techniques
based on a Simultaneous Multi-Threading (SMT) mechanism or a
chip-level multi-core architecture. In the former the two redundant
threads are executed on the same core featuring SMT, while in the
latter they are executed on two different cores within the same device.
It is worth noting that the two threads are executed in a tight fashion
with a strict synchronization of input and output transmissions with
the memory, and specific hardware structures are required to perform
the online comparison of redundant (intermediate) outputs. Such strict
synchronization has been relaxed in a subsequent proposal by Smolens
et al. (2006) by decoupling thread execution. Finally, with the aim
of balancing reliability and performance, Wells et al. (2009) proposed
process duplication only for applications requiring fault detection while
exploiting the two cores to perform parallel processing thus maximizing
performance in the rest of the cases.

Software redundancies are also used to implement error recovery
mechanisms. In particular, fault mitigation is generally implemented by
using three replicas, dubbed as Triple Modular Redundancy (TMR), so
that it is possible to perform a majority voting to identify the correct
result. Further approaches exploit N-Modular Redundancy (NMR) to in-
crease the tolerance to multiple failures and re-execution/checkpointing
strategies thus exploiting time redundancy. To mention relevant works,
Shye et al. (2009) proposed Process-Level Redundancy (PLR), a soft-
ware layer running on the top of the operating system, automatically
managing process triplication and their synchronized execution. Vargas
et al. (2018) proposed an approach to improve the reliability of NoC-
based multi/many-core architectures. In particular, NMR is used to
achieve fault tolerance, and replicas are distributed on isolated parti-
tions to guarantee that no faulty replica contaminate the execution of
any other replica. Then, Chen et al. (2007) adapted at run-time the
checkpointing schema according to the architecture’s health and current
working configuration aiming at optimizing performance. In another
work, Subasi et al. (2017) applied at run-time selective replication in a

78 Reliability

HPC system in order to improve reliability of the system while decreas-
ing resource costs. Finally, Bolchini et al. (2012) defined a run-time
fault management layer for many-cores architecture aimed at scheduling
TMR replicas of multi-threaded applications in order to optimize the
global system performance.

A more advanced run-time fault management approach is proposed
by Bolchini et al. (2013a). The approach focuses on multi/many-core
architectures and considers different hardening techniques, such as
DWC, TMR and DWC+re-execution, that can be applied at different
granularity levels on the running multi-threaded applications (i.e. voters
and checkers can be placed for each task or only on the final application
output). Thus, the approach is provided with a wide set of hardening
techniques offering the possibility to tune the achieved fault management
features vs. the performance overhead due to the redundancies. When
a quite low error rate is experienced, DWC is used just to signal the
occurrence of errors. Then, if errors are frequent, TMR is applied at
task granularity level. In this way, the approach is able to mitigate
the effect of the faults and, additionally, based on minority voting and
error frequency count, diagnose possible failed components. In between
such two extreme situations, other techniques offer intermediate fault
management benefits and performance overheads. Finally, a scheduling
strategy is devoted to balance the load caused by the various task
replicas on the available cores, and at the same time satisfying mapping
constraints related to the applied techniques.

Chen et al. (2016) considered performance heterogeneity of the
architecture in the mapping of redundant applications on multi-cores
due to the aging and variability phenomena; in particular cores present
different maximum operating frequencies. The proposed mapping policy
decides at run-time on which cores it should distribute the redundant
threads and which redundant scheme to use (TMR or none) in order to
maximize reliability and guarantee performance constraints in terms of
deadlines. Indeed, it is worth noting that even though heterogeneity is
predominant in modern architectures, this is the only work addressing
this aspect.

5.3. Online fault management 79

5.3.2 Fault diagnosis

The goal of fault diagnosis is to locate the faulty component within the
architecture in order to take subsequent recovery actions. Fault diagnosis
can be performed concurrently with error detection and recovery or in
subsequently.

Fault diagnosis, and in particular localization, can be performed
concurrently to fault detection/mitigation by exploiting TMR minority
voting; the replica with the minority result is faulty, as performed for
instance by Bolchini et al. (2013a). This kind of approach is generally
suitable for any possible type of fault (permanent or transient). Then,
an exact classification of the type of fault can be performed by re-
execution; if the error persists the fault is permanent, otherwise transient.
Nevertheless, in order to increase the localization capabilities, TMR
has to be applied at finer granularity levels as shown by Bolchini et al.
(2013a), where TMR is applied at task level. A similar diagnosis approach
is used by Hari et al. (2009), where the first execution after the failure,
executed on the same core of the multi-core architecture, is used to
identify transient faults. Then, if the error is detected another time, a
second re-execution on a different core is used to distinguish permanent
faults and design bugs. Again, in all these approaches, application
scheduling and, therefore, run-time resource management is forced by
the constraints of fault diagnosis activities.

Fault diagnosis can be performed also as an independent strategy.
One of the main strategies is the online self-testing that is run concur-
rently to the execution of the nominal applications. In particular, this
approach is devoted to identifying permanent faults, due to their per-
sistent nature. It can be mainly performed by using hardware Built-In
Self-Test (BIST) (Hetherington et al., 1999) mechanisms or by using
Software-Based Self-Test (SBST) (Psarakis et al., 2010) programs. In
this survey, we focus on the last approach since it is the only one
“compliant” with the dynamic resource management. In particular, the
idea of SBST is to run specific software routines concurrently to the
nominal workload to perform an online testing of the resources within
the architecture in order to identify permanently failed components.
The integration of the SBST approach within the dynamic resource

80 Reliability

management framework is obtained by enhancing the scheduling algo-
rithm in order to issue self-test routines periodically based on a specific
policy. As discussed by Skitsas et al. (2018), there are two possible
scheduling approaches:

• periodically initiate the testing simultaneously on all the cores of
the system (e.g. Apostolakis et al. (2009)), or

• run SBST routines on the various cores independently based on a
given period (e.g. Skitsas et al. (2018)) or selectively based on a
priority rule (e.g. Skitsas et al. (2016); Haghbayan et al. (2016b)).

As an example of the former class, Apostolakis et al. (2009) proposed
an SBST approach for symmetric shared-memory multi-cores exploiting
core level execution parallelism to run the test concurrently on all the
cores thus reducing the execution time. Then, Foutris et al. (2010)
extended the previous work by using multi-threading thus even more
improving performance. However, the main limitation of this approach
is the fact that the overall architecture is forced to go offline during the
test.

To overcome this limitation, in the second class of approaches cores
are selectively tested thus exploiting an ad-hoc scheduling policy to
limit the impact on the system performance. Haghbayan et al. (2016b)
proposed an SBST routine scheduling algorithm for many-core architec-
tures aimed at testing cores on the basis of the suffered stress, in terms
of an aging metric, during the execution of the nominal workload. The
scheduling policy is aimed at avoiding any degradation in system per-
formance while not violating the power budget of the many-core system.
A similar approach was proposed b Skitsas et al. (2016) for multi-core
architectures optimizing the selection of the candidate core based on the
organization of the cache hierarchy. Being memory intensive programs,
SBST routines executed by some core can be subsequently reused from
some other units sharing some cache level so that cache hit percentage
is maximized and consequently performance overhead is limited. Finally,
other two approaches proposed by Skitsas et al. (2018); Kaliorakis et al.
(2014) perform periodic test scheduling by considering the memory
hierarchy in a similar way as Skitsas et al. (2016) considering multi-core

5.3. Online fault management 81

and many-core architectures, respectively, with the aim at minimizing
the overall test time thus increasing the service time.

5.3.3 Fault recovery

Once a unit is diagnosed as damaged, the last step is to perform fault
recovery actions mainly to isolate the damaged component. Again, this
strategy is particularly suitable to multi/many-core architectures, where
the cores or functional units can be disabled when faulty and the system
activity can continue with the remaining healthy ones. In this way, this
strategy offers a sort of graceful degradation to the system, allowing
to subsequently disable cores, and, consequently, degrading maximum
computational power achievable. Thus, the system will survive until
there is a minimum number of resources capable at providing the
minimum Quality of Service (QoS) required to the system.

For instance, both Bolchini et al. (2012) and Bolchini et al. (2013a)
integrated such a recovery strategy in their framework for many-cores to
disable faulty cores at run-time. In such a way they provide full-fledged
solutions aimed at performing all fault management actions (from error
detection to fault recovery) and thus adapting provided performance
levels. Chou and Marculescu (2011) integrated the isolation of faulty
units in their resource management approach for NoC-based many-core
architectures running task-graph based applications; the approach aims
at optimizing performance and communication energy. Another relevant
approach has been presented by LaFrieda et al. (2007) where units of a
multi-core architecture are coupled dynamically to implement DWC.
This flexibility allows also for tolerating permanently failed units by
means of isolation, thus reorganizing the core pairs for DWC purposes.

At a finer granularity, Aggarwal et al. (2007) proposed a modular
multi-core architecture where it is possible to execute applications
in DWC or TMR lock-step configuration. When a faulty component
is found (e.g. integer unit, cache bank, or memory controller) the
architecture can be reconfigured to isolate the failure thus remapping
the computations on another spare unit. It is worth mentioning another
work proposed by Gupta et al. (2008) where a resilient reconfigurable
multi-core architecture is proposed; the architecture is designed as a

82 Reliability

Table 5.7: Online fault management

Error detection Timing error Error value

Mahmood and McCluskey (1988)
Mukherjee et al. (2002),
Smolens et al. (2006),
Wells et al. (2009)

Error recovery Checkpointing Mitigation/masking

Chen et al. (2007),
Bolchini et al. (2013a)

Shye et al. (2009),
Vargas et al. (2018),
Subasi et al. (2017),
Bolchini et al. (2013a)

Fault diagnosis Localization Localization+type

Bolchini et al. (2013a)

Hari et al. (2009),
Apostolakis et al. (2009),

Skitsas et al. (2018),
Skitsas et al. (2016),

Haghbayan et al. (2016b)
Fault recovery Isolation Reconfiguration

Bolchini et al. (2013a),
Chou and Marculescu (2011),
Chou and Marculescu (2011)

Aggarwal et al. (2007),
Gupta et al. (2008),
Psarakis et al. (2014)

reconfigurable network of replicated processor pipeline stages. In case
a pipeline stage is affected by a fault, the architecture is reconfigured
in order to isolate the faulty stage and replace it with the equivalent
element of any other pipeline. Again, permanent faults will cause a
progressive degradation of performance. Moreover such finer grained
reconfiguration requires a specific network for interconnecting pipeline
stages of all the cores within the architecture. Finally, this component-
based isolation strategy is also employed by Tzilis et al. (2016); they
proposed a mapping approach exploiting a sort of health table to collect
for each core in the many-core architecture which are the healthy
components and the failed ones. Thus, an application, or a task, can be
mapped on a given core only if this last one provides all components
required for the execution. As an example, a task requiring floating point
operations can be performed only on cores where the FPU is healthy.
The advantage of this approach with respect to the previous two is
that there is no need of specific hardware mechanisms to implement
component isolation and core reconfiguration.

5.4. Summary 83

A last type of approach performing fault recovery specifically tar-
geted to Field Programmable Gate Array (FPGA) devices is proposed
by Psarakis et al. (2014). The authors consider a self-healing proces-
sor system implemented on FPGA devices. In this scenario soft errors
affecting the configuration memory present a permanent effect. Thus,
the processor is capable of identifying possible faults affecting the con-
figuration memory by means of hardware-based detection mechanisms;
such mechanisms trigger the execution of a specific software routine
performing a reconfiguration of the faulty region in order to restore the
correct hardware functionality.

5.4 Summary

We presented run-time resource management techniques aimed at han-
dling reliability issues. In particular, we have discussed three different
issues that are: (1) lifetime management, (2) soft error susceptibility
management, and (3) online fault management. Most of the techniques
are aimed at steering the workload distribution, resource assignment
(mapping and/or scheduling) and architectural tuning (DVFS and simi-
lar knobs) to co-optimize reliability (aging, soft error susceptibility, and
fault management capabilities) and some other classical metrics, i.e.
performance and power consumption. The main difference among them
is the different working scenario each one of them considers (e.g. type
of architecture or workload, type of reliability issue, . . .). Consequently,
the result is a large variety of run-time strategies each one tailored to
the specific peculiarities of the considered scenario.

6
Quality of Service

Quality of Service (QoS) is one of the primary metrics to qualitatively
evaluate the system’s efficiency in satisfying applications’ requirements.
With varying algorithmic models, user interaction, responsiveness, end
results, compute, storage, network and Input/Output (I/O) require-
ments, qualitative significance of resources vary among applications.
Thus different applications perceive different measurable system param-
eters as QoS. For instance, streaming applications consider per-input
latency to be significant, whereas batch applications consider per-input
throughput as a relevant QoS metric, rather than latency (Guo et al.,
2007b). On the other hand, enterprise applications consider guaranteed
resource allocation (infrastructure-as-a-service) itself as defining QoS
measure (Zhou et al., 2016). Examples of QoS metrics from widely
used latency, throughput, I/O and service centric application domains
are presented in Table 6.1. QoS remains one of the first order design
constraint in soft, hard and mixed criticality real-time systems, where
the notion of QoS corresponds to lower worst case execution time and
guarantees on meeting hard deadlines. Most of the techniques in the
context of real-time systems focus on individual jobs, schedulability
in presence on other concurrent jobs and arbitration among them to

84

85

guarantee meeting deadlines (Burns and Davis, 2013). In the context
of this survey, we move the abstraction higher, focusing on user and
application specific QoS measures. As such, QoS metrics are typically
expressed at user/application level such that they can be translated
into system level parameters to measure levels of QoS being provided
and to scale resources to match specified QoS requirements (Herdrich
et al., 2016).

Table 6.1: Examples of QoS metrics

Application QoS metrics
Multimedia Frame rate (Hamers and Eeckhout, 2010)
Streaming Latency per input (Guo et al., 2007a)

Data processing, analysis Throughput (Yang et al., 2013)
Enterprise, business analytics,

SaaS, IaaS Availability (Ranganathan and Jouppi, 2005)

Web search, financial analytics Latency per query (Lo et al., 2014)
Social media End user latency (Mars et al., 2011)

User, service centric Responsiveness (Papazoglou and Georgakopoulos, 2003)

With diverse requirements of applications and a range of tunable
knobs to guarantee those requirements, on-chip support becomes nec-
essary to guarantee QoS (Grot et al., 2011). However, run-time QoS
management becomes challenging with (i) variable workload characteris-
tics and QoS requirements of applications, (ii) expression and translation
of user/application level QoS metrics into system level parameters, and
(iii) resource contention and arbitration among concurrent applications.
On-chip resource management to satisfy QoS requirements while meet-
ing system objectives is further complicated with frequent conflicting
resource allocation decisions (Zhao et al., 2016). A widely used strategy
for QoS management is to translate input QoS metrics into system
parameters, monitor the system level metrics and decide on resource
allocation, such that they are scaled to satisfy specified QoS (Zhao et al.,
2016). QoS requirements among applications vary largely based on

• nature of computation - compute, memory and I/O intensity,
streaming inputs and batch processing

• nature of end result - numerical, perceptive, soft and hard real-
time, and user-interaction

86 Quality of Service

Quality-of-Service
Performance bound

Compute
Memory
Network and I/O

Accuracy bound
Static
Dynamic
Robust

Figure 6.1: Abstract classification QoS management

This leads to an abstract classification where QoS requirements are
often eventually performance-bound and/or accuracy-bound. Figure 6.1
shows a summary of techniques for on-chip QoS management. While
performance bound QoS metrics are met through allocating compute,
memory and network bandwidth resources, accuracy-bound QoS metrics
are guaranteed through quality monitoring and control. In the following
sub-sections, we present major underlying approaches and strategies
for QoS guarantees in the context of multi-core and many-core systems
running concurrent applications, enabled with user/application defined
QoS targets and system level QoS measures.

6.1 Performance bound QoS

Existing performance-bound strategies allocating and/or dynamically
scaling enough amount of platform resources viz., compute, memory,
network and I/O bandwidth to satisfy QoS requirements. Allocation
decisions, particularly running concurrent applications (and/or tasks
within an application) with diverse QoS requirements needs further
arbitration - to identify and alter applications’ priorities, for efficient
resource allocation and utilization. In this context, run-time resource
allocation policies can be majorly classified as elite, utilitarian and fair
- based on their dynamic prioritization criteria. Elite policies prioritize
applications with higher QoS requirements while utilitarian approaches
prioritize applications with efficient resource utilization. Both these
approaches allocate more/enough amount of resources for prioritized

6.1. Performance bound QoS 87

applications to guarantee QoS. Fair policies allocate resources equally
among all applications such that concurrent applications do not unfairly
suffer from prioritized applications. In the following sections, we present
QoS oriented resource management techniques based on allocating
compute, memory and network resources, which implicitly fall under
one of the aforementioned policy classes. An overview of different QoS
oriented resource allocation techniques are summarized in Table 6.2

6.1.1 Compute

We focus on techniques that allocate compute resources to meet QoS
requirements, including application to core assignment, larger Central
Processing Unit (CPU) time slices and higher voltage and frequency
levels. QoS management techniques rely on requirements expressed at
user/application level, allocate resources to match those requirements
and dynamically scale the resources (if needed) by monitoring run-time
performance metrics (Zhou et al., 2016; Tang et al., 2012). Typical
requirements include latency, throughput and guarantees on compute
infrastructure etc., while monitoring metrics include instructions-per-
second and speed up. Combining a set of cores, memory and network
bandwidth into a compute infrastructure package and providing such
packages to applications as per their QoS requirements is a simple yet ef-
fective approach (Zhou et al., 2016). Specifically, enterprise applications
which consider guaranteed allocation of compute infrastructure itself as
a quality metric, referred to as infrastructure-as-a-service (IaaS), benefit
from this approach (Zhou et al., 2016). While allocation decisions are
deterministic and expected QoS is guaranteed, it might lead to resource
over/under utilization under workloads with varied QoS requirements
- largely due to the enforced isolation among different applications.
This issue can be addressed by clustering applications with similar
requirements into a batch and allocating resources accordingly, avoiding
fragmentation i.e., under-utilized/interleaved compute resources (Lo
et al., 2014). A further optimized strategy is smart co-location of con-
current applications with diverse requirements at application mapping
and scheduling phases (Mars et al., 2011). This approach tries to find a
suitable combination of applications with diverse requirements which

88 Quality of Service

Table 6.2: QoS provisioning
Resource Allocate Techniques

Compute More cores, higher parallelism,
heterogeneity,customized cores

Application/thread mapping
task migration, scheduling

Storage Larger cache slices - capacity
Adaptive memory allocation - bandwidth

Cache partitioning, page coloring
proximity to memory mapping

Network and I/O Customized interconnect architecture,
higher network and I/O bandwidth

Location aware mapping and adaptive
routing for I/O and network bandwidth

can fit into a batch, such that QoS requirements can be met while also
retaining efficient resource utilization (Yang et al., 2013).

Apart from the aforementioned approaches, another class of run-
time techniques leverage heterogeneous architectures for QoS guarantees.
A combination of general purpose, asymmetric and specialized cores
within heterogeneous systems expose more options for executing - (i) con-
current applications with diverse requirements (Petrucci et al., 2015)
and analogously for (ii) concurrent tasks within an application (Joao
et al., 2012). QoS requirements of each application/task are identi-
fied by translating user/application level specifications. Based on these
metrics, run-time techniques choose execution units (among heteroge-
neous options available) that are more suitable for each application/task
such that QoS requirements are met (Li and Nahrstedt, 1999; Yang
et al., 2013). Dynamic adaptation and resource scaling decisions are
made by monitoring system level performance metrics such as speed
up, instructions-per-second etc. (Herdrich et al., 2016; Tang et al., 2012;
Zhang et al., 2014). These techniques are particularly beneficial for con-
current workloads with diverse requirements, where run-time decisions
can match each application/task’s QoS requirements appropriately with
available heterogeneous options - satisfying QoS demands with efficient
resource utilization (Delimitrou and Kozyrakis, 2013; Lo et al., 2014).

6.1.2 Memory

Contention for lower levels of cache and With compute-memory perfor-
mance gap, allocating larger cache slices and higher memory bandwidth
significantly enhances performance bound QoS metrics (Sung et al.,
2017). Concurrent applications with diverse memory access patterns,
compute-memory phases and intensities and cache utilization is a major

6.1. Performance bound QoS 89

reason for application slow down and QoS degradation (Tang et al.,
2011; Subramanian et al., 2015). Cache partitioning to provide either
larger or at least sufficient enough last level cache slices is a common
approach to meet QoS requirements of latency critical applications
(Kasture and Sanchez, 2014; Iyer et al., 2007). Identifying applica-
tion/thread priority and scaling cache allocation accordingly, following
utilitarian principles is another strategy to improve overall throughput
metrics (Herdrich et al., 2016; Sharifi et al., 2011; Sung et al., 2017;
Guo et al., 2007a). Optimizing for memory controller proximity reduces
shared resource pressure further and provides predictable QoS guar-
antees (Beckmann et al., 2015; Subramanian et al., 2015). Allocating
higher memory bandwidth to applications that gain from such provision-
ing through smart paging is proposed in Ye et al. (2014); Zhang et al.
(2009); Cho and Jin (2006). Memory provisioning techniques typically
monitor low level resource utilization metrics such as cache miss rate,
memory access penalty, application progress and cache utilization factor
for dynamic prioritization (Guo et al., 2007b). While software defined
allocation decisions are embedded within operating system level schedul-
ing policies, efficient dynamic cache and memory allocations decisions
require micro-architectural extensions to identify and translate between
user/application defined QoS performance metrics and system level QoS
utilization metrics (Li et al., 2012, 2011; Herdrich et al., 2016).

6.1.3 Network and I/O

Allocating higher network and I/O bandwidth to prioritized applica-
tions can guarantee latency and throughput QoS requirements. Existing
techniques have used customized router architecture, virtual channels,
flow control and frame scheduling to provide higher network bandwidth
for dynamically identified priority applications. Classification of net-
work into shared resource and non-shared resource clusters to allocate
non-QoS and QoS tasks respectively through novel router architecture
was proposed in Grot et al. (2011). Assigning each flow into frames
and intelligent scheduling globally synchronized frames to optimize for
latency is proposed in Lee et al. (2008). The same idea is extended
by Ouyang and Xie (2010) with a flexible local frame scheduling and

90 Quality of Service

preemptive flit reservation for more bandwidth for high priority appli-
cations. Distinguishing between latency and throughput sensitivity of
best effort (BE) and guaranteed throughput (GT) to optimize their
respective flow control is proposed by Diemer and Ernst (2010); Diemer
et al. (2010). While BE applications are prioritized by default, priority
is inverted to GT when BE applications have used enough buffer space
reflecting in a certain throughput guarantee. Assigning a fixed band-
width to each flow and monitoring its bandwidth utilization to prioritize
and allocate network resources to utility frames is proposed in (Grot
et al., 2009b). A similar approach with hybrid fair and elite round robin
bandwidth allocation using weighed priorities is proposed in (Heißwolf
et al., 2012). Each of these techniques dynamically determine priority
of packets (originating from priority applications) and route them first,
while other low priority packets wait in the queue.

Table 6.3: Performance oriented QoS management techniques

Scheduling Design spec. Robust
Delimitrou and Kozyrakis (2013),

Lo et al. (2015),
Petrucci et al. (2015),
Shelepov et al. (2009),

Van Craeynest et al. (2013)

Koufaty et al. (2010),
Delimitrou and Kozyrakis (2014),

Saez et al. (2012)

Provisioning Compute Platform

Wang and Martínez (2016),
Wang and Martínez (2015),
Zahedi and Lee (2014),
Saputra et al. (2002)

Kasture and Sanchez (2014),
Beckmann et al. (2015),

Sanchez and Kozyrakis (2011),
Beckmann and Sanchez (2013),

Kim et al. (2004),
Cho and Jin (2006),
Zhang et al. (2009),
Ye et al. (2014)

Managing QoS through Co-scheduling: In addition to provi-
sioning, spatial scheduling of concurrent applications and tasks within
an application to suitable cores can improve both per-application la-
tency and per-chip throughput. Mars et al. (2011); Yang et al. (2013);
Zhao et al. (2016) have shown that contention for shared resources
of memory and functional units among concurrent applications is the
reason for application slow down due to interference. Mars et al. (2011);

6.2. Accuracy bound QoS 91

Subramanian et al. (2015) quantified the extent of QoS degradation of
certain workloads when run with other workloads to predict an estimate.
This can be used to intelligently schedule applications by co-locating
them such that QoS and utilization are met. Yang et al. (2013) extended
this principle into a monitor (bubble) and act (flux) phase. QoS of la-
tency sensitive applications are observed in bubble phase for estimates
and during flux phase, batch applications are scaled down as per QoS
requirements met in bubble phase.

6.2 Accuracy bound QoS

Thus far, we have described QoS in terms of performance with an implicit
assumption that all computations are accurate. However, applications
from certain domains present tolerance to inaccurate computations, due
to their inherent error resilience. Applications such as multi-media pro-
cessing, big data analytics, computer vision, machine learning, internet-
of-things etc., often deal with redundant, noisy analog data and rely
on iterative and probabilistic algorithms (Esmaeilzadeh, 2015; Nair,
2015). Such computation models and input data characteristics makes
these workloads tolerant to inaccurate results. Approximate computing
has emerged as another paradigm for performance and energy gains by
relaxing accuracy (Esmaeilzadeh et al., 2012a). Performance demands of
emerging workloads and energy efficiency of resource constrained com-
puter systems can be addressed with approximate computing, leveraging
the inherent error resilience. Despite the performance and energy gains,
approximation requires disciplined tuning to guarantee an acceptable
quality of end result. In this section, we discuss various techniques that
exploit accuracy trade-offs in a disciplined and controlled fashion to
maximize performance and energy gains while striving for minimizing
quality loss. While the previous section provides a performance bound
perspective, this section presents strategies for accuracy bound QoS
which focus on quality of result.

Accuracy bound quality management requires strategies to enable
approximation, on top of which run-time systems for dynamic quality
management and control are deployed. Implementing approximation
requires interaction among all layers of the computing stack ranging

92 Quality of Service

from algorithms, programming languages, compilation, ISA extensions,
architecture through logic and devices. In the context of this survey, we
first present techniques to enable approximation, followed by different
run-time quality control approaches.

6.2.1 Enabling accuracy trade-offs

We present different techniques which realize approximation at run-
time across the computing stack, split into two steps (1) identification
and expression of error resilient behavior and (2) exploiting the error
resilience through architecture and hardware implementation.

Identification and Expression There are a range of works which iden-
tify approximable regions of code (Carbin and Rinard, 2010; Rinard,
2006; Carbin et al., 2011; Kling et al., 2012) and express them through
programming language constructs (Misailovic et al., 2010; Sidiroglou
et al., 2011; Carbin et al., 2012, 2013; Rinard, 2007; Bornholt et al.,
2014) at a software level to realize approximate execution. Discarding a
sub set of non-critical tasks within an application to reduce the work-
load was proposed in Rinard (2006), and provided an acceptable end
result. Similarly, skipping some iterations over compute intensive and
bottle neck loops, loop perforation, for reduced number of computations
within acceptable quality loss was proposed by Misailovic et al. (2010)
and Carbin et al. (2011). Further, optimizing the Pareto-space for the
number of loops to be skipped to maximize performance and minimize
accuracy loss with rigorous off-line training inputs has been explored
by Sidiroglou et al. (2011), while Relax (Carbin et al., 2012) provides
formal constructs to identify and express loop and code perforation
and task skipping (Carbin et al., 2012). Although the identification and
expression of these techniques happens at design time, approximation is
realized at run-time, although without requiring on-chip management.
EnerJ proposes programming language constructs and compiler exten-
sions for expressing error tolerant behavior of an application through
approximate data types (Sampson et al., 2011). The idea is to run the
specified instructions and corresponding data objects on approximate
hardware, realizing approximation at run-time. Samadi et al. (2013) and

6.2. Accuracy bound QoS 93

Samadi et al. (2014) provide dynamic compilation support to generate
approximate versions of compute intensive kernels to reduce workloads,
without tweaking the hardware.

Architectural and hardware implementation An identification, ex-
pression and translation mechanism similar to EnerJ was used by
Esmaeilzadeh et al. (2012a,b); St Amant et al. (2014); Moreau et al.
(2015), with implementation of approximate hardware being the ma-
jor distinction among them. Truffle (Esmaeilzadeh et al., 2012a) uses
voltage over-scaling to realize distinct accurate and approximate ver-
sions of cores and provide Instruction Set Architecture (ISA) extensions
to support expression of approximation. Esmaeilzadeh et al. (2012b);
St Amant et al. (2014); Moreau et al. (2015) follow a similar approach
to Truffle infrastructure, however using neural functional units and
limited precision analog circuits to provide approximate functionality.
When a compiler pass indicates an error resilient region, approximate
hardware is invoked at run-time and the corresponding computational
block is implemented on the approximate hardware units. Neural net-
work based Field Programmable Gate Array (FPGA) accelerators for
opportunistic approximation at run-time for diverse sets of machine
learning and multi-media applications were widely explored by Grigo-
rian et al. (2015); Chen et al. (2014a); Du et al. (2015); Liu et al. (2015);
Chen et al. (2014c).

Apart from custom acceleration, traditional prediction and specula-
tion techniques revised with relaxed prediction penalty were presented
by Thwaites et al. (2014) and San Miguel and Badr (2014). In both
cases, the idea is to exploit value locality of data to execute on predicted
data, avoiding fetching new data into the pipeline, using ISA extensions
to reflect approximate loads and stores. Full scale ISA extensions for
representing approximate instructions is presented by Venkataramani
et al. (2013), where each instruction has a quality bit that represent the
extent of hardware approximation. Flikker (Moscibroda and Zorn, 2011)
uses ISA extensions to represent critical and non-critical data and stores
them accordingly in accurate and approximate memory units using
variable refresh rates for Dynamic Random-Access Memory (DRAM).
Similar variable precision storage using hints from the instruction level

94 Quality of Service

were explored by Cui et al. (2014), Qiao et al. (2015) and Shoushtari
et al. (2015).

In summary, most of the architectural techniques follow the baseline
approach of expressing approximable regions or functional blocks, com-
pilation and ISA extensions to support such expression and hardware
units including custom accelerators and storage units which are invoked
at run-time to execute on approximate hardware.

6.2.2 Accuracy bound QoS management

Reasoning for accuracy loss, guarantees on end results and error bounds,
and control on Quality of Result (QoR) becomes crucial for the viability
of approximation techniques. Existing works have largely focused on
approximation techniques alone and using profiling, calibration and
light weight checks for nominal quality control (Laurenzano et al., 2016).
In the context of QoS management, we focus on techniques that strive
for maintaining bounded error, guarantees and control on quality of
result. QoR of most of the deterministic applications largely depends on
input data. While hard guarantees can be provided only over pre-defined
input data and deterministic approximation, empirical and statistical
guarantees are sufficient for quality control, allowing efficient usage
of approximation (Moreau et al., 2017). We divide quality assurance
techniques into three categories viz., static - profiling, dynamic - calibra-
tion and robust - control and roll back. Table 6.4 shows a summarized
classification of QoS management techniques. In addition to the quality
control techniques, we also present techniques that exploit approxima-
tion to realize specific objectives such as power capping and meeting
performance guarantees. These techniques are detailed in the following
sections.

Static techniques Static techniques depend on profiling, where each
approximation technique is validated against a fixed, perhaps exhaustive,
set of inputs to derive empirical guarantees on error. While identification,
analysis and modeling of quality loss is static in nature, these techniques
employ the obtained heuristics dynamically. Approximation techniques

6.2. Accuracy bound QoS 95

typically identify error resilient regions of code such as critical sections
(Esmaeilzadeh et al., 2012b), forgiving computations (Samadi et al.,
2013), resilient data types (Sampson et al., 2011) within an application
as candidates for various types software approximations including loop
perforation (Sidiroglou et al., 2011), tiling (Samadi et al., 2013) and
hardware approximations such neural acceleration (Esmaeilzadeh et al.,
2012b) and relaxed functional units (Venkataramani et al., 2013). Static
techniques use profiling - executing candidate code blocks over (exhaus-
tive) set of data inputs to extract average and worst case relative error
bounds (Samadi et al., 2013; Baek and Chilimbi, 2010; Sampson et al.,
2011). Static techniques are as effective as the input data coverage i.e.,
error bounds can be guaranteed for input sets that are pre-evaluated,
which can in turn be used at run-time for quality control.

Table 6.4: Managing accuracy as QoS

Parameter Static Dynamic and robust

Compute

Wang et al. (2017b), Ho
et al. (2017), Li et al.
(2015), Mitra et al.
(2016), Carbin et al.
(2011), Carbin and
Rinard (2010),
Misailovic et al. (2010)

Zhang et al. (2017),
Raha et al. (2015), Xu
et al. (2017), Park et al.
(2016), Tziantzioulis
et al. (2016), Sui et al.
(2016), Mahajan et al.
(2016)

Logic
Gebregiorgis et al.
(2017), Bruestel and
Kumar (2017)

Huang et al. (2012), Li
et al. (2015)

Dynamic techniques Dynamic quality control techniques use calibra-
tion - executing each candidate block of code over both accurate and
approximate methods to determine nature and extent of errors induced
at run-time (Esmaeilzadeh et al., 2012b; Sidiroglou et al., 2011). These
approaches then either rely on user-defined or application level accuracy
requirement targets to determine whether approximate execution is
within an acceptable quality range. Some techniques use the target
accuracy requirement as a feedback to explore accuracy-performance

96 Quality of Service

Pareto space to configure the extent of approximation (Sidiroglou et al.,
2011; Baek and Chilimbi, 2010). Dynamic techniques are efficient in pro-
viding empirical and/or statistical guarantees on quality, however they
require additional hardware/software overhead for continuous monitor-
ing and execution of both accurate and approximate versions. Reducing
sampling rate of monitoring might ignore errors induced during the
un-sampled interval.

Robust techniques Robust quality control techniques monitor accu-
racy loss at run-time and further roll back to accurate execution in
case of errors induced beyond acceptable thresholds. Robust techniques
address the limitations of static techniques which can provide guarantees
only over tested inputs, and dynamic techniques which have overheads
and lesser coverage within sampled invocation. Robust techniques use
predictive, online learning, light weight checks and monitoring strate-
gies to compute quality loss and predict the extent of quality loss for
subsequent inputs (Laurenzano et al., 2016; Wang et al., 2017a). The
quality loss is compared against user defined accuracy requirements to
determine on either toning down aggressive approximation or selecting
a different type of approximation technique (Xu et al., 2017; Grigorian
et al., 2015). In case of unacceptable results, these approaches roll back
i.e., re-execute the candidate code blocks in accurate mode to cover for
the accuracy loss. Robust techniques include re-configuring the extent of
approximation (Wang et al., 2017a; Grigorian et al., 2015), re-generation
of the type of approximation used iteratively (Xu et al., 2017; Moreau
et al., 2017) and pro-actively (Sui et al., 2016; Laurenzano et al., 2016),
and roll back by re-executing the code block accurately (Khudia et al.,
2015; Mahajan et al., 2016).

Exploiting accuracy trade-offs While opportunistic approximation
is open-looped with the target of improving performance or energy
efficiency in general, some techniques have used approximation to realize
specific goals of maximizing performance within minimum energy and
loss of accuracy. Kanduri et al. (2016) have proposed approximation as
another knob for power management, to cover up for the performance
loss incurred in power capping techniques. They switch the mode of

6.3. Summary 97

execution within an application from accurate to approximate and
vice-versa subject to system demands. A similar approach to meet
deadlines of applications with hard real-time constraints was proposed
by Tan et al. (2015). This can be extended in the context of both
multi-core and many-core systems running emerging workloads from
media processing domains and can be exploited opportunistically subject
to application requirements (El-Harouni et al., 2017; Palomino et al.,
2016). Particularly with battery operated mobile processors and resource
constrained systems, approximation can be used for efficient resource
allocation (Kanduri et al., 2018b).

6.3 Summary

We presented both performance-bound and accuracy-bound QoS man-
agement techniques. Most of these techniques rely on a wide range of
application and system level monitors to translate QoS requirements
into measurable parameters for dynamic provisioning. While specific
application domains and platforms have benefited from such monitoring
and resource allocation, QoS management has been confined to those
domains only. A more generalized approach to describe application/user
level QoS requirements and formal translation of such requirements
as system parameters can ensure wider coverage for QoS guaranteed
systems.

7
Limitations of current approaches and recent

trends

As this survey witnesses, the body of work on specific resource man-
agement techniques is overwhelming. They cover all levels from devices,
circuits, to architecture, operating system and application. They address
a variety of optimization objectives for energy, performance, wear out,
lifetime, quality of service, and others. Many of them are certainly useful
and today there is probably no SoC as part of a product that does not
deploy dynamic resource management techniques. The energy efficiency
of modern smart phones could not even closely be achieved without
extensive resource management and server farms could not be cooled
if unused resources were not de-activated even if cooling was free of
charge.

Holistic approaches However, as this survey also illustrates, individual
techniques for pursuing isolated optimization goals can do only so much.
Managing the on-chip network, the Central Processing Unit (CPU)
cores, and the off-chip memory independently of each other leads to sub-
optimal solutions, and optimizing only for power without considering
temperature, lifetime, and quality of service does not live up to the
requirements in modern adaptive, resource constrained devices and

98

99

systems. Rahmani et al. (2017b) use dynamic task mapping in a multi-
core platform as a case study to show that the pursuit of isolated
objectives leads to sub-optimal solutions that fail to meet a broader
range of goals. A performance driven task allocation algorithm, as
proposed by Haghbayan et al. (2015), results in dense mappings with
small areas of the chip heated up beyond safe temperature margins that
significantly shortens the system’s lifetime. On the other hand, a power
constraint driven allocation approach, as presented by Kanduri et al.
(2015), leads to lower than necessary performance and still compromises
lifetime. Finally, a lifetime maximizing task allocation approach, as
developed by Haghbayan et al. (2016a), sacrifices performance and
still cannot contain temperature peaks that lead to major temperature
dissipation challenges. Rahmani et al. (2017b) illustrate that all relevant
system objectives have to be considered and optimized simultaneously,
lest important performance targets are compromised.

They would be compromised unnecessarily because in most cases
there is sufficient slack and margin to meet multiple objectives at the
same time, if only the problem definition is broad enough and the set
of techniques is large enough. For that reason the broad set of resource
management techniques surveyed in the previous chapters are useful
when combined, integrated and selectively used by a system level goal
manager that can flexibly pursue the goal, or set of goals, that are most
critical at a specific time.

However, we observe that in some areas holistic approaches are more
popular than in others. Work focusing on Quality of Service (QoS), as
covered in Chapter 6, is typically rather single-minded. There are many
approaches that target specific objectives using specific resources, but
targeting power and performance at the same time, using all, or many,
resources is a rarity. Exceptions to this trend can be found in cross layer
approaches in Section 6.2.1.

On the other hand, power management approaches always consider
also performance objectives as illustrated by proposals for general
purpose processors (Rotem et al., 2012), mobile devices (Kadjo et al.,
2014), or game engines (Pathania et al., 2014). Most other works in
Chapter 4 also take at least performance objectives into account in
addition to power or energy.

100 Limitations of current approaches and recent trends

At the other end of the spectrum a large majority of approaches for
reliability, and in particular for lifetime management, may be considered
as holistic. Reliability is usually considered as a relevant but also an
additional metric. Thus, it is frequently co-optimized with performance
and power as shown in Table 5.5 for approaches managing lifetime. In
the same way, such approaches consider all the resources and try to act
on the vast majority of knobs they can access.

Adaptivity Most of the resource management techniques surveyed here
define the optimization objectives at design time and hard-code them in
hardware or software. While this approach is efficient for static embedded
systems with a predictable application load, it lacks flexibility when type
and load of applications vary and are unknown at design time, when the
system has to react to unforeseen changes in the environment, and when
the system has to cope with unexpected deterioration and anomalies in
its own behavior. In those cases preordained objectives are limitations,
and the ability to reformulate and re-prioritize objectives at run time
becomes a prerequisite for truly adaptive and autonomous systems. A
case in point studied by Hoffmann et al. (2012) are applications that
come with their own objectives with respect to power and performance
requirements. Each application registers its objective with the platform,
which in turn tries to meet these objectives. The platform is based on
the application heartbeats framework (Hoffmann et al., 2010), where the
platform interrupts the application at periodic events, called heartbeats,
to measure its performance and power consumption and to compare
them with the application’s objectives. Maggio et al. (2011) studied and
compared several decision strategies within the heartbeats framework
to meet best applications’ various objectives and requirements. The
strategies under study included optimization heuristics, control theory
based algorithms, and machine learning approaches. They found that
“for systems with a broad or unknown range of target applications,
adaptive control may provide the best general solution” (Maggio et al.,
2011).

Scalability On the other hand, in the context of resource management
for many-core systems, scalability is key as the resource manager needs

101

to manage a complex system with a large number of cores. To address
scalability, there is growing interest towards modular resource manage-
ment methods to offer scalable, autonomous, and coordinated resource
management in many-core systems. For instance, Rahmani et al. (2018)
recently presented SPECTR as a scalable resource management mecha-
nism leveraging formal supervisory control theory (SCT) to combine
the strengths of classical control theory with state-of-the-art heuristic
approaches. SPECTR is a scalable and robust control architecture and a
systematic design flow for hierarchical control of many-core systems. It
leverages SCT techniques such as gain scheduling (Donyanavard et al.,
2018) to allow autonomy for individual controllers while facilitating
automatic synthesis of the high-level supervisory controller and its
property verification.

Wealth of sensory data and control knobs From the actuation point
of view, as more resource management techniques are integrated into
SoCs, knobs to control these techniques become available to architecture,
OS, or application levels. More control knobs and more sensory data
opens the path to more complex and dynamic resource management
strategies, a trend which is observable in the literature. A main challenge,
due to variability and large sensory data sets, is to make sense of the
data and predict future behavior. A number of recent works address
these challenges with machine learning approaches (Martinez and Ipek,
2009; Bitirgen et al., 2008; Tesauro and et.al., 2007; Tesauro et al., 2006;
Dutt et al., 2016; Wu and Louri, 2016; Singh and Rao, 2014; Blanton
et al., 2015). For instance, Blanton et al. (2015) propose to build-in the
capability for continuously learning key personality traits throughout
the lifetime of the system to identify faults, wear-outs and performance
deterioration, and Chen and Marculescu (2015b) use reinforcement
learning to dynamically allocate processing resources to application
threads.

Summary Based on current trends and the demand for adaptivity,
we expect novel solutions to emerge that collect a wealth of sensory
data, dynamically assess the meaning of these data, and make resource

102 Limitations of current approaches and recent trends

allocation decisions by considering objectives with dynamically vary-
ing priorities. Specifically, machine learning techniques have been a
promising trend for modeling the complexity of interaction among differ-
ent on-chip resources and the corresponding effect on resource metrics
(Gupta et al., 2018). Further, these techniques have targeted beyond
the conventional fixed single and multi-objective allocation policies,
towards dynamically varying goals (Shamsa et al., 2018, 2019). On
this note, a general, hierarchical goal management scheme has recently
been sketched by Rahmani et al. (2017b) for multi-core platforms and
by Jantsch et al. (2018) for distributed IoT systems. However, many
elements of such a strategy are still missing such as

• a formalism to define objectives in a flexible way and indepen-
dent of the control and optimization technique that pursue the
objectives;

• a reasonable hierarchy of goals that reflect the requirements of
applications and the structure and interdependence of all relevant
goals;

• strategies to dynamically rearranges the goal hierarchy and up-
dates goal priorities.

8
Conclusions

From the early 1990s, when the first papers on dynamic on-chip resource
management began to appear, the research on this topic has generated
a steady flow of publications as illustrated in Figure 8.1. Although this
review does not provide an exhaustive list of references, it shows the
attention that the field has received during the last three decades.

However, as discussed in the previous chapter, the field has matured
to the extent, that adding a new point technique that focuses on one
metric for one subsystem is of limited value. Instead, we anticipate
a new phase where progress is expected from holistic methods that
take the entire SoC into account and cover all relevant metrics from
performance to power to aging to Quality of Service (QoS). Already,
we can observe nascent attempts for generic and comprehensive goal
management that not only considers all metrics as part of the systems
goals but also allows for dynamic adaptation of those goals depending
on the evolving external situation and the internal state of the system.
As the application demand on more adaptive systems keeps increasing
we expect more holistic, dynamic management methods to be proposed
and studied. This in turn will encourage the development of new point

103

104 Conclusions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1990 1995 2000 2005 2010 2015 2020

No of Publications

Figure 8.1: Number of publications per year cited in this review.

techniques and reconsideration of previously studied techniques in the
light of such holistic methods.

Acknowledgment

We acknowledge financial support by the Marie Curie Actions of the
European Union’s H2020 Program, NSF Information Processing Fac-
tory grant (CCF-1704859), and Academy of Finland project ACTER
(decision number 311304). This research was also partially funded by
the European Union’s Horizon 2020 Framework Program for Research
and Innovation under grant agreement no 674875 (oCPS Marie Curie
Network).

References

Acquaviva, A., L. Benini, and B. Riccó (2001), ‘Energy Characterization of
Embedded Real-time Operating Systems’. SIGARCH Comput. Archit. News
pp. 13–18.

Agarwal, N., D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler
(2015), ‘Page Placement Strategies for GPUs Within Heterogeneous Memory
Systems’. SIGPLAN Not.

Aggarwal, N., P. Ranganathan, N. P. Jouppi, and J. E. Smith (2007), ‘Con-
figurable Isolation: Building High Availability Systems with Commodity
Multi-core Processors’. In: Proc. of Intl. Symp. on Computer Architecture
(ISCA). pp. 470–481.

Ahn, J., S. Yoo, and K. Choi (2014), ‘Dynamic power management of off-chip
links for Hybrid Memory Cubes’. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). pp. 1–6.

Al Faruque, M. A., T. Ebi, and J. Henkel (2012), ‘AdNoC: Runtime adap-
tive network-on-chip architecture’. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems pp. 257–269.

Annamalai, A., R. Rodrigues, I. Koren, and S. Kundu (2013), ‘An Opportunistic
Prediction-based Thread Scheduling to Maximize Throughput/Watt in
AMPs’. In: Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques (PACT). pp. 63–72.

Apostolakis, A., D. Gizopoulos, M. Psarakis, and A. Paschalis (2009), ‘Software-
Based Self-Testing of Symmetric Shared-Memory Multiprocessors’. IEEE
Transactions on Computers 58(12), 1682–1694.

105

106 References

Ascia, G., V. Catania, M. Palesi, and D. Patti (2008), ‘Implementation and
analysis of a new selection strategy for adaptive routing in networks-on-chip’.
IEEE Transactions on Computers pp. 809–820.

Attia, K. M., M. A. El-Hosseini, and H. A. Ali (2017), ‘Dynamic power
management techniques in multi-core architectures: A survey study’. Ain
Shams Engineering Journal pp. 445–456.

Ausavarungnirun, R., K. K.-W. Chang, L. Subramanian, G. H. Loh, and O.
Mutlu (2012), ‘Staged Memory Scheduling: Achieving High Performance and
Scalability in Heterogeneous Systems’. SIGARCH Comput. Archit. News.

Ayoub, R., K. R. Indukuri, and T. S. Rosing (2010), ‘Energy efficient proactive
thermal management in memory subsystem’. In: 2010 ACM/IEEE Inter-
national Symposium on Low-Power Electronics and Design (ISLPED). pp.
195–200.

Azevedo, A., I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and
A. Nicolau (2002), ‘Profile-based dynamic voltage scheduling using program
checkpoints’. In: Proceedings 2002 Design, Automation and Test in Europe
Conference and Exhibition. pp. 168–175.

Badr, H. G. and S. Podar (1989), ‘An optimal shortest-path routing pol-
icy for network computers with regular mesh-connected topologies’. IEEE
transactions on computers pp. 1362–1371.

Baek, W. and T. M. Chilimbi (2010), ‘Green : A Framework for Supporting
Energy-Conscious Programming using Controlled Approximation’. In: Pro-
ceedings of the ACM SIGPLAN conference on Programming language design
and implementation -PLDI ’10. pp. 198–209.

Bakhoda, A., J. Kim, and T. M. Aamodt (2010), ‘Throughput-Effective On-
Chip Networks for Manycore Accelerators’. In: Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). pp. 421–432.

Baldassari, A., C. Bolchini, and A. Miele (2017), ‘A dynamic reliability man-
agement framework for heterogeneous multicore systems’. In: Proc. of Intl.
Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). pp. 1–6.

Balfour, J. and W. J. Dally (2014), ‘Design Tradeoffs for Tiled CMP On-
chip Networks’. In: ACM International Conference on Supercomputing 25th
Anniversary Volume. pp. 390–401.

Banerjee, A., P. T. Wolkotte, R. D. Mullins, S. W. Moore, and G. J. M.
Smit (2009), ‘An Energy and Performance Exploration of Network-on-Chip
Architectures’. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems pp. 319–329.

References 107

Baynes, K., C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T.
Zhang, and B. Jacob (2003), ‘The performance and energy consumption of
embedded real-time operating systems’. IEEE Transactions on Computers
pp. 1454–1469.

Beckmann, N. and D. Sanchez (2013), ‘Jigsaw: Scalable Software-defined
Caches’. In: Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques. Piscataway, NJ, USA, pp. 213–
224, IEEE Press.

Beckmann, N., P.-A. Tsai, and D. Sanchez (2015), ‘Scaling distributed cache
hierarchies through computation and data co-scheduling’. In: High Per-
formance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on. pp. 538–550.

Beloglazov, A. and R. Buyya (2010), ‘Energy Efficient Resource Management
in Virtualized Cloud Data Centers’. In: 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. pp. 826–831.

Bender, M. A., D. P. Bunde, E. D. Demaine, S. P. Fekete, V. J. Leung, H. Meijer,
and C. A. Phillips (2008), ‘Communication-aware processor allocation for
supercomputers: Finding point sets of small average distance’. Springer
Algorithmica pp. 279–298.

Benini, L., A. Bogliolo, G. A. Paleologo, and G. D. Micheli (1999), ‘Pol-
icy optimization for dynamic power management’. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems pp. 813–833.

Benini, L. and G. De Micheli (2002), ‘Networks on Chips: A New SoC Paradigm’.
Computer pp. 70–78.

Besta, M., S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun, O. Mutlu, and
T. Hoefler (2018), ‘Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability’. In: Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). pp. 43–55.

Besta, M. and T. Hoefler (2014), ‘Slim Fly: A Cost Effective Low-diameter
Network Topology’. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 348–359.

Bhardwaj, K., K. Chakraborty, and S. Roy (2012), ‘Towards graceful aging
degradation in NoCs through an adaptive routing algorithm’. In: Proc. of
Design Automation Conf. (DAC). pp. 382–391.

Bhardwaj, S., W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula (2006),
‘Predictive Modeling of the NBTI Effect for Reliable Design’. In: Proc. of
IEEE Custom Integrated Circuits Conf. (CICC). pp. 189–192.

108 References

Bitirgen, R., E. Ipek, and J. Martinez (2008), ‘Coordinated management of
multiple interacting resources in chip multiprocessors: A machine learn-
ing approach’. In: 41st annual IEEE/ACM International Symposium on
Microarchitecture. pp. 318–329.

Bjerregaard, T. and S. Mahadevan (2006), ‘A Survey of Research and Practices
of Network-on-chip’. ACM Computing Surveys 38(1).

Blanton, R. D., X. Li, K. Mai, D. Marculescu, R. Marculescu, J. Paramesh, J.
Schneider, and D. E. Thomas (2015), ‘Statistical Learning in Chip (SLIC)’.
In: Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, ICCAD. pp. 664–669.

Blome, J., S. Feng, S. Gupta, and S. Mahlke (2007), ‘Self-calibrating Online
Wearout Detection’. In: Proc. of Intl. Symp. on Microarchitecture (MICRO).
pp. 109–122.

Bogdan, P., R. Marculescu, and S. Jain (2013), ‘Dynamic Power Management
for Multidomain System-on-chip Platforms: An Optimal Control Approach’.
ACM Trans. Des. Autom. Electron. Syst. pp. 46:1–46:20.

Bolchini, C., M. Carminati, and A. Miele (2013a), ‘Self-Adaptive Fault Toler-
ance in Multi-/Many-Core Systems’. Journal of Electronic Testing: Theory
and Application 29(2), 159–175.

Bolchini, C., M. Carminati, A. Miele, A. Das, A. Kumar, and B. Veer-
avalli (2013b), ‘Run-Time Mapping for Reliable Many-Cores Based on
Energy/Performance Trade-offs’. In: Proc. of Intl. Symp. on Defect and
Fault Tolerance in VLSI and Nanotech. Systems (DFT). pp. 58–64.

Bolchini, C., L. Cassano, and A. Miele (2016), ‘Lifetime-aware load distribution
policies in multi-core systems: An in-depth analysis’. In: Proc. of Conf. on
Design, Automation & Test in Europe (DATE). pp. 804–809.

Bolchini, C., A. Miele, and D. Sciuto (2012), ‘An adaptive approach for
online fault management in many-core architectures’. In: Proc. of Design,
Automation Test in Europe Conf. Exhibition (DATE). pp. 1429–1432.

Bornholt, J., T. Mytkowicz, and K. S. McKinley (2014), ‘Uncertain<T>:
A First-Order Type for Uncertain Data’. In: Proceedings of International
conference on Architectural support for programming languages and operating
systems - ASPLOS ’14. pp. 51–66.

Brooks, D. and M. Martonosi (2001), ‘Dynamic thermal management for high-
performance microprocessors’. In: Proceedings HPCA Seventh International
Symposium on High-Performance Computer Architecture. pp. 171–182.

References 109

Bruestel, M. and A. Kumar (2017), ‘Accounting for systematic errors in approx-
imate computing’. In: Proceedings of the Conference on Design, Automation
& Test in Europe. pp. 298–301.

Burns, A. and R. Davis (2013), ‘Mixed criticality systems-a review’. Department
of Computer Science, University of York, Tech. Rep pp. 1–69.

Burns, A. and R. I. Davis (2017), ‘A Survey of Research into Mixed Criticality
Systems’. ACM Computing Surveys 50(6), 82:1–82:37.

Cai, E., D. Stamoulis, and D. Marculescu (2016), ‘Exploring Aging Deceleration
in FinFET-based Multi-core Systems’. In: Proc of Intl. Conf. on Computer-
Aided Design (ICCAD). pp. 111:1–111:8.

Carara, E. A. and F. G. Moraes (2010), ‘Flow oriented routing for NOCS’. In:
SOC Conference (SOCC), 2010 IEEE International. pp. 367–370.

Carbin, M., D. Kim, S. Misailovic, and M. C. Rinard (2012), ‘Proving accept-
ability properties of relaxed nondeterministic approximate programs’. In:
Proceedings of {ACM} {SIGPLAN} Conference on Programming Language
Design and Implementation - PLDI ’12, Vol. 47. pp. 169–180.

Carbin, M., S. Misailovic, M. Kling, and M. C. Rinard (2011), ‘Detecting and
escaping infinite loops with jolt’. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Vol. 6813 LNCS. pp. 609–633.

Carbin, M., S. Misailovic, and M. C. Rinard (2013), ‘Verifying quantitative
reliability for programs that execute on unreliable hardware’. In: Proceedings
of Conference on Object-Oriented Programming Systems, Languages, and
Applications - OOPSLA ’13. pp. 33–52.

Carbin, M. and M. C. M. Rinard (2010), ‘Automatically identifying critical
input regions and code in applications’. In: Proceedings of international
symposium on Software testing and analysis. pp. 37–48.

Carvalho, E., N. Calazans, and F. Moraes (2007), ‘Heuristics for dynamic task
mapping in NoC-based heterogeneous MPSoCs’. In: Proc. of IEEE/IFIP
International Workshop on Rapid System Prototyping. pp. 34–40.

Castrillon, J., A. Tretter, R. Leupers, and G. Ascheid (2012), ‘Communication-
aware mapping of KPN applications onto heterogeneous MPSoCs’. In: Pro-
ceedings of the 49th Annual Design Automation Conference. pp. 1266–1271.

Catania, V., R. Holsmark, S. Kumar, and M. Palesi (2006), ‘A methodology
for design of application specific deadlock-free routing algorithms for NoC
systems’. In: Hardware/Software Codesign and System Synthesis, 2006.
CODES+ ISSS’06. Proceedings of the 4th International Conference. pp.
142–147.

110 References

Ceratti, A., T. Copetti, L. Bolzani, and F. Vargas (2012), ‘On-chip aging
sensor to monitor NBTI effect in nano-scale SRAM’. In: Proc. of Intl. Symp.
on Design and Diagnostics of Electronic Circuits Systems (DDECS). pp.
354–359.

Chang, D.-W., H.-H. Chen, and W.-J. Su (2015a), ‘VSSD: Performance Isola-
tion in a Solid-State Drive’. ACM Trans. Des. Autom. Electron. Syst. pp.
51:1–51:33.

Chang, E.-J., H.-K. Hsin, C.-H. Chao, S.-Y. Lin, and A.-Y. A. Wu (2015b),
‘Regional ACO-based cascaded adaptive routing for traffic balancing in
mesh-based network-on-chip systems’. IEEE Transactions on Computers pp.
868–875.

Chang, E.-J., H.-K. Hsin, S.-Y. Lin, and A.-Y. Wu (2014), ‘Path-congestion-
aware adaptive routing with a contention prediction scheme for network-on-
chip systems’. IEEE Transactions on computer-aided design of Integrated
circuits and systems pp. 113–126.

Chang, K. K.-W., R. Ausavarungnirun, C. Fallin, and O. Mutlu (2012), ‘HAT:
Heterogeneous adaptive throttling for on-chip networks’. In: 2012 IEEE 24th
International Symposium on Computer Architecture and High Performance
Computing. pp. 9–18.

Chantem, T., Y. Xiang, X. S. Hu, and R. P. Dick (2013), ‘Enhancing Mul-
ticore Reliability through Wear Compensation in Online Assignment and
Scheduling’. In: Proc. of Conf. on Design, Automation & Test in Europe
(DATE). pp. 1373–1378.

Chen, C. and A. Joshi (2013), ‘Runtime Management of Laser Power in Silicon-
Photonic Multibus NoC Architecture’. IEEE Journal of Selected Topics in
Quantum Electronics.

Chen, C. O., S. Park, T. Krishna, S. Subramanian, A. P. Chandrakasan, and L.
Peh (2013), ‘SMART: A single-cycle reconfigurable NoC for SoC applications’.
In: 2013 Design, Automation Test in Europe Conference Exhibition (DATE).

Chen, F., D. A. Koufaty, and X. Zhang (2011), ‘Hystor: Making the Best Use
of Solid State Drives in High Performance Storage Systems’. In: Proceedings
of the International Conference on Supercomputing. pp. 22–32.

Chen, G., F. Li, S. W. Son, and M. Kandemir (2008), ‘Application mapping for
chip multiprocessors’. In: Proceedings of the 45th annual design automation
conference. pp. 620–625.

Chen, K. H., J. J. Chen, F. Kriebel, S. Rehman, M. Shafique, and J. Henkel
(2016), ‘Task Mapping for Redundant Multithreading in Multi-Cores with
Reliability and Performance Heterogeneity’. IEEE Transactions on Comput-
ers 65(11), 3441–3455.

References 111

Chen, Q. and M. Guo (2014), ‘Adaptive Workload-aware Task Scheduling for
single-ISA Asymmetric Multicore Architectures’. ACM Trans. Archit. Code
Optim. pp. 8:1–8:25.

Chen, T., Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam (2014a),
‘DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous
Machine-Learning’. In: Proceedings of International conference on Architec-
tural support for programming languages and operating systems. pp. 269–284.

Chen, X., Y. Wang, Y. Liang, Y. Xie, and H. Yang (2014b), ‘Run-time technique
for simultaneous aging and power optimization in GPGPUs’. In: Proc. of
Design Automation Conf. (DAC). pp. 1–6.

Chen, Y., T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N.
Sun, and O. Temam (2014c), ‘DaDianNao: A Machine-Learning Supercom-
puter’. In: IEEE/ACM International Symposium on Microarchitecture. pp.
609–622.

Chen, Y.-Y., E.-J. Chang, H.-K. Hsin, K.-C. J. Chen, and A.-Y. A. Wu (2017),
‘Path-Diversity-Aware Fault-Tolerant Routing Algorithm for Network-on-
Chip Systems’. IEEE Transactions on Parallel and Distributed Systems pp.
838–849.

Chen, Z. and D. Marculescu (2015a), ‘Distributed Reinforcement Learning
for Power Limited Many-core System Performance Optimization’. In: Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition.

Chen, Z. and D. Marculescu (2015b), ‘Distributed Reinforcement Learning
for Power Limited Many-core System Performance Optimization’. In: Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference
(DATE). pp. 1521–1526.

Chen, Z., M. Yang, G. Francia, and J. Dongarra (2007), ‘Self Adaptive Appli-
cation Level Fault Tolerance for Parallel and Distributed Computing’. In:
Proc. of Intl. Parallel and Distributed Processing Symp.- (IPDPS). pp. 1–8.

Cheng, S.-T., C.-M. Chen, and J.-W. Hwang (1997), ‘Low-power design for
real-time systems’. In: Proceedings of ICICS, 1997 International Conference
on Information, Communications and Signal Processing. Theme: Trends in
Information Systems Engineering and Wireless Multimedia Communications
(Cat. pp. 1746–1750 vol.3.

Cho, S. and L. Jin (2006), ‘Managing distributed, shared L2 caches through
OS-level page allocation’. In: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture. pp. 455–468.

112 References

Chou, C., U. Y. Ogras, and R. Marculescu (2008), ‘Energy- and Performance-
Aware Incremental Mapping for Networks on Chip With Multiple Voltage
Levels’. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems.

Chou, C. L. and R. Marculescu (2011), ‘FARM: Fault-aware resource manage-
ment in NoC-based multiprocessor platforms’. In: Proc. of Design, Automa-
tion Test in Europe Conf. (DATE). pp. 1–6.

Chou, C.-L., U. Y. Ogras, and R. Marculescu (2008), ‘Energy-and performance-
aware incremental mapping for networks on chip with multiple voltage levels’.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27(10), 1866–1879.

Chou, C. T., Y. P. Lin, K. Y. Chiang, and K. C. Chen (2017), ‘Dynamic Buffer
Allocation for thermal-aware 3D network-on-chip systems’. In: 2017 IEEE
International Conference on Consumer Electronics - Taiwan (ICCE-TW).
pp. 65–66.

Christoforakis, I., O. Tomoutzoglou, D. Bakoyiannis, and G. Kornaros (2015),
‘Dithering-Based Power and Thermal Management on FPGA-Based Multi-
core Embedded Systems’. In: 2015 IEEE 13th International Conference on
Embedded and Ubiquitous Computing. pp. 173–177.

Chung, E.-Y., L. Benini, A. Bogliolo, and G. D. Micheli (1999), ‘Dynamic power
management for nonstationary service requests’. In: Design, Automation
and Test in Europe Conference and Exhibition, 1999. Proceedings (Cat. No.
PR00078). pp. 77–81.

Cochran, R., C. Hankendi, A. K. Coskun, and S. Reda (2011), ‘Pack & Cap:
Adaptive DVFS and Thread Packing Under Power Caps’. In: Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture.

Coskun, A. K., T. S. Rosing, and K. C. Gross (2009), ‘Utilizing Predictors for
Efficient Thermal Management in Multiprocessor SoCs’. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 28(10), 1503–
1516.

Coskun, A. K., T. S. Rosing, and K. Whisnant (2007), ‘Temperature Aware
Task Scheduling in MPSoCs’. In: 2007 Design, Automation Test in Europe
Conference Exhibition.

Coskun, A. K., R. Strong, D. M. Tullsen, and T. S. Rosing (2009), ‘Evaluating
the Impact of Job Scheduling and Power Management on Processor Lifetime
for Chip Multiprocessors’. In: Proc. of Intl. Conf. Measurement and Modeling
of Computer Systems (SIGMETRICS). pp. 169–180.

References 113

Cui, Z., S. A. Mckee, Z. Zha, Y. Bao, and M. Chen (2014), ‘DTail : A Flexible
Approach to DRAM Refresh Management’. In: Proceedings of International
Conference on Supercomputing - SC ’14. pp. 43–52.

Dai, J., W. Ma, X. Jiang, and T. Watanabe (2017), ‘Hybrid path-diversity-
dominant output selection method for Network-on-Chip systems’. In: SoC
Design Conference (ISOCC), 2017 International. pp. 125–126.

Dally, W. J. and H. Aoki (1993), ‘Deadlock-free adaptive routing in multicom-
puter networks using virtual channels’. IEEE transactions on Parallel and
Distributed Systems pp. 466–475.

Dally, W. J. and B. Towles (2001), ‘Route Packets, Not Wires: On-chip Inte-
connection Networks’. In: Proceedings of the 38th Annual Design Automation
Conference (DAC). pp. 684–689.

Das, A., R. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and B. Veer-
avalli (2014), ‘Reinforcement Learning-Based Inter- and Intra-Application
Thermal Optimization for Lifetime Improvement of Multicore Systems’. In:
Proc. of Design Automation Conf. (DAC). pp. 170:1–170:6.

Das, A., M. J. Walker, A. Hansson, B. M. Al-Hashimi, and G. V. Merrett (2015),
‘Hardware-software interaction for run-time power optimization: A case
study of embedded Linux on multicore smartphones’. In: 2015 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED).

David, R., P. Bogdan, R. Marculescu, and U. Ogras (2011), ‘Dynamic power
management of voltage-frequency island partitioned Networks-on-Chip using
Intel’s Single-chip Cloud Computer’. In: Proceedings of the Fifth ACM/IEEE
International Symposium. pp. 257–258.

de Souza Carvalho, E. L., N. L. V. Calazans, and F. G. Moraes (2010),
‘Dynamic task mapping for MPSoCs’. IEEE Design & Test of Computers
pp. 26–35.

Delimitrou, C. and C. Kozyrakis (2013), ‘Paragon: QoS-aware Scheduling
for Heterogeneous Datacenters’. In: Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems. pp. 77–88.

Delimitrou, C. and C. Kozyrakis (2014), ‘Quasar: Resource-efficient and QoS-
aware Cluster Management’. In: Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). pp. 127–144.

Deo, N. and C.-Y. Pang (1984), ‘Shortest-path algorithms: Taxonomy and
annotation’. Networks pp. 275–323.

114 References

Diemer, J. and R. Ernst (2010), ‘Back Suction: Service Guarantees for Latency-
Sensitive On-chip Networks’. In: Proceedings of the 2010 Fourth ACM/IEEE
International Symposium on Networks-on-Chip (NOCS). pp. 155–162.

Diemer, J., R. Ernst, and M. Kauschke (2010), ‘Efficient throughput-guarantees
for latency-sensitive networks-on-chip’. In: Design Automation Conference
(ASP-DAC), 2010 15th Asia and South Pacific. pp. 529–534.

Donald, J. and M. Martonosi (2005), ‘Leveraging Simultaneous Multithread-
ing for Adaptive Thermal Control’. In: Proc. of the Second Workshop on
Temperature-Aware Computer Systems.

Donyanavard, B., A. M. Rahmani, T. Muck, K. Moazemmi, and N. Dutt
(2018), ‘Gain scheduled control for nonlinear power management in CMPs’.
In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE).
pp. 921–924.

Du, Z., R. Fasthuber, T. Chen, P. Ienne, L. Li, X. Feng, Y. Chen, and
O. Temam (2015), ‘ShiDianNao : Shifting Vision Processing Closer to
the Sensor’. In: Proceedings of IEEE/ACM International Symposium on
Computer Architecture.

Dutt, N., A. Jantsch, and S. Sarma (2016), ‘Toward Smart Embedded Sys-
tems: A Self-aware System-on-Chip (SoC) Perspective’. ACM Trans. Embed.
Comput. Syst. pp. 22:1–22:27.

Ebrahimi, E., C. J. Lee, O. Mutlu, and Y. N. Patt (2010), ‘Fairness via Source
Throttling: A Configurable and High-performance Fairness Substrate for
Multi-core Memory Systems’. In: Proceedings of the Fifteenth Edition of AS-
PLOS on Architectural Support for Programming Languages and Operating
Systems. pp. 335–346.

El-Harouni, W., S. Rehman, B. S. Prabakaran, A. Kumar, R. Hafiz, and M.
Shafique (2017), ‘Embracing approximate computing for energy-efficient
motion estimation in high efficiency video coding’. In: Proceedings of the
Conference on Design, Automation & Test in Europe. pp. 1388–1393.

Elyasi, N., M. Arjomand, A. Sivasubramaniam, M. T. Kandemir, C. R. Das,
and M. Jung (2017), ‘Exploiting Intra-Request Slack to Improve SSD Per-
formance’. SIGARCH Comput. Archit. News pp. 375–388.

Esmaeilzadeh, H. (2015), ‘Approximate Acceleration: A Path Through the
Era of Dark Silicon and Big Data’. In: Proceedings of the 2015 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems.
Piscataway, NJ, USA, pp. 31–32, IEEE Press.

Esmaeilzadeh, H., A. Sampson, L. Ceze, and D. Burger (2012a), ‘Architecture
support for disciplined approximate programming’. In: ACM SIGARCH
Computer Architecture News, Vol. 40(1). p. 301.

References 115

Esmaeilzadeh, H., A. Sampson, L. Ceze, and D. Burger (2012b), ‘Neural
Acceleration for General-Purpose Approximate Programs’. In: Proceedings
of IEEE/ACM International Symposium on Microarchitecture. pp. 449–460,
Ieee.

Eyerman, S. and L. Eeckhout (2008), ‘System-Level Performance Metrics for
Multiprogram Workloads’. IEEE Micro pp. 42–53.

Faruque, A., M. Abdullah, R. Krist, and J. Henkel (2008), ‘ADAM: run-time
agent-based distributed application mapping for on-chip communication’. In:
Proceedings of the 45th annual Design Automation Conference. pp. 760–765.

Fattah, M., M. Daneshtalab, P. Liljeberg, and J. Plosila (2013), ‘Smart hill
climbing for agile dynamic mapping in many-core systems’. In: Proc. of
IEEE/ACM Design Automation Conference.

Fattah, M., P. Liljeberg, J. Plosila, and H. Tenhunen (2014), ‘Adjustable
contiguity of run-time task allocation in networked many-core systems’. In:
Proc. of IEEE Asia and South Pacific Design Automation Conference. pp.
349–354.

Fattah, M., M. Ramirez, M. Daneshtalab, P. Liljeberg, and J. Plosila (2012),
‘CoNA: Dynamic application mapping for congestion reduction in many-core
systems’. In: Proc. of IEEE International Conference on Computer Design.
pp. 364–370.

Feng, C., Z. Lu, A. Jantsch, J. Li, and M. Zhang (2010), ‘A Reconfigurable Fault-
tolerant Deflection Routing Algorithm Based on Reinforcement Learning
for Networks-on-Chip’. In: Proceedings of the International Workshop on
Network on Chip Architectures (NoCArc).

Feng, C., Z. Lu, A. Jantsch, and M. Zhang (2012), ‘A 1-cycle 1.25GHz Bufferless
Router for 3D Network-on-Chip’. IEICE Transactions on Information and
Systems.

Feng, W.-c. and K. G. Shin (1997), ‘Impact of Selection Functions on Routing
Algorithm Performance in Multicomputer Networks’. In: Proceedings of the
11th International Conference on Supercomputing (ICS). pp. 132–139.

Foutris, N., M. Psarakis, D. Gizopoulos, A. Apostolakis, X. Vera, and A. Gon-
zalez (2010), ‘MT-SBST: Self-test optimization in multithreaded multicore
architectures’. In: Proc. of IEEE Intl. Test Conf. (ITC). pp. 1–10.

Gaspar, F., A. Ilic, P. Tomás, and L. Sousa (2014), ‘Performance-aware task
management and frequency scaling in embedded systems’. In: Computer
Architecture and High Performance Computing (SBAC-PAD), 2014 IEEE
26th International Symposium on. pp. 65–72.

116 References

Ge, R., X. Feng, S. Song, H. C. Chang, D. Li, and K. W. Cameron (2010),
‘PowerPack: Energy Profiling and Analysis of High-Performance Systems
and Applications’. IEEE Transactions on Parallel and Distributed Systems
pp. 658–671.

Gebregiorgis, A., S. Kiamehr, and M. B. Tahoori (2017), ‘Error Propagation
Aware Timing Relaxation For Approximate Near Threshold Computing’. In:
Proceedings of the 54th Annual Design Automation Conference 2017. New
York, NY, USA, pp. 77:1–77:6, ACM.

Ghose, S., H. Lee, and J. F. Martínez (2013), ‘Improving Memory Scheduling
via Processor-side Load Criticality Information’. In: Proceedings of the 40th
Annual International Symposium on Computer Architecture. pp. 84–95.

Glass, C. J. and L. M. Ni (1992), ‘The Turn Model for Adaptive Routing’.
In: Proceedings of the 19th Annual International Symposium on Computer
Architecture (ISCA). pp. 278–287.

Gnad, D., M. Shafique, F. Kriebel, S. Rehman, D. Sun, and J. Henkel (2015),
‘Hayat: Harnessing Dark Silicon and Variability for Aging Deceleration and
Balancing’. In: Proc. of Design Automation Conf. (DAC). pp. 180:1–180:6.

Gratz, P., B. Grot, and S. W. Keckler (2008), ‘Regional congestion awareness
for load balance in networks-on-chip’. In: High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on.
pp. 203–214.

Grigorian, B., N. Farahpour, and G. Reinman (2015), ‘BRAINIAC: Bring-
ing reliable accuracy into neurally-implemented approximate computing’.
In: High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on. pp. 615–626.

Grot, B., J. Hestness, S. W. Keckler, and O. Mutlu (2009a), ‘Express cube
topologies for on-chip interconnects’. In: High Performance Computer Ar-
chitecture, 2009. HPCA 2009. IEEE 15th International Symposium on. pp.
163–174.

Grot, B., J. Hestness, S. W. Keckler, and O. Mutlu (2011), ‘Kilo-NOC: A
Heterogeneous Network-on-chip Architecture for Scalability and Service
Guarantees’. In: Proceedings of the 38th Annual International Symposium
on Computer Architecture. New York, NY, USA, pp. 401–412, ACM.

Grot, B., S. W. Keckler, and O. Mutlu (2009b), ‘Preemptive Virtual Clock: A
Flexible, Efficient, and Cost-effective QOS Scheme for Networks-on-chip’.
In: Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture. New York, NY, USA, pp. 268–279, ACM.

References 117

Guang, L., P. Liljeberg, E. Nigussie, and H. Tenhunen (2009), ‘A review
of dynamic power management methods in NoC under emerging design
considerations’. In: 2009 NORCHIP. pp. 1–6.

Guo, F., H. Kannan, L. Zhao, R. Illikkal, R. Iyer, D. Newell, Y. Solihin, and
C. Kozyrakis (2007a), ‘From chaos to QoS: case studies in CMP resource
management’. ACM SIGARCH Computer Architecture News pp. 21–30.

Guo, F., Y. Solihin, L. Zhao, and R. Iyer (2007b), ‘A framework for providing
quality of service in chip multi-processors’. In: Microarchitecture, 2007.
MICRO 2007. 40th Annual IEEE/ACM International Symposium on. pp.
343–355.

Gupta, A., Y. Kim, and B. Urgaonkar (2009), ‘DFTL: A Flash Translation
Layer Employing Demand-based Selective Caching of Page-level Address
Mappings’. SIGPLAN Not. pp. 229–240.

Gupta, S., S. Feng, A. Ansari, J. Blome, and S. Mahlke (2008), ‘The StageNet
fabric for constructing resilient multicore systems’. In: Proc. of Intl. Symp.
on Microarchitecture (MICRO). pp. 141–151.

Gupta, U., M. Babu, R. Ayoub, M. Kishinevsky, F. Paterna, and U. Y. Ogras
(2018), ‘STAFF: online learning with stabilized adaptive forgetting factor
and feature selection algorithm’. In: 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC). pp. 1–6.

Gupta, U., J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky, F. Paterna,
and S. Gumussoy (2016), ‘Adaptive performance prediction for integrated
GPUs’. In: 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). pp. 1–8.

Gurumurthi, S., A. Sivasubramaniam, M. Kandemir, and H. Franke (2003),
‘DRPM: dynamic speed control for power management in server class disks’.
In: 30th Annual International Symposium on Computer Architecture, 2003.
Proceedings. pp. 169–179.

Ha, C. Y., Y. X. Wang, and C. W. Chang (2017), ‘Dynamic Power Management
for wearable devices with Non-Volatile Memory’. In: 2017 International
Conference on Applied System Innovation (ICASI). pp. 37–39.

Haghbayan, M. H., A. Kanduri, A. M. Rahmani, P. Liljeberg, A. Jantsch, and
H. Tenhunen (2015), ‘MapPro: Proactive Runtime Mapping for Dynamic
Workloads by Quantifying Ripple Effect of Applications on Networks-on-
Chip’. In: Proc. of Intl. Symp. on Networks-on-Chip (NOCS). pp. 1–8.

Haghbayan, M. H., A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen
(2016a), ‘A lifetime-aware runtime mapping approach for many-core systems
in the dark silicon era’. In: Proc. of Conf. on Design, Automation & Test in
Europe (DATE). pp. 854–857.

118 References

Haghbayan, M. H., A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen
(2017), ‘Performance/Reliability-Aware Resource Management for Many-
Cores in Dark Silicon Era’. IEEE Transactions on Computers 66(9), 1599–
1612.

Haghbayan, M. H., A. M. Rahmani, A. Miele, M. Fattah, J. Plosila, P. Lilje-
berg, and H. Tenhunen (2016b), ‘A Power-Aware Approach for Online Test
Scheduling in Many-Core Architectures’. IEEE Transactions on Computers
65(3), 730–743.

Hajimiri, H., M. A. Qathrady, and P. Mishra (2013), ‘Proactive thermal man-
agement using memory based computing’. In: 2013 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH). pp. 110–115.

Hamers, J. and L. Eeckhout (2010), ‘Scenario-Based Resource Prediction for
QoS-Aware Media Processing’. Computer pp. 56–63.

Hari, S. K. S., M. L. Li, P. Ramachandran, B. Choi, and S. V. Adve (2009),
‘mSWAT: Low-cost hardware fault detection and diagnosis for multicore
systems’. In: Proc. of Intl. Symp. on Microarchitecture (MICRO). pp. 122–
132.

Hartman, A. S. and D. E. Thomas (2012), ‘Lifetime improvement through run-
time wear-based task mapping’. In: Proc. of Intl. Conf. Hardware/software
codesign and system synthesis (CODES). pp. 13–22.

Heißwolf, J., R. König, and J. Becker (2012), ‘A scalable noc router design
providing qos support using weighted round robin scheduling’. In: Paral-
lel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th
International Symposium on. pp. 625–632.

Hemani, A., A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, and D.
Lindqvist (2000), ‘Network on Chip: An architecture for billion transistor
era’. In: Proceeding of the IEEE NorChip Conference.

Herbert, S. and D. Marculescu (2007), ‘Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors’. In: Proceedings of the 2007 international
symposium on Low power electronics and design (ISLPED ’07).

Herdrich, A., E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and
R. Iyer (2016), ‘Cache QoS: From concept to reality in the Intel R© Xeon R©
processor E5-2600 v3 product family’. In: High Performance Computer
Architecture (HPCA), 2016 IEEE International Symposium on. pp. 657–
668.

Hetherington, G., T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J.
Rajski (1999), ‘Logic BIST for large industrial designs: real issues and case
studies’. In: Proc. of Intl. Test Conf. (ITC). pp. 358–367.

References 119

Ho, N.-M., E. Manogaran, W.-F. Wong, and A. Anoosheh (2017), ‘Efficient
floating point precision tuning for approximate computing’. In: Design
Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific. pp.
63–68.

Hoffmann, H., J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal (2010), ‘Application heartbeats for software performance and health’.
SIGPLAN Not. pp. 347–348.

Hoffmann, H., S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M.
Rinard (2012), ‘Dynamic knobs for responsive power-aware computing’.
ACM SIGPLAN Notices 47(4), 199.

Hong, S., S. H. K. Narayanan, M. Kandemir, and Ö. Özturk (2009), ‘Process
variation aware thread mapping for chip multiprocessors’. In: Proceedings of
the Conference on Design, Automation and Test in Europe. pp. 821–826.

Horowitz, M., T. Indermaur, and R. Gonzalez (1994), ‘Low-power digital
design’. In: Proceedings of 1994 IEEE Symposium on Low Power Electronics.
pp. 8–11.

Howard, J., S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins,
H. Wilson, N. Borkar, G. Schrom, et al. (2010), ‘A 48-core IA-32 message-
passing processor with DVFS in 45nm CMOS’. In: Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2010 IEEE International.
pp. 108–109.

Hsu, C.-H. and W.-C. Feng (2005), ‘A Power-Aware Run-Time System for High-
Performance Computing’. In: Proceedings of the ACM/IEEE Supercomputing
Conference.

Hu, J. and R. Marculescu (2003), ‘Energy-aware mapping for tile-based NoC
architectures under performance constraints’. In: Proceedings of the 2003
Asia and South Pacific Design Automation Conference. pp. 233–239.

Hu, J. and R. Marculescu (2003), ‘Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures’. In: 2003
Design, Automation and Test in Europe Conference and Exhibition.

Hu, J. and R. Marculescu (2004), ‘DyAD: smart routing for networks-on-
chip’. In: Proceedings of the 41st annual Design Automation Conference. pp.
260–263.

Hu, J. and R. Marculescu (2005), ‘Energy-and performance-aware mapping for
regular NoC architectures’. IEEE Transactions on computer-aided design of
integrated circuits and systems 24(4), 551–562.

120 References

Huang, J., J. Lach, and G. Robins (2012), ‘A Methodology for Energy-quality
Tradeoff Using Imprecise Hardware’. In: Proceedings of the 49th Annual
Design Automation Conference. New York, NY, USA, pp. 504–509, ACM.

Huang, K., L. Santinelli, J. J. Chen, L. Thiele, and G. C. Buttazzo (2009),
‘Adaptive Dynamic Power Management for Hard Real-Time Systems’. In:
2009 30th IEEE Real-Time Systems Symposium. pp. 23–32.

Huang, L. and Q. Xu (2010), ‘Performance Yield-driven Task Allocation and
Scheduling for MPSoCs Under Process Variation’. In: Proceedings of the
47th Design Automation Conference. pp. 326–331.

Huang, L., R. Ye, and Q. Xu (2011), ‘Customer-aware task allocation and
scheduling for multi-mode MPSoCs’. In: Proc. of Design Automation Conf.
(DAC). pp. 387–392.

Hughes, C. J., J. Srinivasan, and S. V. Adve (2001), ‘Saving energy with
architectural and frequency adaptations for multimedia applications’. In:
Proceedings. 34th ACM/IEEE International Symposium on Microarchitec-
ture. MICRO-34. pp. 250–261.

Hwang, W., S. Yoo, H. Ko, and B. Park (2010), ‘An area efficient temper-
ature sensor with software calibration for mobile application’. In: 2010
International SoC Design Conference. pp. 349–352.

Isci, C., A. Buyuktosunoglu, C. y. Cher, P. Bose, and M. Martonosi (2006a),
‘An Analysis of Efficient Multi-Core Global Power Management Policies:
Maximizing Performance for a Given Power Budget’. In: 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06).
pp. 347–358.

Isci, C., G. Contreras, and M. Martonosi (2006b), ‘Live, Runtime Phase Moni-
toring and Prediction on Real Systems with Application to Dynamic Power
Management’. In: 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06). pp. 359–370.

Ishihara, T. and H. Yasuura (1998), ‘Voltage scheduling problem for dynami-
cally variable voltage processors’. In: Proceedings. 1998 International Sym-
posium on Low Power Electronics and Design (IEEE Cat. No.98TH8379).
pp. 197–202.

Iyer, R., L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu,
and S. Reinhardt (2007), ‘QoS Policies and Architecture for Cache/Memory
in CMP Platforms’. In: Proceedings of the 2007 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems.
pp. 25–36.

References 121

Jantsch, A., A. Anzanpour, H. Kolerdi, I. Azimi, L. C. Siafara, A. M. Rahmani,
N. TaheriNejad, P. Liljeberg, and N. Dutt (2018), ‘Hierarchical Dynamic
Goal Management for IoT Systems’. In: Proceedings of the IEEE Interna-
tional Symposium on Quality Electronic Design (ISQED 2018). USA.

Jantsch, A., N. Dutt, and A. M. Rahmani (2017), ‘Self-Awareness in Systems
on Chip – A Survey’. IEEE Design Test 34(6), 1–19.

JEDEC Solid State Tech. Ass. (2010), ‘Failure mechanisms and models for
semiconductor devices’. JEDEC Publication JEP122G.

Jennings, B. and R. Stadler (2015), ‘Resource Management in Clouds: Survey
and Research Challenges’. Journal of Network and Systems Management
23(3), 567–619.

Joao, J. A., M. A. Suleman, O. Mutlu, and Y. N. Patt (2012), ‘Bottleneck
Identification and Scheduling in Multithreaded Applications’. In: Proceedings
of the Seventeenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). pp. 223–234.

Joao, J. A., M. A. Suleman, O. Mutlu, and Y. N. Patt (2013), ‘Utility-
based Acceleration of Multithreaded Applications on Asymmetric CMPs’.
In: Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA). pp. 154–165.

Jung, H. and M. Pedram (2006), ‘Stochastic Dynamic Thermal Management:
A Markovian Decision-based Approach’. In: 2006 International Conference
on Computer Design. pp. 452–457.

Kadjo, D., U. Ogras, R. Ayoub, M. Kishinevsky, and P. Gratz (2014), ‘Towards
platform level power management in mobile systems’. In: 2014 27th IEEE
International System-on-Chip Conference (SOCC). pp. 146–151.

Kaggle Inc. (2017), ‘The State of Data Science and Machine Learning’. https:
//www.kaggle.com/surveys/2017. Accessed: 2018-08-08.

Kaliorakis, M., M. Psarakis, N. Foutris, and D. Gizopoulos (2014), ‘Accelerated
online error detection in many-core microprocessor architectures’. In: Proc.
of IEEE VLSI Test Symp. (VTS). pp. 1–6.

Kanduri, A., M.-H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, N.
Dutt, and H. Tenhunen (2016), ‘Approximation Knob: Power Capping Meets
Energy Efficiency’. In: Proceedings of the 35th International Conference on
Computer-Aided Design. New York, NY, USA, pp. 122:1–122:8, ACM.

Kanduri, A., M. H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch,
and H. Tenhunen (2015), ‘Dark silicon aware runtime mapping for many-
core systems: A patterning approach’. In: 2015 33rd IEEE International
Conference on Computer Design (ICCD).

https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017

122 References

Kanduri, A., M. H. Haghbayan, A. M. Rahmani, M. Shafique, A. Jantsch,
and P. Liljeberg (2018a), ‘adBoost: Thermal Aware Performance Boosting
through Dark Silicon Patterning’. IEEE Transactions on Computers.

Kanduri, A., A. Miele, A. M. Rahmani, P. Liljeberg, C. Bolchini, and N. Dutt
(2018b), ‘Approximation-Aware Coordinated Power/Performance Manage-
ment for Heterogeneous Multi-cores’. In: Proceedings of the 55th Annual
Design Automation Conference. p. 39.

Kao, Y.-H., M. Yang, N. S. Artan, and H. J. Chao (2011), ‘CNoC: high-radix
clos network-on-chip’. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems pp. 1897–1910.

Kapadia, N. and S. Pasricha (2015), ‘VARSHA: Variation and reliability-aware
application scheduling with adaptive parallelism in the dark-silicon era’. In:
Proc. of Design, Automation Test in Europe Conf. Exhibition (DATE). pp.
1060–1065.

Karl, E., D. Blaauw, D. Sylvester, and T. Mudge (2008), ‘Multi-Mechanism
Reliability Modeling and Management in Dynamic Systems’. IEEE Trans-
actions on VLSI Systems 16(4), 476–487.

Karpuzcu, U. R., B. Greskamp, and J. Torrellas (2009), ‘The BubbleWrap
Many-core: Popping Cores for Sequential Acceleration’. In: Proc. of Intl.
Symp. on Microarchitecture (MICRO). pp. 447–458.

Kasture, H. and D. Sanchez (2014), ‘Ubik: Efficient Cache Sharing with Strict
Qos for Latency-critical Workloads’. In: Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). pp. 729–742.

Khoshavi, N., R. A. Ashraf, R. F. DeMara, S. Kiamehr, F. Oboril, and M. B.
Tahoori (2017), ‘Contemporary CMOS aging mitigation techniques: Survey,
taxonomy, and methods’. Integration, the VLSI Journal 59, 10 – 22.

Khudia, D. S., B. Zamirai, M. Samadi, and S. Mahlke (2015), ‘Rumba: An
online quality management system for approximate computing’. In: Com-
puter Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. pp. 554–566.

Kim, J., J. Balfour, and W. Dally (2007), ‘Flattened butterfly topology for on-
chip networks’. In: Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. pp. 172–182.

Kim, J., W. J. Dally, S. Scott, and D. Abts (2008), ‘Technology-Driven,
Highly-Scalable Dragonfly Topology’. In: Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA). pp. 77–88.

References 123

Kim, R. G., W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu,
and R. Marculescu (2017), ‘Imitation Learning for Dynamic VFI Control in
Large-Scale Manycore Systems’. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.

Kim, S., D. Chandra, and Y. Solihin (2004), ‘Fair cache sharing and partitioning
in a chip multiprocessor architecture’. In: Proceedings of the 13th Interna-
tional Conference on Parallel Architectures and Compilation Techniques. pp.
111–122.

Kim, T., X. Huang, H. B. Chen, V. Sukharev, and S. X.-D. Tan (2016),
‘Learning-based dynamic reliability management for dark silicon processor
considering EM effects’. In: Proc. of Conf. on Design, Automation & Test
in Europe (DATE). pp. 463–468.

Kim, Y. (2010), ‘ATLAS: A scalable and high-performance scheduling algo-
rithm for multiple memory controllers’. In: High Performance Computer
Architecture (HPCA).

Kim, Y., M. Papamichael, O. Mutlu, and M. Harchol-Balter (2010), ‘Thread
Cluster Memory Scheduling: Exploiting Differences in Memory Access Be-
havior’. In: 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. pp. 65–76.

Kirovski, D. and M. Potkonjak (1997), ‘System-level Synthesis of Low-power
Hard Real-time Systems’. In: Proceedings of the 34th Annual Design Au-
tomation Conference. pp. 697–702.

Kling, M., S. Misailovic, M. Carbin, and M. Rinard (2012), ‘Bolt: on-demand
infinite loop escape in unmodified binaries’. Proceedings of the ACM . . . pp.
431–450.

Kong, J., S. W. Chung, and K. Skadron (2012), ‘Recent Thermal Management
Techniques for Microprocessors’. ACM Computing Surveys 44(3), 13:1–13:42.

Koren, I. and C. M. Krishna (2007), Fault-Tolerant Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1st edition.

Koufaty, D., D. Reddy, and S. Hahn (2010), ‘Bias Scheduling in Heterogeneous
Multi-core Architectures’. In: Proceedings of the 5th European Conference
on Computer Systems. pp. 125–138.

Krishna, C. M. and Y. H. Lee (2000), ‘Voltage-clock-scaling adaptive scheduling
techniques for low power in hard real-time systems’. In: Proceedings Sixth
IEEE Real-Time Technology and Applications Symposium. RTAS 2000. pp.
156–165.

124 References

Kulkarni, C., F. Catthoor, and H. D. Man (1998), ‘Code transformations for
low power caching in embedded multimedia processors’. In: Proceedings of the
First Merged International Parallel Processing Symposium and Symposium
on Parallel and Distributed Processing. pp. 292–297.

Kumar, R., D. M. Tullsen, N. P. Jouppi, and P. Ranganathan (2005), ‘Hetero-
geneous Chip Multiprocessors’. Computer pp. 32–38.

Lackey, D. E., P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and
J. M. Cohn (2002), ‘Managing power and performance for system-on-chip
designs using Voltage Islands’. In: IEEE/ACM International Conference on
Computer Aided Design, 2002. ICCAD 2002.

LaFrieda, C., E. Ipek, J. F. Martinez, and R. Manohar (2007), ‘Utilizing
Dynamically Coupled Cores to Form a Resilient Chip Multiprocessor’. In:
Proc. of Intl. Confl. on Dependable Systems and Networks (DSN). pp. 317–
326.

Laurenzano, M. A., P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang
(2016), ‘Input Responsiveness: Using Canary Inputs to Dynamically Steer
Approximation’. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. New York, NY, USA,
pp. 161–176, ACM.

Lee, H., M. Shafique, and M. A. A. Faruque (2018), ‘Aging-aware Workload
Management on Embedded GPU Under Process Variation’. IEEE Transac-
tions on Computers 67(7), 920–933.

Lee, J. W., M. C. Ng, and K. Asanovic (2008), ‘Globally-Synchronized Frames
for Guaranteed Quality-of-Service in On-Chip Networks’. In: Proceedings of
the 35th Annual International Symposium on Computer Architecture. pp.
89–100.

Lee, S., K. Kang, and C. M. Kyung (2015), ‘Runtime Thermal Management
for 3-D Chip-Multiprocessors With Hybrid SRAM/MRAM L2 Cache’. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems pp. 520–533.

Lee, S. and T. Sakurai (2000), ‘Run-time voltage hopping for low-power real-
time systems’. In: Proceedings 37th Design Automation Conference. pp.
806–809.

Li, B. and K. Nahrstedt (1999), ‘A control-based middleware framework for
quality-of-service adaptations’. IEEE journal on selected areas in communi-
cations pp. 1632–1650.

Li, B., L.-S. Peh, L. Zhao, and R. Iyer (2012), ‘Dynamic QoS Management for
Chip Multiprocessors’. ACM Trans. Archit. Code Optim. pp. 17:1–17:29.

References 125

Li, B., L. Zhao, R. Iyer, L.-S. Peh, M. Leddige, M. Espig, S. E. Lee, and D.
Newell (2011), ‘CoQoS: Coordinating QoS-aware shared resources in NoC-
based SoCs’. Journal of Parallel and Distributed Computing pp. 700–713.

Li, C., W. Luo, S. S. Sapatnekar, and J. Hu (2015), ‘Joint Precision Optimiza-
tion and High Level Synthesis for Approximate Computing’. In: Proceedings
of Design Automation Conference - DAC ’15. New York, NY, USA, pp.
104:1–104:6, ACM.

Li, M., Q.-A. Zeng, and W.-B. Jone (2006), ‘DyXY: A Proximity Congestion-
aware Deadlock-free Dynamic Routing Method for Network on Chip’. In:
Proceedings of the 43rd Annual Design Automation Conference (DAC). pp.
849–852.

Li, Y., S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu (2017), ‘Utility-Based
Hybrid Memory Management’. In: 2017 IEEE International Conference on
Cluster Computing (CLUSTER).

Li, Y. and W. Wolf (1997), ‘A Task-level Hierarchical Memory Model for
System Synthesis of Multiprocessors’. In: Proceedings of the 34th Annual
Design Automation Conference. pp. 153–156.

Liao, W., L. He, and K. M. Lepak (2005), ‘Temperature and supply Voltage
aware performance and power modeling at microarchitecture level’. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
pp. 1042–1053.

Liu, D., T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, Z. Xuehai, and
Y. Chen (2015), ‘PuDianNao : A Polyvalent Machine Learning Accelerator’.
In: Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems. pp. 369–381.

Liu, J., P. H. Chou, N. Bagherzadeh, and F. Kurdahi (2001), ‘Power-aware
scheduling under timing constraints for mission-critical embedded systems’.
In: Proceedings of the 38th Design Automation Conference (IEEE Cat.
No.01CH37232). pp. 840–845.

Liu, Y. and H. Zhu (2010), ‘A survey of the research on power management
techniques for high-performance systems’. Software: Practice and Experience
40(11), 943–964.

Lo, D., L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis (2014),
‘Towards Energy Proportionality for Large-scale Latency-critical Workloads’.
In: Proceeding of the 41st Annual International Symposium on Computer
Architecuture (ISCA). pp. 301–312.

126 References

Lo, D., L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis (2015),
‘Heracles: Improving Resource Efficiency at Scale’. In: Proceedings of the
42Nd Annual International Symposium on Computer Architecture (ISCA).
pp. 450–462.

Lo, W. H., K. z. Liang, and T. Hwang (2016), ‘Thermal-aware dynamic page
allocation policy by future access patterns for Hybrid Memory Cube (HMC)’.
In: 2016 Design, Automation Test in Europe Conference Exhibition (DATE).
pp. 1084–1089.

Lorch, J. R. and A. J. Smith (2004), ‘PACE: a new approach to dynamic
voltage scaling’. IEEE Transactions on Computers pp. 856–869.

Luo, J. and N. K. Jha (2001), ‘Battery-aware static scheduling for distributed
real-time embedded systems’. In: Proceedings of the 38th Design Automation
Conference (IEEE Cat. No.01CH37232). pp. 444–449.

Lysne, O., T. Skeie, S.-A. Reinemo, and I. Theiss (2006), ‘Layered routing in
irregular networks’. IEEE Transactions on Parallel and Distributed Systems
17(1), 51–65.

Ma, K. and X. Wang (2012), ‘PGCapping: Exploiting Power Gating for Power
Capping and Core Lifetime Balancing in CMPs’. In: Proc. of Intl. Conf. on
Parallel Architectures and Compilation Techniques (PACT). pp. 13–22.

Ma, S., N. Enright Jerger, and Z. Wang (2011), ‘DBAR: An Efficient Routing Al-
gorithm to Support Multiple Concurrent Applications in Networks-on-chip’.
In: Proceedings of the 38th Annual International Symposium on Computer
Architecture (ISCA). pp. 413–424.

Ma, S., N. E. Jerger, Z. Wang, M. Lai, and L. Huang (2014), ‘Holistic rout-
ing algorithm design to support workload consolidation in NoCs’. IEEE
Transactions on Computers pp. 529–542.

Ma, T. C. L. and K. G. Shin (2000), ‘A user-customizable energy-adaptive
combined static/dynamic scheduler for mobile applications’. In: Proceedings
21st IEEE Real-Time Systems Symposium. pp. 227–236.

Ma, Y., T. Chantem, R. P. Dick, and X. S. Hu (2017a), ‘Improving System-
Level Lifetime Reliability of Multicore Soft Real-Time Systems’. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25(6), 1895–
1905.

Ma, Y., T. Chantem, R. P. Dick, S. Wang, and X. S. Hu (2017b), ‘An on-line
framework for improving reliability of real-time systems on “big-little” type
MPSoCs’. In: Proc. of Design, Automation Test in Europe Conf. Exhibition
(DATE). pp. 446–451.

References 127

Maggio, M., H. Hoffmann, M. D. Santambrogio, A. Agarwal, and A. Leva
(2011), ‘Decision Making in Autonomic Computing Systems: Comparison of
Approaches and Techniques’. In: Proceedings of the 8th ACM International
Conference on Autonomic Computing. pp. 201–204.

Mahajan, D., A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh
(2016), ‘Towards Statistical Guarantees in Controlling Quality Tradeoffs
for Approximate Acceleration’. In: Proceedings of the 43rd International
Symposium on Computer Architecture. Piscataway, NJ, USA, pp. 66–77,
IEEE Press.

Mahmood, A. and E. J. McCluskey (1988), ‘Concurrent error detection using
watchdog processors-a survey’. IEEE Transactions on Computers 37(2),
160–174.

Maiterth, M., G. Koenig, K. Pedretti, S. Jana, N. Bates, A. Borghesi, D.
Montoya, A. Bartolini, and M. Puzovic (2018), ‘Energy and Power Aware
Job Scheduling and Resource Management: Global Survey — Initial Analysis’.
In: 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). pp. 685–693.

Mak, T., P. Y. Cheung, K.-P. Lam, and W. Luk (2011), ‘Adaptive routing in
network-on-chips using a dynamic-programming network’. IEEE Transac-
tions on industrial electronics pp. 3701–3716.

Manzak, A. and C. Chakrabarti (2000), ‘Variable voltage task scheduling
for minimizing energy or minimizing power’. In: 2000 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat.
No.00CH37100). pp. 3239–3242 vol.6.

Manzak, A. and C. Chakrabarti (2001), ‘Variable voltage task scheduling
algorithms for minimizing energy’. In: Low Power Electronics and Design,
International Symposium on, 2001. pp. 279–282.

Marculescu, R., U. Y. Ogras, L. Peh, N. E. Jerger, and Y. Hoskote (2009),
‘Outstanding Research Problems in NoC Design: System, Microarchitecture,
and Circuit Perspectives’. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems.

Mars, J., L. Tang, R. Hundt, K. Skadron, and M. L. Soffa (2011), ‘Bubble-Up:
Increasing Utilization in Modern Warehouse Scale Computers via Sensible
Co-locations’. In: Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). pp. 248–259.

Martinez, J. and E. Ipek (2009), ‘Dynamic multicore resource management: A
machine learning approach’. IEEE Micro, 29:8–17.

128 References

Meena, J. S., S. M. Sze, U. Chand, and T.-Y. Tseng (2014), ‘Overview of
emerging nonvolatile memory technologies’. Nanoscale Research Letters
9(526).

Mercati, P., F. Paterna, A. Bartolini, L. Benini, and T. S. Rosing (2017),
‘WARM: Workload-Aware Reliability Management in Linux/Android’. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
36(9), 1557–1570.

Meterelliyoz, M., H. Mahmoodi, and K. Roy (2005), ‘A leakage control system
for thermal stability during burn-in test’. In: ITC.

Millberg, M., E. Nilsson, R. Thid, and A. Jantsch (2004), ‘Guaranteed Band-
width using Looped Containers in Temporally Disjoint Networks within the
Nostrum Network on Chip’. In: Proceedings of the Design Automation and
Test Europe Conference (DATE).

Misailovic, S., S. Sidiroglou, H. Hoffmann, and M. Rinard (2010), ‘Quality of
service profiling’. In: ACM/IEEE 32nd International Conference on Software
Engineering, Vol. 1. pp. 25–34.

Mishra, N., H. Zhang, J. D. Lafferty, and H. Hoffmann (2015), ‘A Probabilistic
Graphical Model-based Approach for Minimizing Energy Under Performance
Constraints’. In: Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems.

Mitra, S., M. Das, A. Banerjee, K. Datta, and T.-Y. Ho (2016), ‘A Verification
Guided Approach for Selective Program Transformations for Approximate
Computing’. In: Asian Test Symposium (ATS), 2016 IEEE 25th. pp. 37–42.

Mittal, S. (2016), ‘A Survey of Techniques for Approximate Computing’. ACM
Comput. Surv. 48(4), 62:1–62:33.

Moazzemi, K., C. Y. Hsieh, and N. Dutt (2016), ‘HAMEX: heterogeneous
architecture and memory exploration framework’. In: 2016 International
Symposium on Rapid System Prototyping (RSP).

Moreau, T., F. Augusto, P. Howe, A. Alaghi, and L. Ceze (2017), ‘Exploiting
quality-energy tradeoffs with arbitrary quantization: special session paper’.
In: Proceedings of the Twelfth IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis Companion. p. 30.

Moreau, T., W. M, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M.
Oskin (2015), ‘SNNAP : Approximate Computing on Programmable SoCs
via Neural Acceleration’. In: International Symposium on High-Performance
Computer Architecture (HPCA).

References 129

Moscibroda, T. and B. G. Zorn (2011), ‘Flikker : Saving DRAM Refresh-
power through Critical Data Partitioning’. In: Proceedings of International
conference on Architectural support for programming languages and operating
systems - ASPLOS ’11. pp. 213–224.

Muck, T. R., B. Donyanavard, K. Moazzemi, A. M. Rahmani, A. Jantsch, and
N. D. Dutt (2018), ‘Design Methodology for Responsive and Robust MIMO
Control of Heterogeneous Multicores’. IEEE Transactions on Multi-Scale
Computing Systems.

Mück, T. R., Z. Ghaderi, N. D. Dutt, and E. Bozorgzadeh (2017), ‘Exploiting
Heterogeneity for Aging-Aware Load Balancing in Mobile Platforms’. IEEE
Transactions on Multi-Scale Computing Systems 3(1), 25–35.

Mukherjee, S. S., M. Kontz, and S. K. Reinhardt (2002), ‘Detailed design
and evaluation of redundant multi-threading alternatives’. In: Proc. of Intl.
Symp. on Computer Architecture (ISCA). pp. 99–110.

Murali, S., G. De Micheli, G. De Micheli, and G. De Micheli (2004), ‘SUN-
MAP: a tool for automatic topology selection and generation for NoCs’. In:
Proceedings of the 41st annual Design Automation Conference. pp. 914–919.

Muralidhara, S. P., L. Subramanian, O. Mutlu, M. Kandemir, and T. Mosci-
broda (2011), ‘Reducing Memory Interference in Multicore Systems via
Application-aware Memory Channel Partitioning’. In: Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture.
pp. 374–385.

Murray, J., R. Kim, P. Wettin, P. P. Pande, and B. Shirazi (2014), ‘Performance
Evaluation of Congestion-Aware Routing with DVFS on a Millimeter-Wave
Small-World Wireless NoC’. J. Emerg. Technol. Comput. Syst. 11(2).

Mushtaq, H., Z. Al-Ars, and K. Bertels (2011), ‘Survey of fault tolerance
techniques for shared memory multicore/multiprocessor systems’. In: Proc.
of Intl. Design and Test Workshop (IDT). pp. 12–17.

Nair, R. (2015), ‘Big data needs approximate computing: technical perspective’.
Communications of the ACM 58(1), 104–104.

Naithani, A., S. Eyerman, and L. Eeckhout (2017), ‘Reliability-Aware Schedul-
ing on Heterogeneous Multicore Processors’. In: Proc. of IEEE Intl. Symp.
on High Performance Computer Architecture (HPCA). pp. 397–408.

Naithani, A., S. Eyerman, and L. Eeckhout (2018), ‘Optimizing Soft Error
Reliability Through Scheduling on Heterogeneous Multicore Processors’.
IEEE Transactions on Computers 67(6), 830–846.

130 References

Nakai, M., S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi,
H. Kawahara, K. Kumano, and M. Shimura (2005), ‘Dynamic voltage and
frequency management for a low-power embedded microprocessor’. IEEE
Journal of Solid-State Circuits pp. 28–35.

Navada, S., N. K. Choudhary, S. V. Wadhavkar, and E. Rotenberg (2013),
‘A Unified View of Non-monotonic Core Selection and Application Steering
in Heterogeneous Chip Multiprocessors’. In: Proceedings of the 22Nd Inter-
national Conference on Parallel Architectures and Compilation Techniques
(PACT). pp. 133–144.

Nazari, A., N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic (2017),
‘EDDIE: EM-based detection of deviations in program execution’. In: 2017
ACM/IEEE 44th Annual International Symposium on Computer Architec-
ture (ISCA).

Neuwirth, S., F. Wang, S. Oral, and U. Bruening (2017), ‘Automatic and Trans-
parent Resource Contention Mitigation for Improving Large-Scale Parallel
File System Performance’. In: 2017 IEEE 23rd International Conference on
Parallel and Distributed Systems (ICPADS). pp. 604–613.

Neuwirth, S., F. Wang, S. Oral, S. Vazhkudai, J. Rogers, and U. Bruening
(2016), ‘Using Balanced Data Placement to Address I/O Contention in Pro-
duction Environments’. In: 2016 28th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). pp. 9–17.

Nielsen, L. S., C. Niessen, J. Sparso, and K. van Berkel (1994), ‘Low-power
operation using self-timed circuits and adaptive scaling of the supply voltage’.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems pp.
391–397.

Nilsson, E., M. Millberg, J. Öberg, and A. Jantsch (2003), ‘Load distribution
with the Proximity Congestion Awareness in a Network on Chip’. In: Pro-
ceedings of the Design Automation and Test Europe (DATE). pp. 1126–1127.

Ogras, U. Y. and R. Marculescu (2008), ‘Analysis and Optimization of
Prediction-based Flow Control in Networks-on-chip’. ACM Trans. Des.
Autom. Electron. Syst. 13(1), 11:1–11:28.

Ogras, U. Y., R. Marculescu, and D. Marculescu (2008), ‘Variation-adaptive
feedback control for networks-on-chip with multiple clock domains’. In: 2008
45th ACM/IEEE Design Automation Conference.

Ogras, U. Y., R. Marculescu, D. Marculescu, and E. G. Jung (2009), ‘Design
and Management of Voltage-Frequency Island Partitioned Networks-on-
Chip’. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

References 131

Ouyang, J. and Y. Xie (2010), ‘LOFT: A high performance network-on-chip
providing quality-of-service support’. In: Microarchitecture (MICRO), 2010
43rd Annual IEEE/ACM International Symposium on. pp. 409–420.

Palomino, D., M. Shafique, A. Susin, and J. Henkel (2016), ‘Thermal optimiza-
tion using adaptive approximate computing for video coding’. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016. pp.
1207–1212.

Papazoglou, M. P. and D. Georgakopoulos (2003), ‘Introduction: Service-
oriented Computing’. Commun. ACM pp. 24–28.

Park, J., E. Amaro, D. Mahajan, B. Thwaites, and H. Esmaeilzadeh (2016),
‘AxGames: Towards Crowdsourcing Quality Target Determination in Ap-
proximate Computing’. In: Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems. New York, NY, USA, pp. 623–636, ACM.

Parloff, R. (2016), ‘WHY DEEP LEARNING IS SUDDENLY CHANGING
YOUR LIFE’. Fortune.

Passos, R. M., J. A. Nacif, R. A. F. Mini, A. A. F. Loureiro, A. O. Fernandes,
and C. N. Coelho (2006), ‘System-level Dynamic Power Management Tech-
niques for Communication Intensive Devices’. In: 2006 IFIP International
Conference on Very Large Scale Integration. pp. 373–378.

Pathania, A., Q. Jiao, A. Prakash, and T. Mitra (2014), ‘Integrated CPU-
GPU Power Management for 3D Mobile Games’. In: Proceedings of the 51st
Annual Design Automation Conference. New York, NY, USA, pp. 40:1–40:6,
ACM.

Petrucci, V., M. A. Laurenzano, J. Doherty, Y. Zhang, D. Mosse, J. Mars, and L.
Tang (2015), ‘Octopus-man: Qos-driven task management for heterogeneous
multicores in warehouse-scale computers’. In: High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on. pp.
246–258.

Pillai, P. and K. G. Shin (2001), ‘Real-time Dynamic Voltage Scaling for
Low-power Embedded Operating Systems’. In: Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles. pp. 89–102.

Pritchett, T. and M. Thottethodi (2010), ‘SieveStore: A Highly-selective,
Ensemble-level Disk Cache for Cost-performance’. SIGARCH Comput. Ar-
chit. News pp. 163–174.

Psarakis, M., D. Gizopoulos, E. Sanchez, and M. S. Reorda (2010), ‘Micro-
processor Software-Based Self-Testing’. IEEE Design & Test of Computers
27(3), 4–19.

132 References

Psarakis, M., A. Vavousis, C. Bolchini, and A. Miele (2014), ‘Design and
implementation of a self-healing processor on SRAM-based FPGAs’. In:
Proc. of IEEE Intl. Symp. on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). pp. 165–170.

Pumma, S., M. Si, W. Feng, and P. Balaji (2017), ‘Parallel I/O Optimizations
for Scalable Deep Learning’. In: 2017 IEEE 23rd International Conference
on Parallel and Distributed Systems (ICPADS).

Qiao, F., N. Zhou, Y. Chen, and H. Yang (2015), ‘Approximate Computing in
Chrominance Cache for Image/Video Processing’. 2015 IEEE International
Conference on Multimedia Big Data pp. 180–183.

Qiu, Q. and M. Pedram (1999), ‘Dynamic power management based on
continuous-time Markov decision processes’. In: Proceedings 1999 Design
Automation Conference (Cat. No. 99CH36361). pp. 555–561.

Qu, G., D. Kirovski, M. Potkonjak, and M. B. Srivastava (1999), ‘Energy
minimization of system pipelines using multiple voltages’. In: Circuits and
Systems, 1999. ISCAS ’99. Proceedings of the 1999 IEEE International
Symposium on. pp. 362–365 vol.1.

Radetzki, M., C. Feng, X. Zhao, and A. Jantsch (2013), ‘Methods for Fault
Tolerance in Networks-on-Chip ’. ACM Computing Surveys 46(1), 8:1–8:38.

Raha, A., S. Venkataramani, V. Raghunathan, and A. Raghunathan (2015),
‘Quality Configurable Reduce-and-rank for Energy Efficient Approximate
Computing’. In: Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition. San Jose, CA, USA, pp. 665–670,
EDA Consortium.

Rahmani, A., P. Liljeberg, A. Hemani, A. Jantsch, and H. Tenhunen (2017a),
The Dark Side of Silicon. Springer.

Rahmani, A. M., B. Donyanavard, T. Mück, K. Moazzemi, A. Jantsch, O.
Mutlu, and N. Dutt (2018), ‘SPECTR: Formal Supervisory Control and
Coordination for Many-core Systems Resource Management’. In: Proceedings
of the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems. pp. 169–183.

Rahmani, A. M., M. H. Haghbayan, A. Kanduri, A. Y. Weldezion, P. Liljeberg,
J. Plosila, A. Jantsch, and H. Tenhunen (2015), ‘Dynamic power management
for many-core platforms in the dark silicon era: A multi-objective control
approach’. In: 2015 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED).

Rahmani, A. M., A. Jantsch, and N. Dutt (2017b), ‘HDGM: Hierarchical
Dynamic Goal Management for Many-Core Resource Allocation’. IEEE
Embedded Systems letters.

References 133

Rahmani, A. M., K. Latif, P. Liljeberg, J. Plosila, and H. Tenhunen (2010),
‘Research and practices on 3D networks-on-chip architectures’. In: NORCHIP
2010. pp. 1–6.

Ranganathan, P. and N. Jouppi (2005), ‘Enterprise IT trends and implications
for architecture research’. In: High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on. pp. 253–256.

Rantala, V., T. Lehtonen, P. Liljeberg, and J. Plosila (2008), ‘Hybrid NoC
with traffic monitoring and adaptive routing for future 3D integrated chips’.
Diagnostic Services in Network-on-Chips p. 11.

Rehman, S., K. H. Chen, F. Kriebel, A. Toma, M. Shafique, J. J. Chen, and J.
Henkel (2016), ‘Cross-Layer Software Dependability on Unreliable Hardware’.
IEEE Transactions on Computers 65(1), 80–94.

Rinard, M. (2006), ‘Probabilistic Accuracy Bounds for Fault-Tolerant Compu-
tations that Discard Tasks’. In: Proceedings of International Conference on
Supercomputing - ICS ’06. pp. 324–334.

Rinard, M. C. (2007), ‘Using Early Phase Termination to Eliminate Load
Imbalances at Barrier Synchronization Points’. SIGPLAN Not. 42(10), 369–
386.

Rotem, E., A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan
(2012), ‘Power-Management Architecture of the Intel Microarchitecture
Code-Named Sandy Bridge’. IEEE Micro 32(2), 20–27.

Rozo, L., A. M. Landwehr, Y. Zheng, C. Yang, and G. Gao (2018), ‘Reliability-
Aware Runtime Adaption Through a Statically Generated Task Schedule’.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26(1),
11–22.

Rusu, C., A. Ferreira, C. Scordino, and A. Watson (2006), ‘Energy-Efficient
Real-Time Heterogeneous Server Clusters’. In: 12th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’06). pp. 418–428.

Saez, J. C., A. Fedorova, D. Koufaty, and M. Prieto (2012), ‘Leveraging Core
Specialization via OS Scheduling to Improve Performance on Asymmetric
Multicore Systems’. ACM Trans. Comput. Syst. pp. 6:1–6:38.

Saez, J. C., M. Prieto, A. Fedorova, and S. Blagodurov (2010), ‘A Comprehen-
sive Scheduler for Asymmetric Multicore Systems’. In: Proceedings of the
5th European Conference on Computer Systems (EuroSys). pp. 139–152.

Samadi, M., D. A. Jamshidi, J. Lee, and S. Mahlke (2014), ‘Paraprox : Pattern-
Based Approximation for Data Parallel Applications’. In: Proceedings of
International conference on Architectural support for programming languages
and operating systems - ASPLOS ’14. pp. 35–50.

134 References

Samadi, M., J. Lee, and D. Jamshidi (2013), ‘Sage: Self-tuning approxima-
tion for graphics engines’. In: Proceedings of IEEE/ACM International
Symposium on Microarchitecture - MICRO ’13.

Samman, F. A., T. Hollstein, and M. Glesner (2013), ‘Runtime contention and
bandwidth-aware adaptive routing selection strategies for networks-on-chip’.
IEEE Transactions on Parallel and Distributed Systems pp. 1411–1421.

Sampson, A., W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D.
Grossman (2011), ‘{EnerJ}: Approximate Data Types for Safe and General
Low-power Computation’. Proceedings of the 32nd {ACM} {SIGPLAN}
Conference on Programming Language Design and Implementation pp. 164–
174.

San Miguel, J. and M. Badr (2014), ‘Load Value Approximation’. In: Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO).

Sanchez, D. and C. Kozyrakis (2011), ‘Vantage: Scalable and Efficient Fine-
grain Cache Partitioning’. In: Proceedings of the 38th Annual International
Symposium on Computer Architecture. New York, NY, USA, pp. 57–68,
ACM.

Saputra, H., M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C.-H.
Hsu, and U. Kremer (2002), ‘Energy-conscious compilation based on voltage
scaling’. ACM SIGPLAN Notices 37(7), 2.

Scolari, A., F. Sironi, D. Sciuto, and M. D. Santambrogio (2014), ‘A Survey on
Recent Hardware and Software-Level Cache Management Techniques’. In:
2014 IEEE International Symposium on Parallel and Distributed Processing
with Applications. pp. 242–247.

Scott, S., D. Abts, J. Kim, and W. J. Dally (2006), ‘The blackwidow high-radix
clos network’. ACM SIGARCH Computer Architecture News pp. 16–28.

Sehatbakhsh, N., A. Nazari, A. Zajic, and M. Prvulovic (2016), ‘Spectral pro-
filing: Observer-effect-free profiling by monitoring EM emanations’. In: 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

Semiconductor Industry Association et al. (2011), ‘International Technology
Roadmap for Semiconductors’. http://www.itrs2.net/.

Seo, D., A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi (2005), ‘Near-
Optimal Worst-Case Throughput Routing for Two-Dimensional Mesh Net-
works’. In: Proceedings of the 32nd Annual International Symposium on
Computer Architecture (ISCA). pp. 432–443.

References 135

Shafique, M. and S. Garg (2017), ‘Computing in the Dark Silicon Era: Current
Trends and Research Challenges’. IEEE Design Test 34(2), 8–23.

Shafique, M., S. Garg, T. Mitra, S. Parameswaran, and J. Henkel (2014), ‘Dark
silicon as a challenge for hardware/software co-design: Invited special session
paper’. In: Proc. of ACM International Conference on Hardware/Software
Codesign and System Synthesis. p. 13.

Shafique, M., B. Vogel, and J. Henkel (2013), ‘Self-adaptive hybrid Dynamic
Power Management for many-core systems’. In: 2013 Design, Automation
Test in Europe Conference Exhibition (DATE). pp. 51–56.

Shahosseini, S., K. Moazzemi, A. M. Rahmani, and N. Dutt (2017), ‘Depend-
ability evaluation of SISO control-theoretic power managers for processor
architectures’. In: 2017 IEEE Nordic Circuits and Systems Conference
(NORCAS): NORCHIP and International Symposium of System-on-Chip
(SoC).

Shamsa, E., A. Kanduri, A. M. Rahmani, P. Liljeberg, A. Jantsch, and N. Dutt
(2018), ‘Goal Formulation: Abstracting Dynamic Objectives for Efficient
On-chip Resource Allocation’. In: 2018 IEEE Nordic Circuits and Systems
Conference (NORCAS): NORCHIP and International Symposium of System-
on-Chip (SoC). pp. 1–4.

Shamsa, E., A. Kanduri, A. M. Rahmani, P. Liljeberg, A. Jantsch, and N. Dutt
(2019), ‘Goal-Driven Autonomy for Efficient On-chip Resource Management:
Transforming Objectives to Goals’. In: Proc. of Conf. on Design, Automation
Test in Europe (DATE).

Shang, L., L.-S. Peh, and N. K. Jha (2003), ‘Dynamic voltage scaling with
links for power optimization of interconnection networks’. In: The Ninth In-
ternational Symposium on High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings. pp. 91–102.

Sharifi, A., S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R. Das (2011),
‘METE: Meeting End-to-end QoS in Multicores Through System-wide Re-
source Management’. SIGMETRICS Perform. Eval. Rev. pp. 13–24.

Shelepov, D., J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang,
S. Blagodurov, and V. Kumar (2009), ‘HASS: a scheduler for heterogeneous
multicore systems’. ACM SIGOPS Operating Systems Review pp. 66–75.

Shin, Y. and K. Choi (1999), ‘Power conscious fixed priority scheduling for
hard real-time systems’. In: Proceedings 1999 Design Automation Conference
(Cat. No. 99CH36361). pp. 134–139.

136 References

Shojaei, H., A. Ghamarian, T. Basten, M. Geilen, S. Stuijk, and R. Hoes
(2009), ‘A parameterized compositional multi-dimensional multiple-choice
knapsack heuristic for CMP run-time management’. In: Design Automation
Conference, 2009. DAC’09. 46th ACM/IEEE. pp. 917–922.

Shoushtari, M., A. BanaiyanMofrad, and N. Dutt (2015), ‘Exploiting Partially-
Forgetful Memories for Approximate Computing’. IEEE Embedded Systems
Letters 7(1), 19–22.

Shye, A., J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors (2009),
‘PLR: A Software Approach to Transient Fault Tolerance for Multicore
Architectures’. IEEE Transactions on Dependable and Secure Computing
6(2), 135–148.

Sidiroglou, S., S. Misailovic, H. Hoffmann, and M. Rinard (2011), ‘Managing
performance vs. accuracy trade-offs with loop perforation’. In: Proceedings
of ACM SIGSOFT Symposium and European Conference on Foundations
of Software Engineering - SIGSOFT/FSE ’11. pp. 124–134.

Simevski, A., R. Kraemer, and M. Krstic (2014), ‘Increasing multiprocessor
lifetime by Youngest-First Round-Robin core gating patterns’. In: Proc. of
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS). pp. 233–239.

Singh, A., W. J. Dally, A. K. Gupta, and B. Towles (2003), ‘GOAL: a load-
balanced adaptive routing algorithm for torus networks’. In: ACM SIGARCH
Computer Architecture News. pp. 194–205.

Singh, A. et al. (2013a), ‘Mapping on multi/many-core systems: survey of
current and emerging trends’. In: Proc. of DAC, 2013. pp. 1:1–1:10.

Singh, A. K., P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak (2017), ‘A Sur-
vey and Comparative Study of Hard and Soft Real-Time Dynamic Resource
Allocation Strategies for Multi-/Many-Core Systems’. ACM Computing
Surveys 50(2), 24:1–24:40.

Singh, A. K., A. Kumar, and T. Srikanthan (2011), ‘A Hybrid Strategy for
Mapping Multiple Throughput-constrained Applications on MPSoCs’. In:
Proceedings of the 14th International Conference on Compilers, Architectures
and Synthesis for Embedded Systems. pp. 175–184.

Singh, A. K., A. Kumar, and T. Srikanthan (2013b), ‘Accelerating Throughput-
aware Runtime Mapping for Heterogeneous MPSoCs’. ACM Trans. Des.
Autom. Electron. Syst. pp. 9:1–9:29.

Singh, N. and S. Rao (2014), ‘Ensemble Learning for Large-Scale Workload
Prediction’. IEEE Transactions on Emerging Topics in Computing pp. 149–
165.

References 137

Singla, G., G. Kaur, A. K. Unver, and U. Y. Ogras (2015), ‘Predictive dynamic
thermal and power management for heterogeneous mobile platforms’. In:
2015 Design, Automation Test in Europe Conference Exhibition (DATE).
pp. 960–965.

Skadron, K., M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan (2003), ‘Temperature-aware microarchitecture’. In: 30th Annual
International Symposium on Computer Architecture, 2003. Proceedings. pp.
2–13.

Skitsas, M. A., C. A. Nicopoulos, and M. K. Michael (2016), ‘DaemonGuard:
Enabling O/S-Orchestrated Fine-Grained Software-Based Selective-Testing
in Multi-/Many-Core Microprocessors’. IEEE Transactions on Computers
65(5), 1453–1466.

Skitsas, M. A., C. A. Nicopoulos, and M. K. Michael (2018), ‘Exploring System
Availability During Software-Based Self-Testing of Multi-core CPU’. Journal
of Electronic Testing: Theory and Application 34(1), 67–81.

Smolens, J. C., B. T. Gold, B. Falsafi, and J. C. Hoe (2006), ‘Reunion:
Complexity-Effective Multicore Redundancy’. In: Proc. of the Intl. Symp.
on Microarchitecture (MICRO). pp. 223–234.

Song, W. J., S. Mukhopadhyay, and S. Yalamanchili (2015), ‘Managing
performance-reliability tradeoffs in multicore processors’. In: Proc. of IEEE
Intl. Reliability Physics Symp. pp. 3C.1.1–3C.1.7.

Soteriou, V. and L. Peh (2007), ‘Exploring the Design Space of Self-Regulating
Power-Aware On/Off Interconnection Networks’. IEEE Transactions on
Parallel and Distributed Systems pp. 393–408.

Srinivasan, J., S. V. Adve, P. Bose, and J. A. Rivers (2004), ‘The Case for
Lifetime Reliability-Aware Microprocessors’. In: Proc. of Intl. Symp. on
Computer Architecture (ISCA). pp. 276–287.

Srinivasan, S. T. and A. R. Lebeck (1998), ‘Load latency tolerance in dy-
namically scheduled processors’. In: Proceedings. 31st Annual ACM/IEEE
International Symposium on Microarchitecture. pp. 148–159.

St Amant, R., A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A.
Hassibi, L. Ceze, and D. Burger (2014), ‘General-purpose code acceleration
with limited-precision analog computation’. In: Proceeding of International
Symposium on Computer Architecuture - ISCA ’14. pp. 505–516.

Subasi, O., G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta (2017), ‘De-
signing and Modelling Selective Replication for Fault-Tolerant HPC Appli-
cations’. In: Proc. of Intl. Symp. on Cluster, Cloud and Grid Computing
(CCGRID). pp. 452–457.

138 References

Subramanian, L., D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu (2016),
‘BLISS: Balancing Performance, Fairness and Complexity in Memory Access
Scheduling’. IEEE Transactions on Parallel and Distributed Systems pp.
3071–3087.

Subramanian, L., V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu (2015),
‘The Application Slowdown Model: Quantifying and Controlling the Im-
pact of Inter-application Interference at Shared Caches and Main Memory’.
In: Proceedings of the 48th International Symposium on Microarchitecture
(MICRO). pp. 62–75.

Sui, X., A. Lenharth, D. S. Fussell, and K. Pingali (2016), ‘Proactive Control
of Approximate Programs’. In: Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems. New York, NY, USA, pp. 607–621, ACM.

Suleman, M. A., O. Mutlu, M. K. Qureshi, and Y. N. Patt (2009), ‘Accelerating
Critical Section Execution with Asymmetric Multi-core Architectures’. In:
Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). pp. 253–264.

Sun, G., C.-W. Chang, and B. Lin (2013), ‘A New Worst-Case Throughput
Bound for Oblivious Routing in Odd Radix Mesh Network’. IEEE Computer
Architecture Letters 12(1), 9–12.

Sun, J., R. Lysecky, K. Shankar, A. Kodi, A. Louri, and J. Roveda (2014),
‘Workload Assignment Considering NBTI Degradation in Multicore Systems’.
Journal Emerg. Technol. Comput. Syst. 10(1), 4:1–4:22.

Sung, H., J. Min, S. Ha, and H. Eom (2017), ‘OMBM: Optimized Memory
Bandwidth Management for Ensuring QoS and High Server Utilization’. In:
Foundations and Applications of Self* Systems (FAS* W), 2017 IEEE 2nd
International Workshops on. pp. 269–276.

Tai, J., D. Liu, Z. Yang, X. Zhu, J. Lo, and N. Mi (2017), ‘Improving Flash
Resource Utilization at Minimal Management Cost in Virtualized Flash-
Based Storage Systems’. IEEE Transactions on Cloud Computing pp. 537–
549.

Tan, C. et al. (2015), ‘Approximation-aware scheduling on heterogeneous
multi-core architectures’. In: In Proc. of ASP-DAC,. pp. 618–623.

Tang, L., J. Mars, and M. L. Soffa (2012), ‘Compiling for Niceness: Mitigating
Contention for QoS in Warehouse Scale Computers’. In: Proceedings of
the Tenth International Symposium on Code Generation and Optimization
(CGO). pp. 1–12.

References 139

Tang, L., J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa (2011), ‘The
impact of memory subsystem resource sharing on datacenter applications’.
In: ACM SIGARCH Computer Architecture News, Vol. 39(3). pp. 283–294.

Tavakkol, A., M. Sadrosadati, S. Ghose, J. Kim, Y. Luo, Y. Wang, N. M.
Ghiasi, L. Orosa, J. Gómez-Luna, and O. Mutlu (2018), ‘FLIN: Enabling
Fairness and Enhancing Performance in Modern NVMe Solid State Drives’.
In: Proc. of Intl. Symp. on Computer Architecture (ISCA). pp. 397–410.

Tedesco, L. P., T. Rosa, F. Clermidy, N. Calazans, and F. G. Moraes (2010),
‘Implementation and Evaluation of a Congestion Aware Routing Algorithm
for Networks-on-chip’. In: Proceedings of the 23rd Symposium on Integrated
Circuits and System Design (SBCCI).

Teodorescu, R. and J. Torrellas (2008), ‘Variation-Aware Application Schedul-
ing and Power Management for Chip Multiprocessors’. In: 2008 International
Symposium on Computer Architecture. pp. 363–374.

Tesauro, G. and et.al. (2007), ‘Managing Power Consumption and Performance
of Computing Systems Using Reinforcement Learning’. In: Int. Conf. on
Neural Information Processing Systems.

Tesauro, G., N. Jong, R. Das, and M. Bennani (2006), ‘A hybrid reinforce-
ment learning approach to autonomic resource allocation’. In: 3rd IEEE
International Conference on Autonomic Computing. pp. 65–73.

Thwaites, B., G. Pekhimenko, A. Yazdanbakhsh, J. Park, G. Mururu, and T.
Mowry (2014), ‘Rollback-Free Value Prediction with Approximate Loads’.
In: Proceedings of IEEE/ACM International Conference on Parallel Archi-
tectures and Compilation Techniques - PACT ’14).

Tilli, A., A. Bartolini, M. Cacciari, and L. Benini (2015), ‘Guaranteed Com-
putational Resprinting via Model-Predictive Control’. ACM Trans. Embed.
Comput. Syst.

Torng, C., M. Wang, and C. Batten (2016), ‘Asymmetry-aware work-stealing
runtimes’. In: Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual
International Symposium on. pp. 40–52.

Tziantzioulis, G., A. Gok, S. Faisal, N. Hardavellas, S. Ogrenci-Memik, and S.
Parthsarathy (2016), ‘Lazy pipelines: Enhancing quality in approximate com-
puting’. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2016. pp. 1381–1386.

Tzilis, S., I. Sourdis, V. Vasilikos, D. Rodopoulos, and D. Soudris (2016),
‘Runtime Management of Adaptive MPSoCs for Graceful Degradation’. In:
Proc. of Intl. Conf. on Compilers, Architectures and Synthesis for Embedded
Systems (CASES). pp. 5:1–5:10.

140 References

Unsal, O. S., R. Ashok, I. Koren, C. M. Krishna, and C. A. Moritz (2001), ‘Cool-
cache for hot multimedia’. In: Proceedings. 34th ACM/IEEE International
Symposium on Microarchitecture. MICRO-34. pp. 274–283.

Unsal, O. S. and I. Koren (2003), ‘System-level power-aware design techniques
in real-time systems’. Proceedings of the IEEE pp. 1055–1069.

Unsal, O. S., I. Koren, C. M. Krishna, and C. A. Moritz (2002), ‘The minimax
cache: an energy-efficient framework for media processors’. In: Proceedings
Eighth International Symposium on High Performance Computer Architec-
ture. pp. 131–140.

Valiant, L. G. and G. J. Brebner (1981), ‘Universal Schemes for Parallel
Communication’. In: Proceedings of the Thirteenth Annual ACM Symposium
on Theory of Computing. New York, NY, USA, pp. 263–277, ACM.

Van Craeynest, K., S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout (2013),
‘Fairness-aware Scheduling on single-ISA Heterogeneous Multi-cores’. In:
Proceedings of the 22Nd International Conference on Parallel Architectures
and Compilation Techniques (PACT). pp. 177–188.

Van Craeynest, K., A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer (2012),
‘Scheduling Heterogeneous Multi-cores Through Performance Impact Esti-
mation (PIE)’. In: Proceedings of the 39th Annual International Symposium
on Computer Architecture. pp. 213–224.

van den Brand, J. W., C. Ciordas, K. Goossens, and T. Basten (2007),
‘Congestion-controlled best-effort communication for networks-on-chip’. In:
Proceedings of the conference on Design, automation and test in Europe. pp.
948–953.

Vargas, V., P. Ramos, J.-F. Méhaut, and R. Velazco (2018), ‘NMR-MPar:
A Fault-Tolerance Approach for Multi-Core and Many-Core Processors’.
Applied Sciences 8(3).

Vassighi, A. and M. Sachdev (2006), ‘Thermal runaway in integrated circuits’.
IEEE Transactions on Device and Materials Reliability.

Venkataramani, S., V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan (2013), ‘Quality programmable vector processors for approximate
computing’. 46th Annual IEEE/ACM International Symposium pp. 1–12.

Vogt, L., Y. Chara, H. Ouannani, and M. Nazih (2007), ‘Integrated temperature
sensor with digital output for SoC power management’. In: 2007 International
Conference on Design Technology of Integrated Systems in Nanoscale Era.
pp. 7–12.

References 141

Wang, F., S. Oral, S. Gupta, D. Tiwari, and S. S. Vazhkudai (2014), ‘Improving
large-scale storage system performance via topology-aware and balanced
data placement’. In: 2014 20th IEEE International Conference on Parallel
and Distributed Systems (ICPADS). pp. 656–663.

Wang, L., X. Wang, and T. Mak (2016), ‘Adaptive Routing Algorithms for
Lifetime Reliability Optimization in Network-on-Chip’. IEEE Transactions
on Computers 65(9), 2896–2902.

Wang, T. and Q. Xu (2014), ‘On the Simulation of NBTI-Induced Performance
Degradation Considering Arbitrary Temperature and Voltage Variations’.
In: Proc. of Design Automation Conf. (DAC). pp. 169:1–169:6.

Wang, T., Q. Zhang, and Q. Xu (2017a), ‘ApproxQA: a unified quality assur-
ance framework for approximate computing’. In: Proceedings of the Confer-
ence on Design, Automation & Test in Europe. pp. 254–257.

Wang, X. and J. F. Martínez (2015), ‘XChange: A market-based approach
to scalable dynamic multi-resource allocation in multicore architectures’.
In: High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on. pp. 113–125.

Wang, X. and J. F. Martínez (2016), ‘ReBudget: Trading Off Efficiency vs.
Fairness in Market-Based Multicore Resource Allocation via Runtime Budget
Reassignment’. In: Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems
(ISCA). pp. 19–32.

Wang, Y., H. Li, and X. Li (2017b), ‘Real-Time Meets Approximate Computing:
An Elastic CNN Inference Accelerator with Adaptive Trade-off Between QoS
and QoR’. In: Proceedings of the 54th Annual Design Automation Conference
2017. New York, NY, USA, pp. 33:1–33:6, ACM.

Wells, P. M., K. Chakraborty, and G. S. Sohi (2009), ‘Mixed-mode Multicore
Reliability’. SIGARCH Comput. Archit. News 37(1), 169–180.

Wentzlaff, D., P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M.
Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal (2007), ‘On-chip
interconnection architecture of the tile processor’. IEEE micro pp. 15–31.

Winter, J. A., D. H. Albonesi, and C. A. Shoemaker (2010), ‘Scalable thread
scheduling and global power management for heterogeneous many-core archi-
tectures’. In: 2010 19th International Conference on Parallel Architectures
and Compilation Techniques (PACT).

Wolf, M., S. Bhattacharyya, J. Florence, and A. E. Sapio (2016), ‘Power and
Thermal Modeling for Communication Systems’. In: 2016 IEEE International
Workshop on Signal Processing Systems (SiPS). pp. 136–141.

142 References

Wu, D., B. M. Al-Hashimi, and M. T. Schmitz (2006), ‘Improving Routing
Efficiency for Network-on-chip Through Contention-aware Input Selection’.
In: Proceedings of the 2006 Asia and South Pacific Design Automation
Conference (ASP-DAC). pp. 36–41.

Wu, W. and A. Louri (2016), ‘A Methodology for Cognitive NoC Design’.
IEEE Computer Architecture Letters 15(1), 1–4.

Wu, Y., C. Lu, and Y. Chen (2016), ‘A Survey of Routing Algorithm for Mesh
Network-on-Chip’. Front. Comput. Sci. pp. 591–601.

Xiang, Y., T. Chantem, R. P. Dick, X. S. Hu, and L. Shang (2010), ‘System-level
reliability modeling for MPSoCs’. In: Proc. of Conf. on Hardware/Software
Codesign and System Synthesis (CODES). pp. 297–306.

Xiang, Y. and S. Pasricha (2015), ‘Soft and Hard Reliability-Aware Scheduling
for Multicore Embedded Systems with Energy Harvesting’. IEEE Transac-
tions on Multi-Scale Computing Systems 1(4), 220–235.

Xu, C., X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, and L. Jiang (2017),
‘On Quality Trade-off Control for Approximate Computing Using Iterative
Training’. In: Proceedings of the 54th Annual Design Automation Conference
2017. New York, NY, USA, pp. 52:1–52:6, ACM.

Xu, Q., T. Mytkowicz, and N. S. Kim (2016a), ‘Approximate Computing:
A Survey’. IEEE Design & Test 33(1), 8–22.

Xu, S., B. Fu, M. Chen, and L. Zhang (2016b), ‘Congestion-Aware Adaptive
Routing with Quantitative Congestion Information’. In: High Performance
Computing and Communications; IEEE 14th International Conference on
Smart City; IEEE 2nd International Conference on Data Science and Sys-
tems (HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference
on. pp. 216–223.

Xue, L., F. Li, M. Kandemir, I. Kolcu, et al. (2006), ‘Dynamic partitioning of
processing and memory resources in embedded MPSoC architectures’. In:
Proceedings of the conference on Design, automation and test in Europe:
Proceedings. pp. 690–695.

Yamamoto, A. Y. and C. Ababei (2014), ‘Unified reliability estimation and
management of NoC based chip multiprocessors’. Microprocessors and Mi-
crosystems 38(1), 53–63.

Yang, H., A. Breslow, J. Mars, and L. Tang (2013), ‘Bubble-flux: Precise Online
QoS Management for Increased Utilization in Warehouse Scale Computers’.
In: Proceedings of the 40th Annual International Symposium on Computer
Architecture (ISCA). pp. 607–618.

References 143

Yang, Z., J. Tai, J. Bhimani, J. Wang, N. Mi, and B. Sheng (2016), ‘GReM:
Dynamic SSD resource allocation in virtualized storage systems with het-
erogeneous IO workloads’. In: 2016 IEEE 35th International Performance
Computing and Communications Conference (IPCCC). pp. 1–8.

Yao, F., A. Demers, and S. Shenker (1995), ‘A scheduling model for reduced
CPU energy’. In: Proceedings of IEEE 36th Annual Foundations of Computer
Science. pp. 374–382.

Ye, Y., R. West, Z. Cheng, and Y. Li (2014), ‘COLORIS: A Dynamic Cache
Partitioning System Using Page Coloring’. In: Proceedings of the 23rd Inter-
national Conference on Parallel Architectures and Compilation. New York,
NY, USA, pp. 381–392, ACM.

You, D. and K. S. Chung (2014), ‘Dynamic power management for embedded
processors in system-on-chip designs’. Electronics Letters pp. 1309–1310.

Zahedi, S. M. and B. C. Lee (2014), ‘REF: Resource Elasticity Fairness with
Sharing Incentives for Multiprocessors’. In: Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems (ISCA). pp. 145–160.

Zhang, T., J. L. Abellán, A. Joshi, and A. K. Coskun (2014), ‘Thermal
management of manycore systems with silicon-photonic networks’. In: 2014
Design, Automation Test in Europe Conference Exhibition (DATE).

Zhang, X., S. Dwarkadas, and K. Shen (2009), ‘Towards practical page coloring-
based multicore cache management’. In: Proceedings of the 4th ACM Euro-
pean conference on Computer systems. pp. 89–102.

Zhang, X., Y. Zhang, B. R. Childers, and J. Yang (2017), ‘DrMP: Mixed
Precision-aware DRAM for High Performance Approximate and Precise
Computing’. In: Parallel Architectures and Compilation Techniques (PACT),
2017 26th International Conference on. pp. 53–63.

Zhang, Y., M. A. Laurenzano, J. Mars, and L. Tang (2014), ‘SMiTe: Precise
QoS Prediction on Real-System SMT Processors to Improve Utilization in
Warehouse Scale Computers’. In: Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). pp. 406–418.

Zhao, B., H. Aydin, and D. Zhu (2008), ‘Reliability-aware Dynamic Voltage
Scaling for energy-constrained real-time embedded systems’. In: Proc. of
IEEE Intl. Conf. on Computer Design (ICCD). pp. 633–639.

Zhao, Y., J. Rao, and Q. Yi (2016), ‘Characterizing and Optimizing the Perfor-
mance of Multithreaded Programs Under Interference’. In: Proceedings of the
2016 International Conference on Parallel Architectures and Compilation
(PACT). pp. 287–297.

144 References

Zhou, Y., H. Hoffmann, and D. Wentzlaff (2016), ‘CASH: Supporting IaaS
Customers with a Sub-core Configurable Architecture’. In: Proceedings of
the 43rd International Symposium on Computer Architecture (ISCA). pp.
682–694.

Zhuravlev, S., J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto (2012),
‘Survey of Scheduling Techniques for Addressing Shared Resources in Multi-
core Processors’. ACM Computing Surveys 45(1), 4:1–4:28.

Zipf, P., G. Sassatelli, N. Utlu, N. Saint-Jean, P. Benoit, and M. Glesner (2009),
‘A Decentralised Task Mapping Approach for Homogeneous Multiprocessor
Network-on-chips’. Int. J. Reconfig. Comput. pp. 3:1–3:14.

Zong, W., M. O. Agyemen, X. Wang, and T. Maky (2015), ‘Unbiased Regional
Congestion Aware Selection Function for NoCs’. In: Proceedings of the 9th
International Symposium on Networks-on-Chip (NOCS). pp. 19:1–19:8.

	Acronyms
	Introduction
	On-chip resources
	Resources
	Metrics
	Objectives and constraints
	Observing and predicting

	Performance
	Compute
	Memory
	Network
	Input/Output
	Summary

	Power, energy, and thermal management
	Dynamic management objectives
	Dynamic power management techniques
	Run-time energy efficient managers
	Dynamic thermal-aware management methods
	Summary

	Reliability
	Lifetime management
	Soft error susceptibility management
	Online fault management
	Summary

	Quality of Service
	Performance bound QoS
	Accuracy bound QoS
	Summary

	Limitations of current approaches and recent trends
	Conclusions
	References

