Efficient Tracing Methodology Using Automata Processor

MINJUN SEO and FADI KURDAHI, Center for Embedded Cyber-physical Systems,
University of California, USA

Tracing or trace interface has been used in various ways to find system defects or bugs. As embedded systems
are increasingly used in safety-critical applications, tracing can provide useful information during system ex-
ecution at runtime. Non-intrusive tracing that does not affect system performance has become especially im-
portant, but unfortunately, the biggest obstacle to this approach was the vast amount of real-time trace data,
making it challenging to address complex requirements with relatively limited hardware implementations.
Automata processors can be programmed with a memory-like structure of automata and have a structure
specific to streaming data, large capacity, and parallel processing functions. This paper promotes the idea of
high-level system-on-chip monitoring using automata processors. We used a safety-critical pacemaker ap-
plication in the experiments, described timed automata (TA)-based requirements, and tested intentionally
injected 4,000 random failures. The TA model converted for Automata Processor to monitor system, correct-
ness, and safety properties achieved 100% failure detection rate in the experiment, and the detected failure is
reported as fast enough to allow enough extent for failure recovery.

CCS Concepts: « Software and its engineering — Software verification; Dynamic analysis; « Computer
systems organization — Embedded hardware;

Additional Key Words and Phrases: Tracing, tracing methodology, runtime verification

ACM Reference format:

Minjun Seo and Fadi Kurdahi. 2019. Efficient Tracing Methodology Using Automata Processor. ACM Trans.
Embed. Comput. Syst. 18, 5s, Article 80 (October 2019), 18 pages.

https://doi.org/10.1145/3358200

1 INTRODUCTION

At the software development stage, verification/debug takes about 75% of the effort [15]. Despite
these efforts, the deployed software released still contains bugs due to the fact that not all use
cases may have been tested, and also because of the environmental and unpredictable nature of
embedded systems, which can cause hardware failures. In a Cyber-Physical System, these bugs can
sometimes affect system safety, which can result in life-threatening situations, so on-chip verifica-
tion becomes necessary. If we can continue to monitor and verify software after deployment, we
can detect when a safety-critical application fails in a timely fashion and take appropriate action.
Thus, the use of tracing (or trace interface) for continuous software verification has emerged.

This work was partially supported by NSF grant CCF-1704859.

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2019” of the camera-ready version of your paper.
Authors’ addresses: M. Seo and F. Kurdahi, Center for Embedded Cyber-physical Systems, University of California, Irvine,
California, USA, 92617; emails: {minjun.seo, kurdahi}@uci.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1539-9087/2019/10-ART80 $15.00

https://doi.org/10.1145/3358200

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

https://doi.org/10.1145/3358200
mailto:permissions@acm.org
https://doi.org/10.1145/3358200

80:2 M. Seo and F. Kurdahi

Tracing typically produces information about the state of a pipeline in the microprocessor or
information pertaining to instructions that have passed through the pipeline such as program
counter, opcode, ALU results, memory access, and so on. Trace interfaces are either exposed to the
outside or internal only. Externally exposed interfaces allow other devices to process or transfer
information to external trace storage. When used internally, it usually stores tracing in the trace
buffer, and the debug unit uses this information, halting microprocessor.

Due to the usefulness and real-time nature of the trace information, various methodologies
have been developed to deal with trace interface directly. That is, another piece of hardware di-
rectly connected to the trace interface can directly verify trace data. This non-intrusive approach
eliminates or minimizes software instrumentation and enables fast failure detection. Software in-
strumentation in embedded systems is likely to cause many problems in real-time performance,
which can lead to abnormal behaviors of responsiveness and scheduling, mainly due to timing
changes. Therefore, non-intrusive tracing can perform system verification without such changes
of software behaviors with no performance penalty.

Separate independent hardware is suitable for handling tracing, but with constraints. First, it is
a hardware speed problem when defining requirements. The information from tracing is instanta-
neous data and does not show any long-term view. Second, it is a size issue in hardware design. To
perform runtime verification, it is necessary to maintain high-capacity requirements data. Because
of this, the hardware that handles tracing internally requires a significant amount of high-speed
memory. The cost of SRAM-level high-capacity/performance hardware also rises tremendously.
Thus, we had to find a way to guarantee significant capacity, throughput, and parallelism.

Micron’s commercialized automata processors can solve many of these problems. First, it pro-
vides DRAM-level high capacity. The current implementation provides a capacity of 512 MB, which
enables the programming of a large number of automata. Second is fast processing speed. Memory
with a DDR3 level clock is characterized by high-speed processing once the symbol is processed.
Another essential feature is parallelism. Several independent automata running in parallel can be
a crucial factor when monitoring the system.

In this paper, we propose a Trace Abstraction Layer (TAL) and show a methodology that can
perform verification using Automata Processors. TAL’s well-defined and independent layers make
it possible to be used in a variety of ways to meet goals and circumstances. This methodology
is illustrated through a pacemaker implementation, a life/safety-critical example. As far as we
know, there are no standards in existence today for automata processor-based programmable non-
intrusive runtime verification methodologies. This paper addresses the topic.

2 RELATED WORK
2.1 Trace-based Methods

Trace-based method for monitoring system execution uses instantaneous data of large volumes
of real-time data. CoreSight [25], ChipScope [40], SignalTap [10], Intel Trace Hub [35], and RTNI
[14] allow designers to specify a set of signals that can be traced at runtime without affecting the
system performance.

Intel Trace Hub (TH) mainly controls tracing in a software way, which is performed by Software
Trace Hub (STH), of how to store the trace data in a specified Memory Storage Unit (MSU), and
the TH does not provide a way to perform runtime software verification.

ARM CoreSight supports a wide range of tracing/monitoring, including all cores and internal
buses, but must be supplemented by software interactions. For example, to obtain a software exe-
cution trace of a specific address, we must specify the address as a trigger, and then the processor

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

Efficient Tracing Methodology Using Automata Processor 80:3

must stop and continue this analysis with the external device, which is an obstacle to perform
runtime software verification without interruption or timing changes.

ChipScope is a non-intrusive technique to monitor components in an FPGA design using of-
fline configurable triggers and trace filters. While ChipScope is suitable for hardware debugging
purposes, it cannot be easily utilized for online verification of complex system requirements.

MED is a debug methodology for embedded systems, which integrates on-chip instrumentation
(OCI) to support configurable triggers and traces. The collected traces from the OCI components
are then combined and made accessible through a traditional off-chip JTAG interface. However,
similar to other scan-based interfaces, the system must be partially or entirely halted to access the
collected information, meaning real-time monitoring is not possible.

The real-time non-intrusive (RTNI) approach utilizes a trace-based approach for tracing specific
signals within a microprocessor focused on testing, debug, and validation of real-time systems.

However, those trace methods typically require external hardware or dedicated processors to
access the traced signals and only allow a small subset of signals to be traced.

2.2 Event-based Methods

Event-based methods (e.g., ARBD [29], MAMon [12], BusMOP [28], SOF [21], NIRM [33], DiaSys
[37], Watanabe et al. [39], Zouh et al. [43], and RTAD [27]) uses hardware to detect events, rather
than tracing all execution data. Thus, event-based monitoring requires analyzing a relatively small
amount of data and results in simpler implementations that enable on-chip verification.

ARBD and MAMon monitor the system execution using on-chip probes to detect events and off-
chip hardware to analyze detected events. ARBD uses an assertion-based analyzer implemented
in an FPGA, whereas MAMon uses an external workstation for analysis. As these approaches use
off-chip interconnections, the number of events that can be analyzed is limited by the interfaceas
bandwidth.

BusMOP is a more general monitoring and verification approach for commercial off-the-shelf
(COTS) components. BusMOP enables designers to define which events are monitored and verify
requirements based on those events. Requirements are defined using linear temporal logic. How-
ever, BusMOP is limited to only those events that can be observed from the system bus. Monitoring
bus not only limits which events can be analyzed but also imposes delays in event detection in the
presence to bus contention, which makes precise timing verification difficult in many circum-
stances.

SOF is an event-based detection and collection framework that integrates distributed event de-
tectors for both hardware and software with pipelined interfaces for efficiently collecting events
at a centralized location. The SOF approach primarily focuses on non-intrusive event detection
and assumes event analysis can be performed using a secondary on-chip processor but does not
consider the problem of runtime verification itself.

NIRM is non-intrusive runtime monitoring methodology with compact representation, which
is a hierarchical runtime monitoring graph (RMG), of requirements. While the compact represen-
tation can reduce hardware area resources, there is still significant hardware used for requirement
storage to support programmability, which is expensive to thousands of states for the requirement.

DiaSys proposes a methodology to transfer the self-contained diagnosis events to a host PC by
reducing the bandwidth of trace data. The host PC supports complex software debugging tasks
through the events. However, this DiaSys only focuses on offline analysis and is not suitable for
real-time analysis of the execution environment.

Watanabe et al. reports a development workflow and presents practical design considerations.
Requirements (contracts) are carefully written by verification experts in signal temporal logic (STL)
and are used for reasoning the continuous behavior of a system over time, showing two advanced

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

80:4 M. Seo and F. Kurdahi

driver-assistance systems (ADAS). The approach is a software-based assertion check technique,
which has over 1-second overhead that probably will not be accepted for safety-critical systems.

Zhou et al. propose a hardware-accelerated assertion checking unit (ACU) that is guided by soft-
ware. Temporal assertions are stored in ACU hardware registers, and atomic proposition process-
ing unit (APPU) continuously check whether input for a hardware component satisfies properties
defined, showing hardware-assisted cryptographic system as an example. The approach reduces
processor utilization via hardware-based assertion checking, but still requires the intervention of
software and laboratory-level post analysis.

RTAD non-intrusively infers anomalous branches on a target application. In the offline learning
stage, RTAD trains and optimizes machine learning (ML) model with dynamic simulations. In on-
line inference stage, the ML model from the learning stage is programmed, and the GPU-inspired
inference engine monitors and checks the target application execution through ARM CoreSight
trace. RTAD is only concerned with branches, and ML-based detection might have false positives,
and software intervention is required to handle many more factors such as timing, memory ad-
dresses together in ARM CoreSight-based trace.

The bigger problem is that there is no consistency and no standard among these interfaces
(types of tracing data, width, and connectivity), which requires different implementations of the
hardware to verify/monitor software execution.

2.3 Requirements for Runtime Monitoring

For runtime monitoring and verification, there are various models to specify requirements. Formal
models, which use a mathematical framework, such as timed automata (TA) [4] and linear temporal
logic (LTL) [30] are used to define a system.

Linear Temporal Logic (LTL) defines system states and temporal properties of the states, which
can be verified at runtime to ensure that the properties remain true during execution. Real-time
extensions to LTL, such as metric interval temporal logic (MITL), have been proposed to specify
real-time requirements to support the concept of specific time intervals for LTLs.

Timed automata (TA) is another well-known formal modeling method that specifies how a sys-
tem functions and models time constraints for transitions between system states. TA models are
typically used in model checking techniques to evaluate properties such as reachability, safety, and
liveness property. However, the TA model is limited its effectiveness for modeling system-level in-
teractions, including interactions between hardware and software components.

Despite strong verification capabilities, formal verification methods such as TA and LTL have
been mainly used for design-time verification or in a hardware form that cannot be synthesized and
modified in advance. Also, runtime checkers using formal properties mostly use instrumentation
such as STARVOORS framework [3] and CLARA [8], which is not suitable for time-sensitive sys-
tems such as embedded systems. This paper introduces programmable on-chip hardware runtime
monitor as a part of runtime verification.

2.4 Automata Processor

Automata processor (AP) [11] is a hardware implementation of a non-deterministic finite state
machine (NFAs) and has several additional features to aid in the use of existing NFAs. The AP
is a programmable device and can perform high-speed, parallel, and reconfigurable data stream
processing by exploiting low-level parallelism based on DRAM technologies. Such high-efficiency
hardware is used for data mining [38], bioinformatics [31], machine learning [7, 34, 42], and net-
work intrusion detection [32], and it was mainly used as an accelerator, achieving from 45 X to
3978 X speedups.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

Efficient Tracing Methodology Using Automata Processor 80:5

i ‘?\ Verification API E Debug API External Trace API
g
Programﬁ;ero’% Programable Deb
ificati) grama eoug
IV:ne:catmr %ﬂhme Verification Sebug Support External Trace Layer
E loa -ay Unit (PRVU) AYEr| Unit
E Filtering API

.
.

[edwoy!

.

- Timed [mmmEEeE—

Filtering b ProgramableFitx| €O pyents [|[|&> } }

Layer I """"""
Trace Buffer

Memory

Expert i‘“

O’ ‘% Program
‘AL hardware
Tesler \ \ configuration +
Verification ‘ Program

Value

Trce o

Valid | | Opcode

&f: TAL Failure gmgmmmable Runtime Address
LS Verification Verification Unit Laycr —fooom)
Properties L Hro
Hardware
Expert
@ ®) (©

Fig. 1. Overview of a) Design-time Methodology and b) Runtime Methodology of Universal Tracing Method-
ology and c) Trace Abstraction Layer (TAL).

Runtime verification using the AP has not been studied, and as far as we know;, this paper is the
first attempt to achieve high-efficiency runtime verification using the AP. We believe that the AP’s
characteristics of high-speed parallel processing of streamed data are efficient in the processing of
tracing.

3 UNIVERSAL TRACING METHODOLOGY

The universal tracing methodology shown in Figure 1 for monitoring and verification consists of:
(a) a design-time methodology for developing software and constructing verification properties
for runtime verification, (b) non-intrusive hardware for monitoring and verifying the properties at
runtime within the deployed system. Figure 1(c) presents the Trace Abstraction Layer (TAL), con-
sisting of several functionally/logically separated components which are: (1) compatibility layer,
(2) filtering layer, and (3) verification/debug/external trace layer for universal tracing. Note that
Figure 1(b) illustrates an instance of TAL as a hardware implementation, and the highlighted part
of the instance points to the corresponding TAL layer.

3.1 Compatibility Layer

The compatibility layer at the lowest layer ensures compatibility with different processors. Existing
microprocessors provide different trace interfaces for various vendors. Because these interfaces
are not compatible with each other and the bits, types, and numbers of signals are different from
each other, there is a problem that the hardware using trace interface is also incompatible across
platforms. To ensure compatibility, we must first identify the essential elements of monitoring/
verification.

Table 1 shows the characteristics and signal types of the trace interface of representative softcore
processors [2, 20, 41]. The common signals of these processors are PC address and Opcode, which
is the minimum required set of signals for the compatibility layer. For runtime on-chip verification,
let us take a closer look at the necessary elements in the hardware. Consider the well-known formal
verification methods, timed automata (TA):

e Finite set C (clock of a timed automaton)
e Clock reset

Other notable software flow elements are: basic block, jump target, entry and exit block, and
execution order pair.

The key to verification TA is the time factor, which is a time_tag. A basic block can be repre-
sented by a pair of addresses, which is expressed as a pair BB = (Addr1, Addr2). Jump target, entry

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

80:6 M. Seo and F. Kurdahi

Table 1. Types of Interface and Trace Signals for Representative Softcore
Processors and Common Trace Signals

Microprocessor | Interface Trace signals Comment
Leon3 Internal | Multi_cycle, Time_tag, LoadStore_parameter, Program_Counter, Instruction_Trap, Emror_Mode, | 32-bit time tag
Opcode (cycle)

Microblaze External | Trace_Instr Valid, Trace_ Instruction, Trace PC, Trace_Reg Write, Trace_Reg Addr, | I$, D$ information
Trace_MSR Reg 11, Trace_ MSR Reg_15, Trace_PID_Reg, Trace New_Reg Value,
Trace_Exception_Taken, ... (omitted due to page limitation)

OpenRISC External | traceport exec_valid_o, traceport exec_pc_o, traceport exec_jb_o, traceport exec_jal o, | morlkx
traceport_exec_jr_o, traceport_exec_jbtarget o, traceport_exec_insn_o, | implementation
traceport_exec_wbdata_o, traceport_exec_wbreg_o, traceport_exec_wben_o,

Common trace signal Program Counter (PC), Opcode

Table 2. Verification Operators and Corresponding Trace Signals

Verification operators Corresponding Trace Signal

Temporal operators, clock Time tag
Basic block, §ntry and CX.lt block, PC address
execution order pair
Variables in verification Memory address and value

block, exit block can also be represented by PC addresses. It is also required to check variable values
to evaluate certain conditions such as checking whether the logic holds a value globally or check-
ing the transition condition in the TA. Table 2 represents verification operators and corresponding
trace signals discussed above.

For platforms that do not support a specific signal, the compatibility layer generates such sig-
nals. For example, MicroBlaze does not support time_tag, so an internal counter in the compati-
bility layer can provide a counter, performing time counting. Also, when a memory operation is
being performed, the Leon3 does not directly indicate memory address and value, but addresses
and values can be obtained indirectly from Opcode and LoadStore parameters. The information
generated or obtained from this layer is passed to the upper layer, the filtering layer.

3.2 Filtering Layer

Since tracing is a cycle-by-cycle method, too much information can be flooded into verification
hardware. For example, in the case of a 100 MHz Leon3 running on FPGA, 12.8 GB trace data are
produced per second. Therefore, the filtering layer focuses on filtering this data and delivering
only the necessary information to the next layer. The information is referred to as an event with
time_tag.

Definition 3.1. Filter F is a set of a tuple < E, P,V > where:

e Eisan event, where each event represents a desirable trace to be collected.
e An event has atype € {Addr, memWrite, memRead, period}

e P isa list of parameters for the event E (size of 2).

e V is the target value for the type.

The Addr event triggers when one specified address as a parameter is equal to the current PC
address with an address (1°¢ parameter) and operator (2"¢ parameter), ignoring target value V. The
memWrite and memRead events have two parameters: an address of a variable, and operator
to compare with target value V, which are handled when the memory content of the address is
being read or written. The period generates an event every V cycle. Figure 2 shows an example of
defining events and setting filters. The events E0 — E3 will be handled when the addresses, which
are 0x80002FFF, 0x80004000, 0x80004020, 0x80004258 respectively, are hit. The event E4 or E5

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

Efficient Tracing Methodology Using Automata Processor 80:7

(E@(Addr), [©x8@002FFF, -], -) // address
(E1(Addr), [@x80004000, -], -) // address
(E2(Addr), [©x80004020, -], -) // address
(E3(Addr), [0x80004258, -], -) // address
(E4(memRead), [0x40000000, “>”

<

1, 1eee) // value is gt
(E5(memWrite), [0x40000000, “>”], 1000) // value is gt
(E10(period), [-, -], 1000) // every 1000 cycle

Fig. 2. Example programmable filter setting.

Programmable Runtime Verification Unit

Requirements | | a) PROGRAM NFAs (d) REPORT UNIT >
UNIT l Failure
A

RePORT STE I

Q]

e

Filtered ab .

Event

JIZITOINAS

Start state

Fig. 3. Detailed view of programmable runtime verification unit (PRVU).

is handled when the content of memory location 0x40000000 is read or written and greater than
value 1000, respectively. The event E10 generates an event every 1000 processor cycles. When an
event defined in the filtering layer is detected in the trace interface, the trace is stored in the trace
buffer with a timestamp and used by the upper layers. Note that trace data not related to the filter
in this layer is discarded. The filter can be set via the filtering API shown in Figure 1.

3.3 Verification Layer

The verification layer provides a variety of primitives for non-intrusive monitoring. This layer
contains the Programmable Runtime Verification Unit (PRVU), which can be reconfigured at the
runtime. While typical formal verification methods perform symbolic analysis through exhaus-
tive methods usually done offline, runtime monitors determine whether the property is satisfied
at runtime, which is usually accompanied by instrumentation with its performance penalty. Our
approach is based on non-intrusive runtime monitoring. In order to satisfy general formal verifica-
tion and apply it to runtime verification, we need to define requirements, and a widely known and
used timed automata (TA) was chosen for these requirements languages. Although PRVU can be
implemented in various forms, this paper shows an implementation of PRVU through Automata
Processor (AP) [11] with TA-based requirements for runtime verification.

The PRVU consists of the following functional blocks: a) Program Unit, b) Symbolizer, c) Re-
port Unit, and d) Automata Processor as shown in Figure 3. The Program Unit (PU) programs AP
with the requirements written in NFAs. The PU is a virtual/physical block in this diagram, either
a software block that supports program loading via the AP SDK, or a hardware block that loads
automata via DMA. The Symbolizer is a programmable unit that converts the filtered traces into
symbols and delivers them to the AP. The AP performs runtime verification based on the pro-
grammed requirements, and if the defined STE is triggered, it passes it to the Report Unit (RU).
The RU performs a failure report by reading the output event buffer of AP, which can be connected
to the interrupt port of the microprocessor.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

80:8 M. Seo and F. Kurdahi

press?

x<=10
press?

bright

press?

Fig. 4. Example of a timed automata model for a timer light switch.

3.4 Debug and External Trace Layer

The information stored in the trace buffer can be used for debugging. In this case, an Addrevent is
defined with breakpoint as an address through Filter API. The processor must be halted for debug-
ging, which sends trace data (snapshots) from the breakpoint to the software debugger through the
Debug API and Debug Support Unit (DSU). The sent snapshots are used for user interaction and
debugging. The interaction can be done in cooperation with a software-level debugger. External
traces simply transfer the contents of the trace buffer to hardware external to the microprocessor
under the control of Trace API Note that this paper will only focus on the verification layer and
its details.

4 TIMED AUTOMATA

We use Timed Automata (TA) model to specify requirements for runtime verification. Although the
TA can be extracted automatically [23], this paper assumes that the system verification expert has
well described the TA model for the application. The TA model defines a set of states to be observed
at runtime, and this set can contain various valid execution orders, execution time constraints,
bounds on variable values, and so on.

Definition 4.1. A timed automaton is a tuple A = (3, L, Lo, C, F, E) where:

e Y isa finite set called the alphabet or action of A.

L is a finite set consisting of the locations or states of A.

C is a finite set called the clocks of A.

Ly C is the set of start locations.

F C L is the set of accepting locations.

E C Lx Y XB(C) X P(C) X L is a set of edges, called transitions of A, where
— B(C) is the set of clock constraints related clocks from C

—P(C) is the powerset of C.

An edge (I,a,g,r,1") from E is a transition from location / to I with action a, guard g and clock
resets r.

Figure 4 is an illustrative example of a TA model, a timer light switch, where x represents the
clock. As you can see in this example, the TA allows you to represent a state machine containing
a time element. This paper also discusses how the TA model can be closely linked to the system.

Examples of TA models describing timing constraint, execution order, and memory value for
runtime verification are shown in Figure 5. Figure 5(a) shows an example in which the start and
end times of Task A are detected through the TA clock x, (b) shows the TA model that can verify
the sequence between tasks, which shows a situation similar to a nested function call that waits
for Task B to terminate execution in Task A, and (c) shows an example of verifying a specific value
in a memory read or write, where a value of 1000 or greater is read or written to the variable a.

Currently, this paper assumes that the verification expert designs the TA model, but it is also
possible to automate it with various techniques such as requirement mining [23].

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

Efficient Tracing Methodology Using Automata Processor 80:9

x <= 870
task A

‘ start i .’ X2 870 .

task Ao ecution report_failure_time

end

report_

failure_
sequence
(b)
Memory a
read | write .’ a > 1000 (7
@ "'..-?ﬁ
@ <= 1000
standby compare report_
x:=0 failure_
memory
(c)

Fig. 5. Examples of timed automata model for runtime verification of (a) timing, (b) execution sequence, and
(c) memory value.

STE(0) | STE(0) (42?513 1)

bit (255) | bit (255) « » | bit (255)

Row Enable (253 |
>

8-bit Input _ |8-t0-256

Sym51| Decoder

Row Enable (1
ow Enable (1) » bit (1) bit (1) o | bit (1)
Row Enable (0) »| it (0) bit (0) « o TP bit (0)
State T an i fi On m—— Logic Logic e Logic
Clock
yy A A
\ 4 v v

Automata Routing Matrix

Fig. 6. The automata processor architecture.

5 AUTOMATA PROCESSOR FOR RUNTIME VERIFICATION

Automata Processor (AP) is an in-situ memory-based computational architecture that accelerates
non-deterministic finite automata (NFAs). One of the critical features of the AP is that it supports
the NFA, which has a much smaller size than the deterministic model.

In Figure 6, the AP receives 8-bit symbols and accesses the corresponding state transition ele-
ment (STE). STE is the core component designed as a memory array that models the state of NFAs
and has control and calculation logic. A single STE logic bit is provided to each column of the
memory array used to activate the input and to the output decoder/driver. The value is set to (1)
if the STE is active (0) or otherwise.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

80:10 M. Seo and F. Kurdahi

: AND :m +Counter O Start STE O STE Q Report STE
g 870
() (L] -lﬁa (}
A

: j
@ o

O
O (b)

©
©

Fig. 7. AP model corresponding to the TA model in Figure 6.

(c)

The output is driven by the logical AND of the status bits in the relevant column of memory and
the output and is output only if the selected bit is programmed to recognize the input symbol. A
STE can match 8-bit custom symbols in clock cycles, and the STEs can activate each other through
a reconfigurable routing network. Each STE is designed to recognize input data values and can be
any character class for 8-bit symbols. These STEs are reconfigurable and can be reprogrammed to
recognize new input data values.

Each STE has three states: inactive, active, and matched. Only the activated STE can be used for
being matched with the following input symbols. Once a symbol is matched, the STE will accept
the next input and match the programmed symbol match. The STE that indicates the starting state
is called the starting STE. A STE that shows the acceptance status is called the reporting STE.
Multiple start states are allowed to permit parallel execution of multiple NFAs.

The current generation AP supports 8-bit size symbols, and we use those for runtime verifi-
cation and representing up to 256 different events. In Section 3.2, we have seen how to define
programmable filters and use them to get refined traces. To use this in an AP, a kind of adapter is
needed. That is, a mapping between a filtered event and a symbol is required, which is handled by
the Symbolizer.

Figure 7 shows the merged AP models corresponding to TA models (a), (b), and (c) in Figure 6
with a filter defined in Figure 2 and symbols represented in Table 3: For model (a) A total of
two counter elements and a AND logic are used to verify one timing. The first counter tracks
the timing constraint and the second checks whether the task is started or not. (b) To verify the
execution sequence in model (b), all non-correct path events are considered failures. (c) For model
(c), memory events use the value in the filter directly to determine the failure. Note that symbol
255 is used to report the failure. It can also be a model for explaining how the AP model supports
parallelism. The activation of STE 0 and 1 affects the two automata simultaneously, which means
that one event can update the state of two or more automata simultaneously.

Currently, the conversion from TA to AP model must be performed manually by verification
exports. These manual works include the model transform as shown in Figure 7, and the type of

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

Efficient Tracing Methodology Using Automata Processor 80:11

Table 3. Defining a Filter for Events and Mapping Information
of the Symbolizer for AP model

Property Filter Symbol
o - e
Task A start | (E1(Addr), [0x80002FFF, -], -) 0

Task A end | (E2(Addr), [0x80004000, -], -)
Task B start | (E3(Addr), [0x80005000, -], -)

Task B end | (F4(Addr), [0x8000521F, -],-)
Memread(a) >1000 | (E5(memread), [0x40000000, “>”], 1000)
Memwrite(a)>1000 | (E6(memwrite), [0x40000000, “>"], 1000)

Periodic 1 ms | (E7(period), [-, -], 1000) 10

(S IS (P58 [\CN I

Report Failure 255
N N N
[AR] AS AS Atrium
1
AP 1 | |
1
: Ventricle
1
1
P 5 i
upsensed
\ A J ! o A o extension
wl @ =
PVARP) PVARP | PVARP | PVARP
VRP VRP_| VRP_| VRP
| AEI] LRI LRI
| LRI LRI
| URI | URI |
URIT URI
L I X [w]

Fig. 8. Detailed timing diagram of a Pacemaker [17][18] (A: Atrium, V: Ventricle, S: Sensing, P: Pulsing).

reporting STE according to failure type must also be manually connected. The automation of this
model transformation is beyond the scope of this paper.

6 EXPERIMENTAL RESULT

We have developed a system model framework based on gem5 [6] simulator’s ARM processor-
based full system simulation and automata processor simulator for a safe-critical embedded appli-
cation modeling a network connected pacemaker [5]. At the same time, we also created an FPGA
prototype to get hardware area overhead and power consumption. However, since it is impossible
to create hardware with the same efficiency as an AP in FPGA, we use it only for approximate
reference to extract usage of hardware resources.

In this work, a 1 GHz ARM processor with L1 cache (16 kB for data and 16 kB for instructions), L2
cache (shared 1 MB), and 1 GB of memory was used for gem5 simulation. The simulation on gem5
was performed with full-system simulation, and the experiment was performed assuming that the
trace file collected after each simulation is the same as the real-time trace from the microprocessor.
The RTEMS microkernel [1] was used as an OS for the purpose of providing accurate timers,
implementing POSIX pthreads, and controlling synchronization.

Our embedded application is a network connected pacemaker supporting physician-
configurable pacing configurations, communication of cardiac activity to a home monitoring
device, and emergency physician notification for significant cardiac events. Figure 8 represents
the detailed behaviors of a pacemaker. The Post Ventricular Atrial Refractory Period (PVARP)
being initialized after ventricular event filters noise that causes undesired pacemaker behavior
in the ventricular channels (marker 1). The Atrio-Ventricular Interval (AVI), which is the time
between atrial event and ventricular events, is used to keep the appropriate delay between
ventricular and atrial activity. The Ventricular Refractory Period (VRP) performs noise filtering

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

80:12 M. Seo and F. Kurdahi

S i TA ANML

_ Automata
IEl?ered Symbolizer Symbol Processor
vents) i
Simulator
gem5
Detected
Failure

|
|
|
1
| Stream
|
|
|
|

a) System-level simulation b) Hardware emulation c) AP Simulation

Fig. 9. Detailed steps of experimental setup.

to prevent undesired behavior from the atrial channel. The lowest rate interval (LRI) begins with
ventricular pacing or sensing and counts the time until either atrial pacing (AP) or no atrial sense
(AS) during atrial escape interval (AEI) (marker 1). In case that upper rate interval continues
after AV], ventricular pacing (VP) is delayed until the upper rate interval (URI) ends (marker 2).
Besides, the pacemaker connected to the network, and it performs device setting by a physician
and reports data to the physician.

Failure can be defined as the inability of a system to continue processing due to erroneous
logic. We consider several common failure cases including timing failures [9], execution sequence
failures [19], synchronization failures [22] that is a combination of timing and execution sequence,
and memory value failure [24].

Figure 9 shows the overall process of this experiment consisting of a) system-level simulation, b)
hardware emulation, and c) AP simulator stage. The system-level simulation is performed in the
gem5 simulator after compiling the application source code with failures. The automated script
generated the source codes with a total of 4000 failures, which is 1000 per each type of failure. To
mimic the hardware trace interface, this experiment uses the trace file that the system created after
the application is executed. In the hardware emulation step, the massive trace is filtered through
a programmed filter, which generates filtered events. The symbolizer maps the filtered events and
symbols. Finally, the mapped symbols are passed to VASim [36], an AP simulator, in the form of
stream, and the AP simulator runs NFAs from automata network markup language (ANML) based
on timed automata (TA) model through these symbols. If a failure is detected, it is reported through
report STEs. In this experiment, the TAL approach achieved a 100 % failure detection rate for all
types of failures.

The pacemaker implementation is written in C language, and each hardware component is con-
figured as a thread to implement as much as hardware configuration, and this thread is controlled
through synchronization mechanisms such as mutex, semaphore, and conditional variables. Ta-
ble 4 shows the elements used for runtime verification in the pacemaker implementation and the
required number of events for the verification.

A list of requirements is shown in Figure 10. System correctness, functional correctness, and
safety property represent properties for runtime verification in different points of view. These
properties can also affect other properties. For example, if the system correctness property does not
satisfy the requirement, it affects the functional property and even the safety property. Likewise,
if one of the functional correctness properties is violated, it also affects the safety property.

Based on this requirement, the automata representation for the AP system is shown in Figure 11.
It was created with ANML definitions, took 0.23 seconds of compile time to generate 528 STEs,
3 reporting elements, 32 counters, and 31 logics. Among the resources of the AP, 32% symbols
were used in 84 symbols, and about 1.25% of STEs, 4.1% of counter elements, 1.3% of Boolean
logic elements, and less than 1% in reporting elements. The event-symbol mapping (32%) can be

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

Efficient Tracing Methodology Using Automata Processor 80:13

Table 4. Functions and Variables Used in Runtime

Function and offset Variable
Execution order, Timing Value Update order
Name [Check_buffer AVI_ms time_counter
Event VAI_ms time_ratel
Ventri_thread time_rate2
Atrial_thread VRP_ms heart_rate
PVARP_thread token
VRP_thread PVARP_ms
AVI_thread heart_rate
VAI_thread token
Sensed_Atrial AVItime_recv
Sensed_Ventri VAItime_recv
Doctor_config
Wait_for_connection
main
System_init
POSIX_Init
Events |58 16 10
Safety b0 < Heart Rate < 100
Functional | :
ine-Paci
Correctness : VP must be after Ser:)srl(rilgmjgung Sensing must be :
TURI+ti f VP ff i P
: URI+time of (VS, VP) (AS,VP,AP.VS) turned off during VR :
1 1
1 1
1 1
| |Ventricular rate > LRI 1
! VS cannot occur Sensing must be :
: within the interval [0,] furned on during open| |
| AS cannot occur VRP] interval 1
I |within the interval [0, 1
1 1
' ARP] X
1 1
1 1
| AP cannot oceur VP cannot occur Filtering (VRP, :
: within the interval [0, 'within the interval [0,] [PVARP) must occured !
\ AE] AVI] after sensing |
1 1
| e e e e o e e e — = 1
System g <
Correctness : SW timers must be Synchronization \
| |triggered every 1 ms checking :
1

Fig. 10. Details of system, correctness, and safety properties in Pacemaker example.

regarded as a weak point by using a relatively small number of 256 symbols. However, this can
be overcome by the symbol set conversion technique. For example, let us assume symbol 0 and 1
to be a conversion purpose symbol. When the 0 symbol is activated, the remaining 254 symbols
can be used, and when symbol 1 is activated, another 254 symbols can be used. This is one of the
techniques that can overcome the relatively insufficient number of symbols compared to relatively
the larger number of STEs.

Failure reporting has three elements in the runtime verification system: the time that the failure
occurs, type of the failure, and detection latency for post-failure analysis. The AP has 64 bits of
metadata when reporting through reporting STEs, which includes reporting location and cycle
information. In this experiment, a total of three reporting STEs are used, which are report timing
failure, execution sequence failure, and memory value failure, respectively. This STE contains the
type of failure and the cycle includes the failure time, which can be useful information for the

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

80:14 M. Seo and F. Kurdahi

He Skt

SASARL Y

Fig. 11. Corresponding AP models extracted from requirements in Pacemaker example. Note: symbol ID and
detailed logic information are omitted due to the complexity of the model.

post-failure analysis. Also, detection latency is significant in the case of medical devices because it
is related to human life. Failure reporting considers only permanent failures and the failure should
be reported to the microprocessor for further action in a similar manner to interrupts in a short
period of time. The failure reporting time by Micron’s reference document [16] is as follows:

1 cycle (loading AP report L1) + 2.5 cycles (L1 export) + 40 cycles (L2 export to off-chip)
= 43.5 cycles = 326 ns

The AP-based failure reporting has a reasonable detection latency compared to a non-maskable
interrupt (2 cycles), a general-purpose interrupt (20 cycles), and is several orders of magnitude
faster than software-based runtime verification (913 700 cycles).

The current generation of APs has a clock speed of 133 MHz and quadruples the transfer rate
using Double Data Rate Three (DDR3) technology with prefetch buffers. However, the clock for
running automata still uses 133 MHz, which has a period of about 7.5 ns. Note that the AP is a
memory-like processor using DDR3 interface, not a memory system. Therefore, the content stored
in this AP is the application’s requirements, not the application’s data. The CPU used in this ex-
periment is a 1 GHz ARM-compatible processor, and theoretically, it can output one event per 1 ns
maximum. This provides sufficient resolution for most real-life applications. If the system requires
events that occur more frequently than 7.5 ns, traces stored in the trace buffer within the filtering
layer are processed sequentially. This requires a little more latency. Since the clock of the cur-
rent generation AP problem limited to 133 Mhz, there is room for further improvement if another
generation of APs come out such as DDR4 interface-based AP.

In Figure 12(a) and (b), we show a detailed analysis of the hardware utilization and (c) shows
power overhead for 3 softcore processors as obtained from a Xilinx Vivado 2018.02 [13]. To measure
overhead, we implemented a compatibility unit, a filter unit, and small size automata processors
in FPGAs. Note that softcore processors are usually small in size for embedded systems. The area-
optimized version of MicroBlaze is the smallest among the processors, which makes the overhead
ratio look relatively high. On average, compatibility unit has 6% hardware resource overhead, and
less than 1% power overhead. The filter unit supporting up to 128 events have 6% hardware re-
source overhead and 1% power overhead. Lastly, a lightweight FPGA version of the AP supporting

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

Efficient Tracing Methodology Using Automata Processor 80:15

1709 1709 1107

160% 160

150% 150 L0s¢

20%

140% 140 41%

130% 130
20% 1009

120% 120%

110% 110%

95% 100%|

100% 1007

90

Base System

Base System

80 90

Microblaze

Microblaze Leon3

Microblaze Leon3 OpenRisc Base System OpenRisc

Leon3

OpenRisc

Fig. 12. Overhead of FPGA implementation for (a) look-up tables, (b) flip flops, and (c) power consumption.

collision <> TRUE

Functional : Velocity (v) must be
Correctness ! obtained before must be executed after acquiring current
I kalculating acceleration ()| [frame (cf) and must have previous frame
[Value of each variables, v, a, vobj, dobj, distBraking, fargetThrottle,
injectionValue, must have 0 or positive value

Safety

thegin

E,‘gm,sp,,d;e,m, egin eo CameraSensor cceleration distance and velocity calculatio
wpiateta

pdatets)

CollisionAvoidance

Distance for braking must be calculated after calculation of current

e velocity (v) and acceleration (a) and target vehicle’s velocity (vobj)

If distance for braking is less
than the distance of target
vehicle, throttling must be re-

If distance for braking is greater than
and equal to the distance of target
vehicle, throttling must be set to 0

upditer)
Camera sensor
must capture a
frame every 4.17]
ms

Speed sensor

ust read sensor|

value every 25
ns

DistBraking and
CollisionAvoidance
must be executed
every 50 ns

ECU must
run at a rate
of 25 ns

begin=true injecto
caleul

System
Correctness

Timers must be
triggered every 25 ns

Synchronization
checking

CollisionDetectior o i // o
(2)

Fig. 13. (a) state model and (b) properties for collision avoidance (CA) of autonomous driving application.

512 STEs and a verification unit containing a symbolizer have 24% hardware resource overhead
and 4% power overhead.

A timed automata FPGA implementation [33] that only supports up to 17 states require
2845 LUTs and 2501 FFs, which are 1.8 times and 3.7 times larger than the filter unit + AP FPGA
prototype with 1582 LUTs and 671 FFs Respectively. The TA implementation has relatively higher
hardware resource usage to have a fixed number of programmable transition conditions, which
might not be fully used in runtime verification. For safety-critical applications, this overhead is
tolerable, especially when compared with the alternative of runtime verification in software imple-
mentation [33]. An optimized software runtime verification still incurs a 7% performance overhead
and a 51% memory overhead [26].

To verify that the AP-based runtime verification is also suitable for other applications of
the cyber-physical domain, we additionally considered a video-based collision avoidance (CA)
system, shown in Figure 13. This implementation uses a single front-mounted camera to detect
the location, distance, and speed of cars traveling in the same lane as the vehicle. Combined with
vehicle speed, engine speed, and throttle position sensors, the system calculates the minimum
safe following distance, and apply the brakes (and reduce throttle if needed) automatically if
the distance is less than the minimum safe distance. The collision avoidance system consists
of six state models, running periodically, and including EngineSpeedSensor, CameraSensor,
DistBraking, CollisionAvoidance, Throttle, and ECU. Figure 13(a) shows the models and (b) shows
correctness properties and a safety property. Table 5 represents details of elements for runtime

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

80:16 M. Seo and F. Kurdahi

Table 5. Functions and Variables used in Runtime Verification for CA example

Function and offset Variable
Execution order, Timing Value Update order
Name|peadSensor() v a
calcAccel() a v
getFrame() pf targetThrottle
distAccel() cf tr
calcvelo() dobj injectionvalue
calcDistBraking() vobj
calcThrottle() distBraking
setHydrauicPressure() targetThrottle
checkEngineSpeedSensor() tr
checkFuelTemperatureSensor() begin
checkEngineTemperatureSensor() injectionvalue
checkAirQualitySensor()
checkThrottleRotationSensor()
checkCameraSensor()
main()
Events|62 22 10

Table 6. Result of Resource Utilization for two Cyber-Physical
System Examples

Pacemaker Collision Avoidance
Symbols 84 (32%) 66 (25.1%)
STEs 528 (1.25%) 244 (0.58%)
Boolean Logic Element 31 (1.3%) 28 (1.2%)
Counter Elements 32 (4.1%) 34 (4.36%)
Reporting Elements 3(<1%) 3(<1%)

verification. First, we create a TA model for CA state models. Second, we perform a model
transform to convert the TA model to an AP model. Table 6 shows a result of resource usage in
the automata processor with 1.48% without the number of symbols and 7% with the symbols in
overall. As discussed earlier in this section, the symbol set replacement technique can overcome
STE shortage problem to support a higher number of STEs. We show through two complete
examples that various cyber-physical system applications can be verified at runtime through AP.

7 CONCLUSION

We presented a novel Automata Processor (AP)-based non-intrusive runtime verification method-
ology. Even though tracing can provide useful information during system execution at runtime,
there are obstacles, which are the vast amount of real-time trace data, complex requirements of
systems, and the limitation of hardware resources. The presented approach defines the Trace Ab-
straction Layer (TAL) according to the role/function in terms of tracing and enables efficient run
time verification on Automata Processor. As a safety-critical example, we implemented a network-
connected pacemaker application, showing how to extract the timed automata model from the re-
quirements and convert it to an AP model. Using the application, we demonstrated 100% detection
rate for various failure types. In addition to the experiment, we analyzed the problems that may
occur from the AP implementation and examined the overhead in case of FPGA hardware imple-
mentation. Future work includes an automated approach of requirement mining, an efficient and
automated transform algorithm from TA model to AP model, and complex verification via FPGA
and AP combined environment.

REFERENCES

[1] [n.d.]. RTEMS Real Time Operating System (RTOS) | Real-Time and Real Free RTOS. https://www.rtems.org/.
[2] 2018. LEON/GRLIB guide GRLIB VHDL IP core library 2018 configuration and development guide configuration and
development guide. (2018). www.cobham.com/gaisler.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

https://www.rtems.org/
www.cobham.com/gaisler

Efficient Tracing Methodology Using Automata Processor 80:17

(3]

Wolfgang Ahrendt, Jestis Mauricio Chimento, Gordon J. Pace, and Gerardo Schneider. 2017. Verifying data-and
control-oriented properties combining static and runtime verification: Theory and tools. Formal Methods in System
Design 51, 1 (2017), 200-265.

Rajeev Alur. 1999. Timed automata. In International Conference on Computer Aided Verification. Springer, 8-22.

S. Serge Barold, Roland X. Stroobandt, and Alfons F Sinnaeve. 2008. Cardiac Pacemakers Step by Step: An Illustrated
Guide. John Wiley & Sons.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1-7.

Chunkun Bo, Ke Wang, Yanjun Qi, and Kevin Skadron. 2015. String kernel testing acceleration using the micron
automata processor. In Workshop on Computer Architecture for Machine Learning.

Eric Bodden, Patrick Lam, and Laurie Hendren. 2010. Clara: A framework for partially evaluating finite-state runtime
monitors ahead of time. In International Conference on Runtime Verification. Springer, 183-197.

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. 2011. Sampling-based runtime verification.
In International Symposium on Formal Methods. Springer, 88-102.

Altera Corporation. 2008. with the SignalTap I Embedded Logic Analyzer. 24 pages.

Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. 2014. An efficient and scalable
semiconductor architecture for parallel automata processing. IEEE Transactions on Parallel and Distributed Systems
25, 12 (2014), 3088-3098.

Mohammed El Shobaki and Lennart Lindh. 2001. A hardware and software monitor for high-level system-on-chip
verification. In Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design. IEEE, 56-61.
Tom Feist. 2012. Vivado design suite. White Paper 5 (2012), 30.

Richard Fryer. 2005. FPGA based CPU instrumentation for hard real-time embedded system testing. ACM SIGBED
Review 2, 2 (2005), 39-42.

Brent Hailpern and Padmanabhan Santhanam. 2002. Software debugging, testing, and verification. IBM Systems Jour-
nal 41, 1 (2002), 4-12.

Micron Inc. [n.d.]. Designing for the Micron D480 Automata Processor. http://www.micronautomata.com/
documentation/anml_documentation/c_D480_design_notes.html.

Zhihao Jiang, Miroslav Pajic, Allison Connolly, Sanjay Dixit, and Rahul Mangharam. 2010. Real-time heart model for
implantable cardiac device validation and verification. In 2010 22nd Euromicro Conference on Real-Time Systems. IEEE,
239-248.

Zhihao Jiang, Miroslav Pajic, and Rahul Mangharam. 2011. Cyber-physical modeling of implantable cardiac medical
devices. Proc. IEEE 100, 1 (2011), 122-137.

Mike Jones. 1997. What really happened on mars rover pathfinder. The Risks Digest 19, 49 (1997), 1-2.

Damjan Lampret and Julius Baxter. [n.d.]. OpenRISC 1200 IP Core Specification (Preliminary Draft), 2014.

Jong Chul Lee and Roman Lysecky. 2015. System-level observation framework for non-intrusive runtime monitoring
of embedded systems. ACM Transactions on Design Automation of Electronic Systems (TODAES) 20, 3 (2015), 42.
Nancy G Leveson and Clark S Turner. 1993. An investigation of the Therac-25 accidents. Computer 26,7 (1993), 18-41.
Giovanni Liva, Muhammad Taimoor Khan, and Martin Pinzger. 2017. Extracting timed automata from Java methods.
In 2017 IEEE 17th International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 91-100.
Hong Lu and Alessandro Forin. 2007. The design and implementation of P2V, an architecture for zero-overhead online
verification of software programs. (2007).

R Mijat. 2010. Better trace for better software: Introducing the new arm coresight system trace macrocell and trace
memory controller. ARM, White Paper (2010).

Samaneh Navabpour, Borzoo Bonakdarpour, and Sebastian Fischmeister. 2015. Time-triggered runtime verification
of component-based multi-core systems. In Runtime Verification. Springer, 153-168.

Hyunyoung Oh, Hayoon Yi, Hyeokjun Choe, Yeongpil Cho, Sungroh Yoon, and Yunheung Paek. 2019. Real-time
anomalous branch behavior inference with a GPU-inspired engine for machine learning models. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 908-913.

Rodolfo Pellizzoni, Patrick Meredith, Marco Caccamo, and Grigore Rosu. 2008. Hardware runtime monitoring for
dependable cots-based real-time embedded systems. In 2008 Real-Time Systems Symposium. IEEE, 481-491.

Kevin Peterson and Yvon Savaria. 2004. Assertion-based on-line verification and debug environment for complex
hardware systems. In 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No. 04CH37512), Vol. 2.
IEEE, I1-685.

Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science
(sfes 1977). IEEE, 46-57. DOI : https://doi.org/10.1109/SFCS.1977.32

Indranil Roy and Srinivas Aluru. 2014. Finding motifs in biological sequences using the micron automata processor.
In 2014 IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 415-424.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

http://www.micronautomata.com/documentation/anml_documentation/c_D480_design_notes.html
http://www.micronautomata.com/documentation/anml_documentation/c_D480_design_notes.html
https://doi.org/10.1109/SFCS.1977.32

80:18 M. Seo and F. Kurdahi

(32]

(33]
[34]
[35]
(36]
(37]
(38]

(39]

[40]
[41]

[42]

[43]

Indranil Roy, Ankit Srivastava, Marziyeh Nourian, Michela Becchi, and Srinivas Aluru. 2016. High performance pat-
tern matching using the automata processor. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 1123-1132.

Minjun Seo and Roman Lysecky. 2018. Non-intrusive in-situ requirements monitoring of embedded system. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 23, 5 (2018), 58.

Tommy Tracy, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. 2016. Towards machine learning on the
automata processor. In International Conference on High Performance Computing. Springer, 200-218.

Tullis and Michael L. 2015. Intel ® Trace Hub Developer’s Manual. Technical Report. http://www.intel.com/products/
processor.

Jack Wadden and Kevin Skadron. 2016. VASim: An open virtual automata simulator for automata processing appli-
cation and architecture research. University of Virginia, Tech. Rep. C52016-03 (2016).

Philipp Wagner, Thomas Wild, and Andreas Herkersdorf. 2016. DiaSys: On-chip trace analysis for multi-processor
system-on-chip. Springer, Cham, 197-209. DOI : https://doi.org/10.1007/978-3-319-30695-7_15

Ke Wang, Yanjun Qi, Jeffrey J. Fox, Mircea R. Stan, and Kevin Skadron. 2015. Association rule mining with the micron
automata processor. In 2015 IEEE International Parallel and Distributed Processing Symposium. IEEE, 689-699.
Kosuke Watanabe, Eunsuk Kang, Chung-Wei Lin, and Shinichi Shiraishi. 2018. INVITED: Runtime monitoring for
safety of intelligent vehicles. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1-6. DOI:
https://doi.org/10.1109/DAC.2018.8465912

Xilinx. 2012. ChipScope Pro Software and Cores. , 5-226 pages. https://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_7/chipscope_pro_sw_cores_ug029.pdf.

Xilinx. 2017. MicroBlaze processor reference guide. (2017). https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2017_1/ug984-vivado-microblaze-ref.pdf.

Keira Zhou, Jack Wadden, Jeffrey J. Fox, Ke Wang, Donald E. Brown, and Kevin Skadron. 2015. Regular expression
acceleration on the micron automata processor: Brill tagging as a case study. In 2015 IEEE International Conference
on Big Data (Big Data). IEEE, 355-360.

Yumin Zhou, Sebastian Burg, Oliver Bringmann, and Wolfgang Rosenstiel. 2018. A software reconfigurable assertion
checking unit for run-time error detection. In 2018 IEEE 23rd European Test Symposium (ETS). IEEE, 1-6. DOI : https://
doi.org/10.1109/ETS.2018.8400691

Received April 2019; revised June 2019; accepted July 2019

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 80. Publication date: October 2019.

http://www.intel.com/products/processor
http://www.intel.com/products/processor
https://doi.org/10.1007/978-3-319-30695-7_15
https://doi.org/10.1109/DAC.2018.8465912
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/chipscope_pro_sw_cores_ug029.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/chipscope_pro_sw_cores_ug029.pdf
PLX-HTTPS://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug984-vivado-microblaze-ref.pdf
PLX-HTTPS://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug984-vivado-microblaze-ref.pdf
https://doi.org/10.1109/ETS.2018.8400691
https://doi.org/10.1109/ETS.2018.8400691

