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ABSTRACT | Embodied self-aware computing systems are

embedded in a physical environment with a rich set of

sensors and actuators to interact both with their environment

and with their own embodiment. Through this interaction,

they learn about their situation, their own state, and their

performance. Although they are application specific like

traditional embedded systems (ESs), they are significantly

more flexible, robust, and autonomous; they can adapt to

a wide range of environmental variation and can cope with

deterioration and shortcomings of their own performance.

As such, embodied self-aware computing systems are

an evolution of traditional embedded and cyber–physical

systems into the direction of more autonomy, robustness, and

flexibility. When traditional ESs operate in a changing world

by demanding unchanging and fully characterized computing

resources, embodied self-aware computing systems adapt to

a changing world and changing computing resources. This

article surveys the methods and methodologies used for

embodied self-aware computing systems structured along

with the faculties of: 1) sensory observation and abstraction;

2) self-aware assessment; and 3) hierarchical goals and con-

trol. The discussion is exemplified by application cases in the
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areas of systems-on-chip, control systems, health monitoring,

and condition monitoring in industrial production systems.

KEYWORDS | Control; embedded systems (ESs); machine
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I. I N T R O D U C T I O N
As computing platforms and systems become more capa-
ble (e.g., with multiple heterogeneous processing units,
increased storage, and sophisticated software stacks) with
their deployment across a wide range of application
domains with competing goals and constraints (e.g.,
high performance, low energy, high reliability), there
is a critical need to make these platforms adaptive,
robust, and responsive. This article focuses on self-aware
embodiment for computing systems, drawing from lessons
learned in cognitive robotics and other engineered autono-
mous systems.

The concept of embodied cognition has a long history
in psychology and neuroscience, with the notion that any
discussion of learning and intelligence must be placed in
the context of an agent experiencing the real world via
interactions with the environment through its sensorimo-
tor system; with the resulting phenomenon of emergent
intelligence [1]. The work of Krichmar and Edelman
on brain-based devices [2] postulated that embodied
cognition—the idea that the brain is not functional
without embedding into a physical body that experiences
and interacts with the physical world—is critical for the
development of intelligent robots. This pioneering work
led to the active field of cognitive robotics where a robot
with an embedded brain can learn, reason, and operate
in a complex world in the face of complex goals. In this
context, we identify an embodied computing system as
an agent (i.e., the computational platform) embedded
in and interacting with both its physical environment
as well as its own embodiment via a rich set of sensors
and actuators. The faculty of self-awareness empowers
the computing system to become more flexible, robust,
and autonomous. We define the notions of computational
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embodiment and computational self-awareness through
the following characteristics and their implications.

1) Physical body: The agent distinguishes between its
own body and the environment; it has a model of its
physical body; it keeps track of the boundary between
its body and its environment.

2) Spatial and time relations: The agent is aware of
spatial and time relations between its body and
its environment. The spatial relations are based on
absolute (a coordinate system) and/or relative (right,
left, above, below, etc.) relations. The time rela-
tions are also based on absolute (some world time)
and/or relative (earlier, later, etc.) relations and imply
real-time properties.

3) Situatedness: This already implies that the agent is
always in a situation as defined by the spatial and
time relations of its body and the environmental
bodies; the agent lives through and keeps track of a
sequence of situations.

As illustrated in Fig. 1, self-awareness brings in the
following.

1) Model of behavior: The agent has a model of its own
behavior and of the environment.

2) Goals and control: The agent’s goals can be charac-
terized by a combination of achieving desired objec-
tives (e.g., maximize performance) while meeting
some constraints (e.g., energy budget or thermal
cap). Control strategies are applied on models of
the agent to achieve objectives while meeting the
constraints.

3) Assessment: The agent can assess itself, i.e., compare
its behavior with the expected behavior; it can assess
other agents in the environment and can assess parts
of its own behavior or body.

4) Online learning: The capacity for learning facilitates
the continuous improvement and adaptation of the
agent’s own model of the physical body, the spatial
and time relations, and its situatedness based on the
sensory data it receives and a priori assumptions.
Learning can also build up the agent’s own behavioral
self-model. Furthermore, learning means that agents
are individuals; every agent is different, specialized
and customized to the sequence of situations it
has experienced so far. Learning also means the
agent can adapt to and optimize for a range of
environments and tasks.

We note that contemporary engineered systems capture
a wide range of self-awareness and embodiment prop-
erties, ranging from autonomous cyber-physical systems
(CPSs) (e.g., UAVs and robots) that capture higher levels of
embodiment and self-awareness, to traditional computing
platforms and Internet of Things (IoT) devices which lack
many aspects of embodiment and self-awareness. This
article focuses on the latter class of computing platforms
that are the workhorses for embedded and general pur-
pose computing. After outlining the basic characteristics

Fig. 1. Conceptual overview of an embodied a self-aware

computing system. The embodiment is facilitated with the sensors

(S) and actuators (A) but also requires that the self-model and the

self-assessment also include and relate to the environment.

Learning capabilities contribute to many, if not all, of the

self-awareness features.

of self-awareness and embodiment, we highlight both the
deficiencies of many existing computing platforms and
the potential benefits that these systems can gain from
employing self-awareness and embodiment principles.

The rest of the article is structured as follows: Section II
outlines how embodied computing systems interact with
the external world/environment through sensory observa-
tion and abstraction. Section III describes typical control
strategies deployed by embodied computing systems to
achieve system goals. These control strategies are cou-
pled with sensory observation and abstraction to effect
actuations in the external world/environment. Section IV
presents a self-aware assessment that enables the embod-
ied computing system to reflect on its own behavior
and provide mechanisms for evaluating the quality and
integrity of the decisions made by the controllers. Section V
presents two use cases—cyber-physical systems-on-chip
(CPSoC) and personal health monitoring systems—that
are analyzed to determine which facets of the self-aware
computational embodiment are deployed, and which are
lacking. Section VI presents ongoing and future work on
dynamic learning, adaptation, and self-optimization that
enables an embodied computing system to continually
adapt to changes in the environment, as well as navigate
the challenges of meeting multiple, possibly conflicting
goals. Finally, Section VII concludes with a discussion of
challenges faced in developing complete embodied, self-
aware computing systems.

II. S E N S O RY O B S E R VAT I O N A N D
A B S T R A C T I O N
Embodied systems occupy a unique place in the world and
continuously interact through sensors and actuators. While
all systems come with a built-in/implicit model and more
or less explicit assumptions about their bodies and behav-
ior, information gained through data collected by the sen-
sors allows for continuous improvements and adaptations
of these (implicit or explicit) self-models. However, the raw
sensory data has to be filtered, processed, abstracted, and
interpreted to reveal useful information that can be used
to enhance the system models.
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Fig. 2. Observation circle [3].

A. Observation Circle

For a system to be fully self-aware, several aspects have
to be considered [3], as illustrated by the observation circle
in Fig. 2.

1) Abstraction: The data have to be abstracted to the
“right” level for efficient processing and to be mean-
ingful for the self-model. While data abstraction is
commonplace in all systems equipped with sensors,
automated abstraction is a key ingredient for self-
aware and autonomous systems and poses many chal-
lenges as we elaborate below.

2) Disambiguation: Sensor data is always ambiguous
and the best interpretation has to be identified
using contextual information (e.g., Bayesian infer-
ence [4]) or via other sensors (e.g., through sensor
fusion) [5].

3) Desirability: While the raw data by itself is neither
good nor bad, when it acquires meaning through
abstraction and in relation to the self-model of the
system, it is eventually labeled as more or less bene-
ficial for or detrimental to a particular objective. This
quantification in terms of a goodness metric allows
for comparing otherwise unrelated properties and for
formulating tradeoffs and compromises. Indeed, most
realistic scenarios involve difficult decision making
via unrelated metrics. For instance, in a healthcare
IoT application, is it more important to have high
precision in measuring a bio-signal or to save power
and prolong operation time?

4) Data Reliability: Just as important as the raw data
itself is the metadata about its accuracy and pre-
cision. Accuracy is the deviation of the measured
mean value from the ground truth and precision is

the standard deviation of the measurements. Both
are important to assess the utility of data and are
critical in assessing the relative trustworthiness of
contradicting data.

5) Relevance: Even if data are reliable it may not be rele-
vant for a particular objective. For instance, a super
accurate and precise temperature sensor, which is
poorly attached to a person’s skin, may be irrelevant
to the assessment of the patient’s health.

6) Confidence: While reliability and relevance are associ-
ated with specific data, a measure of confidence can
be attributed to data, a sensor setup, or any process-
ing step like abstraction or disambiguation. Based on
prior knowledge or its own experience, the system
may place high or low confidence in its own sensors,
information received from certain actors, results from
specific computations, and conclusions derived by
certain reasoning methods. It can be attached to any
procedure and its results, e.g., it can and should be
attached to self-models. Confidence is part of the meta
data of measurement and computing procedures and
subsumes the more specific metrics of reliability and
relevance [6].

7) Attention: It is a means to allocate scarce resources.
Since not all data need to be captured continually,
and not every computation needs to be performed,
limited resources should be allocated to the tasks
most urgently needed at a given time [7], [8].

8) History: It allows for the extraction of statistics
from observations, the assessment of behavior and
performance of the system over time, its improve-
ments or deterioration. Based on such historical data,
the system is given the capability to predict its per-
formance in the near future, the expected failure of
sensors and actuators, and future trends in the envi-
ronment. In turn, this understanding can motivate the
system to evolve its goals, strategies, and tactics [3].

B. Automated Abstraction
System designers often have a good understanding of

the application domain and are able to generate typi-
cal/useful abstractions of raw sensory data. For instance,
an electrocardiogram (ECG) monitoring device deploys
a dedicated algorithm to extract the key feature of the
human ECG. The image processing system (PS) in an
autonomous car is trained extensively at design time
to identify traffic signs, pedestrians, and cars. In the
CPSoC [9] platform-specific algorithms, relevant perfor-
mance metrics are extracted from bus load and buffer
occupancy figures.

However, an ideal self-aware system should also be
able to deal with novel regularities and patterns, iden-
tify anomalous patterns, and learn to predict previously
unknown scenarios. For instance, a truly autonomous car
should be able to learn to identify kangaroos, predict their
behavior and devise strategies to best avoid collisions even
if it has never been trained on kangaroos at design time.
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A key enabling feature for such abilities is the automatic
extraction of appropriate abstractions from raw data and
signals. However, automated abstraction has rarely been
researched or used in self-aware or autonomous systems,
although abstraction techniques have been developed in
different domains1 [10], in particular for time series sig-
nals [11] and images [12], [13], but general abstraction
techniques that find and tune into the abstraction are most
appropriate for a given context and purpose, which still
constitute a major challenge.

In the context of HW and SW, design-automated meth-
ods for predicate abstraction [14], [15] and datapath
abstraction [16] have been developed to facilitate effi-
cient formal verification. These methods go a long way
to conservatively ensure formal properties and are geared
toward improving the efficiency of model checking and
equivalence checking algorithms. In the two decades, since
their conception, these abstraction techniques have been
significantly improved, broadened, and applied to many
domains, e.g., to probabilistic models [17] and Markov
decision processes [18]. Thus, this significant body of work
provides inspiration and a wealth of methods for abstrac-
tion techniques, but to use and adapt them to the problem
of efficiently extracting appropriate new abstractions for
self- and environment models in an overwhelming stream
of sensory data is an open challenge.

Information theory provides a means to quantify infor-
mation and to guide abstraction [19]–[21]. For instance,
Li and Ray [22] proposed an abstraction method for signal
time series to extract the regular patterns by maximiz-
ing the mutual information measures of the abstracted
symbols and the finite state automaton that reflects the
temporal patterns in the input signal. Thus, information
theory can be a guide to effective abstraction techniques
that reduce information and reveal temporal, spatial, and
causal patterns. Once these patterns are extracted and
represented with the bare minimum of symbols, they rep-
resent an appropriate assessment of the system’s situation
and serve as the basis for further decision making.

Like learning, abstraction is highly useful in many
of the self-awareness features shown in Fig. 1. But just
as learning methods, abstraction techniques have to be
specifically adapted to a particular problem and context.
They are obviously key for analyzing sensory data and for
building and maintaining self- and environmental models,
but they have also a role to play in assessment methods,
goal, and action modeling, which is still by and large
uncharted territory.

C. Confidence-Based Context-Aware Condition
Monitoring (CCAM) Case Study

We illustrate the notions of sensory observation and
abstraction through a case study of a CCAM system [6]
that monitors industrial processes, exemplified by ac

1Often the terms symbolization or, less frequently, generalization are
used.

Fig. 3. CCAM monitors inputs and outputs of an SuO.

motors [23] and hydraulic circuits [24], to identify normal
behavior, anomalies, drift conditions, and emerging faults
without prior models of the system under observation
(SuO). We describe CCAM as an exemplar to demonstrate
how some of the observation principles listed above can
serve to infer accurate and robust assessments of a sit-
uation without elaborate built-in models of the assessed
system. Hence, it serves well to illustrate the concepts of
observation, the state-of-the-art of model-free monitoring
and assessment, and its current limitations.

As shown in Fig. 3, CCAM monitors the inputs and
outputs of the SuO and identifies stable patterns of input
and output values, called states. Under the assumption of
bijectivity (i.e., that changes on inputs always correlate to
changes on outputs and vice versa), all isolated changes of
inputs or outputs are flagged as errors. Thus, after a period
of initial observation and learning, a set of operational
states is identified and memorized. Unmatched changes of
inputs and outputs are flagged as errors as well as drift
situations, where an individual input or output signals
slowly but systematically changes. Drifts are particularly
interesting because in industrial processes they often signal
the need for proactive replacement or cleaning of compo-
nents in the near future.

Because CCAM is model-free and based on general prin-
ciples, it is applicable to a surprising range of devices, with-
out major configurations or changes. Götzinger et al. [6]
reported in a detailed study with an industrial ac motor
and a heating, ventilation, and air conditioning (HVAC)
system (see Fig. 4) that all normal states, wear-out con-
ditions, and break-downs that have been experimentally
investigated are correctly categorized by CCAM. A sensitiv-
ity analysis shows that the CCAM operates robustly under
a broad range of settings and configurations. CCAM’s main
limitation is that it cannot infer internal operating states of
the SuO, and hence, it cannot be applied to systems with
the behavior that depends on its history in nontrivial ways.
CCAM’s generality and robustness are fairly surprising and
in part due to the faculties of the observation circle:

1) Abstraction: Automatic abstraction is the core of
CCAM since the CCAM states constitute abstractions of
observed signals. It is guided by the following principles.
A new sample of data, collected from all the monitored
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Fig. 4. HVAC system monitored by CCAM.

input and output signals, is assigned to a previously iden-
tified state if the values of the sample are “close enough”
to the samples already assigned to the state. If the new
sample does not match an existing state, because the value
pattern in the sample is “different” from the patterns in
existing states, a new state is established. The notion of
similarity and difference is based on a relative distance
metric between values governed by the rules of fuzzy
logic [25], which means that the identified states reflect
the clusters and patterns in the sampled data well.

2) Data Reliability: The reliability of individual data
values and samples is implicitly assessed based on their
consistency with the previously sampled data. Individual
values that fall outside the range previously found are
usually ignored because it requires a minimum number of
samples within the proximity to be considered a valid state.
These rules are also governed by fuzzy logic which avoids
binary decisions, and every new sample that falls within
the proximity of an emerging new state gradually increases
the probability that a new state is established. Thus, CCAM
is robust against data with low precision because it adapts
to the precision found in the data. If the precision of the
sensors is low, the values clustered in one state will be
dispersed, and precise sensors lead to tighter clusters in
the states. CCAM is also robust against low accuracy and
systematic bias in the sensed data, because it does not
need or use absolute references.

However, data reliability is only checked based on con-
sistency within the sampled data but not against context
information.

3) Confidence: Götzinger et al. [6] defined confidence
as the inverse of the distance between a measured or com-
puted value and the ground truth, with some appropriate
distance metric. The closer the value is to the ground
truth, the higher the confidence in that value. Since the
ground truth is usually not known, it has to be estimated.
In CCAM, confidence is used extensively to quantify how
good a particular assessment or decision is. It is used
to determine to which state a new data sample should
be assigned, if a new state should be established, if a
state signifies a malfunction, if drift has been detected,
and so on.

Again, confidence, i.e., the inverse distance to the
ground truth, is estimated based on the collected data
itself, but it does not use context information or a priori
models.

4) Other Features of Observation: The other features of
the observation circle are used to a lesser degree. Although
one could argue that disambiguation is performed and
history is used, both are featured only implicitly and in
rather trivial ways in CCAM. Desirability, relevance, and
attention are not at all used. However, all of them have the
potential to improve and generalize CCAM. Context-driven
disambiguation and relevance assessment could certainly
add value and widen the scope of CCAM while attention
could direct scarce resources to the analysis which is most
beneficial and most urgently needed.

Thus, from the perspective of self-awareness, CCAM is
an encouraging exemplar of the values of the faculties of
abstraction, reliability, and confidence, with its current lim-
itations and the future potential of other yet unexploited
faculties.

III. G O A L S A N D C O N T R O L
The design of any embodied computing system must
achieve a set of desired goals and devise strategies to
accomplish these goals with system constraints. In this
section, we identify different categories of goals and con-
straints, outline strategies to meet constraints, and review
classical and control-based strategies developed to achieve
system goals while satisfying constraints.

A. Goals in Computing Systems
Computing systems have multiple—often competing—

goals. A key feature of self-aware systems is that their goals
are first-class objects, meaning the self-aware computing
system can reason about whether or not it is meeting its
own goals [26]. If the system is not meeting its goals,
it can change its behavior to find new ways to meet the
goals. Therefore, an understanding of goals is essential
to understanding the operation of self-aware computing
systems.

To begin, computer system goals can be broadly sep-
arated into two classes: functional and nonfunctional
requirements [27]. Functional goals are defined by results
the system is supposed to produce. Nonfunctional require-
ments, in contrast, refer to the system’s quantifiable
behavior. Examples of nonfunctional requirements include
latency constraints on input processing and battery life
requirements for mobile systems. This example also high-
lights how nonfunctional goals can compete with each
other; for instance, low-latency might require more com-
putational power and negatively affect battery life.

Nonfunctional requirements can be further divided into
constraints that must be satisfied for correct operation,
while others represent objectives (or best-effort goals) that
should be minimized or maximized. For example, in many
embedded, real-time systems latency is a constraint
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that must be met, since returning a late answer is as
catastrophic as returning the wrong answer (i.e., violating
functional requirements). For some mobile users, energy
is a constraint, as when the device runs out of energy,
it can no longer deliver functional correctness because it
is not operating at all. These examples also demonstrate
how goals can change as a system operates. Considering
our mobile user again, they might consider latency (or
responsiveness) to be a constraint when the charge is high
(or the device is plugged in) and energy savings would be
an objective. When using navigation without an external
power source, however, energy might be a constraint and
latency should be the best effort.

B. Common Ways to Meet Constraints
There are two very popular ways to handle constraints

in computing systems. Embedded system (ES) designers
often handle constraints by designing for worst case [28].
The worst case design is conservative and requires the
system to be built so that constraints will never be violated
under any circumstances. For example, to meet a latency
constraint, the worst case design requires reserving enough
resources to ensure that there is sufficient computational
power available under all circumstances. Often the draw-
back to this approach is that much of the operation does
not elicit the worst case behavior so the reserved compu-
tational power consumes more energy than necessary for
most inputs.

On the contrary, general-purpose computing systems are
often designed for the common case. This approach tends
to do well on optimizing objectives (especially compared
to worst case design). Designing for the common case
will violate constraints when workloads deviate sufficiently
from the expected behavior, however. In large-scale sys-
tems, in particular, the inability to meet constraints in
uncommon conditions can cause cascading constraint vio-
lations [29].

Whether the system is designed for the worst or common
case, the problem with both is that they do not account
for dynamics. For example, the operating environment may
shift over time.

1) Example (Meeting Latency Goals With Minimal Energy):
As noted above, mobile systems must meet the conflicting
goals of consistent performance and low energy. For exam-
ple, a video encoder must process frames at the same rate
they are produced by the camera sensor but users would
prefer those frames are processed in a way that preserves
battery life as much as possible. A common heuristic
solution to this problem is to race-to-idle; i.e., when a
new frame is produced, using all resources to encode that
frame as quickly as possible and then transition into a
low-power idle state. This strategy has the benefit that it
will always meet the latency requirement but its energy
efficiency is platform-dependent and can be far from
optimal on hardware systems with proportional energy
management [30]–[32].

Fig. 5. Comparison of energy/latency tradeoffs in ×86 mobile

Haswell and ARM big.LITTLE. (a) Normalizes energy and latency to

the highest performance and highest energy available on each

architecture. Peak performance is similar for both systems; peak

power is about 8 W for both. (b) Energy compared to optimal for two

common resource allocation heuristics, demonstrating that there is

no one heuristic that works well for both architectures.

Fig. 5(a) shows the latency and energy tradeoffs of a
video encoder on both an×86 Mobile Haswell and an ARM
big.LITTLE processor [33]. Fig. 5(a) shows that the ×86 is
more energy efficient at lower latencies—i.e., it reduces
energy to run fast—while the ARM is more energy efficient
when latencies are high—i.e., it is more energy efficient
to run slow. These different tradeoff spaces mean that
different heuristics will achieve vastly different energy
savings as shown in Fig. 5(b). The race-to-idle heuristic,
which makes all resources available and then idles after
completing a job, is near optimal on the ×86 because
reducing latency is energy efficient. On the ARM processor,
over 2× energy reduction is possible by using a never-idle
heuristic that just meets the latency goal by intelligently
using resources.

Race-to-idle is an extreme example of allocating for
the worst case: as long as the maximum resources in the
system are sufficient to meet the worst case input’s latency
requirement, then the constraint will be met. The problem
is that—for many applications—most inputs are not the
worst case and then those extra resources are wasted,
meaning the systemmeets its constraint (latency) but is far
from optimal in its objective (energy). The ability to adapt
to the dynamic needs of particular inputs (frames in this
example) would greatly enhance the computing system.

The issue with these common heuristic approaches is
that they lack flexibility and continue to apply the same
strategy regardless of the outcome. Such rigidity has long
been noted as a deficiency, not just in computing sys-
tems, but in general decision-making problems. Indeed,
military strategist John Boyd identified the importance
of constantly evaluating whether the current strategy is
meeting goals by specifying the observe-orient-decide-act
(OODA) loop [34], [35]. The OODA loop describes a con-
tinuous decision-making process where an agent collects
new data (observe), integrates and analyzes that data
(orient), creates a new plan (decide), and then implements
that plan (act). Agents that are developed with the OODA
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loop in mind have the flexibility to continually monitor
whether or not their goals are being met, and adjust
their strategy dynamically. Computer scientists have also
noted the importance of this flexibility for dealing with
the complexity of operating computing systems in dynamic
environments [36], [37] and have developed a similar
decision process known as monitoring–anaylsis–planning–
execution (MAPE) [38]. The four stages of the MAPE loop
directly correspond to the four stages of the OODA loop.
Both OODA and MAPE describe frameworks for contin-
uous decision making, but neither contain the kinds of
policies or formalisms that could be directly instantiated
in an embodied computing system.

C. Controlling Dynamic Systems

Fortunately, there is a whole field of study—control
theory—dedicated to meeting constraints in dynamic sys-
tems [39]. Control theory is a broad family of formal tech-
niques for making systems (originally physical systems,
like industrial plants) behave as desired despite unpre-
dictable dynamic disturbances. Control systems are par-
ticularly effective when respecting constraints is necessary
for correct operation because properly designed controllers
have formally analyzable behavior. While several seminal
works showed that control theory could be effective in
computers if applied by experts [40], [41], there has been
a recent flurry of work on making control systems accessi-
ble to software engineers [42]–[44]. Several survey papers
cover the broad applicability of control systems for self-
adaptive software [45]–[47]. Here, we briefly highlight
techniques useful for meeting constraints in embodied self-
aware computing systems.

1) Formulating Constraint Satisfaction as a Control Prob-
lem: While control theory encompasses a wide range of
techniques several steps are common to control synthe-
sis [46]. We summarize those steps here.

First—and most important—is to identify the constraints
as defined above. These constraints must be quantifiable
and measureable. While these requirements may seem
obvious, they can pose a challenge. For example, many
sensing systems have constraints on the accuracy, but it can
be difficult to measure accuracy online while the system
is running because ground truth data is not available
(see Section II).

Once quantifiable and dynamically measurable con-
straints are determined, the next step is to identify the
system’s tunable parameters. Suitable parameters should
affect the quantifiable measures identified earlier. Fur-
thermore, these parameters must be dynamically tunable.
For example, some iterative software has convergence
thresholds. Such a parameter might be dynamically tuned
to manage latency or accuracy constraints. Computing
systems have many tunable parameters, but they are
not always dynamically adjustable. Some features, like
enabling error correcting codes, may require a system

reboot, which limits its effectiveness for dynamically con-
trolling the system.

Having identified the constraints and the parameters,
the next step is to model the relationship between the two.
This modeling process is, perhaps, the biggest impediment
to widespread adoption of control theory in computing
systems. Many software engineers are simply not trained
to construct suitable analytical models. Indeed, there is a
wide range of possible modeling techniques that could be
applied and their suitability will vary greatly based on the
properties of the constraints and tunable parameters. In
applications of classical control theory, a dynamic model
will be constructed in either state space form or as an
input–output (IO) relationship. Filieri et al. [46] pro-
vided a broad survey of the many possible modeling
techniques, while Hellerstein et al. [40] provided great
detail on state space and IO models of computing systems.
Shevtsov et al. [47] provided a recent survey on the uses
of these techniques within computer systems. A signifi-
cant choice in the modeling phase is how to account for
disturbances, or deviations from expected behavior. If the
conditions that cause these disturbances, and their effects
on the constraints, can be modeled, it is possible to design
a controller that measures the conditions that would cause
the disturbance and proactively cancels it. Otherwise,
the model should be tolerant to some maximum deviation
from expected behavior.

Once a model—expressed as a set of equations—has
been established, the controller can be designed. As with
modeling, a wide variety of choices are available for con-
trol design. Control design will be largely influenced by the
behaviors the designer wants to induce in the self-aware
system. Clearly, the constraints should be respected. Other
desirable behaviors include the following properties.

1) Transient behavior, or how the system reaches the
constraint when initialized or disturbed.

2) Robustness to error, or the nonideal conditions under
which the system will still meet the constraints. Possi-
ble errors could include both modeling and measure-
ment errors.

While several other properties can be enforced, the key
is that the design phase not only produces a controller
that meets constraints but also provides other desirable
behaviors.

After the design, the controller is implemented. This
process involves translating the equations that describe the
controller into executable code. Several practical concerns
must be accounted for in this phase to go from the ideal-
ized model to a real computing system. Among these will
be how to handle delayed, erroneous, or missing measure-
ments; what happens when tunable parameters reach their
limits but the constraints are still not met; and accounting
for any delays between changing a parameter setting and
observing the change on the measured behavior.

The final step is, of course, to test the implemented con-
troller and verify that it can meet the desired constraints
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in a representative use case. One of the biggest difficulties
is that control design is most useful for systems that
operate in unpredictable dynamic environments. Testing
the ability to handle unpredictable scenarios is challenging
because any test scenario is, by definition, anticipated.
Thus, the testing procedure will generally involve putting
the controlled system through inputs that test the extreme
range of its error tolerance (as determined in the modeling
and control design phase). In this way, implementers can
have some confidence that the system will behave as
expected conditional on the determination of maximum
expected error.

2) Common Control Methods: We briefly discuss com-
mon patterns of control design. Although a full survey is
beyond the scope of this article (see [40] for a broad and
detailed survey), we highlight some of the pros and cons of
different approaches as they relate to self-aware computing
systems.

We consider feedback control designs. These are
common control approaches where the control input is
the difference between the constraint and the measured
behavior. Feedback designs are the most robust as they
can handle uncertainty, reject disturbances, and even
stabilize systems that would otherwise behave erratically.
On the contrary, open-loop and feed-forward control
require perfect knowledge of the operating environment
and model error to guarantee the constraints are met.
Our assumption is that self-aware systems must be able to
tolerate error and uncertainty, so feedback is required.

There are three common classes of feedback control
design. These include the proportional–integral–derivative
(PID) controller, optimal control, and adaptive control. The
PID controller is a classical control system, which first
determines the error between the goal and the current
behavior and then determines its next action as a weighted
combination of terms proportional to the error, the integral
of the error, and the derivative of the error. A classic
example in computing systems is controlling system power
consumption [48], [49]. Optimal control not only satisfies
a constraint, but simultaneously optimizes objectives and
is particularly useful when controlling multiple tunable
parameters as there might be many possible ways to meet
a constraint, but only one that is optimal for the objec-
tive. Examples of optimal control in computing systems
include resource managers that optimize the use of multi-
ple resources [50], [51]. A powerful, and common, a sub-
class of optimal control is the model predictive controller
(MPC), which works to optimally satisfy constraints by not
just considering the current system state but also on pre-
dicted future states. MPC has been used to provide quality
of service (QoS) in webservers [52] and been shown to be
a generally powerful technique for building self-adaptive
software systems [53]. Maggio et al. [54] have shown how
to automatically synthesize MPC for computing systems.

Adaptive control is a family of techniques for dynam-
ically altering a controller’s behavior. Adaptive control is

typically used to augment an existing control solution,
by taking a time-invariant design and turning it into a time-
variant one. For example, Sun et al. [55] have shown how
to use time-varying models to capture the dynamic, non-
linear behavior of web servers, while Hellerstein et al. [56]
have shown how to use a control design to adapt the .NET
thread pool to varying workloads. Parametric adaptation
retains all the control equations from the time-invariant
design but allows some coefficients to change as the con-
troller operates. Other forms of adaptation vary in the
form of the controller. For example, switching systems
change from one set of control equations to another based
on the operating conditions. For example, a nonlinear
system could be controlled by constructing a series of
linear controllers corresponding to different parts of the
system’s operating range. As behavior progresses through
the range, the controller switches to the model appropriate
for the current behavior. There is a wide range of different
techniques for making a controller adaptive.

Unfortunately, a terminology issue arises when applying
adaptive control techniques to computer systems because
the computing and control communities use the term
“adaptation” in closely related, but distinct ways. For
most computer engineers, adding a controller (even the
simple PID control mentioned above) would make a sys-
tem adaptive because the controller enables the computer
to respond to conditions that it previously ignored. For
example, without a controller, a computer designer might
have to allocate resources to guarantee a latency goal is
never violated, but adding a simple PID controller would
allow the system to adapt resource usage (the tunable
parameter) to observed latency and save energy.

A control designer would not consider such a system
adaptive, however. This difference is due to the fact
that the control equations are fixed in this example.
If the controller accounted for the workload (for example,
estimating whether the current workload was computed or
memory bound and then changing control equations
accordingly), it would then be considered an adaptive
controller.

D. Advantages and Disadvantages of Control

The primary advantage of control techniques is that
the modeling and design process results in a series of
equations that emit formal guarantees—and perhaps more
importantly, the assumptions required for them to hold—
about the system’s ability to respond to dynamic behavior.
For example, given the system and control model, it is
possible to reason about the maximum amount of model
and measurement error that could be encountered and still
permit the system to converge.

These formalisms provide a very important capability
for designers of self-aware computing systems. The goal
of self-aware systems is to maintain operating goals (con-
straints and objectives) despite unforeseen circumstances.
As mentioned above, this is a formidable task as it is—by
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Fig. 6. Controlling a video encoder on two different mobile platforms. (a) Race-to-idle heuristic which always keeps latency below the

target (1.0, in these figures), but consumes much more power (and thus energy) than required. (b) Effects of the using adaptive control to

solve this problem, which sometimes violates the latency goal, but reduces energy consumption significantly.

definition—quite difficult to demonstrate a system reacts
to the unforeseen as any demonstration would require
foresight. Control formalisms do not require enumeration
of all circumstances but permit designers to reason about
error tolerance. For example, designing self-aware systems
with control allows designers to make a system that can
handle errors as high as a factor of 10 (or whatever
bound is deemed necessary), but they do not have to list,
detect, or design for all specific circumstances that might
result in a factor of ten errors. Essentially, if the effects are
captured by the measures the system is already collecting,
then the control system will respond to them.

The advantage of control is also a drawback, however,
because the modeling part is quite challenging. The models
described above are written as differential or difference
equations (depending on whether the system is continu-
ous or discrete) and most computer and software engineers
are not trained to develop such models.

A related drawback is that computer systems are typi-
cally required to be much more general than the physical
systems for which control was originally designed. For
example, control systems are developed for airplanes by
designing a specific controller for a specific plane. Such a
design methodology makes sense because a plane has a
fixed function and is not expected to change considerably
over its lifetime. On the contrary, many computing systems
are quite general (a typical computer system is supposed to
be able to compute any computable function, but a bridge
is not required to span any bridgeable gap). Therefore,
the behavior of a computing system can vary tremendously
over its lifetime depending on how it is used. The problem
here is developing models that account for the generality
and potentially widely varying usage of a self-aware com-
puting system.

E. Example: Controlling the Video Encoder

To demonstrate the advantages of control systems for
dynamic adaptation, we consider tailoring system resource

usage to meet latency constraints with minimal energy for
mobile video encoding applications. Specifically, we high-
light the results of the POET control-based resource man-
agement system [33], although several other examples
exist in the literature (see [57]–[59]). We return to the
Intel Mobile Haswell and ARM big.LITTLE systems men-
tioned above. Here the Intel system is part of a Sony tablet,
while the ARM system is part of an ODROID XU-E board.
We run the ×264 video encoder on both the reported
results of a prior study demonstrating the benefits of con-
trol theoretic solutions—that adapt to differing inputs—
over using the race-to-idle heuristic. On each system,
we encode a video consisting of three distinct scenes. The
first is difficult to encode and requires all resources—for a
brief period—to meet the latency requirement. The second
and third scenes are easier and place differing demands on
the two different hardware systems.

Fig. 6(a) shows the results of using the race-to-idle
heuristic in this scenario, with time (measured in frames)
on the x-axis and normalized latency (top) and power in
Watts (bottom) on the y-axis. The vertical dashed lines
show the scene changes (at frames 500 and 1000). As
can clearly be seen in Fig. 6(a), the first scene is the
hardest, requiring maximum resources to meet the latency
constraint, and consuming the most power. The other two
scenes are easier, although which is easiest depends on the
hardware platform.

Fig. 6(b) shows the results of an adaptive controller
(from [33]) applied to this same problem. The control
system keeps the latency near the target, while greatly
reducing energy on both platforms. The mean absolute
percentage error between the desired and achieved latency
is less than 3% across both platforms. The energy savings
are nearly 50% on the ODROID and about 11% on the
Vaio.

These results demonstrate the potential benefits of
applying control theoretic solutions to manage computing
systems to meet goals. Here, the constraint is on latency
and the objective is to minimize energy consumption, but
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the principles could apply to a wide variety of comput-
ing systems’ goals. Control approaches have been demon-
strated to provide excellent outcomes when the behavior
of the computing system can be modeled in advance. In
this example, we use a parameterized control approach
designed to be portable across systems [33], but even that
approach requires a separate specification of the appli-
cation’s (video encoder, in this case) response to various
systems resources. Clearly, greater flexibility and generality
is needed to realize a truly self-aware computing system.

F. Handling Conflicting Goals
As mentioned above, an embodied self-aware system

will often have conflicting goals. In fact, the video encoder
example from above is such a case, where the performance
constraint is in conflict with the desire for low energy. This
example demonstrates one way to handle such competing
goals: set one as a constraint and another as an objective
to be optimized. In addition, one advantage of control
systems is that advanced control methods allow the specifi-
cation of multiple goals [44], [54], [60]. In such situations,
the controller essentially solves constrained optimization
problems with multiple constraints. As all control mecha-
nisms have formalisms associated with them, the controller
can report back to a human operator if the constraints have
no feasible solution given the set of actions available to
the controller. A trivial extension would prioritize the goals
and the controller could ignore lower priority goals until a
feasible solution is found [61].

IV. S E L F - AWA R E A S S E S S M E N T
Comprehensive observation (see Section II) forms a solid
basis for correct self-assessment, and the behavior and
performance of the system have to be continuously mon-
itored and compared to the given goals and objectives
(see Section III) for achieving broad self-awareness. As
discussed in Section III, control theory provides means
to monitor deviations from goals to bring the system
adatpively back on track to meet its objections. However,
self-awareness implies monitoring on a system level above
individual controllers to assess all system functions such as
sensors and the quality of data, the communication with
other systems, and the relevance of a system’s actions in a
given situation. However, this area is still in its infancy, and
in the following, we describe techniques and results that
point toward this vision, but a comprehensive methodol-
ogy or a complete toolbox is still missing.

A. Confidence-Based Assessment
Interestingly, just as in observation, confidence has also

been used as a quality metric for the system’s performance.
For instance, specific confidence metrics have been

used to improve and guide machine learning (ML).
Neshatpour et al. [62] partition the convolutional neural
network (CNN) AlexNet [63] into Micro CNNs which
allows them to iteratively improve the classification until

a given confidence threshold is obtained. The used con-
fidence metric is a side effect of the CNN classification
reflecting how close a given match is to images of the
training set. Hence, it is a self-assessment that facilities the
desired tradeoff between accuracy and computing effort.

In another example, Forooghifar et al. [64] apply con-
fidence guided classification to the detection of epileptic
seizures. Two variants of support vector machines (SVMs)
are used for categorization, one yielding high accuracy
with high effort and another one, which is less com-
plex with lower accuracy. The used confidence metric is
another SVM classifier that predicts how well the low- and
high-effort SVM variants will perform on a given input
pattern. It is used to decide at runtime which of the two
are invoked.

Based on the insight that different ML algorithms work
better on some tasks than others, Kholerdi et al. [65]
provide three different classifiers for image categorization:
SVM, neural network (NN), and Naive Bayesian (NB). Only
one of them is used, however, as long as it yields suffi-
ciently high confidence in its classification. However, if the
confidence drops below a threshold, a second classifier
is invoked. Again, self-assessment is used to monitor and
assess the system’s behavior and to steer its quality above
a target level while keeping the costs and effort low.

ML algorithms like CNNs or SVMs provide error esti-
mates that can conveniently be used as confidence met-
rics [62], [65], or explicit additional effort is expended
to compute the confidence [6], [64]. As discussed by
TaheriNejad and Jantsch [66], it may resemble probabil-
ity [62], [64], [65] or distance metrics [6] with different
pros and cons.

In all these cases, confidence as a quality metric of a
specific task, such as image classification, is immediately
used to guide the task itself. A broader notion of self-
awareness can more extensively steer the system’s
operation by changing what data is collected in the
first place or what help is requested from the outside.
Preden et al. [7] develop the concepts of attention and
situation awareness to steer data collection and analysis
in a personal health monitoring system. It determines the
health condition of a patient and is equipped with sensors
for measuring pulse rate, acceleration, position, heart rate,
oxygen levels, and other vital signals. An important part
of the health assessment constitutes the awareness of the
situation and the patient’s model. Is she indoor or outdoor,
climbing stairs or running, sitting at a desk or driving a
car? A comprehensive situation awareness is a prerequisite
for a correct health assessment. In principle, the more
sensors and sensor data that are available the better the
assessment will be. However, for most situations, only
a relatively small subset of the sensory data is required.
Thus, the system proposed by Preden et al. [7] uses
only few sensors in common situations. For instance,
only the pulse rate and acceleration are required to tell
apart resting, driving a car, and indoor walking. But to
distinguish between upstairs and downstairs walking an
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Fig. 7. Two reference architectures for self-aware computing systems. (a) The EPiCS architecture [68], [69]. (b) The Learn-Reason-Act

loop [70].

additional sensor for altitudes has to be invoked. The
mechanism to decide which data is collected and what
analysis steps are taken is called attention. Essentially,
it is a flexible resource allocation technique, that can
pause or start activities, invoke or retire sensors, and
request additional information from other agents.

Similar concepts have been proposed and studied by
Anzanpour et al. [67] to improve early warning score
(EWS), a standard medical procedure in hospitals to mon-
itor the health of stationary patients. Similar to Preden’s
work, several sensors are used to establish the environ-
mental situation of the patient and his mode of activity.
This understanding, in turn, facilitates a more accurate
assessment of health risks. For instance, a high heart rate is
expected if the person is running, but signifies a potential
hazard if he is resting on a couch. Anzanpour et al. [67]
demonstrate that a comprehensive situation awareness
can not only improve the quality of assessment but can
also significantly reduce the energy expenditure of the
monitoring system leading to longer battery usage.

B. Architectures for Self-Awareness

Over the last two decades, the research community
has developed a number of architectures for agent con-
trollers as part of self-* systems with different emphases.
Key examples include observe-decide-act (ODA) [71] and
MAPE over a shared Knowledge (MAPE-K) [72]. How-
ever, while systems based on these models often possess
some level of self-awareness, the models do not explicitly
capture self-awareness concerns. More recently, reference
architectures have been developed to explicitly emphasize
these concerns and provide an architectural perspective on
a system’s (possible) self-awareness capabilities.

Two widely known approaches are the EPiCS archi-
tecture [68], [69] and the Learn-Reason-Act loop [70],
as illustrated in Fig. 7. Both include limited self-awareness

consisting of self-monitoring, self-models, and a way to
reason about their own capabilities. The EPiCS model
[see Fig. 7(a)] distinguishes between five kinds of aware-
ness inspired by Neisser’s levels of self-awareness in
humans [73]. Stimulus awareness means that the sys-
tem knows of the stimuli acting on it and can respond
to events. Interaction awareness means that the system
knows that external stimuli and its own response constitute
interactions with other systems. Time awareness makes
the system knowledgeable about historical and likely
future phenomena. Goal awareness means the system
knows about its own goals, objectives, preferences, and
constraints. Meta-self-awareness means that the system
obtains knowledge of its own awareness. Goal awareness
and meta-self-awareness allow the system to manage its
goals during its lifetime and adapt its preferences and
resource usage to the changing needs and environmental
conditions. Lewis et al. [68] report that an EPiCS-based
system effectively handles dynamism and uncertainty in
application goals, workloads, and environmental condi-
tions. From their experiments, it can be concluded that the
key advantage of self-awareness properties has increased
the flexibility which bears fruit if the system’s internal
condition and its goals, and the environment is subject to a
high degree of uncertainty and dynamism. If uncertainty is
low and interaction dynamics is missing, fixed design-time
solutions are always satisfactory.

The model-based learning and reasoning loop (LRA-M
loop), introduced by Kounev et al. [70] and illustrated
in Fig. 7(b), improves the self-model dynamically based
on continuous observations and a learning and reasoning
processes. The reasoning here means a mechanism that can
find deviations from the expected behavior and can trigger
new actions or new combinations of actions, thus making
the system adaptive.

Recently, a formal model of self-reflection has been
proposed [74] that allows a self-aware agent to turn its
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attention to any of its own internal processes to assess its
behavior and performance. As this also includes the very
process of self-reflection as a possible target, it is called
recursive self-reflection. For this to work, abstraction is
crucial to significantly reduce the amount of information
and complexity of the target process under assessment.
Also, the abstraction has to be automatic to be fully flexi-
ble, and for applying, the reflection and assessment to any
target process without arbitrary limiting it to a design-time
defined set of processes. So far, recursive self-reflection is
the most generic and general mechanism to self-awareness
since it can be applied to about any internal process of a
system in any application as long as the process inputs and
outputs are observable and its goals are known. However,
its effectiveness, efficiency, and utility still have to be
demonstrated in a realistic setting.

C. Self-Assessment, Expectations, and Goals
In Section III, we discussed goals from the perspec-

tive of control theory. In fact, goals usually appear at
several hierarchical levels, they may change dynami-
cally and are sometimes mutually contradicting. Even
for the limited domain of many-core resource allocation,
Rahmani et al. [75] have shown that goals change over
time due to varying application workload, changing inter-
nal state (e.g., discharging of the battery), and fluctuat-
ing user requirements. When the battery is full and the
workload high, high throughput optimization is a sensible
policy, but when the battery is low and the user requests
low-power mode, an energy conserving policy is appro-
priate even if the workload is high. Moreover, goals are
not always equal. If the system faces acute thermal over-
heating, a low-power request from the platform manage-
ment should overrule user or application preferences for
high performance. Hence, in complex CPSs with multiple
components and subsystems, it is evident that we face a
hierarchical, dynamic goal structure [76].

In robot planning and cognitive architectures, the man-
agement of goals has a long tradition [77]. Goal driven
autonomy (GDA) [78], [79] is a conceptual framework for
dynamic planning in autonomous systems. It starts with
an initial goal and generates new goals when differences
between an expected and observed state are detected.
Jaidee et al. [80] have integrated GDA into a Q-learning
loop to dynamically improve goal selection based on the
observed system behaviour, and Shamsa et al. [81] have
used it to manage on-chip resources in many core systems.
Because GDA allows for dynamic generation, retirement,
and re-prioritization of goals, it is an effective framework
for dynamic management of hierarchical goal structures.
Thus, it matches well with self-awarenesswhich requires to
compare the observed behavior with the expected behav-
ior. The latter can be derived from currently active goals.
Hence, a promising avenue of research is the integration
of self-awareness with GDA or similar frameworks for
dynamic goal management, which hopefully leads to self-
aware, autonomous computing systems with a closed loop

Fig. 8. Interplay between self-awareness and dynamic goal

management.

between continuous, dynamic self-assessment, and goal
management, as illustrated in Fig. 8.

D. Summary

The architectures and approaches discussed in this
section provide examples of the state of the art for how
to realize self-awareness and self-assessment in computing
systems. It illustrates that there is no single best solu-
tion but two principles become clear: 1) self-awareness
requires an elaborate assessment of the system’s and the
environment’s current state, which has to be derived from
the sensory data and interpreted in the given context
and 2) explicit modeling of goals and expectations are
necessary to relate the current state to desired states.

The realization of these principles depends on the
resources available and on the specific application with all
its requirements and constraints.

V. S A M P L E E M B O D I E D , S E L F - AWA R E
C O M P U T I N G S Y S T E M S
We now present two exemplars of embodied, self-aware
computing systems: CPSoC and healthcare monitoring. For
each exemplar, we analyze the features of embodied self-
awareness that are incorporated and commented on those
features that are missing.

A. CPSoC

CPSoC [9], [82] is an SoC architecture with many
physical and virtual sensors, an introspective sentient unit
(ISU) and middleware for building a comprehensive model
of the SoC status. Fig. 9 shows the usage of sensors
and actuators from the physical to the application level.
A variety of real and virtual sensors monitor temperature,
power consumption, bus and network load, occupancy of
buffers, QoS parameters, etc. Based on the sensory data,
CPSoC has the ability to adapt to varying environmental
conditions and application requirements using multiple
cooperating and hierarchical ODA loops, which effectively
track multiple platforms and application goals. In addition,
CPSoC provides predictive models and online learning
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Fig. 9. Cross-layer virtual sensing and actuation in CPSoC [9].

capabilities to build and continuously improve models
for performance, power and energy consumption, which
allow for better prediction and control of these parameters.
The predictive models are based on linear regression and
NN-based techniques.

CPSoC exhibits several features of a self-aware SoC
in which it uses sensors extensively to build up, and
continuously improve, a self-model of its own state with
respect to various performance metrics, power, energy, and
temperature. While it also features a significant dynamic
learning component, the overall architecture is hard-coded
and determined at design time. If a new application comes
with a novel objective (e.g., a certain kind of user expe-
rience or accuracy-energy tradeoff not considered by the
designers), CPSoC has no means to relate this objective to
sensory data and actuator knobs, and to devise a strategy
to meet this novel goal.

B. Healthcare Monitoring
EWS is a medical procedure widely used in hospi-

tals since the 1990s to closely track the condition of a
patient [83]. Table 1 shows the parameters measured and
the scores given. The total score is simply summed up
and can be between 0 and 15, with higher total scores
indicating anomalous health states based on the specific
ranges of the parameters.

The traditional EWS is a purely manual procedure
implemented by hospital nurses. Anzanpour et al. [84]
have designed a wearable, battery driven device that
automates the measurements and the computation of
scores, resulting in a number of benefits. It relieves both
patient and nurse from the tedious measurement proce-
dures, it can collect data continuously, and the patient
can move around and even leave the hospital while still
being monitored. While this is much more convenient for
the patient and allows for more comprehensive monitor-
ing it also implies several complications, the vital signs

Table 1 EWS Table Extracted From [83]

change with the type of activity engaged by the patient.
The scores in Table 1 assume that the patient is resting
in bed. If this assumption is violated, the scores have
to take the current activity into account. Consequently,
Anzanpour et al. [67] have developed an EWS moni-
toring device that collects more sensory data, estimates
the activity mode and the environmental situation, and
then computes a refined score. Moreover, in a wearable
device, sensor data are not always fully reliable because
sensors may break or detach from the body. Therefore,
the improved EWS monitor also integrates an estimate
of the reliability of the individual sensor inputs into the
overall assessment.

As shown in Fig. 10, the sensor data are used to estimate
the activity mode of the patient, the environmental situa-
tion like location, velocity of movements, time of day, etc.,
and the reliability of the individual sensory data itself.
Based on this assessment of the overall situation, the cur-
rent health of the patients is assessedmore accurately than
based on the vital signs alone. In addition, because this is
a battery driven device, the assessment of the situation is
used to operate with power efficiency by adapting the rate
of measurements and computation. Over a full day of oper-
ation, half the energy can be saved without compromising
the accuracy of the assessment [67].

Recently, Anzanpour et al. [67] proposed an improve-
ment of the self-aware EWS by explicitly modeling goals
which dynamically change depending on the observed
situation. Similar to the self-aware EWS, the situation is
assessed, and the goal that fits best to the current situation
is then invoked. Under abnormal health conditions,
the goal is “high performance monitoring,” and otherwise,
it is “long lasting monitoring” or “accurate data collection,”

Fig. 10. Architecture of the self-aware EWS [67].
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depending on the battery load level. The accurate
assessment of the patient’s health status has usually the
highest priority, but when energy is scarce, compromises
are made.

As the tasks become more complex and dynamic, com-
prehensive assessment of the environment and the system’s
own state turns out to be exceedingly beneficial. This is
nicely illustrated by the three instances of the wearable
health monitoring devices described above, the traditional
EWS [84], the self-aware EWS [67], and the goal driven,
generalized EWS [85].

These exemplars exhibit, in increasing quality, several
core features qualifying them as partially self-aware. They
use multiple sensor sources to build up robust models of
the patient’s health, the reliability of sensors, and the situ-
ation. This elaborate awareness of the situation facilitates
accurate monitoring of the patient’s health under various
situations while keeping power and energy efficiency rea-
sonably low. These examples demonstrate one core claim
of self-awareness in embodied computing systems: more
elaborate and comprehensive assessment of the situation
leads to better decisions.

However, they fall short with respect to other key
abilities. Critically, they do not exhibit general learning
capabilities to build up and improve increasingly elaborate
models of themselves and the world, and to identify and
establish novel correlations and causal dependencies. This
inherently limits their adaptability to new and unfore-
seen situations. In fact, universal learning capabilities
are required to cope with and adapt to entirely novel
situations.

Furthermore, the key features of the embodiment are
only rudimentarily developed. While a rich set of sensors,
which both exemplars contain, is the basis for embodi-
ment, neither system treats its own physical body suffi-
ciently explicit to clearly delineate it from the bodies in
the environment. Also, spatial relations, time relations,
and situatedness are weakly developed and only implicitly
present. Thus, both exemplars do not serve as complete
cases of embodied systems, but they have most of the
essential ingredients, and it seems a rather small step
toward truly embodied, self-aware computing systems. We
consider them more as inspiration rather than perfect
examples. In fact, the exponential growth in the number
of devices and their increasing computational and sen-
sory capabilities result in a trend toward more general
solutions, which eventually will be embodied, self-aware
computing systems that can meaningfully navigate even
the most unexpected situations.

VI. D Y N A M I C L E A R N I N G ,
A D A P TAT I O N , S E L F - O P T I M I Z AT I O N
Prior sections establish that self-aware computing systems
must be aware of goals and be capable of performing self-
assessment to determine whether, and how well, they are
meeting those goals. We have noted that control systems
provide a general theory of meeting goals in dynamic
environments. At first glance, it might seem that if we

simply embed control into computing systems, then we
would have an embodied self-aware computing system
that adapts behavior to meet goals. Such an approach,
however, would still face many limitations including the
fact that this hypothetical system still would not be capa-
ble of performing self-assessment. The ability to perform
this self-assessment is key to transforming a computing
system that adapts through control mechanisms into a self-
aware computing system that not only adapts in response
to external stimuli but has the higher order ability to
evaluate its own adaptation and find better ways of adapt-
ing in the future.

This ability to perform self-assessment is not just an
academic goal. Instead, it is essential for our ability to
build computing systems that respect constraints while
optimizing objectives. Constructing such computer systems
that can automatically determine the best way to meet
their goals will be essential to rapidly and successfully
deploying computer systems in the face of increasing
complexity.

This capability can be realized by imbuing comput-
ing systems with intelligence, specifically an intelligence
that allows them to reason about themselves and their
environment. Thus, an ideal self-aware computing sys-
tem would be imbued with artificial intelligence (AI),
and determining, or creating, the techniques that would
allow the full power of such intelligence within a com-
puting system is an ongoing research challenge. To date,
the deployed techniques for these systems fall into the
subset of AI known as ML.

A. Learning for Self-Assessment
The rapid growth in computing system complexity is

affecting users and operators at many different levels of
the system stack, from processors that have multiple het-
erogeneous core types [86], [87] to foundational software
packages (e.g., Hadoop MapReduce) that have many hun-
dreds of configuration parameters [88], [89]. These com-
plex configuration spaces, in turn, induce a complicated
tradeoff space in a computing system behavior. For exam-
ple, combinations of processor resources create different
performance/energy tradeoffs [31], while combinations of
parameter settings in MapReduce produce various tradeoff
spaces, including memory usage versus throughput [90].
Adding further challenge, the large number of possible
configurations and their interactions create local optima in
these tradeoff spaces such that formerly effective heuristics
can produce far from optimal behavior [31], [91].

Fortunately, recent years have seen an explosion of
AI and ML techniques that are well-equipped for mod-
eling complicated tradeoff spaces to find and avoid
local optima. Many examples exist for modeling both
hardware [92], [93] and software systems [94]. A recent
survey details the applications of AI and ML to computing
systems (with a focus on computer architecture) [95].
Compared to commonly used heuristics, these learning-
based approaches provide much more rigorous and well-
founded methods to avoiding local optima and driving the
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Fig. 11. Difference in complexity of the ×264 and LAVAMD benchmarks running on a heterogeneous ARM big.LITTLE system. (a) ×264’s
performance as a function of cores (x-axis) and clockspeed. (b) Same for LAVAMD. (c) Results of using a control system built with the model

from (a) to control LAVAMD and compare it to a learning system that is capable of finding the local optima exhibited in (b).

computing system to meet its constraints while optimizing
its objective function.

B. Example of Learning for Computing System
Management

We present a brief example showing how learning sys-
tems can avoid local optima and produce good outcomes
for self-aware computing systems. Here, we explore the
LAVAMD application running on the ODROID board from
the prior control sections. Fig. 11 shows the details for this
example.

We begin by comparing ×264 and LAVAMD’s perfor-
mance on this architecture. The contour plots in Fig. 11(a)
and (b) show how differently these two applications
respond to the same resources. These figures show
resources on the x (cores) and y (frequency) axes, while
performance is indicated with increasing darkness. While
×264 has a fairly smooth increase in performance for
increasing resources, LAVAMD has several local optima and
represents a much less smooth space.

The difference between ×264 and LAVAMD response to
resources creates a difficult problem for controlling these
applications to meet latency constraints. Section VI dis-
cussed that, even with varying inputs, control designs can
still drive the encoder to a target latency with low energy.
However, if we use the same control model that worked
well for ×264 to manage resources for LAVAMD, then we
get the wildly oscillating behavior shown in Fig. 11(c).
Using this control system for LAVAMD, the latency is
alternatively far above or far below the desired target.
This oscillation happens because the controller was built
for ×264 and the difference between ×264’s model and
LAVAMD’s is too large for the controller to correct.

In contrast to the controller, Fig. 11(c) also shows
what happens if we use a hierarchical Bayesian model
(HBM) to select a resource configuration that gives the
desired latency with minimal energy [96]. In this case,
the learner is able to find a suitable resource configuration.

Furthermore, because LAVAMD does not exhibit dynamic
changes in behavior on this system, the learner provides
near perfect control of the system.

C. Research Challenges

Therefore, ML methods provide powerful tools that
could be used to add self-assessment capabilities to com-
puting systems. These techniques—in and of themselves—
do not represent a complete solution to building self-aware
computing systems, however. While ML techniques face
fundamental challenges due to their lack of explainability
that is critical for self-assessment, we identify at least two
additional challenges that must be addressed to success-
fully deploy learning in self-aware computing systems.

1) Addressing Computing System Dynamics: A recent posi-
tion paper on challenges facing ML in deployed sys-
tems notes the issues of deploying AI to operate in
dynamic environments, i.e., environments that may
change, often rapidly and unexpectedly, and often in
nonreproducible ways [97]. Computing systems are
fundamentally dynamic: resources may be added to
the system or fail during operation, while applications
transition through different phases, each of which has
different optimal resource allocations.

2) Making Learners Aware of System Goals: In addition,
a typical way of deploying learners in computer
systems is to train the learning system to predict
some metric of behavior—typically relating to the
constraints and objectives—as a function of the com-
puting system’s configurable parameters. The training
objective is generally to maximize prediction accu-
racy. A recent study, however, shows that there is a
point where continuing to focus on learning accuracy
can actually degrade the overall system behavior for
computing systems that must deal with constrained
optimization problems [91]. Instead, that study sug-
gests that it may lead to better results if the learning
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system is aware of the goals its predictions will ulti-
mately be used to achieve and is trained to realize
those outcomes.

3) Explanable Outcomes: As discussed above, embodied
self-aware systems will have constraints that must
be met for the correct behavior. One challenge to
deploying learning methods in such systems is what
happens when the constraints are not met in practice.
If we only use classical control methods, for example,
if the constraints are not met we can use the con-
trol theoretic formalisms to reason about what went
wrong. On the contrary, most learning mechanisms
do not have the formalisms required to distinguish
when a failure case is fundamental—e.g., the sys-
tem simply does not have the capability to meet a
goal—versus the case where the failure is due to
the learner itself—e.g., the learner produced a bad
prediction that caused it to violate a constraint. This
issue is further compounded by the fact that the vast
majority of learning approaches deployed today are
based on finding correlations between data, and it is
well-known that correlation does not imply causation.
One approach to this challenge may be deploying
learning techniques that explicitly work to find causal
relationships between data and thus offer some ability
to explain the resulting decisions.

D. Combining Learning and Control
At this point, we have seen that control theory provides

a whole body of knowledge for developing systems that
understand goals and adapt to meet them in dynamic
environments. The disadvantages of control theory are
that: 1) it generally takes expertise to apply and 2) it is
not, inherently, a great match for computing systems due
to their complexity. Conversely, learning techniques are
unrivaled at modeling complex systems, but they have the
disadvantages described above: 1) limited ability to handle
dynamics; 2) unclear relationship to computing system
goals (constraints and objectives); and 3) limited ability
to understand the decision-making process.

Intuitively, it seems clear that we should explore combi-
nations of learning and control that might result in a com-
plete approach that uses control to meet goals in dynamic
environments and learning to provide self-assessment and
modeling for complexity. Several researchers have recently
begun exploring such combinations. Tu and Recht [98]
and Dean et al. [99] have proposed several approaches for
combining statistical learning models with optimal control.
Simultaneously, Hoffmann [100] has developed OS [101]
and hardware-level resource management systems [102],
[103] that combine learning and control to provide both
energy and latency guarantees in dynamic environments.
This prior work, however, still requires expertise in both
learning and control methods to effectively deploy the pro-
posed solution. Getting this combination into widespread
use within self-aware computing systems will require fur-
ther development of abstractions and interfaces that allow

control and learning to work together while maintaining—
as much as possible—control theory’s formal guarantees.

E. Example of a Hybrid Learning and Control
System

The prior example showed how learning can accu-
rately model the complex, application-specific interac-
tions of hardware resources and create good outcomes
where control alone could not. We conclude this section
by returning to this example and discussing how it is
handled by the CALOREE approach [101] for combin-
ing learning and control capabilities within a computing
system.

CALOREE manages resources in computing systems to
meet latency constraints with minimal energy. The heart
of CALOREE is an adaptive control system that observes
whether or not latency goals are being met and adjusts
resources accordingly. As shown in the previous example,
however, applications can have very different behavior
for the same hardware and it is not possible to build
one control model that captures all possible application
behavior. Therefore, CALOREE starts applying control with
a generic model of application response. As the controller
runs, it naturally collects feedback which it sends to an
ML engine. The ML engine uses this data to create an
application-specific model of response to resources, cus-
tomizing the controller online.

In addition to sending this learned model, the learner
also sends its confidence in the learned model. The confi-
dence is used to update the control response. If the learner
is very confident in its model, then the controller will act
quickly to any changes in latency. When the learner is less
certain, the controller will slow down and collect more
observations before reacting.

As it turns out, communicating both the model and
confidence appears to be key to getting this hybrid learn-
ing and control approach to work well for very complex
applications, such as LAVAMD [shown in Fig. 11(b)]. To
demonstrate this, we illustrate the results of using two
different approaches to combining learning and control
(first published in [101]). The first simply replaces the
standard system modeling done to develop a controller
with an ML approach. The second is CALOREE, which
uses the same learning system, and also communicates
uncertainty in the learned model.

Fig. 12 shows the results of controlling LAVAMD with
these two different approaches. As we can see, the first
approach does little better than a control system built with
a generic model [from Fig. 11(c)]. CALOREE, however,
drives LAVAMD to meet its goals because the controller
knows the uncertainty in the model and slows down to
collect more observations. Using CALOREE, the application
not only does a much better job of meeting its constraints
but it also has a lower energy consumption because it is
not oscillating. The LAVAMD application does not exhibit
much dynamic behavior, but this combination of learning
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Fig. 12. Latency (normalized to the constraint) and power for the

LAVAMD application [from Fig. 11(b)] controlled by two different

hybrid learning control systems. The first is simply a straightforward

combination that replaces the standard control modeling step with

learning. The second is the CALOREE system that does learning

online and communicates both a learned model and confidence in

that model to the controller.

and control makes the system robust to other, external
changes. For example, in the original CALOREE paper
LAVAMD controlled by CALOREE can still meet latency
constraints even if other applications enter and leave the
system during execution.

VII. C O N C L U S I O N A N D O U T L O O K
This article sets the context for embodied self-aware com-
puting systems by building on the notions of compu-
tational embodiment and computational self-awareness
that empowers classical computational platforms to adapt,
learn, and operate autonomously in the face of varying
application requirements, changing goals, and conflicting
constraints. Using lessons learned from self-aware comput-
ing and robotics, we elaborated on the basic properties
of embodied self-aware systems and defined the actions,
goals, and control in embodied self-aware computing sys-
tems. We discussed the role of self-aware assessment and
the need to synergistically couple the benefits of traditional
control theory with learning strategies to meet dynamically
changing goals. In this context, many of today’s computing
systems lack self-models or have fixed models implicitly
designed into the system. This lack of explicit and adaptive
self-models prevents contemporary computational plat-
forms from establishing embodied self-awareness, together
with the attendant facilities of dynamic learning, adap-
tation, and self-optimization that are required to allow
continual adaptation to environmental and application

changes, as well as dynamically changing goals. We used
some sample exemplar platforms (e.g., CPSoC) and appli-
cations [e.g., self-aware healthcare monitoring (SAHM)]
to highlight initial forays into computational embodiment
and computational self-awareness, with both their salient
features as well as their shortcomings. Many difficulties
remain.

One overarching challenge is to provide a framework for
an agent to holistically reason about its situation. We have
discussed four capabilities of an agent: 1) understanding
the environment; 2) understanding itself; 3) understand-
ing its goals; and 4) having the appropriate control tech-
niques to determine how to meet goals in the current
environment. While there are large bodies of work in each
of these domains, their integration in an agent is not
obvious.

As a start, we need a formalism to represent what is
known about the environment, the agent itself, the agent’s
goals, and the means to accomplish these goals, such that
the agent can coherently reason about these capabilities.
Our requirements for flexibility prevent us from settling on
a fixed set of knowledge objects or a static structure.

We have argued for automated abstraction at run-time
because it is not known beforehand which are the relevant
concepts that an agent should deal with. Consequently,
the observation process results in dynamically generated,
novel, and abstract concepts. Also, we have argued that
goals are generated and applied dynamically to match a
given situation. There are always some primary goals—
that are defined at design time and cannot change (sur-
vival, efficiency, etc.)—but most of the derived short-term
goals, steering the immediate actions, should be context-
dependent.

Finally, we have emphasized the role of dynamic learn-
ing to continuously improve the manner in which the agent
interacts with and controls the environment.

Thus, how can the agent relate the abstracted observa-
tions to the goals generated and to the steadily growing
and changing capabilities of control? How does the agent
know the relevance of an abstracted observation for its
goals? What new sub-goals should be generated because of
these new observations? And what are the goals that can
be realistically achieved with the recently improved control
technique?

Obviously, a common frame of reasoning is required
for the agent to assess the relevance, desirability, and
implications of all the observations about the environ-
ment and itself. Given the high expectations on flexibil-
ity, adaptability, and learning, the formulation and study
of such frameworks are research challenges for years
to come.
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