IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 2, JUNE 2020

33

Self-Adaptive Memory Approximation: A Formal
Control Theory Approach

Biswadip Maity ~, Majid Shoushtari

Abstract—Memory approximation enables trading off
quality/accuracy for performance or energy gains. Traditionally,
application programmers are burdened with the difficult task
of setting memory approximation knobs to achieve the desired
quality of service (QoS). Our self-adaptive approach for memory
approximation eases the programmer’s burden: simply specify
the desired quality as a goal, with the system deploying a formal
control-theoretic approach to tune the memory approximation
knobs and deliver a guaranteed QoS. We model quality
configuration tracking as a formal quality control problem,
and outline a system identification technique that captures
memory approximation effects with variations in application
input and system architecture. Preliminary results show that
we can alleviate the programmer’s burden of manual knob
tuning for on-chip memory approximation. When compared
with a manual calibration scheme we achieve 3x improvement
in average settling time and up to 5x improvement in best case
settling time.

Index Terms—Approximate computing, control

memory hierarchy, system identification.

theory,

I. INTRODUCTION

HE GROWING literature in approximate computing for

applications resilient to some level of imprecision shows
that we can achieve higher performance and energy efficiency
by trading off an acceptable loss in precision. Since mem-
ories continue to dominate energy consumption and pose a
bottleneck for performance, memory approximation has the
potential to yield significant gains in performance and energy.
Prior work on memory approximation required programmers
to set approximation knobs statically to appropriate values by
trial and error in order to reach the desired quality of service
(QoS) [1]-[3]. There is no mechanism to specify the required
quality and have the system to generate the knobs to achieve
the target automatically.

In this letter, we make the following contributions.

Manuscript received July 2, 2019; revised August 22, 2019; accepted
August 29, 2019. Date of publication September 11, 2019; date of current
version May 27, 2020. This work was supported in part by NSF under
Grant CCF-1704859. This manuscript was recommended for publication by
A. Easwaran. (Corresponding author: Biswadip Maity.)

B. Maity, M. Shoushtari, and N. Dutt are with the Department of Computer
Science, University of California at Irvine, Irvine, CA 92697 USA (e-mail:
maityb@uci.edu; anamakis@uci.edu; dutt@uci.edu).

A. M. Rahmani is with the Department of Computer Science, University
of California at Irvine, Irvine, CA 92697 USA, and also with the
Institute of Computer Technology, TU Wien, 1040 Vienna, Austria (e-mail:
amirr] @uci.edu).

Digital Object Identifier 10.1109/LES.2019.2941018

, Amir M. Rahmani

, Senior Member, IEEE, and Nikil Dutt, Fellow, IEEE

Application Layer : %

Knob
L Values | L Geal Dol

Middleware Layer

Hardware Layer

ooo ooo

BLLLLLPENLLLLLE

(a) (b)

Fig. 1. Open-loop knob settings versus closed-loop quality control.

1) We propose a control-theory-based approach where
developers only specify a target QoS metric and the
system uses a formal control-theoretic approach to tune
the memory reliability knobs of a quality-configurable
memory to guarantee the desired QoS.

2) We outline how to develop a system model using the
system identification theory for the memory components
and how they react to different approximation settings
using a statistical black-box modeling technique.

3) Using the developed system model, we design a con-
troller that observes the application’s behavior at fixed
epochs and tunes knobs automatically to deliver the
desired QoS despite changing workloads and system
variations.

We show that our proposed methodology is able to maintain
the QoS when operating on parts of the memory subsystem
and can reach the required behavior much faster than a manual
calibration scheme without any tuning by the programmer. To
the best of our knowledge, this is the first work to introduce
the idea of using a formal control-theory-based approach for
memory approximation.

II. MOTIVATION

The QoS delivered via approximations is affected by
multiple parameters, including the configuration of the
memory hierarchy, the application input and temporal rela-
tionship between inputs, and making manual tuning extremely
challenging.

As an example, we illustrate the challenge raised by varying
application load that affects the delivered QoS. Traditionally,
developers profile an application and determine the best pos-
sible knob for a given target and expect the same QoS for a

1943-0663 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

34

%107
12 - ——Observed Score
— -Target Score

Score

0 5 10 15
Time (in seconds)
(a)
s %1073
—— Observed Score
6~ — ~Target Score
<
g4
@
2l
ol ! :
0 5 10 15
Time (in seconds)
(©)
Fig. 2. (a) and (c) Variation of the quality of the edge detection in a video

scene when the BER is constant. (b) and (d) Frame in the video with the
expected score for the given setting of BER. (a) BER = 1E-3, expected
score = 0.05. (b) Score = 0.05. (c) BER = 1E-5, expected score = 0.001.
(d) Score = 0.001.

given setting of the knob throughout the application’s life-
time. However, fixed knob settings result in varying QoS
in the face of changing workloads, as shown in Fig. 2(d).
It shows the quality of edge detection in a video com-
posed of multiple scenes when the write bit error rate
(BER) is kept constant. Fig. 2(a), (c), and (d) shows sig-
nificant variations in quality across different inputs, demon-
strating the drawback of an open-loop set-once-and-execute
approach. This traditional open-loop approach suffers several
drawbacks.

1) It is difficult to model an under-designed memory
in order to measure the output accuracy at different
settings. Temporal faults that are variability-induced,
temperature-induced, etc., cannot be modeled easily.
Unlike software approximation strategies that are easier
to evaluate, hardware approximation requires rigorous
runtime tuning. Application profiling to generate fixed
parameter knobs cannot yield a consistent quality metric.

2) They make approximation decisions based on aver-
age or worst-case input behavior. These techniques
rely on training with inputs that attempt to represent
real-world inputs, which are difficult to achieve in prac-
tice. Laurenzano et al. [4] have shown that accuracy
of approximate programs depends heavily on program
input.

3) Different components in the memory subsystem react
differently to each workload due to differences in
memory access patterns. Although techniques such as
memory profiling can help to estimate the knobs for a
given system, once the application is ported to a different
system, the programmer needs to manually recalibrate
the knobs in order to achieve the desired quality.

With our approach, the programmer—instead of setting the
knobs directly—only needs to specify the desired quality and
does not need to profile the application for each target system.
This not only eases the task of the programmer but also
makes the approximation portable across different computing
platforms and memory technologies as shown in Fig. 1.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 2, JUNE 2020

Application Qﬂ
....... -|_monitor

*'| Main Memory ‘
B
: T

Core

Target
QoS

Error

Controller

Fig. 3. Closed-loop approach for tuning memory approximation knob(s).

III. PROPOSED APPROACH

In this section, we show that despite the randomness of
errors introduced into the execution of programs due to
memory approximation, a formal control-theoretic technique
can capture the system dynamics effectively. The effectiveness
is demonstrated by quality control of the program even in the
presence of stochastic (nondeterministic) behaviors.

In our case, the target system is composed of both hard-
ware (with quality-configurable memory) and software (the
application running on the hardware) as shown in Fig. 3.
Depending on the memory technology, there can be one or
more knobs that can tune the degree of approximation in
the memory subsystem. Some examples of control knobs are:
1) voltage in SRAM memory; 2) refresh rate in DRAM;
and 3) read/write current amplitude in nonvolatile memories
such as STT-MRAM. To make our experiments technology-
independent, we use BER as our knob which is the probability
with which each bit flips during a memory read/write oper-
ation. With a predetermined frequency, the quality monitor
routine measures the current quality of the output and com-
pares it against the quality goal. A positive difference means
there is still room to relax the reliability requirements of the
memory and the controller accordingly sets a more aggressive
knob setting. A negative difference indicates that the quality
has degraded more than what was intended. The controller
accordingly sets a more conservative knob setting.

A. System Identification

The use of statistical or black-box methods to construct
models of a system is known as the system identification. A
common practice to design a feedback system using a con-
troller is to extract the dynamic model of complex systems
through system identification theory [5]-[7]. By varying BER
experimentally, data is collected to see the effects of BER on
the measured output (score) for each memory component. A
waveform with a step-pattern is applied at the inputs, and the
output is continuously monitored. The monitoring process is
repeated for several video streams and average output quality
at each BER knob used to model the relationship.

The relationship between control inputs and measured out-
puts can be specified using the linear differential equations.
A simple first-order linear difference equation can be approx-
imated as: y(k + 1) = ay(k) + bu(k), where a and b are the
parameters that can be identified using parameter estimation
methods, such as least square regression. This equation repre-
sents a first-order model where the next output depends only
on the inputs and outputs from one time-unit in the past.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

MAITY et al.: SELF-ADAPTIVE MEMORY APPROXIMATION: FORMAL CONTROL THEORY APPROACH 35

The control inputs and measured outputs are used to esti-
mate a linear-parametric model through a transfer function.
If we are given a system with transfer function G(z) and
input U(z), then the output of the system can be described
as Y(z) = G(z) x U(z). Transfer functions have properties,
such as stability, steady-state gain, settling time, and maxi-
mum overshoot. We use the system identification toolbox in
MATLAB to estimate the transfer functions when BER control
knob is applied on L1 data cache, L2 cache, and DRAM. The
estimated models can be found in [8]. For all the components,
we used a second-order model with two poles (1, = 1) and
one zero (n; = 1).

B. Application and Quality Metric

In this letter, we target streaming applications which have
temporal dependencies between consecutive inputs. The appli-
cation is given a sequence of inputs, and the results from
processing previous inputs can be used to adjust the knobs
for successive inputs. The adjustment is possible due to the
correlation of the inputs as well as the temporal behavior of
the memory errors. We use the canny video edge detection [9]
as our case study. Edge detection is the process of identify-
ing sharp changes in image brightness. For video processing,
edge detection is often conducted on a frame-by-frame basis
independently. Adjacent frames of a scene in a video have
temporal similarity, and it allows the controller to adjust the
quality based on the history of the system.

The quality measurement method is application dependent,
and normally the programmer provides a software routine for
measuring it at runtime. In many cases, this quality measure-
ment would require computing the precise and approximate
versions of the output for comparison [10], [11]. We use
miss-classification error (ME) as our QoS metric, that is, the
ratio of the total number of pixels mistakenly classified as
edge/nonedge to the total number of pixels in the frame. To
evaluate the performance of the method, the settling time is
computed. Settling time is the time for the output to reach the
target value after a change in one of the inputs. We consider
the output to have settled when it is within 2% of its target
value.

C. Controller Design

Our system is a simple single-input—single-output (SISO)
control system with BER as a control input and edge detec-
tion miss-classification rate as measured output. We use a
proportional-integral (PI) controller to control this system. The
proportional term refers to the fact that the controller output
is proportional to the amplitude of error signal, while inte-
gral indicates that the controller output is proportional to the
integral of all past errors [7]. The PI control law has the form

u(k) = u(k — 1) + (Kp + Kpe(k) — Kpe(k — 1) (1)

where Kp and K; denote the coefficients for the propor-
tional and integral terms, respectively. Controller design is
a mature field which utilizes many tools that provide off-
the-shelf controllers. We use MATLAB PID tuner toolbox to
design our controllers. It is important to note that although
derivative control law is helpful to add predictability to the
controller, stochastic variations in the system output may
cause inaccuracy in the controller. This issue becomes more

severe in computer systems as they commonly have a signif-
icant stochastic component. Therefore, for computer systems,
PI controllers are preferred over Pl-derivative (PID) con-
troller [7]. PI control benefits from both integral control
(zero steady-state error) and proportional control (fast transient
response).

IV. EVALUATION AND RESULTS

We evaluate the performance of the self-adaptive system
by comparing it with a manual recalibration scheme. In the
self-adaptive system, we define a target QoS accuracy while
the middleware controls the knobs automatically. We expect:
1) the system to adapt to changes in application input auto-
matically and 2) the settling time to be significantly less
than the manual recalibration scheme. More details about the
experimental setup and system dynamics can be found in [8].

A. System Overview

To simulate the behavior of a system with approximate
memory, we developed a Sniper-based [12] memory fault
injector (FI).! This FI can inject faults into read/write opera-
tions of the memory hierarchy (e.g., cache, TLB, and DDR).
To inject faults only into the noncritical data objects of
the program, the source code of the program is annotated
with add_approx () and remove_approx () methods to
declare the address of those data objects in the program. These
methods are called in the program at appropriate places and
are captured by the FI. The FI records these addresses into
a table. During the execution, it instruments all the memory
accesses. If the virtual address of the access falls into the any
of the given address boundaries, it attempts to inject a fault
into the part of data referenced by that memory access. The
controller, which is implemented in the middleware, is capable
of receiving the results from quality monitors at runtime and
set the read/write BER knobs in the simulation framework.

B. Control Experiment—Manual Recalibration

The manual scheme measures the difference between the
desired quality and current quality. If this difference is within
+10% it does not change the knobs. Otherwise, it changes the
knob in one direction with fine-grained steps until the quality
returns to the acceptable quality region. To recalibrate dynam-
ically, it multiplies the steps with the logarithm of difference
in quality.

C. Comparison Between Self-Adaptive System and Manual
Calibration

Quality tracking is simulated using different control mech-
anisms in Figs. 4 and 5 and the system’s performance is
evaluated. The figures show how the feedback loop operates
in practice for video inputs. The red dashed curve shows the
quality goal (or expected behavior). The blue curve shows
achieved quality (or observed behavior) for PI control. The
orange curve shows the achieved quality for manual control.

The blue curve in Fig. 4 shows the performance of a self-
aware system equipped with a PI controller in tracking target
quality for L1 data (L1D) cache write errors. The tracking

ICode
control.

repository at https://github.com/duttresearchgroup/memapprox-

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

36
= = = Target —
Manual
© PI Control |
—
o ‘ o
% | M{rmwﬁw’l%
1 L -
bh"”mﬁm !
30 40 50
Time (in seconds)
Fig. 4. Runtime quality tracking for L1 data cache write errors. Self-

evaluation done every five frames.

= = = Target i
Manual
PI Control [
8 T
: IV
% ! Wi i
{ 1 |
mhjfrimmid
20 30 40 50
Time (in seconds)
Fig. 5. Runtime quality tracking for L2 cache write errors. Average settling

time for PI control = 2.04 s, and average settling time for manual control
=6.25s.

can be performed with an average settling time of 1.96 s.
The orange curve shows the performance of a system with a
manual recalibration scheme. In the manual scheme, the aver-
age settling time is 6.13 s, making the settling time 3x faster
for the L1D writes when using the self-adaptive system. Fig. 5
shows a similar evaluation where we approximate the memory
writes of L2 cache instead of L1D. For L2 write errors, the
average speedup of settling time is also about 3. In the best
case, both L1D and L2 write errors have a speedup in settling
time of 5x.

Our controller is capable of effectively tracking the quality
when we approximate the on-chip memory. However, there
remain challenges when performing this approximation on
DRAM. Our initial investigation suggests that DRAM is more
tolerant to errors because for the same score, the expected
BER knob value of DRAM is almost 5x more than on-chip
BER knob values. We note that our attempt to track the qual-
ity using our self-adaptive approach was unsuccessful; we
hypothesize that our controller cannot take advantage of the
temporal similarity across frames since DRAM access patterns
are nonuniform, therefore, the quality monitor, being the only
feedback is insufficient in controlling the target effectively.
This highlights the need to investigate further opportunities
for using proposed method in the context of off-chip memory
accesses.

Energy Measurement: In the simulation of quality-
configurable memory, the underlying technology is abstracted
by choosing BER as the control knob. Since there are mod-
els for each technology which maps the technology-dependent
control knob to BER, the models can be incorporated in the
infrastructure by adding another lookup-table or an equation
which translates between BER and the technology-dependent
control knob. A summary of the mappings and exact models
can be found in [8]. An example equation of write energy (pJ)
for STT-MRAM writes, as obtained from the model [13], is

min{—4.836 x log;o(BER) — 1.022, 36}. 2)

IEEE EMBEDDED SYSTEMS LETTERS, VOL. 12, NO. 2, JUNE 2020

The energy consumed is measured by invoking McPAT within
the simulation infrastructure. Using (2) for L1 data cache, an
energy savings of 10.5% is obtained for PI control, and 9.4%
for manual control.

PI Controller Overhead: We measure the PI controller over-
head at runtime as 20000 instructions. The average number
of instructions for processing a frame over 100 frames is
42 836 000. The PI controller overhead is, therefore, 0.04%
on average.

V. CONCLUSION

We presented an approach based on the formal control the-
ory to design a self-aware system which can control the quality
of applications running on systems with approximate memo-
ries. We showed that our system adapts to changing workloads
as well as takes into account the variations in underlying archi-
tecture. Since, the current implementation of middleware uses
an SISO controller, we approximate the components one at a
time. While, in this case study, we utilize an SISO controller, a
multiple-input—-multiple output (MIMO) controller could also
be used [14]. MIMO controllers may be more effective—due
to either multiple knobs per memory component (i.e., STT-
MRAM read and write current) or the controller tuning various
individual memory components in the memory hierarchy, how-
ever, the main challenge of using MIMO control in approxi-
mate computing would be the system identification phase.

REFERENCES

[1] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt, “Exploiting partially-
forgetful memories for approximate computing,” IEEE Embedded Syst.
Lett., vol. 7, no. 1, pp. 19-22, Mar. 2015.

[2] S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn, “Flikker: Saving
DRAM refresh-power through critical data partitioning,” in Proc.
ASPLOS, 2011, pp. 213-224.

[3] A.-M. Monazzah, M. Shoushtari, A. Rahmani, and N. Dutt, “QuARK:
Quality-configurable approximate STT-MRAM cache by fine-grained
tuning of reliability-energy knobs,” in Proc. ISLPED, Taipei, Taiwan,
2017, pp. 1-6.

[4] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and
L. Tang, “Input responsiveness: Using canary inputs to dynamically steer
approximation,” in Proc. PLDI, 2016, pp. 161-176.

[5]1 L. Ljung, System Identification: Theory for the User. Upper Saddle
River, NJ, USA: Prentice-Hall, 1999.

[6] L. Lennart, “Black-box models from input-output measurements,” in
Proc. IMTC, 2001, pp. 138-146.

[7]1 J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. Hoboken, NJ, USA: Wiley, 2004.

[8] B. Maity, M. Shoushtari, A. Rahmani, and N. Dutt, “Simulation infras-

tructure and system dynamics of quality configurable memory,” Center

Embedded Cyber Phys. Syst., Univ. California at Irvine, Irvine, CA,

USA, Rep. TR 19-03, Jul. 2019.

J. Canny, “A computational approach to edge detection,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679-698, Jun. 1986.

W. Baek and T. M. Chilimbi, “Green: A framework for support-

ing energy-conscious programming using controlled approximation,” in

Proc. PLDI, 2010, pp. 198-209.

Aurangzeb and R. Eigenmann, “Harnessing parallelism in multicore

systems to expedite and improve function approximation,” in Proc.

LCPC, 2016, pp. 88-92.

T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An

evaluation of high-level mechanistic core models,” ACM Trans. Archit.

Code Optim., vol. 11, no. 3, 2014, Art. no. 28.

A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan,

“Approximate storage for energy efficient spintronic memories,” in Proc.

DAC, 2015, Art. no. 195.

T. Miick, B. Donyanavard, K. Moazzemi, A. M. Rahmani, A. Jantsch,

and N. D. Dutt, “Design methodology for responsive and robust MIMO

control of heterogeneous multicores,” IEEE Trans. Multi-Scale Comput.

Syst., vol. 4, no. 4, pp. 944-951, Oct.—Dec. 2018.

[9

—

(10]

(11]

[12]

[13]

[14]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

