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As computing platforms increasingly embrace heterogeneity, runtime resource managers need to efficiently,
dynamically, and robustly manage shared resources (e.g., cores, power budgets, memory bandwidth). To ad-
dress the complexities in heterogeneous systems, state-of-the-art techniques that use heuristics or machine
learning have been proposed. On the other hand, conventional control theory can be used for formal guar-
antees, but may face unmanageable complexity for modeling system dynamics of complex heterogeneous
systems. We address this challenge through HESSLE-FREE (Heterogeneous Systems Leveraging Fuzzy Con-
trol for Runtime Resource Management): an approach leveraging fuzzy control theory that combines the
strengths of classical control theory together with heuristics to form a light-weight, agile, and efficient run-
time resource manager for heterogeneous systems. We demonstrate the efficacy of HESSLE-FREE executing
on a NVIDIA Jetson TX2 platform (containing a heterogeneous multi-processor with a GPU) to show that
HESSLE-FREE: 1) provides opportunity for optimization in the controller and stability analysis to enhance
the confidence in the reliability of the system; 2) coordinates heterogeneous compute units to achieve desired
objectives (e.g., QoS, optimal power references, FPS) efficiently and with lower complexity, and 3) eases the
burden of system specification.
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1 INTRODUCTION

Modern processors are designed to support diverse workloads that exhibit various characteristics
such as memory-bound, compute-bound, or a mixture across applications executing in parallel.
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These applications demand various resources often with conflicting constraints. These issues in
homogeneous architectures create a challenge in the design and implementation of resource man-
agers for these systems (e.g, task mapping, scheduling, core configuration, etc.) [15, 20, 55, 78].
This problem exacerbates in Heterogeneous Multi-Processor (HMPs) where multiple heteroge-
neous compute elements are integrated on the same chip. ARM big.LITTLE architecture [3] is one
case of widely-used HMPs where high-performance big cores work alongside low-power LITTLE
cores with the same instruction set architecture (ISA). This opens the opportunity to switch be-
tween multiple objectives such as maximizing performance or minimizing energy consumption.
Many modern computing platforms leverage the compute power of general purpose GPUs to ex-
ecute massively parallelized applications or speed up a portion of program execution that can
leverage parallelism. Heterogeneous systems with both CPU and GPU compute units require so-
phisticated yet efficient resource management policies due to these architectural differences in the
compute elements and nature of their applications runtime execution.

While heuristics [27, 58, 59, 64, 71, 73, 76, 79] or machine learning (ML) [7, 11, 35, 40, 89] solutions
exist to help resource management of these heterogeneous systems, there are scenarios where re-
sponse of the target system to these resource management mechanisms and its behaviour requires
robustness and stability analysis. In such cases, control theoretic approaches [1, 26, 30, 37, 38, 61]
can provide formal guarantees in order to increase the robustness of management mechanism and
stability of the system in the presence of unpredictable workload variance. But considering the
complexity of emerging heterogeneous systems, the conventional approach of deploying a control
theoretic controller for modeling a system using system identification misses the opportunity to
benefit from the designer’s knowledge of system behavior and thus may result in system ineffi-
ciencies and high runtime complexity. It is therefore important to design techniques to manage
these complex heterogeneous systems both efficiently and robustly.

Traditional Single-Input Single-Output (SISO) controllers such as proportional integral (PI) and
proportional integral derivative (PID) have proven capable of tracking design objectives efficiently
but come short in the management of emerging computer systems due to their limitation in co-
ordinating multiple goals simultaneously. Multiple-Input Multiple-Output (MIMO) control theory
has recently been proposed for runtime resource management of unicore processors [53, 54]. How-
ever, MIMO controllers suffer from i) scalability issues in multi- and many-core systems and ii)
controller design challenges when the system is heterogeneous which can lead to possible insta-
bility in the system or sluggish response [48]. In order to design a controller, conventional control
theory uses an explicit model (obtained either through mathematical analysis or system identifi-
cation) of a process to be controlled and specifications of the desired closed-loop behavior. The
problem arises from the difficult task of modeling and simulation of a complex real-world system
such as modern computer systems. In addition, these controllers require an auxiliary component
that dictates the tracking references (e.g., tracking certain power consumption or frames per sec-
ond). This can come from a supervisor, a user, or an optimizer. In runtime management, the need
for this optimizer adds another level of complexity in terms of design space exploration and train-
ing the optimization algorithm. Another critical, but often overlooked property of classical control
theory is that it models the system as a black-box: the controller is designed using system iden-
tification theory [43][18], but does not incorporate domain semantics or designer intuition and
expertise. While this property eases the task of controller design, it can lead to system inefficien-
cies in more realistic settings, for instance when multiple knobs with different behaviors are used
(e.g., DFVS, idle cycle injector, power gating in a MIMO controller) and the system is heteroge-
neous (e.g., CPU-GPU or big.LITTLE architectures). Managing complex computing systems with a
variety of knobs calls for incorporating designer’s expertise in the management scheme to reduce
the runtime complexity of the control algorithm and increase its efficiency.
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We believe fuzzy control theory can offer an efficient and robust controller development method-
ology by leveraging both designer’s heuristics and control theory foundation. Fuzzy control theory
provides a formal methodology for representing, modifying, and implementing a human’s heuris-
tic knowledge about how to control a system. Fuzzy control employs qualitative descriptions of
systems so as to make it easier to specify controller actions. Towards this end, we present HESSLE-
FREE: a fuzzy control based approach for efficient and coordinated management of heterogeneous
systems. We demonstrate the utility of HESSLE-FREE on a NVIDIA Jetson TX2 development plat-
form [10] that incorporates a hexa-core HMP with a quad-core ARM cortex A57, a dual-core high
performance NVIDIA denver, and a contemporary embedded GPU based on the NVIDIA Pascal
architecture. We present experimental results to show the efficacy of HESSLE-FREE toward a light-
weight and rapid resource management of heterogeneous architectures using fuzzy control theory.
We have implemented a light-weight monitoring system that captures power and performance
metrics from each computing unit in the system and makes runtime resource allocation and tun-
ing decisions using fuzzy control theory with low overhead. HESSLE-FREE controls various knobs
in this system such as the operating frequency of CPU clusters and GPU separately and decides on
the number of active core in HMP. We show that HESSLE-FREE is capable of adapting to various
objectives with minimal effort while achieving higher energy efficiency and meeting quality of
service (QoS) targets over state-of-the-art heuristics and control theoretic controllers. We evaluate
the candidate resource managers on their performance, energy efficiency and tracking accuracy.
Our results show that HESSLE-FREE matches or exceeds the state-of-the-art techniques in the ma-
jority of the cases and show promising results in managing the complexity and heterogeneity of
the system.

The key contributions of this paper are:

e Inherent optimization: We demonstrate the inherent benefit of fuzzy control in incorpo-
rating optimization as part of the control system in order to better adapt to system dynamics
while achieving system objectives.

e Addressing complexity: We describe the complexity overhead of classical control the-
oretic approaches such as MIMO controller in managing resources of complex heteroge-
neous systems. This is performed through analyzing the imposed computational overhead
of such controllers at runtime. We demonstrate the benefits of fuzzy control in managing
the complexity of control problems and design optimization techniques to reduce runtime
complexity and efficiently manage large heterogeneous systems.

o Efficiently managing heterogeneity: We show that the absence of architectural knowl-
edge regarding the nature of heterogeneous elements and their impact on the system status
can cause under-utilization of the shared resources or violation in design constraints. We
deploy the idea of rule-base inference from fuzzy control to incorporate varying dynamics
of heterogeneous compute units (i.e., heterogeneous CPU cores and GPU) in the runtime
policies deployed by the resource manager.

e Experimental case study: We demonstrate the practical implementation of our approach
on a NVIDIA Jetson-TX2 development board as a contemporary SoC showing HESSLE-
FREE’s ability in distributing power budget across compute units in an energy efficient
manner and responsively providing the desired QoS.

The rest of this paper is organized as follows. We position our work with related efforts in
Section 2. Section 3 presents the background and motivation for fuzzy control design in computer
systems. Section 4 describes HESSLE-FREE as a methodology for the adaptation of fuzzy control
in resource management of heterogeneous systems. Section 5 outlines the cases study. Section 6
reports experimental results and Section 7 presents conclusions.

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 74. Publication date: October 2019.



74:4 K. Moazzemi et al.

2 RELATED WORK

Runtime resource management techniques have been explored extensively in the literature. These
methods have been applied to a variety of computer systems ranging from cloud servers to em-
bedded systems and sensor networks. In this work, we focus on on-chip resource management
mechanisms. While some of these works focus on communication subsystem [8, 45, 72], there have
been a plethora of approaches for managing computing units and their corresponding objectives
(e.g., performance, QoS, power, thermal). In this context, we can classify the resource management
approaches in the literature into three main classes: heuristics, machine learning, and control the-
oretic approaches. Below, we summarize representative efforts and describe their advantages and
shortcomings.

Heuristic approaches cover a vast body of work on ad-hoc resource management techniques.
Some use optimization [21-23, 28, 44, 52, 77] that attempts to minimize/maximize an objective.
This optimization can be subject to some constraints. Although these techniques can be a natural
choice for simple architectural tuning, they provide no mechanism for a feedback thus being rigid
to the addition of learning mechanism. Other approaches might use model-based heuristics [4, 13,
16, 36, 85, 88] where decisions are guided using a system model that defines the relation between
inputs and possible outputs. These methods lack guarantees or formal methodology making the
runtime resource manager prone to errors in particular when encountering corner cases that might
lead to system instability.

Machine Learning approaches [6, 12, 17, 25, 33] for runtime resource management have gained
lots of traction in the past few years, especially in management of high performance systems and
cloud servers. These methods need special tailoring before deployment on embedded and real-time
systems in order to reduce their high computational overhead at runtime [32, 50]. Specifically, ma-
chine learning techniques have been a promising trend for modeling the complexity of interaction
among different on-chip resources and the corresponding effect on resource metrics [24]. Further,
these techniques have targeted beyond the conventional fixed single and multi- objective allo-
cation policies, towards dynamically varying goals [35, 69, 70]. Conventional machine learning
methods require extensive training to learn the correlation between inputs and outputs of the sys-
tem. In the case of a new situation at runtime which they were not trained for, they might provide
an inaccurate solution. To address this issue, online learning methods [11, 31, 39, 40] show promis-
ing results in learning new scenarios at runtime compared to a complete, expensive re-training of
the weights and parameters.

Control Theory provides a formal methodology for design, implementation, and testing of a
control system. There have been efforts to leverage the robustness of control theoretic approaches
in managing computer systems [1, 30, 47, 56, 63, 68, 81, 83, 84, 88]. Conventional control theory
such as lead-lag, PI, and PID controllers have proven successful and efficient in managing straight-
forward problems such as per-core DVFES. Recently, more advanced control theoretic approaches
such as state-space MIMO control have been leveraged to manage on-chip resources. Pothukuchi
et al. [54] provide a guide for designing MIMO formal controllers for tuning architectural pa-
rameters in processors to enhance coordination, and demonstrate the coordinating management
of multiple goals for unicore processors [54]. These conventional controllers might be prone
to exponential computational overhead and in general being agnostic to control parameters.
In [48], the authors demonstrate that current MIMO control approaches suffer from scalability
issues due to input/output sizes and infeasibility of dynamic system model identification for large
MIMO systems, thus requiring the deployment of multiple controllers to achieve responsiveness.
Additionally, conventional controllers such as PID and state-space are designed to track references
(i.e., regulatory control). This ability suffices when the system’s objective is only to track a certain
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Fig. 1. Overview of Feedback control.

target references, but in many cases, resource management algorithm in computer systems has an
optimization objective (e.g., minimizing energy consumption, maximizing performance, etc.). This
requires the design of an additional optimizer to set the references for conventional controllers.

Fuzzy Resource Management: There have been a number of approaches to apply fuzzy con-
trol theory to resource management in virtual or cloud environment [9, 29, 62, 65, 82]. However,
only a few approaches have been proposed to manage on-chip resources. Najam et al. [67] propose
fuzzy logic based dynamic voltage and frequency scaling (DVFS) in a quad-core desktop setting.
Authors in [49] using fuzzy controller to achieve power efficiency in a mobile scenario. However,
they only consider homogeneous cores with a single design objective. Majority of these solutions
show partial benefits of the fuzzy control by using SISO type controllers. On the other hand, we
extend the usage of the fuzzy controller to HMPs to leverage fuzzy’s capabilities in handling het-
erogeneity and managing systems with multiple inputs and outputs (MIMO). In this work, we
propose fuzzy control to reduce the complexity and overhead of the runtime resource manager
and to capture dynamic behaviour of the complex heterogeneous systems.

3 BACKGROUND AND MOTIVATION

Feedback control is a form of closed-loop control that can be defined as a management mecha-
nism which regularly monitors a system to make modifications to meet a desired output response.
Figure 1 depicts an overview of a feedback control loop. The system/plant! in this figure repre-
sents the target system managed by the controller. The controller can be designed and deployed
using different types of controllers such as proportional-integral-derivative (PID), state space,
fuzzy, adaptive control, etc. In the remainder of this section, we skip the background on the well-
established PID control; we first describe MIMO controllers as a state-of-the-art control theoretic
technique in managing processors and then focus on fuzzy control theory background with an
example.

When considering single-input single-output controllers (SISO), proportional-integral (PI) and
proportional-integral-derivative (PID) are well-known and widely used in various domains and
industries. Given a system requires coordinated resource management of multiple objectives,
Multiple-input Multiple-Output (MIMO) controllers can provide rapid response and formal guar-
antees. The MIMO is implemented using a Linear Quadratic Gaussian (LQG) controller [74]:

xt+1=Ath+BXut (1)

ytZCth-i-DXut (2)

where x, y, and u are vectors representing the system state, the measured outputs, and the control
inputs, respectively. Coefficient matrices A, B, C, and D capture the system behavior, and their
values are obtained through system identification. Matrix sizes are determined by both the number
of inputs and outputs of the controller as well as the order of the controller. Growth in order or

number of inputs and outputs for complex systems will increase the size of the MIMO matrices
to the point that the size of the controller will grow to unmanageable sizes, complicating the

!We interchangeably use the terms system and plants.
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Fig. 2. Overview of Fuzzy control.

controller design through system identification, and impacting the computational complexity of
the controller implementation [60].

3.1 Fuzzy Control Background

A fuzzy controller can be viewed as an artificial decision maker that operates in a closed-loop
system in real time. Figure 2 depicts a simple fuzzy controller in the context of feedback control.
As shown in this figure, system output is sensed and represented by y which is compared against
the references set by the designer or the user r. This difference is fed to the fuzzy controller to
decide system input(s) u (i.e., control output(s)) to guide the system towards the desired goals. The
fuzzy controller consists of four main components: (1) the fuzzification component that interprets
the inputs to be matched with the rules, (2) the rule base which is a set of rules that defines the
knowledge on how to control the system in different situations, (3) the inference mechanism which
matches the rules with the current situation and determines the fuzzy set for control outputs, and
(4) the defuzzification component which converts the output of the inference to actual actuator
values?.

Before describing each component in detail, we cover the terminology used in fuzzy control. To
specify rules in the rule-base, an expert uses a linguistic description. These descriptions are usually
in the form of condition — action. In this description, linguistic variables are used to describe fuzzy
system inputs and outputs, and exist in one-to-one correspondence with numeric variables. For
example, QoS-error is a linguistic variable corresponding to the numeric variable for the change
in FPS. A linguistic variable takes on linguistic values such as positive-large and negative-large.
Such variables indicate, among other information, the direction and magnitude of a variable. To
better elaborate on the design components of a fuzzy controller, we use a simple DVFS example
for single core power management. This is a simple and classic control problem for which many
efficient techniques already exist such as a simple PID controller or a regression model. However,
we use this example simply to illustrate the design and basic mechanics of a fuzzy control system.
Here, y denotes the power consumption of the core (in Watts), and u is the frequency of the core (in
MHz). We will use r to denote the desired power of the processor. The goal is to track this target
power reference either specified by the system design manual or imposed by a higher system
objective.

3.1.1  Fuzzification. The role of the fuzzification interface is to convert controller inputs into
information that can be easily used to process, activate, and apply rules. Fuzzification can be sim-
ply defined as the mapping process between an obtained value for an input variable (e.g., IPS
value, QoS metrics, execution time) to its numeric value defined in the corresponding membership
function (MF). Membership function values can be interpreted as the encoding of the fuzzy con-
troller numeric input values. The encoded information is then used in the fuzzy inference process.

2We limit our description of fuzzy control to cover the basis of practical control applications. We encourage the avid reader
to find a more detailed analysis of fuzzy logic, sets, and systems to consult [42][41][90].
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Fig. 3. (top) Sample membership function for change-in-frequency. (bottom) Implied fuzzy sets for two rules
in DVFS example.

Depending on the application and the designer’s preference, many different choices of member-
ship functions are possible. Membership functions (e.g., trapezoid-shaped, Gaussian-shaped, Sharp
peak Skewed triangle, etc.) quantify the meaning of the linguistic statements that experts used in
defining the rules in the rule base [51].

In our DVFS example, we use e(t) = r(t) — y(t) as the input to the fuzzy controller which denotes
the error between the reference power and the current power value. As e(t) takes on a value of,
for example, 100mW at t = 2 (e(2) = 0.1W), linguistic variables assume “linguistic values.” That is,
the values that linguistic variables take on over time change dynamically. Suppose for the DVFS
example that error and change-in-frequency take on the following values (negativeLarge, negativeS-
mall, zero/hold, positiveSmall, and positivelarge). Top part of Figure 3 shows membership function
for change-in-frequency with corresponding values as a sample. This membership function can be
used in the next steps to process and determine the output of the fuzzy control or simply decide
how much frequency needs to be changed to achieve the target reference. We define similar func-
tions for error in power with an adjusted range. Note that we mainly use triangles and skewed
triangles for membership functions in this work due to its low computation overhead.

3.1.2  Rule Base. Construction of the rule base is where the experience and domain knowledge
of experts prove to be beneficial. A deep understanding of the target system dynamics can increase
the success of the designed controllers in the deployment process. In this step, values for input
and output variable are described. Expert’s knowledge alongside the above quantification is then
used to specify a set of rules on how to control the system. Fuzzy rules are expressed in terms
of linguistic variables. It is important to note that these rules are defined in a way that is easy
to understand and interpret by humans. At this point, designer does not need to focus on details
of control parameters and can simply define the rule structure of the control process. This comes
from the raised abstraction level in the rule base definition that simply specifies the general idea
on how to control a process. Although this might appear to be different from designers utilizing
heuristics, this difference is one of the strong points of fuzzy control as these rules are defined in
a clear and understandable way which can be subject to test and improvement.

For instance, in our DVFS example if the power consumption is just slightly higher than our
target, we want to reduce the frequency a bit to reduce the core power. This can simply be added as
arule that says “if power error is a small positive value then change the frequency by a negative and
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small value” (equivalent to rule 4 in pseudocode 1). In the field of fuzzy control, there has been a vast
body of work on how to automatically tune fine parameters of controller after the initial rule base
structure has been defined by the expert designer [14, 34, 86]. In addition, fuzzy control provides
multiple analytical methodologies (e.g., The Lyapunov Method, Absolute Stability, and the Circle
Criterion [2]) for stability analysis that can analyze the deployed heuristics. Pseudocode 1 shows
a sample rule-base for the DVFS example. The intuition behind the rules is simple, assuming the
frequency variations change power consumption, based on the error, the fuzzy inference decide
on the number of steps in the change of frequency. To summarize, the rule base keeps a record
of linguistic variables, values, and their associated member functions in addition to the set of all
the rules. These rules have the general format of conditional statements making them easy to
understand and computationally lightweight, for example, when compared to the matrix algebra
used in state-space based MIMO control.

ALGORITHM 1: DVFS rule-base example

Input: error: difference between the current power and the target power
Outputs: change-in-frequency: actuation to the next frequency

(1) if error is negativeLarge then change-in-frequency is positiveLarge

(2) if error is negativeSmall then change-in-frequency is positiveSmall

(3) if error is zero then change-in-frequency is zero
(
(

4) if error is positiveSmall then change-in-frequency is negativeSmall
5) if error is positiveLarge then change-in-frequency is negativeLarge

= D=

3.1.3  Fuzzy Inference. In the inference mechanism component, the expert’s decision making
is emulated by interpreting and applying knowledge about how best to control the plant. This
mechanism is also often called fuzzy inference or inference engine. The inference comprises of
two steps. In the first step, the current situation is determined based on the comparison of the
premises of all the rules and control inputs. Note that, in this matching process, more than one
rule can be applied to a situation. Based on the membership functions and the control inputs, we
determine the certainty that each rule applies. This simply means the rules that are more relevant
to the current status of the system will have a stronger influence on the inference conclusion.
This certainty is denoted by [yemise of that rule. To perform inference, each of the applied rules
must first be quantified by extracting the value of each fuzzy controller input terms present in that
rule and then applying the fuzzy logic (and/or) operation on them. Usually minimum or product
operations can be used here which will lead to a fact for the rules that include multiple input
statements, we can be no more certain about the conjunction of two or more statements than we
are about the individual terms that make them up. In our example we only have one input stat,
if power consumption is not close to the target reference, the matching decides the certainty of
rules such as the ones that starts with negativeLarge and negativeSmall values for error in power.
If we get a small negative value between zero and one for the error rules 2 and 3 will be picked
in the matching process where rule 2 states “error is negativeSmall then change-in-frequency is
positiveSmall” and rule 3 is defined as “if error is zero then change-in-frequency is zero”.

The second step involves determining the controller actions or the conclusion process. Every
rule that can be applied to the current situation in the control system has a corresponding action
which defines a controller action or a conclusion. Based on the number of active rules in each
situation, there can be one or more conclusions with different levels of certainty. The conclusions
are characterized by a fuzzy set that represents the certainty that the control inputs had in the
matching process. Next, we consider each conclusion separately to determine what is the action
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recommended by the associated rule. Bottom part of Figure 3 shows an example that the implied
fuzzy sets of the inference that matched with rules (2) and (3). We can see that certainty of the
rule (3) (Wpremise = 0.75) is higher compared to the second rule (Upremise = 0.25) which means that
conclusion of this rule will have a stronger influence on the inference conclusion. Based on this
we define the conclusion of each rule as:

H(2) (u) = min {0'25» Hnegsmall (u)} (3)
H(@3) (1) = min {0.75, fizero (1)} (4)

In the next step, every recommendation from all the rules are combined to calculate the final
controller action value.

3.1.4  Defuzzification. Defuzzification component operates on the implied fuzzy sets produced
by the inference mechanism and combines their effects to provide the “most certain” controller
output [51]. Basically, Defuzzification is the process of converting the degrees of membership of
output linguistic variables within their linguistic terms into crisp numerical values. There are vari-
ous defuzzification methods that can be used to find these numeric values such as Center of Gravity
(COG), Center of Area (CoA), Modified Center of Area (mCoA), Center of Maximum (CoM), Mean
of Maximum (MoM), Center of Sums (CoS) [75]. If one considers fuzzification as an “encoding”
process, defuzzification can be seen as a “decoding” mechanism for the fuzzy set(s) obtained from
the inference engine to generate numeric values.

Finally, going back to our example, we decode the result of the inference step from something
such as a fuzzy set of negativeSmall and zero change-in-frequency (Equations (3), (4)). We use
COG defuzzification mechanisms to find the crisp output for change-in-frequency (e.g., decrease
in current frequency by 100 MHz if possible). Note that we can have another input to the fuzzy
controller that checks the current frequency and makes sure that change-in-frequency will not
lead to an out of range frequency value. We can also do this as part of post processing or a filter
after the controller. Adding gains before and after the controller is also a common practice to tune
the effect of the control decision on the system.

4 HESSLE-FREE: ON-CHIP RESOURCE MANAGEMENT

In this section, we first present HESSLE-FREE’s fuzzy control architecture and describe a method-
ology for depicting how to control a computer system (Section 4.1). We then describe an experi-
mental case study demonstrating the design and verification of HESSLE-FREE on NVIDIA Jetson
TX2 heterogeneous platform (Section 4.2).

4.1 Fuzzy Control in Computer Systems

Figure 4 depicts an abstract view of HESSLE-FREE for runtime resource management in modern
computer systems. The information regarding application dynamics can be specified by either the
user or the system software. An example can be QoS required by one or more application. This
can be a certain frame-per-second (FPS) for a video processing application. System goal(s) need
to be met or optimized by HESSLE-FREE. If the controller has more than one objective, it will at-
tempt to achieve all of them. In the cases that a situation imposes a compromise on the system, the
priorities in objectives embedded in the rule base will decide the controller’s actions. A physical
system can be managed as a single entity or can be broken down to sub-systems (sub-plants). If we
can capture an estimated system dynamics with high accuracy, we can try to design a controller
(either a conventional or fuzzy controller) for the identified system. Although in many cases due
to a high order of dynamics in the system, the designed controller might suffer from sluggishness
or maybe be impossible to meet the requirements of runtime systems. Some of such cases will be
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highlighted in the experiments. In this situation, designers may decide to use modular decompo-
sition to mitigate the complexity of control problems. This break down can simplify the control
of the system and reduce the management algorithm’s complexity but requires coordination be-
tween each sub-system. HESSLE-FREE handles such situation by obtaining information from each
sub-system’s sensors and the full-system information. This information is used in the inference
mechanism to make decisions for actuating each sub-system in a way that will lead the full-system
towards the system objectives.

4.2 HESSLE-FREE Case Study

Figure 5 shows an overview of our case study. We use the NVIDIA Jetson TX2 development board
[10], which contains an HMP and a NVIDIA GPU. HMP contains a quad-core ARM Cortex A57
cluster and a dual-core NVIDIA Denver cluster. Similar to Cortex A57 cores, Denver cores im-
plement ARMv8 instruction set and are designed as a processor with 7-way superscalar execution
pipeline. The GPU is powered by NVIDIA Pascal CUDA cores. We consider multiple scenarios that
are common in mobile devices where CPU runs multiple tasks (possibly one foreground with QoS
requirements and others in background) and in full system scenarios GPU is executing a highly
parallel kernel concurrently.

We use the following two scenarios to demonstrate how HESSLE-FREE can handle different sys-
tem goals: i) Optimize Energy consumption under dynamic application behavior. Here we execute

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 5s, Article 74. Publication date: October 2019.



HESSLE-FREE: Heterogeneous Systems Leveraging Fuzzy Control 74:11

workloads on CPU cores to demonstrate HESSLE-FREE’s ability to dynamically optimize energy.
ii) In a full system scenario, the CPU and GPU simultaneously execute their workloads, while
HESSLE-FREE optimizes the user metric frames per second delivered by the GPU or QoS metric
delivered by the CPU, as well as the power consumption of the entire system.

5 EXPERIMENTAL SETUP

As described in Section 4.2 we use the JetsonTX2 platform for our evaluations. The controllers used
in our experiments are implemented as Linux userspace daemons that execute in the background
with the applications. CPU and GPU runtime power are separately measured on-board alongside
current and voltage using sensors present on the JetsonTX2 development board. Power measure-
ments are made at the same time increments as performance metrics are gathered. Controller
invocation is performed periodically every 200ms. In terms of overhead, the framework runtime
on average adds 1.8% to the execution time for accessing PMU registers. A lightweight kernel
module is used to collect instruction and cycle counters from ARM’s Performance Monitor Unit
(PMU) on each CPU. For GPU performance metric measurements, NVIDIA provides CUDA Pro-
filing Tools Interface (CUPTI) library which includes API for attaching callback functions to GPU
kernels. The callback functions enable measuring GPU metrics in application run-time. To avoid
modifying target applications, we put necessary CUPTI functions into a shared library which is
pre-loaded (LD_PRELOAD) to attach the callbacks when the application begins. This non-intrusive
GPU profiling is hooked to our runtime resource management framework to capture the kernel
information with low-overhead on the execution of the workload which in average adds 2.2% to
GPU kernel executions. This delay is a fraction of imposed overhead by NVIDIA’s native profiler

(nvprof).

5.1 Evaluated Workloads

We use the PARSEC benchmark suite [5] to evaluate the performance of the resource managers.
To better represent a real-world scenario where every element of a CPU/GPU system is involved
in the computation, we select a face detection algorithm for the GPU workload. We used the im-
plementation in [87] as a standalone application, which is easily portable to an embedded en-
vironment, based on the Viola-Jones face detection framework [80] with three GPU kernels for
compute-intensive part and some CPU computation for pre- and post-processing of the frame. This
application has a frame-per-second (FPS) requirement which can be an objective for the controller.
Our target platform is a modern heterogeneous platform that can execute various multi-threaded
application simultaneously on HMP while concurrently running massively parallel kernels on the
GPU. Depending on user preference and system state on any point of time, priorities of runtime
system might change which will update the objective of the resource management mechanism.
We will demonstrate three scenarios in Section 6 to show the ease and efficiency of HESSLE-FREE
in adapting to various objectives.

5.2 Manager Configurations

HESSLE-FREE provides a framework to efficiently design, implement, deploy and tune fuzzy
controllers. This framework comprises of three main components: (1) Design and initial evalu-
ation for the controller, (2) Mapping and optimization of the controllers for portable deployment,
(3) Middleware that accommodates the controller and provides APIs for monitoring and actuating
configuration settings of the system in various software and hardware layers. In our evaluations,
we use Matlab for design and initial test of the resource manager approaches. Fuzzy controllers can
be designed using Matlab’s fuzzy designer as Mamdani (linguistic) or with neuro fuzzy designer as
Sugeno-type controllers with singleton consequents which leads to a simple yet efficient controller
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with low computational overhead. For defuzzification, we use the centriod method. For each of our
experiments with unique objectives, number of membership functions for each input and output
range from 3 to 7 and deployed number of rules in the rule base did not exceed one hundred. The
design process in HESSLE-FREE starts with the designer defining inputs and outputs of the sys-
tem and their corresponding number of membership functions. Next, structure of the rule base is
defined using linguistic variables. From here, the designer has the option to check the sanity of the
inference system, simulate the system based on experimental data gathered from the target plat-
form or use adaptive neuro-fuzzy toolbox to tune rule base and membership functions parameters.
Subtractive clustering [66] provided by this toolbox may be used as a rapid one-pass algorithm in
this process for estimating the number of rule clusters and the cluster centers in the rule base. The
cluster estimates obtained from this function can be used to reduce the size of the rule base and
consequently the runtime overhead of the matching and inference process. After initial test and
evaluation, each controller is ported into fuzzylite library [57] for an optimized implementation.
The resulting controller is integrated with our middleware. We have devised this component to be
easily portable to platforms running Linux operating system while providing customizable APIs
for accessing system metrics (IPS, power, utilization, etc.) and changing the configuration knobs
(e.g., DVFS settings, number of cores, task mapping, etc.).

In order to design a valid MIMO controller for each scenario, a system model is created using
Matlab System Identification Toolbox [46] by generating test waveforms from training applica-
tions. A common practice to build a model for complex systems is to use black-box methods based
on System Identification Theory [43] for isolating the deterministic and stochastic components.
Then, these controllers are tuned using Matlab’s Simulink toolbox. Afterwards, they are deployed
on the target system for experiments using test workloads. A detailed report on MIMO design can
be found in [53]. Considering the large design space of configuration settings and impacting fac-
tors in our evaluations that involve both CPU and GPU applications, system identification requires
fine tuning and repeated evaluations to ensure the extracted model can appropriately reflect the
target platform. MIMO’s complexity: To depict a picture regarding exponential growth of MIMO
controllers runtime complexity we use the number of required matrix multiplications depending
on order and size of the system. For a simple second order MIMO controller with two inputs and
outputs approximately 300 operations are needed. Increase in order of the same controller to 4th
and 8th order controller will result in 1500 and 10000 operations. If instead of the order, size of the
system grows to 4 inputs and outputs, number of required runtime operations will reach 15000.
For a bigger 8x8 system this number exceeds 200000 operations per decision making. In some
cases, runtime overhead of MIMO controllers for such large complex systems can put a burden
on the runtime framework. NVIDIA Performance modes and resource management governs are
pre-loaded into the operating system that is ported specifically for jetson platform. Based on the
target evaluation some of which are used in the appropriate scenario experiments.

6 EVALUATION RESULTS

We now demonstrate the advantages of fuzzy control in runtime resource management with op-
timization objectives along side system goals that might require certain guarantees. Our goal is
to evaluate our HESSLE-FREE with respect to the state-of-the-art control theory controllers in
terms of both ability to capture the system’s dynamics and achieve the system’s objectives. In
order to make a fair comparison, we start with a simple multi-core system and work our way
towards a more complex heterogeneous system. In this manner we are able to highlight the chal-
lenges faced by MIMO controller design for complex system dynamics, while showing the ease of
using HESSLE-FREE. In addition, the efficacy of HESSLE-FREE is compared against a correspon-
dent MIMO controller and state-of-the-art algorithms towards a certain objective. We show the
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Fig. 6. MIPS per Watt for CPU workloads. This value is normalized to default linux values.

capability of HESSLE-FREE towards achieving various system’s objectives in order to demonstrate
ease in design and flexibility of fuzzy controllers.

6.1 Uniform Multi-core

In this section, we demonstrate the inherent optimization of fuzzy controller compared to con-
ventional controllers by evaluating the efficacy of our approach for system energy minimization
of a quad-core CPU. We use million instructions per second (MIPS) per Watt to represent energy
consumption of this ARM A57 multi-core at runtime. MIMO has shown to be effective in tracking
power and performance references for such systems with low-level of heterogeneity [48]. How-
ever, when the optimization happens at run-time in reaction to the dynamic behavior of the appli-
cation, traditional MIMO faces challenges. Fuzzy control enables the embedding of optimization
algorithms inside the control mechanism, which in turn naturally allows the system to react to
this dynamic behavior.

Figure 6 shows the normalized MIPS per Watt for CPU workloads. We evaluate HESSLE-FREE
in comparison to a MIMO controller and a NVIDIA performance model designed for energy ef-
ficient execution on Jetson TX2 platform. The actuations in the system are the number of active
cores and core frequency. The intuition behind the designer’s expertise used in design of this fuzzy
controller is to adjust the computation power of the system to the dynamic behavior of the appli-
cation. This will allow the fuzzy controller to increase the frequency and active cores as long as it
adds to performance of the system in a meaningful manner and reduce the computation power to
avoid energy waste while the performance is bounded either by memory access or disturbance of
background applications. Alteration of frequency settings has a much smaller threshold compared
to change in number of active cores. This threshold is extracted through experimental evaluations
done in the initial phase of the fuzzy controller design. Overall, HESSLE-FREE demonstrates effi-
ciency in managing the system’s objectives. On average, fuzzy controller shows improvements of
81.3% over the Linux governor, 37.7% over the MIMO controller, and 20.0% over NVIDIA’s state-
of-the-art energy efficient governor.

6.2 CPU-GPU Resource Management

To evaluate the efficacy of HESSLE-FREE with respect to MIMO solutions, we perform two exper-
iments on a full system exercising both the CPU clusters (executing PARSEC benchmarks) and the
GPU (executing the Face detection application). We perform our full system evaluations compar-
ing HESSLE-FREE with MIMO controller and a variety of Linux governors (interactive, ondemand,
performance oriented, power saving). Each of these governors targets a certain objective in the sys-
tem like maximizing performance or minimizing power consumption. For each of the experiments
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we perform system identification and control design process for MIMO controller. Target refer-
ences are obtained through Sensors and actuators are fixed for each experiment. MATLAB System
Identification toolbox also recommends a suitable order for the system. If possible, we pick the
order with the best accuracy. However, the order of a controller model determines how observed
output history is stored in the model, and directly impacts both the controller size and complexity.
We begin with smaller size of the system (2 inputs x 2 outputs) where efficient MIMO controller is
feasible and show the decrease in system identification accuracy and controller design efficiency
when the number of the inputs (e.g, frequency knobs) and target outputs (e.g, QoS metric, power
consumption) grows. During our full system experiments, We evaluated that for higher numbers of
systems inputs (e.g, frequency and number of active cores in each cluster) and outputs (e.g, simul-
taneous FPS and QoS metrics with each units power consumption) with heterogeneous compute
units the complexity of the system grows to the point that the system dynamics cannot be captured
in the system identification phase with acceptable accuracy and also Matlab can only provide very
large orders for MIMO controllers that cannot be computed at runtime. However, HESSLE-FREE
without the need for system model was able to achieve system goals using expertise knowledge
and tuning. Here, we report on the cases that MIMO control design was possible.

6.2.1 QoS Focused. In this experiment, we use a QoS metric to evaluate the progress of the
CPU foreground application. This is done by the Heartbeats API [19] monitor to measure QoS. By
periodically issuing heartbeats, the application informs the system about its current performance.
The user provides a performance reference value using the Heartbeats API. Figure 7 shows track-
ing of QoS value by different resource management mechanisms for fluidanimate benchmark and
target reference of 0.4. In this scenario, one foreground QoS application is running while there
are many non-QoS applications are running in the background both on CPU and GPU. The goal
of the resource manager is to keep the heart beats (QoS metric) in the specified range (0.2-0.6)
by the application while consuming minimum power. Because of the heterogeneity in the CPU
clusters MIMO controller has a hard time following the target reference while fuzzy controller
is able to meet the QoS in a steady manner using minimum energy compared to other resource
managers. Expertise used in this experiment for fuzzy controller was to not only consider the error
from reference QoS but also the speed of change in measured Heartbeats. Meanwhile, as we reach
and pass the target reference, we reduce the frequency of the compute unit incrementally to the
extent that QoS drops to half point of target reference and lower boundary. Moving forward, CPU
frequency is increased to the point that we exceed target reference again. Figure 8 shows the com-
parison of energy consumption of each resource manager. HESSLE-FREE achieves and tracks the
QoS metric while being in average 26%, 46%, 43%, 66% and 65% more energy efficient than MIMO
controller, interactive ondemand, performance and power oriented governors, respectively. This
is due to the designer expertise incorporated in the fuzzy controllers that favors energy efficient
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cores actuations and only increases frequency for high-performance cores when higher QoS is
needed.

6.2.2  FPS Focused. In this experiment our target metric is to meet our desired FPS while con-
suming the minimum power required. Target FPS is defined as 30 frames per second for our plat-
form with threshold of +5 frames. We capture the number of frames processed in each measuring
window. In order to stress test the management policy, we execute the PARSEC benchmarks on the
CPU cluster in parallel with the face detection GPU workloads. The rationale for this mix is that the
CPU workloads can demonstrate dynamic phasic behavior (e.g., compute-bound, memory-bound)
that can affect the GPU performance and consequently the FPS of the system. Figure 9 shows the
FPS tracking for each resource manager for the facesim CPU benchmark. The rest of workloads
follow a similar trend where: i) the performance oriented governor provides high FPS with no
regard to power consumption, ii) the ondemand and interactive governor provides moderate per-
formance based on application demand which sometimes results in high power consumption of
CPU units, iii) the power saving governor executes in the lowest configuration of each compute
unit without any regard to the system status, iv) MIMO generally tracks FPS but abrupt changes to
power consumption can cause deviation from the target reference, and v) our HESSLE-FREE fuzzy
controller is able to follow the reference FPS while minimizing energy consumption. The intuition
behind fuzzy rules is to observe the error in FPS and take actions according to value of this error to
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Fig. 10. Total Energy consumption for CPU (PARSEC) plus GPU (face detection) for FPS metric.

set the configuration knobs. As the error gets closer to the target FPS, GPU frequency change slows
down. Meanwhile, we try to minimize the energy consumption of the entire platform by reducing
the energy consumption of the CPU cores while avoiding any drops in FPS measurement. Also,
In the case that increase in GPU frequency shows no improvement in a consecutive windows, we
increase the CPU cores frequency. This is done to reduce the frame pre-processing bottleneck. Fig-
ure 10 shows the energy consumption of CPU clusters executing PARSEC benchmarks plus GPU
cores executing face detection through this experiment. HESSLE-FREE’s fuzzy governor is able
to achieve the desired objective tracking the system’s FPS while in average preserving 9% more
energy than MIMO controllers.

7 CONCLUSION

We presented HESSLE-FREE, a fuzzy control mechanism for on-chip runtime resource manage-
ment in heterogeneous systems. HESSLE-FREE leverages fuzzy control theory to combine heuristic
approaches with the strengths of classic control theory to efficiently manage complex heteroge-
neous systems with a variety of system objectives. We demonstrated the simplicity and effec-
tiveness of HESSLE-FREE with implementation on the NVIDIA Jetson TX2 platform with hetero-
geneous (CPU+GPU) compute units. Our evaluations show that HESSLE-FREE can successfully
manage complex systems in an energy efficient manner while achieving QoS targets. We believe
that our HESSLE-FREE approach highlights the promise of fuzzy control for resource management
in heterogeneous computer systems, and paves the way for managing the increasing complexity
of newer heterogeneous computing platforms.
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