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ABSTRACT

Resource management strategies for many-core systems dictate the
sharing of resources among applications such as power, process-
ing cores, and memory bandwidth in order to achieve system goals.
System goals require consideration of both system constraints (e.g.,
power envelope) and user demands (e.g., response time, energy-
efficiency). Existing approaches use heuristics, control theory, and
machine learning for resource management. They all depend on
static system models, requiring a priori knowledge of system dynam-
ics, and are therefore too rigid to adapt to emerging workloads or
changing system dynamics.

We present SOSA, a cross-layer hardware/software hierarchical
resource manager. Low-level controllers optimize knob configu-
rations to meet potentially conflicting objectives (e.g., maximize
throughput and minimize energy). SOSA accomplishes this for
many-core systems and unpredictable dynamic workloads by us-
ing rule-based reinforcement learning to build subsystem models
from scratch at runtime. SOSA employs a high-level supervisor to
respond to changing system goals due to operating condition, e.g.,
switch from maximizing performance to minimizing power due to a
thermal event. SOSA’s supervisor translates the system goal into low-
level objectives (e.g., core instructions-per-second (IPS)) in order
to control subsystems by coordinating numerous knobs (e.g., core
operating frequency, task distribution) towards achieving the goal.
The software supervisor allows for flexibility, while the hardware
learners allow quick and efficient optimization.

We evaluate a simulation-based implementation of SOSA and
demonstrate SOSA’s ability to manage multiple interacting resources
in the presence of conflicting objectives, its efficiency in configuring
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knobs, and adaptability in the face of unpredictable workloads. Exe-
cuting a combination of machine-learning kernels and microbench-
marks on a multicore system-on-a-chip, SOSA achieves target per-
formance with less than 1% error starting with an untrained model,
maintains the performance in the face of workload disturbance, and
automatically adapts to changing constraints at runtime. We also
demonstrate the resource manager with a hardware implementation
on an FPGA.
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1 INTRODUCTION

As system size and capability scale, designers face a large space
of configuration parameters controlled by actuation knobs, which
in turn generate a large number of cross-layer actuation combina-
tions [53]. Making runtime decisions to configure knobs in order
to achieve a simple goal (e.g., maximize performance) can be chal-
lenging. That challenge is exacerbated when considering a goal
that may change throughout runtime, and consist of conflicting ob-
jectives (e.g., maximize throughput within a power budget) [46].
Additionally, modern embedded devices, like in cars, are expected to
support combinations of a wide range of applications, e.g., assistant
and entertainment systems, without any prior knowledge of their
workload.

Consider a typical entertainment system scenario in which the
resource management goal is to maximize performance within a
power budget. One could write an optimization heuristic to find
the optimal operating point for a small number of knobs, but such a
solution does not scale well to coordinate a large number of knobs. A
heuristic that does a thorough optimal estimation is not be efficient,
and one with a rougher estimation is not be flexible enough to
changes in workload.

Alternatively, we could use feedback control to adaptively config-
ure our knobs to achieve high performance within a power budget.
Control theoretic solutions have been proposed to achieve exactly
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this goal in a variety of ways, most recently using LQG [35] and
SSV [36]. Control theoretic resource managers can coordinate knobs
with the added benefit of formalism, and can scale in cases that the
system and its knobs can be decomposed into subsystems.

Consider now that the system we are controlling experiences a
thermal event. The goal is no longer to maximize performance: the
controller should change its priority to minimize power. Classical
control theoretic solutions lack the ability to adapt to changing goals.
Rahmani et al. [39] use Supervisory Control Theory to address
the issue of dynamic goals by changing the priorities of low-level
controllers adaptively. However, designing a controller requires a
stable (sub)system model to be identified. This model is fixed and
must be known at design time. If our user installs a new application
that exercises the system in ways we do not anticipate (e.g., using
Bluetooth connectivity), it may break our resource manager. Due to
model dependency, the controller may not converge when introduced
to an unknown combination of applications.

Machine learning is well-suited to navigate large configuration
spaces. Machine learning would be useful for finding the optimal
operating point for a set of knobs in order to achieve the provided
goal. We could also build and update a model at runtime using
reinforcement learning. Reinforcement learning is not commonly
applied to scenarios such as ours due to the computational cost.
Mishra et al. [29] use reinforcement learning to tune feedback con-
trol parameters at runtime, but the learning is done periodically on
a remote server, and requires an initial model. We need the ability
to capture the dynamics of a system during execution without any
previous observation, and continuously update that model. If we
can learn system dynamics at runtime, beginning with a blank slate
(i.e., empty model), we can define (1) objectives without static re-
lationships to subsystem states, and (2) optimization goals without
access to the targeted hardware platform. For example, we can define
objective targets in term of application-specific quality of service
(QoS) metrics (e.g. heartbeats [21], frames-per-second (FPS)), and
learn the dynamics for different applications and combinations of
applications.

In this paper, we leverage supervisory control to adapt to chang-
ing goals at runtime, in combination with reinforcement learning
hardware that allows us to efficiently optimize for any unpredictable
workload or system dynamics. To our knowledge, SOSA is the first
learning-control-hybrid resource manager to provide self-adaptivity
via software supervisor and self-optimization via hardware-based
reinforcement learning on-device. Key contributions of this paper
are:

e We provide self-adaptivity to resource managers
through hierarchical supervision, allowing the resource manager
to respond to changing system goals. We achieve self-adaptivity
through dynamic goal management by updating the policy (i.e., pa-
rameters) of low-level controllers according to high-level goal(s).
e We enable self-optimization of low-level controllers through re-
inforcement learning in order to adapt to unpredictable workloads.

Reinforcement learning is accomplished by implementing learn-

ing classifier tables (LCTs) as low-level controllers in hardware.

The LCTs capture system dynamics by building a model from

scratch at runtime, and continuously updating the model. LCTs

enable us to perform model-independent rule-based learning on-
device.
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e Experimental Case Study: We deploy SOSA on a FPGA board
including a hardware implementation of LCTs and supervisor
to validate the function and design feasability. We compare the
effectiveness of SOSA to state-of-the-art alternatives for resource
management of multicores in a simulated environment, show-
ing SOSA’s accuracy in meeting performance demands and re-
sponsiveness to dynamic power constraints for workloads with
unpredictable background task interference.

2 BACKGROUND AND RELATED WORK

Resource management approaches for processors can be broadly
categorized in three primary ways: (1) heuristic-based approaches
[8, 10-12, 17, 19, 23, 24, 34, 38, 47, 49], (2) control-theory-based
approaches [22, 26, 27, 30, 33, 35-37, 39-41, 44, 45], and (3) sto-
chastic / machine-learning-based approaches [1, 6, 7, 9, 25, 29].
There exist some proposed solutions that incorporate aspects of
multiple categories, e.g., there are a number of works that use learn-
ing to build predictive models, and use heuristics to make runtime
decisions based on the predictive models [4, 13, 15, 16].

We can use a number of properties to describe the capabilities
of existing adaptive resource managers. To start, as a requirement
all approaches must be efficient enough to deploy at runtime and
be responsive, and coordinate multiple knobs to achieve one or
more objectives. Machine learning and feedback-control based ap-
proaches have the added benefit of providing formalism. Classical
control-theoretic approaches can provide robustness by guarantee-
ing bounded behavior. Reinforcement learning approaches can self-
optimize by continuously updating models based on observation.

Table 1 shows the coverage of existing on-chip resource manage-
ment approaches in handling key issues. Some machine-learning-
based and heuristic approaches (e.g., [4, 16-18]) focus on effi-
ciency (3) and coordination (4), but fail to address other attributes
such as providing robustness (1) against unexpected corner cases.
Classical control-theoretic approaches (e.g., [35, 37]) provide means
to address robustness (1), formalism (2), and efficiency (3), with
the ability to concurrently coordinate (4) and control multiple objec-
tives in a non-conflicting manner. However, classical control lacks
scalability (5) for heterogeneous multi-processing (HMP) architec-
tures due to 1) the exponential growth in computational complexity
with increasing numbers of inputs and outputs, and 2) the difficulty
of performing Dynamic System Model identification for large sys-
tems. Although multiple simple controllers have been used in nested
loops to achieve scalability in simple control problems [22, 26],
they suffer from scalability issues in complex resource management
problems for many-core systems where coordination of multiple
actuators is necessary.

Recently, in Yukta [36], Pothukuchi et al. solve the scalability (5)
issue of classical controllers by using Robust Control and hierarchi-
cally linking controllers to perform resource management at various
layers in the system stack. However, Yukta, like classical controllers,
lacks self-adaptivity (6), which enables rapid responses to abrupt
runtime changes. In SPECTR [39], Rahmani et al. also solve the
scalability issue via hierarchy. SPECTR uses Supervisory Control
Theory at the top of its hierarchy which additionally provides self-
adaptivity (6) in conjunction with classical controllers by coordi-
nating their reference values and updating priorities dynamically.
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Methods Estimation-/Model- Classical Control Machine Hierarchical Hybrid Control
based Heuristics Theory Learning Control + Machine Learning
[10, 11,13, 17,24] | [22, 26, 35,40,41] | [4, 16, 18] [36, 39] [SOSA]

1. Robustness v v

2. Formalism v v v v

3. Efficiency v v v v v

4. Coordination v v v v v

5. Scalability v *

6. Self-Adaptivity v *

7. Self-Optimization v v

8. Model-Independence v *

Table 1: Major on-chip resource management approaches and the key challenges they address (x = uniquely addressed by SOSA).

In this paper, we deploy a hierarchical supervisory controller in or-
der to provide scalability and self-adaptivity. We use rule-based rein-
forcement learning by deploying Learning Classifier Tables, or LCT's,
as low-level controllers. The LCTs provide self-optimization (7)
and model-independence (8) by continuously updating the optimal
configuration(s) based on runtime observation. Theoretical investi-
gation into managing DVFS using reinforcement learning [6] for
a single objective has been promising. Prior to our work, Mishra
et al. proposed a learning and control hybrid resource manager in
CALOREE [29]. CALOREE uses a predictive model to optimize the
control parameters for the controller making decisions. CALOREE
requires an initial model trained ahead of execution. The model
is updated using reinforcement learning at runtime, however, the
learning is done off-device, and requires communication with a re-
mote server. Continuously updating a statistical model on device
was applied by Kasture et al. in [25] to control DVFS in datacenters
for latency-critical workloads. Compared to SOSA their approach is
neither self-adaptive to runtime changes, nor provides coordination
of several conflicting objectives.

3 MOTIVATION

3.1 Challenges of Model-dependence

Consider the DVES feedback controller shown in Figure 1. The
controller sets the operating frequency (and voltage) of a single-core
system to achieve a desired heartbeat rate. The heartbeat rate is a
quality-of-service (QoS) metric the application designer specifies
through source code annotation [21].

In the case of control theory, the controller is designed based on
a static model that identifies the achievable heartbeat based on the
operating frequency. This assumes that a physical system is available
for observation of system dynamics, which is required to generate
the model used to design the controller ahead of deployment. Fur-
thermore, the frequency—HB relationship is application-specific. In
other words, (a) workloads must be known ahead of design time, (b)
systems must be available for observation of known workloads, and
(c) each resulting controller only applies to the specific workload it
was designed for. These are impractical assumptions when designing
controllers for general-purpose systems with dynamic and unpre-
dictable workloads. More challenges arise due to changes in system
dynamics over time or between devices. Consider the effects of pro-
cess variability on the behavior of different devices with respect to
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Figure 1: Feedback controller with frequency as control input
and heartbeat [21] rate as measured output.
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operating frequency and voltage. It is impractical to expect an opti-
mized model to be derived at design time for each device that utilizes
the controller. As a result, a system may display non-ideal behavior
according to the model used to design the controller. The controller
would make potentially poor decisions due to an inaccurate model
[14].

The challenges outlined so far assume that the system dynamics
being modeled can be estimated with a simple linear equation, which
is the case for the frequency—HB controller. However, some knobs
have more complex system dynamics and are not practical to model
with discrete difference equations, e.g., task migration. Complex
models with large configuration spaces such as task migration are
proper candidates to apply learning. It is important to manage the
scale of a complex model if it is to be learned at runtime. A model-
based learner that uses a static model would face the same challenges
as described thus far. To solve these issues we can employ online
reinforcement learning. Online reinforcement learning addresses the
static-model challenges by continuously updating the system model
based on runtime observations. If we can implement such a learner
on-device, it can capture complex dynamics such as task migration.

3.2 Benefits of Reinforcement Learning

Consider again the DVES feedback controller shown in Figure 1. We
implement the feedback controller in two different ways: (1) using
single-input-single-output (SISO) control theory, and (2) using rule-
based reinforcement learning (LCT). Figure 2 shows the accuracy
achieved by SISO (blue) and LCT ( ) controllers tracking a
specified HB for the k-means clustering algorithm executing on a
simulated ARM core (detailed in Section 6.1). The SISO begins
with an error of 20 %, and is able to eventually reduce the error to
less than 5 % after two seconds of execution. The LCT begins with
near 100 % error, and is able to to reduce the error to 15% after two
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Figure 2: Accuracy of classical (SISO) and learning (LCT) con-
trollers tracking application heartbeat rate using core operat-
ing frequency.

seconds of execution, and eventually down to 7 % after five seconds.
Although the SISO is robust, its design requires a model at design
time. The LCT is a blank-slate that learns the model during execution,
which is why it begins with nearly 100% error. In this instance we
did not tune LCT parameters or optimize rules — with some design
iterations, we could reduce the error further. The LCT’s ability to
learn to manage HB on the fly indicates that there is opportunity
to exploit this approach to coordinate knobs for subsystems in the
context of a resource management hierarchy.

In the example, we define both the LCT and SISO objectives in
terms of instructions-per-second (IPS), and use a HB—IPS converter
to set HB references. Although the converter is a requirement for the
classical controller due to its inability to adapt to each application’s
unique frequency—HB model, it is not a restriction on the LCT. Our
design decision is made for fairness in the comparison, but the online
learning done by the LCT allows it to define its objective in terms
of HB directly, with the ability to adapt to different applications.
A controller using a fixed model (e.g., classical controller) simply
cannot model the relationship between application-level metrics
to hardware-level knobs at runtime for a dynamic workload. The
ability to specify an objective for a low-level controller in terms of
an application-specific user-defined metric is a significant advantage
when providing self-optimization.

The final advantage of self-optimization through reinforcement
learning over classical control theory is the ability to minimize or
maximize objectives, as opposed to achieve a fixed setpoint. Our
example is a simple one with a single objective (HB), but still re-
quires an achievable setpoint for the classical controller to behave
desirably, meaning an optimizer is required to calculate the desired
setpoint. The learner can minimize or maximize a given objective,
integrating the functionality of an optimizer.

3.3 Hardware Efficiency

The LCT hardware implementation allows for efficient runtime rein-
forcement learning and has distinct advantages over software con-
trollers. For one, the LCT has direct access to hardware sensors
and actuators, enabling much shorter periods between invokations
(epochs). Shorter epochs means that finer-grained actuations can
be supported by the LCT. The LCT can still support more coarse-
grained actuations over longer epochs that involve software sensors
or actuators. For some actuations, short epochs only enabled by hard-
ware are required to provide a sufficient sampling rate to support
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Figure 3: SOSA hierarchical overview on a multicore processor.
SOSA components in the shaded region.

the learning. The optimal rules must be learned through numerous
observations, which may take too long to be effective in a software
implemented controller.

4 SOSA

SOSA is a hierarchical resource manager (Section 4.1) consisting
of a high-level supervisor (Section 4.2) that guides distributed low-
level controllers (Section 4.3) to achieve a global goal. We design the
entire hierarchy in the context of our case study: managing QoS of a
focus application within a power budget on an MPSoC (Section 4.4).

4.1 Hierarchical System Architecture

Figure 3 depicts a high-level view of SOSA for many-core system
resource management. Either the user or the system software may
specify Variable Goals and Policies. The Supervisor aims to achieve
goals by managing the low-level controllers. High-level decisions
are made based on the feedback given by the high-level model, or
System Model, which provides an abstraction of the entire system.
Low-level controllers are implemented as LCT's, which control the
system via actuators. The supervisor provides objective-function pa-
rameters such as output references (i.e., target values) or constraints
to each LCT during runtime according to the system policy. Ac-
tions taken by the LCTs indirectly update the system model through
senors to maintain the global system state, and potentially trigger
the supervisor to take action. The high-level model can be designed
in various fashions (e.g., rule-based or estimator-based [20, 31, 43])
to track the system state and provide the supervisor with guidelines.

4.2 Supervisor

We use Supervisory Control Theory (SCT) [42] to design our su-
pervisor similarly to [39]. SCT solves complex synthesis problems
by breaking them into small-scale sub-problems, known as modular
synthesis. The results of modular synthesis characterize the condi-
tions under which decomposition is effective. In particular, results
identify whether a valid decomposition exists. A decomposition is
valid if the solutions to sub-problems combine to solve the original
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problem, and the resulting composite supervisors are non-blocking
and minimally restrictive. This horizontal decomposition in sub-
problems allows us to divide the overall system into several smaller
subsystems which are controlled by individual controllers.

Figure 4 illustrates how a supervisory control structure can hier-
archically manage feedback control loops. As shown in the figure,
supervision is vertically decomposed into tasks performed at differ-
ent levels of abstraction [48]. The supervisory controller is designed
to control the high-level system model, which represents an abstrac-
tion of the system. The subsystems compose the pre-existing system
that does nor meet the given specifications without the aid of a con-
troller or a supervisor. The information channel provides information
about the updates in the high-level model to the supervisory con-
troller. Due to the fact that the system model is an abstract model,
the controlling channel is an indirect virtual control channel. In
other words, the control decisions of the supervisory controller will
be implemented by controlling the low-level controller(s) through
control parameters. Consequently, the low-level controller(s) can
control one or multiple subsystems using the control channel and
gather information via feedback. The changes in the subsystems can
trigger model updates in the state of the high-level system model.
These updates reflect the results of low-level controllers’ controlling
actions.

The scheme of Figure 4 describes the division of supervision
into high-level management and low-level operational supervision.
Virtual control exercised via the high-level control channel can be im-
plemented by modifying control parameters to adaptively coordinate
the low-level controllers, e.g., by adjusting their objective functions
according to the system goal. The combination of horizontal and
vertical decomposition enables us to not only physical divide the sys-
tem into subsystems, but also to logically divide the sub-problems in
any appropriate way, e.g., due to varying epochs (control invocation
period) or scope. The important requirement of this hierarchical
control scheme is control consistency and hierarchical consistency
between the high-level model and the low-level system, as defined
in the standard Ramadge-Wonham control mechanism [48]. For a
detailed description of SCT, we refer the reader to [2, 42, 43, 48].

Virtual

N Control
Supervisory =z System
Controller Model
Information
Control Model
Parameters Updates
I====-- (] =T T T TdontrbT T T T 7 |
1 711 1 1
1 Low-level Subsystem 1
1 Controller — 1
! Feelback |
Leaf Controllers System

Figure 4: Supervisory Control structure. Low level control
loops are guided by the Supervisory Controller that achieves
system-wide goals based on the high-level system model.
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4.3 Learning Classifier Table Low-Level
Controllers

In general, a controller’s task is to find the optimal actuation knob
configuration for a given system state. The optimum is defined by
some (measurable) metric, the objective function. The objective
function (6) can take one or more objectives (91, &, ..., ;) into
account

581,88, ...) )

to compare the desirability of different system states. In our hierar-
chical setup, the low level controllers’ task is to execute actions that
result in a more desirable subsystem state over time according to the
given objective function.

Zeppenfeld and Herkersdorf use learning classifier tables (LCTs)
as low-level controllers in ASoC [52], which is an approach exploit-
ing autonomic principles for runtime task distribution and frequency
scaling. In ASoC, low-level controllers are unsupervised. The over-
all system goal emerges from the controllers’ objective function
definition and coordination.

LCTs are a subset of Wilson’s XCS [51], which is a type of
learning classifier system (LCS). LCSs describe the system they
control by ’if condition then action’ rules, i.e., classifiers. The
condition corresponds to a specific set(s) of possible sensor values
(i.e., system state). The action modifies the actual knob configu-
ration to change system settings. Each rule contains a fitness value
which describes its capability to improve the system state accord-
ing to the objective function. A rule’s fitness is updated each time
the rule’s condition matches the system state and its action is ap-
plied. The fitness is updated based on the rule’s effectiveness toward
achieving the objective. This is how the LCT builds and updates the
system model, without any initial training required.

A set of rules, population [P], is needed to model system dynamics.
Different rules may have overlapping conditions or actions. Figure 5
represents the general operating mode of LCS implemented as an

Credit
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' (s) Genetic !

: ‘Reward Update \__/ Alg. :

1 Population [P] P '

: idx | cond  action fitness ...

: #2 X001 001 0.58 -
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: #n XXX1 111 0.89
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! Match Set [M] Acti

: idx cond action fitness Ctl(?n

1 # | IXIX  OI1 0.12 > Selection

! #53 X111 001 0.56 Algorithm
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[A] idx cond action fitness Action performed

-1 #8 IX1X 011 0.12 Control 3
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Figure 5: Overview of the LCT logic (dashed lines correspond
to the fitness update path; dotted entities are part of LCSs, but
not LCTs).



MICRO ’52, October 12-16, 2019, Columbus, OH, USA

LCT. This operating mode consists of five periodically occurring

steps:

(1) By comparing the sensor values to the conditions of all rules in
the population [P], a match set [M] is generated. Conditions can
contain wildcards to match several sensor values.

(2) Next, the roulette-wheel selection algorithm [50] decides on an
action based on the fitnesses of the rules in [M]. All rules in [M]
with the same action selected by the roulette wheel are saved as
the action set [A].

(3) The selected action is forwarded to the actuators to apply it to
the (sub)system. Further, the action set is saved [A],_.

(4) After applying the action, the effect of the action is measured
by sensors, and based on the effectiveness toward achieving
the objective, some reward is given by the credit assignment
component. The fitnesses of the rules in the saved action set
[A];—1 get updated based on the reward according to a modified
Q-learning which was proposed by Wilson [50] (see Equation
5).

(5) Finally, the updated rules are forwarded to the population [P]
for the next evaluation.

To calculate the reward a rule receives, the credit assignment compo-

nent observes changes of the objective function (8). The objective

function is calculated as normalized error. The error is the difference
between the measured sensor value and its target value. For example,
we define our objective function in terms of a performance metric

(PERF):

_ |PERF —ref prgr|

- maxpgrr

sef{x|0<x<1}

This equation describes a performance optimization objective with a

performance target (re f pprr). We can further constrain this function,

e.g., to maximize PERF within a power budget (constrpyyer), by

setting ref pprp to a large value and subjecting the equation to

13
@

Power < constrpyyer

3)

The observed change in the objective function results in different
rewards (reward) according to the following reward function:

reward =1—8 reward € {x| 0 <x <1}

“
In the case that the constraint is violated, the reward is set to 0.
This reward function with a discrete range supports the ability to
distinguish between two different actions for the same condition
which both improve or degrade the system state to varying degrees.
Based on the reward, the fitness (fir) of [A], | is updated by
reinforcement learning using a modified Q-learning algorithm

fit «+ fit+ P Kreward+y~max (fitw 1)) 7fit]

—

5
with the learning rate parameter § and the discount factor y. The
discounting <y- max <fit[ALl ) is omitted in single-step problems
like DVFS [51], and therefore also in SOSA.

Our reward and fitness function prevents fitness values of con-
stantly improving/degrading rules from ending up at the minimum
or maximum value on the long term. The selected fitness update
procedure does not necessary result in stable fitnesses over time for
all kind of rules (e.g., general rules which include a lot of don’t-cares
for a single or multiple sensor inputs). Accuracy-based genetic algo-
rithms are able to recognize unstable rules [51]. Genetic algorithms
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have also been used in LCS’s to discover new rules. Identifying and
removing unstable rules, and generating and testing new rules are
not currently parts of the LCT, and therefore out of the scope of this
work. We are addressing this in ongoing work in order to enable
LCTs to add potentially beneficial rules to the ruleset and remove
unstable rules during execution.

4.4 Case Study

Figure 6 shows an overview of our evaluation platform. We target a 4-
core homogeneous CMP consisting of high-performance ARM cores.
We consider a typical embedded scenario in which a performance-
sensitive application (focus application) is running concurrently
with various other (background) applications starting and stopping
unpredictably. This mimics a typical use-case in which the main
purpose of the device is performed in the foreground in conjunction
with background debugging, reporting and logging.

The system goals are twofold: i) meet the performance require-
ment of the foreground application while minimizing its energy
consumption; and ii) ensure the total system power always remains
below the Thermal Design Power (TDP). In other words, the perfor-
mance is a target, while the power is an upper bound. There is no
advantage to exceeding the performance requirement.

We consider two actuation decisions: one to set the operating
frequency and associated voltage of each core; and one to migrate
tasks between cores. We measure the power consumption of each
core, and simultaneously monitor the performance (in IPS) of the
designated application to compare it to the required performance
(IPSgep).

APPl APPZ APP3 APPm
‘ util Supervisor ‘
OF _copstry vask,map
OF _ref -
uii;]e’fl Lin ‘
migy
LCT, LCT, LCT,
frea poutr,
Ay ‘ Sy A ‘ S, A, | S,
Core; Core, Core,
BUS

l l

Figure 6: Example SOSA implementation on an MPSoC. Each
core has an associated LCT, with local sensors (IPS, power,...)
and actuators (core frequency). The software supervisor com-
municates directly with LCTs to: (a) send global sensor data
(per-core utilization); (b) update rules, or objective functions
(targets, constraint); (c) receive hardware sensor data (migra-
tion request). In this example, the supervisor also communi-
cates with Linux to receive software sensor data (utilization)
and send software actuation commands (task migration).
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Supervisory control attempts to meet the performance require-
ment while honoring the power budget. The supervisor prioritizes
IPS and power in each LCT appropriately based on total system-
wide power measurements. Supervisory control commands guide
the LCTs to determine the operating frequency of each core and
migrate tasks to the core. The LCTs set local core operating fre-
quency directly via hardware actuator. The task migration actuator
is implemented in software as part of the supervisor. The supervisor
coordinates the migration flags sent by each LCT to perform global
task migration.

An objective function (8) is used to set the optimization objec-
tive of the LCTs. The objective functions are defined in terms of IPS
or power, each with a constraint (see Equations 2 and 3). We define
two objective functions for this case-study: 1) IPS-oriented function
ensures that the focus application can meet the performance target
value, and 2) Power-oriented function limits the power consump-
tion while possibly sacrificing some performance if the system is
exceeding the power budget threshold.

We use the reward function to enforce the constraints (constr;ps,
CONSITpyyer)- For the IPS-oriented objective function (&;ps), we set
the reward to O when IPS < constrypg; for the Power-oriented ob-
jective function (8pyyer), We set the reward to O when Power >
constrpyyer- This has the effect of "forbidding" the violation of the
desired system state in each respective objective function. Subse-
quently, we embed our optimization within the learning mechanism:
for &;ps, we set refpywer = 0, so that while the objective function
achieves re fipg, it also minimizes Power. The result is the following
objective functions:

Power

O;ps = ————, subject to IPS > constrpg (6)
maxpower
IPS —re .
Spower = M, subject to Power < constrpyyer (@)
maxyps

5 HARDWARE IMPLEMENTATION

We implement SOSA in hardware on a Xilinx Virtex®-7 FPGA
using Gaisler’s SPARCvS library (GRLIB) to validate the design as
well as verify the feasibility.

5.1 Hardware Setup

For the hardware evaluation, we use a three-core Leon3 system with
per-core LCTs and a single supervisor. This setup features a similar
multilayer architecture as shown in Figure 6 with two key differences:
(1) we execute applications as bare-metal code without an operating
system, and (2) we implement the supervisor in hardware instead of
software.

The supervisor communicates directly with LCTs to (a) update
rules or objective functions and (b) receive hardware sensor data.
The hardware implementation uses application specific registers
(ASRs) to communicate between software and SOSA hardware. The
ASRs primarily support initialization of LCTs at runtime, debug-
ging, and measurement for evaluation. The ASRs are also used to
implement the task migration actuator. Hardware LCTs are invoked
periodically every 5 ms, and the supervisor is interrupt-driven by the
LCT, meaning it can also be invoked up to every 5 ms.
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Figure 7: Hardware structure of a single LCT including com-
munication connections to its local core and the dedicated ring
interconnect. LCT components are shaded.

Figure 7 shows the block diagram of a single core and its LCT.
The bus, ARM’s Advanced Microcontroller Bus Architecture Ad-
vanced High-performance Bus (AHB), links each core to the other
cores of the system, the memory, etc. Two kinds of sensors are asso-
ciated with each subsystem: one to determine the condition of the
subsystem (i.e., frequency, utilization, and relative workload to the
other cores in the MPSoC), and one to evaluate the current perfor-
mance of the core with respect to the objective function, which is
defined in terms of power consumption or IPS. For differentiation,
condition sensors are solid and objective sensors are dashed in Fig-
ure 7 (similarly to Figure 5). The high-level system model is updated
at regular time intervals. LCT actuators consist of frequency scaling
and task migration.

The low-level controller includes a communication interface in
addition to the entities necessary for learning. The communication
interface is used to negotiate task migrations in hardware, to provide
shared sensor values like workload, and to get updates from the
supervisor. All communication between LCTs and the supervisor is
transmitted over a dedicated autoring [5] ring-interconnect.

5.1.1 Actuators. Due to the lack of an operating system, task mi-
gration must be emulated. Instead of performing actual migration,
we maintain an ASR on each core for task scheduling, with one bit
of the ASR dedicated to each task in the entire system. If a task’s bit
is set in a core’s scheduler ASR, this task gets executed in the core’s
next scheduling epoch. Additionally, because our implementation is
not globally asynchronous locally synchronous (GALS), frequency
scaling of individual cores is not possible. To emulate frequency
scaling, the core pipeline is stalled periodically by a pulse density
modulated (PDM) signal.
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5.1.2 Sensors. The frequency sensor is implemented simply by
forwarding the current actuation setting (see Figure 7). The IPS
sensor directly accesses the trace port of its corresponding Leon3
core and counts the changes of the program counter within a specific
time period. For simplification, our power model assumes the power
is directly proportional to the product of frequency and utilization
(P o< f-u). Therefore, we encode the power value as the product of
the current frequency and utilization values as an approximation,
since we are only concerned with relative power values (rather than
absolute).

5.2 Functional Validation and Design Feasibility

The execution scenario consists of a synthetic benchmark executed
on the system. The benchmark mimics an IP-forwarding applica-
tion, in which packets requiring varying computational effort are
continuously received. The varying effort required by input invokes
unpredictable changes in workload. The application consists of nine
tasks in total: five perform the packet processing, one generates the
changing computational effort, and three are for debugging (e.g.,
sending/receiving UART messages, providing sensor values to the
UART task, and interpreting received UART messages). The data
provided over UART to the host PC includes information about the
current system state, and is used for evaluation.

We use the same objective functions as described in Section 4.4
(O7ps and Spyyer): in IPS-oriented mode, there is an IPS constraint
higher than the IPS target in Power-oriented mode and the objective
function is equal to the measured power in order to always meet
IPS but minimize power; in Power-oriented mode, there is a power
constraint equal to the power budget and the objective function is
equal to the IPS target in order to always honor the power budget
but achieve some target IPS.

5.2.1 Validation. The graphs in Figure 8 show power and IPS
achieved by the HW implementation of SOSA. We subject SOSA to
three different scenarios.

In the first scenario (seconds 0-66 of Figure 8), we set a target IPS
that is achievable within the power budget for our workload. Observe
in Figure 8a that SOSA in the first 33 seconds of execution is able
to track the target IPS with minimal error (we define IPS error as
the % below the IPS target), well within the power budget. Partway
through execution, we inject disturbance in the form of additional
tasks (seconds 33-66). Notice the increase in power in Figure 8b. The
IPS is visibly degraded, and there is a small amount of consistent
error, but overall SOSA’s learners adjust. This demonstrates that
SOSA can adjust correctly to dynamic workload.

In the second scenario (seconds 67-100 of Figure 8), we emulate a
system emergency by lowering the power budget such that the target
IPS is no longer achievable within the budget. Observe in Figure
8b, that the power constraint of the LCTs successfully prevents the
power budget from being violated. Instead, SOSA finds an operating
point close to the budget in order to maximize the IPS without
violations. This demonstrates that SOSA can (relatively strictly)
abide by the power budget, even in extreme scenarios.

In the third and final scenario (seconds 100-115), we change the
objective function in the LCTs to minimize power while requiring
the IPS target to be met. Observe in Figure 8a that the IPS is easily
surpassed within the original power budget. In fact, even the reduced
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power budget (Figure 8b) is only slightly violated while meeting or
even exceeding the target IPS. By setting the power target to O in the
LCT with an IPS constraint, the LCT optimizes the operating point.
This demonstrates that SOSA can integrate optimization simply
using its low-level controllers (LCTs).

Overall, we confirm SOSA’s ability to both adapt and optimize to
internal (workload) and external (environmental) dynamism, while
always honoring the specified goals.

5.2.2 Overhead. Our hardware evaluation platform adds 9.62 % of
slices compared to a standalone MPSoC design. The LCTs are in
total only 18 % of this overhead. The overhead, and therefore the
additional cost, can be significantly reduced by using senors and
actuators already present in state-of-the-art MPSoCs. In terms of
performance impact on the executed application, SOSA (1) does not
invoke any delay on the workload and (2) supports shorter duty cy-
cles than a software controller. Due to the hardware implementation
of the low-level controllers (LCTs), the invocation period is only
limited by the observation time required to provide accurate sensor
values, and the actuation time to affect the system.

6 SIMULATION EVALUATION

In this secion, we demonstrate SOSA’s ability to self-adapt and self-
optimize by building a model at runtime. We compare to control-
theoretic-based resource managers.

6.1 Simulation Setup

We perform our evaluations for the platform described in our case
study (Figure 6) using the gem5 architectural simulator in full-
system mode. We implement all resource management software
using the MARS middleware framework! [32] for Linux, and LCTs
are implemented as gem5 simulated hardware modules, mimick-
ing the hardware design as closely as possible. The MARS Linux
userspace daemon process invokes the supervisor every 100 ms. The
supervisor communicates directly with LCTs using memory-mapped
I/O to: (a) send software sensor data; (b) update rules or objective
functions; (c) receive hardware sensor data; (d) receive software ac-
tuation commands (task migration). LCTs are invoked every 10 ms.
‘We use a combination of ARM’s Performance Monitor Unit (PMU)
and simulator hardware sensors for the performance and power mea-
surements required by the resource managers. The IPS performance
target is provided by the focus application. The learning is done in
the gem5 simulated hardware modules, whereas their actions are
carried out by the OS (Linux) for the task migration and by the gem5
simulated hardware for the frequency changes. This accounts for the
timing and performance overhead of actuations. The frequency of
task migration is inherently limited: we allow a maximum of one
task migration each time the migration policy is invoked.

The resource managers for comparison use control-theoretic low-
level controllers designed with the Matlab System Identification
Toolbox [28].2 We generate training data by executing a microbench-
mark (from MARS) and varying control inputs in the format of a
staircase test (i.e., a sine wave). The microbenchmark consists of a

"https://github.com/duttresearchgroup/MARS

>We generate the models with a stability focus. All systems are stable according to
Robust Stability Analysis. We use Uncertainty Guardbands of 50 % for IPS and 30 %
for power, as in [35].
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(b) HW-SOSA power. We measure error as the difference between measured power and power budget / constraint as % of the max power possible,

only when measured power is above the bound.

Figure 8: IPS and power tracking on HW for a synthetic benchmark in bare-metal. After second 33, background tasks are introduced.
After second 66, the power budget is reduced. After second 100, IPS is prioritized. The plots of measured values have been smoothed
for clarity, but error is calculated based on the raw (finer-grained) data. This is why in some cases the error appears to differ from
the displayed difference between target and measured values (e.g., power error shown when it appears the budget is never violated).

sequence of independent multiply-accumulate operations performed
over both sequentially and randomly accessed memory locations,
thus yielding various levels of instruction-level and memory-level
parallelism. The range of exercised behavior resembles or exceeds
the variation we expect to see in typical embedded workloads, which
is the focus application domain of our case studies.

We use the following focus applications to evaluate the resource
managers: k-means clustering, k-nearest neighbors classification
(knn), and linear regression (1inreg) machine-learning kernels; and
blackscholes from the PARSEC [3] benchmark suite. To compose
a workload, we launch four instances of the focus application to
emulate data-parallel multithreading.

6.2 Model-independence Evaluation

To show SOSA’s ability to identify system dynamics from scratch,
we study its ability to track a fixed goal for a fixed workload. Our
execution scenario consists of a single focus application with an
achievable IPS target within the power budget. The goal is to meet
target IPS. We compare to a baseline resource manager (BASE)
which uses SISO controllers, one for each core. The SISOs have a
frequency control-input and IPS measured-output (Frequency—IPS),
and are invoked every 10 ms. BASE includes a software supervisor
to provide target coordination to the SISOs as well as a simple
task migration heuristic. Task migration is performed at the same
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frequency as low-level controllers are invoked. In all of our eval-
uation scenarios, we seek to distribute the total system utilization
equally among cores. Therefore, our focus applications consist of
four threads, and our target for each LCT are one quarter of the
total system target. All threads are initially mapped to the same core,
so the resource manager is completely responsible for migration.
Distribution of system-wide budgets and targets is the subject of
orthogonal research, e.g., [6].

Figure 9 shows SOSA’s and BASE’s ability to track a fixed IPS
target for a fixed workload. The first 4 s of execution consist of
only the focus application k-means. Figure 9a demonstrates the
classical controller’s ability to achieve the target performance in an
ideal execution scenario, based on the system model identified at
design time. Figure 9b demonstrates the LCT controller’s ability
to achieve the target performance by learning the system dynamics
during execution, without prior workload observation.

6.3 Self-optimization Evaluation

To show SOSA’s ability to identify system dynamics at runtime for
unpredictable workloads, we study its ability to track a fixed goal
for a dynamic workload. Our execution scenario consists of a single
focus application with background tasks entering in the middle of
execution (to induce interference from other tasks). The goal is to
meet target IPS, which is achievable within the power budget. We
compare again to BASE.
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Figure 9: IPS tracking for k-means. First four seconds con-
sist only of k-means. After four seconds, microbenchmarks are
added for disturbance. Measured values are smoothed using av-
eraging.

Figure 9 shows SOSA and BASE ability to track a fixed IPS target
for a dynamic workload with tasks coming and going unpredictably.
After 4s of execution, backgrounds tasks are started, consisting
of single-threaded microbenchmarks. Figure 9a shows that once
disturbance is introduced, the controller experiences up to 14 % per-
formance degradation. Figure 9b demonstrates the LCT controller’s
ability to self-optimize to find a configuration that achieves IPS with
<5 % error once disturbance is introduced in the form of workload
variability, eventually settling with error <1 %. We confirm SOSA’s
ability to learn the model from scratch at runtime and optimize in
the face of disturbance are in line with our hardware evaluation.

6.3.1  Global Coordination. Figure 10a shows the migration of focus
tasks between cores by SOSA over the first 4 s of execution of the
k-means benchmark. Each task is represented by a different color
line, and the y-axis represents the four different cores. Though it
is difficult to see, all tasks are to be initially mapped to Core O.
Observe that over time, the migration policy spreads the tasks among
all four cores. There are some exploration periods (e.g., in the first
second), and some tasks experience oscillating migration more than
others (e.g., task 3 from 2-4 seconds), but the policy accomplishes
its goal of spreading the utilization out among the cores. Figure 10b
shows the focus task utilization of each of the four cores through the
first 2 s of execution. Observe that each core is utilized completely
for almost the entire execution. After all focus tasks are initialized
on the same core, they are migrated within the first 250 ms. This
confirms that the migration policy achieves its goal.
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Figure 10: Migration and utilization of SOSA for k-means.
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Figure 11: Single-core optimization of SOSA for k-means over
the first 5 s of execution for Core 3. The top plot shows the core
IPS achieved, and the bottom plot shows the core frequency.

6.3.2  Local Optimization. In Figure 11 we take a closer look at the
behavior of a single core through the first 5 s of k-means controlled
by SOSA. Observe the variation in core frequency displayed in the
lower plot. The LCT explores the configuration space through the
first 3.5 s of execution. After 3.5 s, the LCT settles on the maximum
frequency in order to achieve the target IPS for the remainder of
execution. This is in line with our system-wide observations made
in Figure 9b.

6.3.3 Other Benchmarks. Figure 12 shows the self-optimization
evaluation execution scenario for three additional focus applications.
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Figure 12: Additional benchmarks.

SOSA’s result for linreg (Figure 12d) mirrors that of kmeans:
learning occurs for the first ~3 s, after which the target IPS is achiev-
able even through disturbance. The BASE manager struggles sig-
nificantly with managing through the disturbance (Figure 12a). The
performance degradation from 4-6 seconds is due to poor migration
decisions — the BASE manager eventually recovers at 6 s.

SOSA and BASE perform similarly for knn (Figure 12e,12b):
both managers achieve target IPS at a comparable rate in the first 4 s.
After disturbance is introduced, both managers are unable to achieve
target IPS. Eventually SOSA settle’s at 14 % error, and BASE at
9%.

The results for blackscholes (Figure 12f,12c) are opposite of
linreg: in this case, SOSA struggles to achieve target IPS once
background tasks are introduced. Although BASE also experiences
degradation of performance after 4 s, SOSA’s error is 2x higher.
SOSA’s performance degradation from 4-6 seconds is due to poor
migration decisions.

6.4 Self-adaptivity Evaluation

To show SOSA’s ability to adapt to changing operating conditions,
we study its ability to track a changing goal for a fixed workload.
Our execution scenario consists of two different phases of execution:
(1) Normal Phase: In this phase, only the focus application executes.
The goal is to meet target IPS and minimize power consumption.
(2) Low-power Phase: In this phase, the IPS target remains the
same as that in the Normal Phase while the power budget is
reduced. The goal is to prioritize honoring the power budget
while maintaining target IPS (if possible).
We compare to a resource manager (SOTA) that uses per-core SISOs
(Frequency—IPS), with a self-adaptive software supervisor to pro-
vide target coordination and a simple task migration heuristic. SOTA
consists of a self-adaptive supervisor and classical low-level con-
trollers similarly to [39], therefore representative of a state-of-the-art
resource manager. Our goal is to demonstrate that SOSA’s self-
adaptivity is on-par with state-of-the-art alternatives.
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Figure 13 shows SOSA’s and SOTA’s ability to track the IPS
target while honoring the power budget in the Normal Phase and
Low-power Phase. The first 4 s of execution are in the Normal Phase.
Observe the IPS of both managers (Figure 13a and 13b). SOTA
reaches its peak value after 1s of execution, maxing out at 9 %
below the IPS target. SOSA’s learning takes longer — it spends the
first 2.5 s exploring the configuration space, and reaches peak value
at 4 s. However, SOSA is able to match SOTA’s peak IPS value after
only 1.5, and reaches a peak value above the IPS target and more
than 1.5x that of SOTA, all within the power budget. We make two
specific observations in SOSA’s Normal Phase regarding the power
(Figure 13d). First, the power spends the first 2.5 s with substantial
noise, indicating exploration for learning. Second, the settling of
the power around the 2.5 s mark indicates that SOSA has learned a
meaningful model. This is reinforced by our observations about the
IPS. SOTA’s lower IPS peak and continuous power noise is due to
excessive task migration. The task migrations negatively affect the
utilization of each core by the focus tasks, limiting the maximum
achieved IPS and causing dips in the power (i.e., the low ends of the
spikes).

After 4s, the execution enters the Low-power Phase, and the
power budget is reduced by half. SOTA continues attempting config-
urations to increase IPS, as it is still not reaching the target. After
0.5 s, the controller responds to the change in priority, and it finds a
configuration that honors the new budget without IPS degradation.
In Figure 13c we see that the SOTA controller periodically experi-
ences large power spikes that violate the budget. In the Low-power
phase, SOSA’s configuration violates the power budget, causing
to LCTs switch to low-power models, which have yet to be popu-
lated. This explains the degradation in IPS (Figure 13b), as well as
the noise in the power (Figure 13d). Observe that at 7 s, both the
IPS and power begin to stabilize around their targets, with ~10 %
error. Looking closely, just before 8 s, the power for SOSA dips
significantly, indicating that the LCTs are continuously updating and
acting in an attempt to honor the power constraint. Based on the
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Figure 13: IPS and power for k-means with a power budget change after 4 s. IPS values are smoothed using averaging.

learning observed in the self-optimization evaluation, as well as the
Normal Phase, we believe that SOSA will have a populated model
that will lead to efficient decisions. We also think that this presents
an opportunity for applying transfer learning, as there are clearly
some rules and configurations that are desirable for both Normal and
Low-power Phases.

In conclusion, both resource managers are able to consider dy-
namic goals, balancing IPS targets while accounting for a power
budget. The SOSA LCTs take time to learn new objectives compared
to pre-populated models, but they are able to learn from undesir-
able configurations, and as a result SOSA considerably outperforms
SOTA, which struggles to coordinate migration and DVFS.

7 CHALLENGES AND FUTURE WORK

For this work, we assume a straightforward use-case to demonstrate
the fundamental capabilities of our resource manager. However, one
could imagine more challenging scenarios in the real world, some of
which we have identified throughout the manuscript. Here we iden-
tify two challenges that are the subject of ongoing work to improve
our SOSA manager. The first aspect to address is the uniformity
of the workload and resource budgets in our use-case. Realistic
workload scenarios may have multiple performance demands con-
currently from different applications, with asymmetric task loads
and task-dependence. There has been a large amount of research
in the area of budget allocation that would be advantageous to in-
corporate. The second aspect we are addressing is the static ruleset.
With a static ruleset, generating a ruleset that produces favorable
results requires designer knowledge as well as empirical analysis.
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There exist methods in LCS for expanding and pruning rulesets over
time automatically, and we plan to incorporate them. We believe
that with a good runtime algorithm, we could remove even more
designer-dependence from this methodology.

8 CONCLUSION

In this paper, we set out to design a resource manager for embedded
many-cores that can self-adapt when faced with changing goals due
to external stimuli, and self-optimize by learning dynamic work-
loads at runtime. To this end, we propose SOSA, a hierarchical
resource manager with a high-level supervisory controller that pro-
vides self-adaptivity and goal management by guiding distributed
low-level LCT controllers that self-optimize subsystems by contin-
uously updating runtime models. Our hardware implementation of
SOSA in a Leon3-based MPSoC for an FPGA validates both the
functionality and feasibility of the hierarchical design. We evaluate
an implementation of SOSA designed to manage a performance tar-
get within a power budget. We implement SOSA in Linux and gem5
in order to compare to state-of-the-art alternatives for handling (1)
unpredictable workload disturbance and (2) unpredictable changes
in constraints.
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