The Information Processing Factory:
A Paradigm for Life Cycle Management of Dependable Systems

Special Session Paper

Eberle A. Rambo
Thawra Kadeed

Rolf Ernst
{rambo,kadeed,ernst}@ida.ing.tu-bs.de
TU Braunschweig
Braunschweig, Germany

Bryan Donyanavard
Caio Batista de Melo
Biswadip Maity
Kasra Moazzemi
Kenneth Stewart
Saehanseul Yi
Amir M. Rahmani
Nikil Dutt

{bdonyana,cbatista,maityb,moazzemi}@uci.edu
{kennetms,saehansy,amirr1,dutt}@uci.edu
UC Irvine
Irvine, USA

ABSTRACT

The number and complexity of embedded system platforms used
in mixed-criticality applications are rapidly growing. They run
large and evolving applications on heterogeneous multi- or many-
core processing platforms requiring dependable operation and long
lifetime. Examples include automated and autonomous driving,
smart buildings, industry 4.0, and personal medical devices. The
Information Processing Factory (IPF) applies principles inspired by
factory management to master the complexity of future, highly-
integrated embedded systems and to provide continuous operation
and optimization at runtime. A general objective is to identify a
sweet spot between a maximum of autonomy among IPF constituent
components and a minimum of centralized control in order to
ensure guaranteed service even under strict safety and availability
requirements. This paper addresses the challenges of IPF and how
to tackle them with a set of techniques: self-diagnosis for early
detection of degradation and imminent failures combined with
unsupervised platform self-adaptation to meet performance and
safety targets.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODES/ISSS °19 Companion , October 13-18, 2019, New York, NY, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6923-7/19/10.

https://doi.org/10.1145/3349567.3357391

Minjun Seo
Fadi Kurdahi
{minjun.seo,kurdahi}@uci.edu
UC Irvine
Irvine, USA

Florian Maurer
Nguyen Anh Vu Doan
Anmol Surhonne
Thomas Wild
Andreas Herkersdorf

{flo.maurer,anhvu.doan,anmol.surhonne}@tum.de
{thomas.wild,herkersdorf}@tum.de
TU Munich
Munich, Germany

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; Dependable and fault-tolerant systems and
networks; Real-time systems.

KEYWORDS
self-awareness, mixed-criticality, dependability

ACM Reference Format:

Eberle A. Rambo, Thawra Kadeed, Rolf Ernst, Minjun Seo, Fadi Kurdahi,
Bryan Donyanavard, Caio Batista de Melo, Biswadip Maity, Kasra Moazzemi,
Kenneth Stewart, Saechanseul Yi, Amir M. Rahmani, Nikil Dutt, Florian Mau-
rer, Nguyen Anh Vu Doan, Anmol Surhonne, Thomas Wild, and Andreas
Herkersdorf. 2019. The Information Processing Factory: A Paradigm for Life
Cycle Management of Dependable Systems: Special Session Paper. In Interna-
tional Conference on Hardware/Software Codesign and System Synthesis Com-
panion (CODES/ISSS °19 Companion), October 13—18, 2019, New York, NY, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3349567.3357391

1 INTRODUCTION

In the last decade, embedded system platforms have grown consid-
erably in number and complexity, and they continue to grow. They
run large and evolving applications on heterogeneous multi- or
many-core processing platforms. Examples include automated and
autonomous driving, smart buildings, industry 4.0, and personal
medical devices. Such systems are required to provide dependable
operation for the user while dealing with a large number of in-
ternal and external variabilities, threats, and uncertainties in their
lifetimes.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

The "Information Processing Factory" (IPF) was introduced in
ESWEEK 2016 [2] as a paradigm to master such complex depend-
able systems. The IPF paradigm applies principles inspired by fac-
tory management to the continuous operation and optimization
of highly-integrated embedded systems. A general objective is to
identify a sweet spot between a maximum of autonomy among IPF
constituent components and a minimum of centralized control in
order to ensure guaranteed service even under strict safety and
availability requirements. Emphasis is on intensive self-diagnosis
for early detection of degradation and imminent failures combined
with unsupervised platform self-adaptation to meet performance
and safety targets.

An abstract concept at that time, IPF has been further elabo-
rated and became the foundation of a US-German research ini-
tiative to investigate detailed solutions and applications. The ini-
tiative developed into a research cluster that is jointly funded by
the National Science Foundation (NSF) and the German Research
Foundation (DFG). The cluster exploits a variety of technologies
including proactive reconfiguration to mitigate the risk of failures,
self-optimization using hardware-based learning classifier tables
[20], and chip-level operation with flexible boundaries between
safety-critical and best-effort zones. With complementary purpose,
the different technologies operate concurrently at different time
granularities, all guided by a self-aware planning component.

Since its conception [2], IPF has been developed on multiple
fronts whose advances are presented in this paper. A novelty of
the self-aware IPF paradigm is the holistic approach integrating
self-optimization, self-diagnosis, and self-organization techniques
in synergy to meet performance targets and safety requirements.
Thanks to its self-awareness and high degree of adaptability, IPF
is an attractive solution for the life cycle management of future
dependable systems, which require monitoring, identifying, and
handling different internal and external variabilities, threats, and
uncertainties that occur with different frequencies.

1.1 IPF’s hierarchical organization

To master the increased complexity of managing such a self-aware
system, IPF is hierarchically organized in five layers [12]. Figure 1
shows the organization. The production line (layer 1) contains the
mixed-critical workload, with tasks of different criticality levels,
and the system resources where the workload executes. The re-
mainder of this paper refers to the two representative levels: best-
effort (BE) and safety-critical (SC). The workload executes within
the infrastructure and the container-based execution model of the
process support (layer 2). This layer provides basic execution sup-
port, such as operating system (OS), real-time operating system
(RTOS), and the runtime environment (RTE). The supervisory pro-
cess control (layer 3) is responsible for monitoring the resources and
optimizing the workload execution. The entities in this layer act
locally and autonomously within boundaries specified by the layers
above. That is the case of LCT and TAL, which perform local self-
optimization and self-diagnosis and are introduced in Sections 2
and 4, respectively. The manufacturing execution control (layer 4)
is responsible for enforcing safe system configurations by globally
monitoring, assessing risks, as well as controlling the layers below.
The layer contains two entities, the system controller (SC) and the

|ﬂIPF

Enterprise Resource Planning

- Long-term planning

Layer 5

N AN

<

Manufacturing Execution Control

- Plan execution and resource configuration (SC)
e - Plan enforcement (BEC)
Layer 4
——
Supervisory Process Control
- BE workload execution optimization (LCT)
- Sensing (LCT, TAL)
Layer 3
Process Support
- Basic workload execution support
(RTEs, OSs, RTOSs)
Layer 2

)

Line
- Resources
(processing, shared)
- Mixed-critical workload
(SC, BE)

Resources

Layer 1

Figure 1: IPF’s five-layer hierarchical organization [12].

best-effort controller (BEC), which manage the execution of the
different criticalities. The BEC manages the best-effort workload
execution under the supervision of the system controller, which
also manages the safety-critical workload execution. That takes
place under the guidance of the top layer, the enterprise resource
planning (layer 5), which is responsible for the planning in IPF. It
plans future proactive and reactive actions, taking into account the
operating conditions of the system, assessing risks and impacts of
short-term factors such as error rates, energy consumption and
workload variations. It further considers long-term factors such as
aging, energy constraints, and changes in the workload, quality-of-
service (QoS) goals, and non-functional constraints. For a detailed
description of the model, the interested reader can refer to [12].

1.2 An illustrative example

As a self-aware, mixed-critical factory, the IPF system comprises
different features. It verifies the execution of safety-critical work-
load at runtime and it proactively acts upon critical conditions for
the safety-critical workload, called imminent hazards. It also opti-
mizes both locally and globally the best-effort workload execution.
These features are illustrated in Figure 2 through an example of
a healthcare pacemaker application executed on an IPF tile-based
many-core system.

Figure 2a illustrates the initial mapping of the pacemaker ap-
plication (adapted from [17]) to the system. The mixed-critical
workload, represented as a directed acyclic graph (DAG), consists
of eight safety-critical tasks (red nodes) and three best-effort tasks
(green nodes). The arrows represent data and control dependencies
between tasks. The workload is mapped to best-effort and safety-
critical containers, which contain basic execution support. The set
of processing resources to which the BE containers and SC con-
tainers are mapped form the BE zone and SC zone, respectively.
The containers are mapped to four tiles (processing resources). The
configuration of the IPF system is done by means of operating re-
gions (ORs) and operating points (OPs) [12]. The mappings and the
configuration ranges of the containers and resources form an OR.
An OP is a specific configuration for the containers and resources

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

Processing resources

wr

Mixed-critical i § i 7 i ’2
SC| (FSESN | (ESCEN| (FEC| 0 (SEW| ESEN| | (BSCA [ESThN | (RS
BE, | | BE,| | |BE, BE, | | BEy, | | BEio| | | SC | |BEue
IPF configuration lLojca\ ‘ Glc;bal Immi‘nent Irnrni‘nent
optimization hazard Hazard

sC,

1 optimization

Handling

M

Processing .
resources s¢, sC, ‘ /
BE, | | BE, iy 1 ‘ ‘
)) (1) ()) e
@ O, ® ® ® @ ®—

(a) Mapping to an IPF system

(b) Operation of an IPF system in time

Figure 2: Example of a healthcare pacemaker application with a mixed-critical workload mapped to an IPF instance (a). The
operation of that IPF system in time and its configuration by means of operating regions (ORs) and operating points (OPs) (b).

within an OR. There might be multiple OPs within an OR, depend-
ing on the configuration ranges of the OR. The interested reader
can refer to [12] for detailed definitions.

A possible execution sequence of that IPF system is illustrated in
Figure 2b. The system starts in an initial configuration (D within the
range of the current operating region (COR), which specifies the
system configuration with bounds for local changes. Local changes
in the configuration of containers and resources move the OP within
the COR. At time (2), workload variations are detected in one of the
resources (BE3) by layer-3 entities, who identify opportunities for
local self-optimization. The local self-optimization is then carried
out in ® by changing the configuration of the resource (executing
workload of container BEy) according to a given goal, represented
by a change of the system’s OP within the same COR. Later at time
(@, a more significant workload variation is detected by the layer-
4 global monitoring of the system. The global self-optimization
and self-organization are carried out at (3) by moving the best-
effort workload (containers BE1 and BEy) into a common processing
resource (combined container BE1.2) and powering-off one of the
resources to save energy and reduce aging. That is represented
by the transition from the COR to a new operating region, called
next operating region (NOR). Later on (§), an imminent hazard
caused by an impending permanent fault due to aging processes is
detected by IPF’s layer-3 self-diagnosis. It represents an increased
risk to the system. Upon detection, IPF’s self-organization takes
a proactive measure to mitigate the increased risk to the safety-
critical functions in the workload (7). The proactive action is carried
out by migrating the affected safety-critical workload (SC3) to a
resource with reduced risk, represented by a transition from the
COR to an NOR (®).

The remainder of this paper discusses each of the four aforemen-
tioned features of the IPF paradigm. The local self-optimization
with hardware-based learning classifiers is discussed in Section 2.
The global self-optimization is discussed in Section 3. The self-
diagnosis with runtime verification is presented in Section 4. The

self-organization with proactive handling of imminent hazards for
safety-critical applications is presented in Section 5. Finally, Sec-
tion 6 concludes the paper.

2 HARDWARE-BASED LEARNING
CLASSIFIERS FOR MIXED-CRITICAL
ENVIRONMENTS

Best-effort and approximate applications are controlled and opti-
mized in IPF with a hierarchical, system-wide management struc-
ture. This section describes a method for the optimization of the
best-effort tasks, which complies with the safety-critical work-
load management performed by the system controller and the
constraints imposed by the planner in consideration of the require-
ments of the safety-critical workload. Exploiting maximum control
flexibility to achieve the given performance objectives with a mini-
mum amount of occupied resources (e.g., w.r.t. power budget and
compute elements) while fully adhering to the specified constraints
(e.g., in terms of local power dissipation or temperature) is the
factory inspired paradigm that is applied here.

In a factory, a department or manufacturing group is given a
target production rate objective as well as firm constraints on the
utilities to use, such as electricity, source materials, and monetary
production cost per unit. The department or group has a maximum
of freedom on how to accomplish these targets under the con-
straints. At the same time, the produced goods of a given group are
not as critical as other critical goods for the success of the factory
as a whole. However, assuming that a given performance target
can be achieved with different amounts of resources occupied, find-
ing an approach to satisfy the objective target with the minimum
amount of resources (i.e., having identified a Pareto point) frees
up resources and utilities that may be used to optimize the critical
production processes. Likewise in IPF, a configurable operating
point needs to be identified within the tunable solution space (e.g.,
frequency and amount of occupied cores) of system parameters in
order to accomplish the performance objectives, while respecting

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

constraints defined so as to avoid violation of the safety-critical re-
quirements. This results in a lower local temperature and/or power
dissipation and creates an extra margin for the critical applications.
In IPF, this is achieved by local self-optimization using Learning
Classifier Tables (LCTs).

In the following, we will describe the basic structure and prop-
erties of the learning classifier table based reinforcement machine
learning engine. Then, the envisaged strategy to optimize the solu-
tion space exploration will be presented.

The presented LCTs and their envisaged operating mode provide
the ability of local self-optimization for the best-effort workload
in the mixed-critical IPF system, as illustrated by steeps (D and
@ in the example of Figure 2b. Providing local self-optimization
with LCTs is important to enable dependable systems operation as
the continuous learning ability will allow to meet required perfor-
mance while reacting to changes, e.g., in workload, software, and
environment.

2.1 Learning Classifier Table (LCT)

In IPF, LCTs are used as reinforcement learning based controllers
to meet objective targets for best-effort tasks within the given
constraints.

This is accomplished by exploiting the rule-based structure of
the LCT learning engine, whereas a rule consists in a combination
of condition, action and fitness. Therefore, an LCT observes how
a system behaves after a given action has been applied. This ob-
servation results in a grade representing the effect of this action
with respect to an objective function and is used to update the
current fitness of this specific rule. LCTs are a subset of Wilson’s
ZCS [18], which is a type of learning classifier system (LCS), and
were proposed by Zeppenfeld et al. in the ASoC project [20].

Figure 3 represents the overall structure and periodically repeat-
ing operation steps of an LCS:

(1) By comparing the sensor values to the conditions of all rules
in the population [P], a match set [M] is generated. Condi-
tions can contain wildcards to match several sensor values.

(2) A roulette-wheel selection algorithm decides on an action
based on the fitnesses of the rules in [M]. All rules in [M]
with the same action as the one selected by the roulette
wheel are saved as the action set [A].

(3) The selected action is forwarded to the actuators which apply
it to the system. Further, the action set is saved in [A];_1.

(4) After applying the action, its effect is measured by sensors,
and based on the effectiveness towards achieving the objec-
tive, some reward is given by the credit assignment compo-
nent. The fitnesses of the rules in the saved action set [A];—;
are updated based on the reward according to a modified
version of Q-learning proposed by Wilson [18].

(5) Finally, the updated rules are forwarded to the population
[P] for the next evaluation.

The roulette-wheel selection algorithm allows the LCTs to escape
from local optimums by trying out actions which result in less
optimal configurations than already explored ones. Compared to
LCSs, the in hardware implemented LCTs do not currently have the
possibility to generate new rules through, e.g., a genetic algorithm.
This is currently under investigation.

Credit

Assignement) Objectives) :
Reward Und, i/s) Genetic 1

te \ |

‘ ewar paate . Alg. .
Population [P] e !

idx | cond action fitness ... ‘
¥ | 101X 101 0.23
#2 X001 001 0.58

#3 1X0X 011 0.02

System

Actuators

#n XXX1 111 0.89

T
A Feedback
Match Set [M]
idx cond action fitness
#8 1X1X 011 0.12 na
#53 X111 001 0.56
#116 1111 011 0.52

<
v Roulette Wheel @

Action Set [A]

idx cond action fitness
i1 # | IXIX 011 0.12

#116 1111 011 0.52

Action
Selection
Algorithm

Action performed

Control @

Figure 3: Overview of the LCT logic (dashed lines correspond
to the fitness update path; dotted entities are part of LCSs,
but not LCTs).

2.2 Optimization strategy

The main optimization challenge in a system management problem
lies in the fact that the optimization is performed for metrics that
cannot directly be influenced by changing different tunable param-
eters. In our case, this means that LCTs act on the solution space
whereas the actions have an impact on the objective space (e.g.,
instructions per second, temperature, utilization). Moreover, the
metrics from the objective space are used to grade the actions ap-
plied on the solution space. This behavior is represented in Figure 4,
where a configuration (c1) results in a state (s1), which cannot be
exactly determined ahead due to uncertainties, such as surrounding
temperature and software complexity. This state (s1) is used to
decide for an action (al) which results in a new configuration (c2)
and a state (s2). Based on the new state (s2), the action (al) for the
condition (s1) in the LCT is graded.

2.2.1 Boundaries. In best-effort only environments these spaces
are only constrained by the hardware’s limits such as maximum
frequency and amount of cores for the solution space as well as
maximal temperature for the objective space.

In a mixed-critical system, however, there is a bidirectional im-
pact between best-effort and safety-critical workloads [12]. To rule
out unpredictable impact on the execution of safety-critical work-
load, the enterprise resource planning (layer 5 in Figure 1) specifies
additional constraints on the solution as well as on the objective
space of the best-effort containers by limited CORs. These con-
straints are enforced by the BEC of the manufacturing execution
control (see Section 1.1 and Figure 5). Additionally, the application
and the operating system might specify constraints or at least a
reference (see mark in Figure 4) to optimize the configuration for
the best-effort objective.

To extend their applicability to mixed-critical platforms, LCTs
must handle such additional constraints (see invalid zones in Fig-
ure 4).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

¥ Archive Control
ontro.

Objectives
Feedback

LCT

~

14440 0000000004000070077

®

Temperature
52
Sensors
System
Actuators
threads

20 *

10 15 " ~~ 0 _-- 1 2

IPSjin a.u. Tm----7 frequency in GHz

ref i
Objective ‘Space LOR:

Figure 4: Impact of safety-critical boundaries on the LCTs’
behavior

Solution Space

2.2.2 Approach. Applying LCTs on this new optimization problem
containing additional constraints requires to tackle two issues. First,
the actions of the LCTs need to be limited in order to stay within
the defined solution space. Second, the LCTs have to be prevented
from applying actions which violate the objective space limits.

Restraining the actions to prevent violations of the solution space
constraints can be easily achieved. Indeed, it only requires checking
whether violations can occur before applying a given action and,
in such a case, limiting it to the closest feasible value allowed.

Enforcing the constraints in the objective space is a more com-
plex challenge. For example, in case no precaution is taken, con-
secutive small steps could lead to violations, due to the stochastic
behavior of the roulette wheel selection algorithm presented in
Section 2.1. Also using a deterministic action selection algorithm
can equally cause a violation of constraints for a yet unlearned rule
set.

Violating a constraint is of course not permitted within IPF, as
this would trigger a change to a new OR, as mentioned in Sec-
tion 1.2. To prevent violating any constraints in the objective space,
we introduce margin zones in front of them (see Figure 4). These
margins allow us to recognize the risk of violation in the next LCT
cycle. To ensure that this risk is really recognized, the margin needs
to be larger than the step size a single action of the current rule set
can have on the objective space. This is ensured by either having
margin zones that are large enough or by limiting the dynamic
range of the actions being allowed in a rule set.

In case of an imminent constraint violation due to an action taken
by the LCT, it is important to bring the subsystem back to a safe op-
eration point. State-of-the-art methodologies for solving this issue
make use of a backup policy that is able to lead the subsystem from
approaching or violating a constraint to a known safe operating
point [4]. We utilize an archive containing the best configuration
experienced by this subsystem so far, for the currently executed
workload. Doing so, the applied "emergency configuration" fits the
current system, requiring only a low amount of memory and a few
comparators in hardware to be implemented. Further, this approach
overcomes the probabilistic behavior of the roulette wheel selection

algorithm as well as the issue of non learned rule sets/configurations
since, by design, a valid configuration for the current setup must
exist in the archive, due to the plan from layer 5 which is enforced
at least when transitioning to the COR. An example situation is
illustrated in Figure 4. There, in case a configuration (c3) results in a
state (s3) which is in the safety margin, the archive applies the best
so far experienced configuration (c1). After successfully returning
to a valid configuration and its corresponding state, the learning is
regularly continued. A rule resulting in the margin zone gets the
lowest possible reward to prevent or minimize further application.

3 MANAGING BEST EFFORT WORKLOADS

Hierarchical management of the best-effort workload in IPF con-
tributes to dependable system operation. The hierarchical manage-
ment provides self-adaptivity and guides self-optimization within
the BE zone in conjunction with the system controller. As described,
LCTs provide self-optimization of dynamic workloads within a
COR. However, LCTs themselves require supervision to: (1) ensure
they are achieving application goals, (2) specify their operating
configuration bounds, and (3) enforce system constraints. These re-
sponsibilities belong to the manufacturing execution control (layer
4), specifically the BEC.

Figure 5 shows the hierarchical relationship between BECs and
LCTs. The application specifies goals with respect to the best-effort
portion of its workload, and provides the BE goals to the BEC. The
BEC is responsible for accomplishing the BE goals, but does not
directly control the underlying system. Instead, the BEC provides
control parameters to the LCTs in order to indirectly control the
subsystem(s). For example, a workload may specify a target value
for an application-specific QoS metric. The BEC is responsible for
determining the distribution of QoS “budget” among subsystems,
and in turn providing LCTs with an appropriate objective function.

Provided an objective function, LCTs are designed to search the
subsystem’s configuration/solution space for optimal combinations
of knob settings. The OR defines the valid ranges of knob settings,
and it is possible that the allowable range within an OR is only a
subset of the possible range (as depicted in step) of Figure 2b).
The system controller (SC, Figure 1) specifies the COR, and informs
the BEC of the valid knob settings. The BEC is then responsible for
enforcing the allowable range of knob settings. For example, the
SC may determine that, for a given workload, cores must cap their

Application Goals £

Operating Conditions

Inf
System Model o Best-Effort Controller (BEC)
1T Control ParamsA{
[N
[N
LCT,
Updates
| Condition Action Fitness
| X01X 1001 0.5
_ 100X _ _ 0010 _ _033 _ _

FeedbackT

Figure 5: Hierarchical relationship between the Best-Effort
Controller (BEC) and LCTs.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

operating frequency at 50% of the maximum in order to prevent
thermal events. The BEC will then provide control parameters to
the LCTs such that the LCTs only allow actions that result in core
frequencies under 50%.

It is possible that, due to operating conditions or workload vari-
ability, LCTs’ self-optimization may explore valid configurations
of subsystems that violate system constraints specified by the SC
(depicted in step @ of Figure 2b). The BEC is responsible for sens-
ing the system state and enforcing system constraints provided
by the SC. That is, if the BEC observes LCTs violating system con-
straints, the BEC must update the control parameters (e.g., objective
function and margins) in order to honor the constraints. For exam-
ple, a phasic change in BE workload could cause a valid operating
point (OP) to violate a specified power budget. In this case, the BEC
should take immediate action to update the LCT objective function,
corresponding margins, and the active ruleset to prioritize lowering
the power over achieving target QoS. This is how BECs provide
self-adaptivity. Additionally, it may be necessary to take more sig-
nificant precautions if the same system constraint is continuously
violated. If this is the case, the BEC can trigger an event, causing
the system controller to change the OR.

In addition to managing BE containers, the BEC is also required
to respond to SC requests during self-organization in order to en-
able the enhanced dependability provided by the entire IPF. Self-
organization is described further in Section 5.2.

3.1 Enabling self-adaptivity through reflection

BECs use principles of computational self-awareness to make run-
time decisions when managing the best-effort zone of an IPF system.
Reflection is a key property of self-awareness. Reflection enables
decisions to be made based on both past observations, as well as
predictions made from past observations. Reflection and predic-
tion require a self-model of the subsystem(s) under control, as well
as models of other policies that may impact the decision-making
process. Predictions consider future actions, or events that may
occur before the next system evaluation and (re)configuration, en-
abling "what-if" exploration of alternatives. The main goal of the
prediction model is to estimate system behavior based on potential
actuation decisions.

Consider the best-effort controller shown in Figure 6 that in-
cludes a task mapping policy, and supervises LCTs responsible for
dynamic voltage and frequency scaling (DVFS). At the finest time
granularity, we have the operating system scheduler, whose goal
is to select a task to execute on a given core. A new decision must
be made whenever a new task is created, a task completes, a task’s
quantum expires, an interrupt is raised, etc. Such decisions are
made on the order of microseconds. At a coarser time granularity
we have the DVFS policy deployed by LCTs, which execute peri-
odically (10 milliseconds) to analyze the system load and select an
appropriate operating frequency. At the coarsest time granularity
(100 milliseconds), the task mapping policy runs periodically to
define a new task-to-core assignment. Migrating a task from one
core to another has significantly more overhead than changing the
CPU frequency in a typical heterogeneous multiprocessor [19]. The
BEC coordinates among different policies through policy models,
regardless of varying time granularity.

What if the What if the
What if a task is frequency schedule
migrated? changes? changes?

Scheduler o HW

Model -l Model

Task Mapping o DVFS

Policy I Model

- Perf/Power - Perf/Power - Perf/Power
- Load - Load
- Frequency

Figure 6: Example of a task mapping policy that queries
models of OS policies for DVFS and scheduling.

In order to make an informed task mapping decision, for instance,
the policy must consider the effects of its decision on the behavior
of the underlying DVFS and scheduling policies. Furthermore, the
invocation period of actuations dictates how complex the decision
making logic can be. For instance, a scheduling decision must be
made in the sub-microsecond range in order not to disrupt the
system. Task-to-core mapping, on the other hand, is done compar-
atively infrequently, and affects the system performance over a
long timespan. Therefore, the overhead of using complex models
to make such decisions can be mitigated by the potential benefits
of an informed decision.

The components within the reflective system model interact in a
hierarchy defined by the dependencies of the actuations performed
in the system. For instance, Figure 6 illustrates the scenario for our
example. Workload models assume that each core can run multi-
ple tasks and there is no formal or explicit dependency between
threads. Before the task mapping policy decides to migrate a task,
it (1) queries the reflective model asking: what will be the perfor-
mance of task A if it is migrated? (2) The LCT’s model predicts the
resulting core frequency provided the hypothetical task mapping.
(3) This information is passed on to the performance/power model
which predicts the task performance. Architecture models define
the architectural characteristics of the target platform, including
instruction-set architecture (ISA), number of cores, core types, etc.
Finally, the predicted metrics are used by the policy to make the
decision, which is passed to the actuator through the actuation
interface.

4 RUNTIME VERIFICATION AND INFERENCE

Within IPF, the techniques in this section are relevant for a long-
term dependable system because short-term and long-term system
monitoring/verification/inference is a prerequisite for system state
identification/recovery as shown in Figure 1 (layer 3).

Runtime verification has been widely used to monitor the exe-
cution of systems. At the system development stage, verification
and debug consume about 75 % of the effort, and despite the effort,
hazard-resulting failures at runtime cannot be ruled out. A software
method, i.e., instrumentation, has the advantage of not requiring
any extra hardware, but it has too much overhead in situations
where short response time is critical. Thus, in a safety-critical sys-
tem, it is ideal for performing non-intrusive runtime verification in
hardware. Modern microprocessors have a trace interface that can
be used for non-intrusive runtime verification with an independent
runtime verification hardware unit [16]. That is, the system loads

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

a programmable hardware unit with properties through software
and monitors that are satisfied at runtime, detecting errors caused
by permanent faults.

Runtime verification provides a reactive way to detect an error
immediately, but detection of imminent hazards in advance through
it is difficult or almost infeasible. In order to cope with imminent
hazards, a method that predicts the future through learning is re-
quired. An inference engine (IE) predicts imminent hazards based
on trained data using machine learning (ML) techniques such as
recurrent neural networks (RNN) or temporal convolutional neu-
ral networks (CNN). In the case of safety-critical tasks, ML-based
prediction can be used because it is essential to respond even with
some false positives proactively.

In this section, we introduce the Trace Abstraction Layer (TAL)
for runtime verification and inference consisting of: (a) a design-
time methodology for developing software and constructing ver-
ification properties for runtime verification to handle errors, (b)
a design-time methodology for training the inference engine to
predict imminent hazards. Figure 7c presents TAL, consisting of
several functionally/logically separated components which are: (1)
compatibility layer, (2) filtering layer, and (3) verification/inference
layer for permanent fault/imminent hazards detection. Section 4.1
discusses the need for TAL and the role and relationship of each
layer. In Section 4.2, we will look at the runtime verification that is
currently being used in IPF, and look at the inference engine which
is the future direction in Section 5.1.

.
™ 5, (a) (b)

v N
Programmer, ’{u Offline trace w/

x annotation (hazard)
S
\‘ev;
\
%, \© Program
‘«,, \ TAL hardware
v
configuration +
Tester, Program
Verification
Expert “&1
& /'
g TAL
s Verification d
Properties g
o
Hardware | TAL Inference Engine
Expert © Configuration
o .
Verification API Inference API g
Verification V Programable Runtime Inference V Inference 13
Layer Verification Unit (PRVU) Layer Engine (IE) ../ L,

Filtering API

S Timed
Filtering Programmable
Layer Filter = O Events =
Memory
Trace ﬁ Timestamp Address Valid Opcode Address Value

Compatibility

Layer Sensor 0 ,—@)——%O ..|Sensor N

Figure 7: Overview of a design-time methodology for run-
time verification (a), a design-time methodology for infer-
ence engine (b), and the Trace Abstraction Layer (TAL) hier-
archy (c).

AT 7|

Trace Buffer

4.1 Trace Abstraction Layer (TAL)

TAL’s well-defined and independent layers shown in Figure 7c
make it possible to be used in a variety of ways to meet goals and
circumstances.

The compatibility layer (CL) at the lowest layer ensures compat-
ibility with different processors. Existing microprocessors provide
different trace interfaces for various vendors. Because these inter-
faces are not compatible with each other and the bits, types, and
numbers of signals are different from each other, there is the prob-
lem that the hardware using trace interface is also incompatible
across platforms. Therefore, CL is a layer to ensure data compat-
ibility between heterogeneous processors and different sensors.
Different architectures need CL implementations that are tailored
for each, and common implementations can be used for layers above
CL.

Since tracing is a cycle-by-cycle method, too much information
can be flooded into verification/inference hardware. Therefore, the
filtering layer (FL) focuses on filtering this data and delivering
only the necessary information with a timestamp to the next layer.
Software-programmable filters through the Filtering API enable
context-sensitive filtering for tracing.

The verification layer (VL) provides a variety of primitives for
non-intrusive runtime verification. The inference layer (IL) supports
the prediction of a hazard ahead of time. Instances of core modules,
which are programmable runtime verification unit (PRVU) and
inference engine (IE), of VL and IL, are introduced in Sections 4.2
and 5.1, respectively.

4.2 Runtime verification

In Figure 7a, programmers perform typical software development,
providing basic verification properties with verification experts.
Testers, verification experts, and hardware experts analyze the
requirements and prepare verification properties. TAL verification
property has the data required for filter configuration, properties
for runtime verification, loaded into the hardware at the beginning
of verification, and helps to perform runtime verification through
hardware during system execution.

From the IPF point of view, runtime verification hardware realiza-
tion has been discussed in various methods such as coarse-grained
reconfigurable architecture (CGRA), runtime partial reconfigura-
tion in field programmable gate array (FPGA), and automata proces-
sors (APs). The above methods are intended to perform RV using
the limited hardware resources with maximum efficiency.

In IPF systems, the current generation of TAL uses AP or equiva-
lent implementation as a verification hardware [15], accompanying
a model transformation from the well-known timed automata (TA)-
based requirement model to an AP-based model and uses it for
verification. In the experiment, TAL with the pacemaker and colli-
sion avoidance examples, we achieved 100 % error detection rate
using only 3 % of the resources of AP, providing the root cause
of the errors. Clearly defined properties can perfectly detect all
the errors caused by both logical/physical failures, but they have
two problems: 1) It might be late to recover system problems as
a reactive method. 2) There is no way to verify what is not in the
requirements. In order to detect such anomalies, an inference-based
detection process is needed.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

5 PROACTIVE SELF-DIAGNOSIS AND
SELF-ORGANIZATION FOR
SAFETY-CRITICAL APPLICATIONS

IPF’s proactive self-diagnosis and self-organization address the
strict requirements of future safety-critical applications. Besides
functional requirements, safety-critical applications have strict non-
functional requirements that must be met at runtime, such as tim-
ing, integrity, availability, and reliability [3]. The two mechanisms
cooperate in synergy to increase the system dependability while
ensuring that those requirements are met despite the presence of
imminent hazards.

Imminent hazards are unacceptably high risks of system fail-
ure [12]. As such, imminent hazards can have different causes. For
high dependability, we focus on imminent hazards caused by the
imminent failure of a processing element due to an impending per-
manent fault caused aging processes. Those faults are preceded by
increasing error rates and intermittent faults [1]. Note that immi-
nent hazards must be distinguished from latent faults and errors
caused by unrelated transient and intermittent fault occurrences.

The self-diagnosis must detect imminent hazards, and must do
so in time, so that they can be proactively handled by IPF’s self-
organization. The self-organization must then ensure that the sys-
tem proactively acts in time by reorganizing the system and reduc-
ing the risk to an acceptable level. Both must finish before a hazard
occurs and leads to the violation of any of the timing, integrity,
availability, or reliability requirements.

Figure 8 plots the risk of a system failure in time to illustrate the
proactive concept and compares it with a conventional, reactive one,
and a static one that is neither proactive nor reactive. In time, the
risk of an error increases, such as the occurrence of a permanent
fault, up to a point where it becomes an imminent hazard. The
imminent hazard is detected (D), and then handled 2) with time to
spare before the error finally occurs (3) (the time interval (&) and
causes the hazard (9. In contrast, the reactive approach only detects
the error 3 and must handle it within a very short time before the
hazard and any violation of the non-functional requirements @
(the time interval). The system in a static configuration fails and
results in a hazard @) since it does not tolerate the error.

The two proactive mechanisms operate in layer 3, supervisory
process control, and layer 4, manufacturing execution control, of
the IPF organization (cf. Figure 1), where a local and a global view
of the system are maintained, respectively. The remainder of this
section discusses the mechanisms and the particular challenges
involved in achieving the above-mentioned guarantees.

5.1 Proactive self-diagnosis

The on-chip proactive self-diagnosis goes beyond conventional
error detection: it detects hazards in advance before the error occurs
and affects the system. Its proactive nature enables IPF to handle
imminent hazards with more time and flexibility since the system
execution and state have not been affected by the error yet. In
comparison with conventional, reactive error detection approaches,
the proactive self-diagnosis is a promising mechanism that enables a
more lightweight proactive hazard handling with self-organization.

Error detection in mixed- and safety-critical computation usu-
ally relies on modular redundancy approaches applied in time or

Unacceptable Hazard Static

Error handled [~
>

Imminent q
hazard [
handled [
Imminent
Low hazard 42

| Reactive

Risk

| i Proactive

@ .. Time

>db
»

®

Foma

Figure 8: Comparison of proactive hazard detection and han-
dling vs. reactive error detection and handling vs. static sys-
tem (neither proactive nor reactive).

space, while error detection in communication heavily relies on
information redundancy. The current state of the art includes the
so-called cross-layer approaches, which combine error detection
and handling techniques in different layers of the system stack
for lower overhead and increased efficiency. An example is the
redundant software execution with hardware-supported error de-
tection [13], where the software can be protected with replication
in space or time combined with efficient error detection in hard-
ware. The approach can be additionally coupled with other error
detection mechanisms to increase coverage and resilience while
ensuring integrity [14]. Nonetheless, the industry still relies on
costly hardware modular redundancy approaches, such as diverse
dual modular redundancy (DMR) or triple modular redundancy
(TMR) with lock-step execution [6]. Although effective, conven-
tional approaches are highly inefficient, as they incur substantial
overhead - e.g., more than 100% overhead in DMR, and severely
restrict the reaction time for recovery, due to its reactive nature.

Integrity is paramount in safety-critical systems [7, 14]. Al-
though the maximum hazard handling time with the proactive
self-diagnosis (&) in Figure 8) is not as critically short as the maxi-
mum reaction time in reactive approaches (®) in Figure 8), integrity
continues being a paramount system requirement. The system must
be aware of all errors in it and cannot allow them to affect its ser-
vice, which would result in the unacceptable risk of an uncontrolled
failure. The system must detect all errors; it can handle or tolerate
some; when it cannot handle or tolerate an error, it must indicate
failure before it becomes a hazard [14]. Conventional, reactive tech-
niques can ensure integrity by only allowing data to be consumed
or an output to be made after the possibility of error has been ruled
out [13]; or, less strictly, by detecting the error and reacting to it
in time to contain its propagation [14]. In contrast, the proactive
self-diagnosis detects imminent hazards before the error occurs and
relies on IPF’s self-organization to handle it before it propagates
and becomes a hazard.

The self-diagnosis requires both a local and a global view of the
system, and operates therefore in both layer 3, supervisory process
control, and layer 4, manufacturing execution control, of IPF (cf.
Figure 1). Once the risk of a hazard increases up to a point where

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

I
=

timestamp |temp | power [load | freq hazard
0 0.011 65| 2.996| 0.27| 2000
1 0.021 64| 1.958| 0.40| 2000
2 0.032 64| 2.245| 0.45| 2000
3 0.042 65| 3.113| 0.90| 2000
4
5
6

0.052 64| 4.037 1[2000
0.063| 66.5[4.6185 1[2000

0.073] e8] 4.644] 1]2000] }
152 1.596|w 69 4.711] 1] 800 1

(a)

o|lo|o|o|o|o|o

Trace data 5 ms periodic
(Temperature, Power, Frequency, Load, Hazard (tag))
RNN 4 Long Short Term Memory-stateful layer

Training Data Use core 0,1,2 data (2430 epochs)

Test Data

e c 0 N
(Accuracy) Use core 3 (93%),4 (99%) data

(b)

Table 1: Detailed trace data (a) and the result of the RNN-
based inference engine for a given configuration (b).

a permanent fault is close, the imminent hazard is detected (© in
Figure 2b and @ in Figure 8) and reported to the system controller
(layer 4) with a discrete event. The event triggers the handling of
the imminent hazard by IPF’s self-organization () in Figure 2b and
) in Figure 8).

An envisioned way to detect imminent hazards is by means of
an inference engine (IE). The engine is coupled with TAL, as shown
in Figure 7c. The trace data in which the microprocessor outputs
information for each tick or various sensor data is treated as a time
series data. An RNN with long short-term memory (LSTM), useful
in predicting the time series data, is then employed to examine the
obtained trace data. Figure 7b shows the offline training process.
RNN LSTM-based weights are obtained using trace data at program
execution and data consisting of normal/abnormal annotation (tag).
The obtained weight is synthesized with the inference engine con-
figuration and updated at runtime by the IE. Through this, IE can
be used to predict hazards at runtime.

A preliminary experiment employed the approach to detect im-
minent hazards caused by thermal throttling due to a too high
temperature of a core. Table 1a shows the extracted trace data with
a 5ms period on a 2 GHz ARM 8-core ODROID board. The hazard
is tagged in the trace where the frequency throttling occurs, after
its prediction. To use the trace of each time as input data, we con-
struct a one-hot vector that assigns one entry to a unique row after
performing normalization.

Considering the large trace size, a total of four LSTM layers is
connected. That is shown in Figure 9, where x (trace one-hot vector)
is input, y (0: No hazard, 1: Hazard) is output, and St is hidden state
respectively. Trace data from cores 0, 1, and 2 are used for a training
set and data from cores 3 and 4 for a test set. The result from the
test set shows 93 % and 99 % accuracy to detect an imminent haz-
ard 20 ms before the hazard. The preliminary experiment showed
excellent performance in predicting hazards based on RNN LSTMs.
Future work includes an efficient design of a hardware-based RNN
LSTM implementation with high accuracy and low area overhead,

[Dense |

®©

Figure 9: Multi-layer LSTM for the inference engine.

@)
St
3)
S
2)
St
(e8]
S

@)
St
3)
S\'l
2)
Sii
)
Sei

—

online learning interacting with runtime verification, and optimized
network structure for trace data.

5.2 Proactive self-organization

In hard real-time and safety-critical domains, tackling the impact
of hardware errors in time, i.e., before a failure occurs, is indis-
pensable. The major limitation in conventional solutions, e.g., with
modular redundancy, is that the mechanisms are developed to re-
actively handle errors. In addition to the short time available for
error recovery, the system safety can also be jeopardized during
the recovery process [5, 9]. As depicted in Figure 8, upon error oc-
currence, the reactive system must recover from the error in time,
assuring temporal guarantees and functional safety. Any potential
erratic behavior during the recovery process jeopardizes the whole
system safety. As the chip becomes more complex, our aim is to
address system early degradation - preventing the system from
failing and being in a hazard. Therefore, proactively handling im-
minent hazards provides flexibility and reduces the vulnerability of
the system.

To this end, IPF proactively handles an imminent hazard based
on the hazard type. One potential hazard handling is by turning off
the resource once it is idle to decrease temperature and mitigate
aging [8, 10]. However, as IPF addresses early degradation, it mainly
employs task migration as a protection tool. Upon detection, the
imminent hazard event is handled through the system controller (cf.
Figure 1, Layer 4). The system controller has the ultimate control
of the platform so that when notified of the event by the TAL, it
employs the task migration, transitioning the system to an appro-
priate new configuration, represented by a NOR, as depicted in
steps (7 and (®) in Figure 2b. IPF’s proactive approach has multiple
advantages over a strictly reactive one. For example, it increases the
safety, the lifetime, and the flexibility of the system, and decreases
the overhead in comparison with reactive approaches.

While the system controller provides a proactive handling of an
imminent hazard, and thus protects the application in advance from
experiencing an error, it induces the following challenges during
the system reconfiguration:

o Temporal guarantees of the protected safety-critical tasks
The system controller interferes with a running system that
is still safe, and performs reconfiguration — moving the sys-
tem to a new OR. Thus, the protected safety-critical tasks,

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

during the reconfiguration, are no longer available, and their a self-aware planning component. This paper discussed four tech-

temporal guarantees are jeopardized. niques in IPF that make it a promising solution for highly depend-

o Vulnerability to immediate errors able systems: from self-diagnosis for early detection of degradation
The system controller, during the reconfiguration process, and imminent failures to the unsupervised platform self-adaptation
induces vulnerability of the protected safety-critical tasks, to meet performance and safety targets.

caused by reducing the system redundancy. It is already a

problem in terms of immediate errors that would then have ACKNOWLEDGMENTS

higher impact on the system safety. We acknowledge financial support from the following: NSF Grant
* Functional safety CCF-1704859; DFG Grants ER168/32-1 and HE4584/7-1.

As the system controller interferes with a running system, it

may induce system failure due to erratic behaviour during REFERENCES

the reconfiguration. [1]
[2]
To do so, the system controller must provide appropriate com-
munication mechanisms and protocols with other local controllers
in the system in order to fulfill the task migration from a failing tile
to a healthy BE tile. Thus, when the self-diagnosis with TAL (layer Bl
2) reports a detected imminent hazard to the system controller, the [4]
system controller guides and orchestrates the communication with 5

the associated local controllers, the BEC, and the RTOS, in order to
perform the task migration. All communication actions are planned
in advance by the planner (layer 5), and provided to the system
controller as plans. The system controller performs the plan by 6]
conveying the required actions to the local controllers. The BEC
(layer 4) manages and controls the resources and the workload in

7
the BE zone, based on the system controller indications to prepare g
a BE tile for migration whenever necessary. The RTOSes (layer 1) (8]
manage the workload in the SC zone and cooperate with the system

controller to safely perform the migration without jeopardizing the [9
temporal guarantees of the protected safety-critical functions. Thus,

the system controller, during the migration process, must adhere to

a strict requirement, which is mainly a deterministic critical path. (10]
The critical path, triggered by the proactive migration, must be

upper bonded, providing system predictability and safety.

The system controller is a logical extension of an existing network- (11
on-chip (NoC) controller, the resource manager (RM) [11]. The
protocol-based synchronisation was already successfully applied
for NoCs by the RM to improve performance while ensuring tem-
poral guarantees of the safety-critical functions. Moreover, the [13]
concept of the RM has been extended by [8, 10] in order to perform
safe NoC power management. The latter dynamically adjusts the
NoC power dissipation while providing guaranteed service. The
system controller extends the concept of the RM from the NoC level
to the system level, where a suitable protocol and the migration
supervision by the system controller are ongoing research.

[12

[15

[16

6 OVERVIEW (17]

This paper discussed the challenges of IPF, a paradigm for life cycle
management of dependable systems, and how to tackle them. The
IPF paradigm applies principles inspired by factory management [19]
to master the complexity of future, highly-integrated embedded
systems and to provide continuous operation and optimization at
runtime while ensuring guaranteed service even under strict safety
and availability requirements. Achieving that requires a set of tech-
niques that operate in synergy in the system under the guidance of

Cristian Constantinescu. 2003. Trends and challenges in VLSI circuit reliability.
IEEE micro 23, 4 (2003), 14-19.

Nikil Dutt, Fadi J. Kurdahi, Rolf Ernst, and Andreas Herkersdorf. 2016. Conquer-
ing MPSoC complexity with principles of a self-aware information processing
factory. In Proceedings of the 11th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS) (CODES’16).
ACM, Pittsburgh, Pennsylvania, 37.

Rolf Ernst and Marco Di Natale. 2016. Mixed criticality systems - A history of
misconceptions? IEEE Design & Test 33, 5 (2016), 65-74.

Alexander Hans, Daniel Schneegaf, Anton Maximilian Schifer, and Steffen Udluft.
2008. Safe exploration for reinforcement learning.. In ESANN. 143-148.

Jorg Henkel, Lars Bauer, Joachim Becker, Oliver Bringmann, Uwe Brinkschulte,
Samarjit Chakraborty, Michael Engel, Rolf Ernst, Hermann Hartig, Lars Hedrich,
etal. 2011. Design and architectures for dependable embedded systems. In Proceed-
ings of the seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. ACM, 69-78.

Infineon. 2019. 32-bit TriCore™ AURIX™ - TC3xx. https://www.infineon.com/
cms/en/product/microcontroller/32-bit-tricore- microcontroller/32-bit-tricore-
aurix-tc3xx/. [Online].

ISO 26262: 2018. ISO 26262: Road Vehicles — Functional Safety. International
Standards Organization.

Thawra Kadeed, Sebastian Tobuschat, Adam Kostrzewa, and Rolf Ernst. 2018. Safe
and efficient power management of hard real-time networks-on-chip. Integration
(2018).

Amin Khajeh, Minyoung Kim, Nikil Dutt, Ahmed M Eltawil, and Fadi J Kurdahi.
2008. Cross-layer co-exploration of exploiting error resilience for video over
wireless applications. In 2008 IEEE/ACM/IFIP Workshop on Embedded Systems for
Real-Time Multimedia. IEEE, 13-18.

Adam Kostrzewa, Thawra Kadeed, Borislav Nikoli¢, and Rolf Ernst. 2018. Sup-
porting Dynamic Voltage and Frequency Scaling in Networks-On-Chip for Hard
Real-Time Systems. In 2018 IEEE 24th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 125-135.

Adam Kostrzewa, Sebastian Tobuschat, and Rolf Ernst. 2017. Self-aware network-
on-chip control in real-time systems. IEEE Design & Test 35, 5 (2017), 19-27.
Eberle A. Rambo, Bryan Donyanavard, Minjun Seo, Florian Maurer, Thawra
Kadeed, Caio B. de Melo, Biswadip Maity, Anmol Surhonne, Andreas Herkersdorf,
Fadi Kurdahi, Nikil Dutt, and Rolf Ernst. 2019. The Information Processing
Factory: Organization, Terminology, and Definitions. arXiv:1907.01578

Eberle A. Rambo and Rolf Ernst. 2017. Replica-Aware Co-Scheduling for Mixed-
Criticality. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017),
Vol. 76. 20:1-20:20. https://doi.org/10.4230/LIPIcs. ECRTS.2017.20

E. A. Rambo, Y. Shang, and R. Ernst. 2019. Providing Integrity in Real-Time
Networks-on-Chip. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems (2019), 1-14. https://doi.org/10.1109/TVLSL.2019.2906471

Minjun Seo and Fadi Kurdahi. 2019 forthcoming. Efficient Tracing Methodology
Using Automata Processor. ACM Transactions on Embedded Computing Systems
(TECS) (2019 forthcoming).

Minjun Seo and Roman Lysecky. 2017. Hierarchical non-intrusive in-situ require-
ments monitoring for embedded systems. In International Conference on Runtime
Verification. Springer, 259-276.

Minjun Seo and Roman Lysecky. 2018. Non-Intrusive In-Situ Requirements
Monitoring of Embedded System. ACM Transactions on Design Automation of
Electronic Systems (TODAES) 23, 5 (2018), 58.

Stewart W Wilson. 1994. ZCS: A zeroth level classifier system. Evolutionary
computation 2, 1 (1994), 1-18.

Kisoo Yu. 2012. big.LITTLE Switchers. In 2012 Korea Linux Forum.

Johannes Zeppenfeld, Abdelmajid Bouajila, Walter Stechele, and Andreas Herk-
ersdorf. 2008. Learning Classifier Tables for Autonomic Systems on Chip. GI
Jahrestagung (2) 134 (2008), 771-778.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 02,2020 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.

