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Abstract—MPSoCs increasingly depend on adaptive resource
management strategies at runtime for efficient utilization of
resources when executing complex application workloads. In
particular, conflicting demands for adequate computation perfor-
mance and power-/energy-efficiency constraints make desired ap-
plication goals hard to achieve. We present a hierarchical, cross-
layer hardware/software resource manager capable of adapting
to changing workloads and system dynamics with zero initial
knowledge. The manager uses rule-based reinforcement learning
classifier tables (LCTs) with an archive-based backup policy
as leaf controllers. The LCTs directly manipulate and enforce
MPSoC building block operation parameters in order to explore
and optimize potentially conflicting system requirements (e.g.,
meeting a performance target while staying within the power
constraint). A supervisor translates system requirements and
application goals into per-LCT objective functions (e.g., core
instructions-per-second (IPS). Thus, the supervisor manages the
possibly emergent behavior of the low-level LCT controllers
in response to 1) switching between operation strategies (e.g.,
maximize performance vs. minimize power; and 2) changing
application requirements. This hierarchical manager leverages
the dual benefits of a software supervisor (enabling flexibility),
together with hardware learners (allowing quick and efficient
optimization). Experiments on an FPGA prototype confirmed
the ability of our approach to identify optimized MPSoC oper-
ation parameters at runtime while strictly obeying given power
constraints.

Index Terms—Backup-based reinforcement machine learning,
MPSoC runtime management, hierarchical reflective control

I. INTRODUCTION

Nature is a rich source of examples where the collective

behavior of individual entities can accomplish astonishingly

complex tasks in an optimal or near optimal manner. This phe-

nomenon is known as emergence [1] and results from hidden

causal relationships among individuals that follow elementary

rules and actions. Consider, for example, an ant colony finding

the shortest path to food and other resources by following the

strongest pheromone deposition of their peers [2]. Or, flock

of birds during migration, flying with slight lateral offset,

yielding an overall aerodynamic and energy efficient formation

for the entire bird community [3]. Fish schools cluster to form

assemblies in order to protect themselves from predators by

controlling only their relative position, speed and orientation

to neighbors [4]. Emergent control is mimicked in synthetic

environments such as Conway’s game of life [5], emulating

birth and death of artificial cellular automata. In all mentioned

examples, individuals follow specific, simple rules to take

actions that result in beneficial outcomes such as shortest

paths, least energy consumption, or improved safety for the

overall community, at a higher-level of representation. We

draw parallels to scenarios in which many distributed decision-

making mechanisms are deployed in complex computer sys-

tems for runtime management, e.g., dynamic power man-

agement of many-core processors using per-core frequency

throttling. Therefore, a strong case can be made for technical

systems to exploit emergent behavior for managing complex

multi-agent systems in a distributed manner with simple means

of control at the individual constituent level. However, if

not managed carefully, emergent behavior may also result in

uncontrolled oscillations [6] and chaotic actions. Furthermore,

the borderline between desirable and unwanted outcomes can

be very narrow.

In nature, the differentiation between beneficial and detri-

mental rules and actions are determined over centuries of

multi-generation Darwinistic evolution. Time to market and

economic pressure in system design do not allow for such a

survival-of-the-fittest design methodology. Hence, two critical

challenges for adopting emergent control in technical systems

can be formulated: 1) how to overcome multi-generation

evolution in order to adhere to state of the art development

cycle times; and 2) how to systematically avoid unproductive

or non-constructive emergent control leading to overall chaotic

system behavior.

In this paper, we present an approach as well as an

architecture to tackle these two challenges in a systematic

manner for optimizing configurable parameters in multi-core

processor systems. We envisage reinforcement-based machine

learning to replace natural evolution according to Darwinasian

selection. Our approach to replace natural selection proactively

explores the solution space by applying different operation pa-

rameter settings and assesses the corresponding outcomes with

fitness values. We apply learning classifier tables (LCTs) [7],

which are interpretable rule-based hardware machine learning

entities, for this purpose. As rule application and assessments

with LCTs can be done in the order of milliseconds, the

evolutionary exploration of a given solution space correspond-

ing to dozens or even hundreds of generations can now be

accomplished in seconds. Besides evolution speed, the quality

of the identified condition-action pairs is a decisive crite-
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rion. It is known that machine learning-based solution space

exploration cannot guarantee finding stable behaviors at all

times. Hence, we deploy a reflective supervisory control layer

(e.g., SPECTR [8]) to monitor and, when necessary, guide the

emergent behaviors by applying tighter constraints to the LCT

leaf controllers. An archive-based backup policy provides the

ability to adhere to constraints. The archive returns the system

to valid configurations once it is approaching constraints.

II. BACKGROUND AND RELATED WORK

The literature on autonomous complex systems engineering

relates the terms bio-inspired control and emergent behav-

ior frequently to so-called self-x properties, such as self-

adaptiveness, self-organization, self-healing or computational

self-awareness, as well as to fields like autonomic or organic

computing [9].

Corresponding reference architectures, such as Observe-

Decide-Act (ODA) or Monitor-Analyze-Plan-Execute

(MAPE), have been developed to control configurable systems

at runtime in order to achieve a specified goal [10], [11].

In such architectures, an observer/monitor feeds information

on the functional system to an observer/analyzer/planner

which reasons on the observed parameters with respect to the

specified goal. The control loop is closed by a subsequent

planning and actuation step that may take additional

knowledge sources into account. In Learning Classifier

Systems (LCS) such as XCS [12] or LCT [7], the reasoning

and action derivation is made on the basis of conditional

rule tables and fitness assessments as part of a reinforcement

learning process. The learning in these systems adapts to

changing workloads, but the process may explore undesired

configurations, or, in worst case, never converge. The German

Research Foundation (DFG) research unit OC-Trust generally

addressed the question of trust in emergent, self-adaptive

systems and, in particular, the convergence issue by enforcing

predefined bounds in multi-agent organic computing (OC)

software systems [13]. While the constraints in OC-Trust are

determined during design time, and checked during runtime,

we envision dynamic constraint adjustments by a higher-layer

supervisor throughout runtime [14].

A. LCTs

LCTs were introduced by Zeppenfeld et al. [15] as a subset

of Wilson’s accuracy based classifier (XCS) [12]. LCTs are

hardware reinforcement learners that make configuration de-

cisions in order to optimize system parameter settings towards

a specific goal. This is enabled by the rule-based structure of

LCTs. A single rule in the rule table consists of condition,

action and fitness.

The operation of an LCT consists of four periodically

applied steps (Figure 1):

1) The LCT builds the match set [M], a subset of all rules

in the rule table [P]. A rule is part of the match set if its

condition matches the current sensor values.

2) Using the roulette-wheel selection algorithm [17], the

LCT selects an action based on the match set [M] and

Population [P]
idx cond action fitness . . .

#1 101X 101 0.23
#2 X001 001 0.58
#3 1X0X 011 0.02
· · · · · · · · · · · ·

#n XXX1 111 0.89

Match Set [M]
idx cond action fitness . . .

#8 1X1X 011 0.12
#53 X111 001 0.56
#116 1111 011 0.52

Action Set [A]
idx cond action fitness . . .

#8 1X1X 011 0.12
#116 1111 011 0.52
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Fig. 1: Overview of the LCT logic from [16] (dashed lines

correspond to the fitness update path).

the corresponding fitnesses. All rules of the match set

[M] containing the selected action become part of the

newly built action set [A]. The roulette-wheel selection

algorithm enables the LCT to overcome local optima, as

it also occasionally selects actions with low fitness.

3) The selected action is applied to the system by actuators,

and the action set is saved in [A]t−1.

4) The effect of an action on the system is observed by

sensors and graded based on the effectiveness towards

achieving the specified goal (using the objective func-

tion). Based on the objective function value, a reward is

calculated, which is used to update the fitnesses in the

rule table [P] of all rules in the saved action set [A]t−1.

In XCS, for the fitness update a modified version of Q-

learning proposed by Wilson is used [17].

B. Hierarchical Decomposition

Research in intelligent management of computer systems

has established hierarchy as an effective way to provide coor-

dination and adaptivity to controllers in a scalable manner [8].

SOSA [16] specifically implements a resource management

hierarchy with a supervisor that coordinates distributed LCTs

to achieve a global goal. The physical system is horizontally

decomposed into subsystems in order to simplify the con-

trollers (i.e., LCTs) and provide scalability. The supervisor

oversees each LCT module, guiding its behavior through

objective function and rule definition, and coordinating with

other LCTs. We propose a similar supervisor in [14] to specify

constraints and bounds for LCT objective space, as shown in

Figure 2.

III. MANAGING EMERGENT BEHAVIOR

A key optimization challenge in system management lies in

the fact that the optimization is performed for metrics that can-

not directly be influenced by changing different configurable
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parameters. That is, LCTs act on the solution space defined

by configuration parameters (e.g., core operating frequency,

and cache capacity) whereas the actions have an impact

on the objective space defined by measurable metrics (e.g.,

throughput, temperature, and power). Moreover, in LCTs, the

metrics from the objective space are used to grade the actions

applied on the solution space. Figure 2 shows the relationship

between objective and solution space. Configuration c1 results

in the system state s1. Due to variability sources such as

ambient temperature, shared resource contention, and software

complexity, this state is not precisely predictable for a specific

configuration. After observing state s1, the LCT decides on a

new configuration c2, which in turn results in the new state s2.

State s2 is used to evaluate the effectiveness of the previously

applied rule. [14]

A. Problem Definition

In [7] and [18] LCTs have the freedom to explore the

entire solution space to achieve a goal following a mathe-

matical function. In consequence, the resulting optimization

mechanism does neither adhere to physical constraints, e.g.,

thermal design power (TDP), nor to application performance

requirements. For example, a video playback which has a

target of 60 frames− per− second(fps) should by no means

undershoot a lower bound of 30 fps.

So in contrast to the optimization problem tackled in [7] and

[18], our optimization formulation consists of a performance

target, corresponding bounds plus a power constraint. Hereby,

constraints are more severe than bounds. Therefore, we distin-

guish between the following zones within the objective space

represented in Figure 2:

• prohibited: This zone is defined by physical constraints.

This is the most severe zone and is therefore also refereed

to as constraint for the remaining text.

• avoided: This zone is derived from application per-

formance requirements and framed by the introduced

bounds.

• allowed: This is the area of the objective space which

the LCTs should actively explore in order to identify an

optimal state by trying different configurations.

B. Backup Policy

Adhering to a constraint means preventing any violation of

it. In state of the art approaches this is achieved by backup

policies [19]. To prevent constraint violations, backup policies

must act before a violation occurs. We propose a margin zone

to act as a buffer in the allowed zone in order to avoid the

prohibited zone completely (see orange zone in Figure 2). This

allows us to recognize if the LCT’s exploration is approaching

a constraint, in which case the maximum action step in the

solution space does not result in a change in the objective

space that is larger than the size of the margin.

A countermeasure is triggered any time the LCT’s explo-

ration hits the margin zone by activating the corresponding

backup policy. The backup policy’s responsibility is to return
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Fig. 2: Bounding the LCT’s objective space to avoid undesir-

able or dangerous configurations

the system to the allowed zone. A deterministic action selec-

tion, e.g., maximum fitness within the match set, will only

work for rulesets already trained for the currently executing

workload. This might not necessarily apply, e.g., shortly after

starting a newly installed application. Assuming each applica-

tion initially begins in the allowed zone of the objective space,

for any point in time there is a previous configuration in the

solution space which results in a valid point in the objective

space. So a backup policy reverting the latest executed action

on the solution space will return to the allowed zone. However,

because LCTs will exercise sub-optimal configurations while

learning, there might have been a better configuration earlier

than the most recent one. Bringing the system back to the best

experienced configuration causes less deviation from the target

than reversing the last action, which might result in oscillation

between the allowed and margin zones.

Our backup policy is implemented as an archive, tracking

the best so far experienced configuration for a workload. The

archive applies the saved configuration to the overall system

once it is activated by a margin hit.

Figure 2 shows an example sequence of LCT actions and

archive resets. The initial configuration c1 results in a per-

formance s1 far away from the objective. The LCT increases

the frequency (configuration c2), which results in a higher

performance (state s2) and hence gives a high reward which

increases the fitness of this rule. As the new configuration

is better than the previous one, the archive saves the current

configuration and its corresponding objective value. Subse-

quently, the LCT distributes the workload over some more

cores resulting in configuration c3. This action brings the

system closer to the objective, but also nearer to the margin

zone (state s3). Because a rule is only graded on the distance to

the performance goal, the LCT is not aware of the proximity to

the margin. In this case, c3 replaces c2 in the archive due to the
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state improvement. Previously, a frequency increase resulted

in a positive reward, so the LCT applies this action again

(configuration c4)1. This time the frequency increase results

in state s4 in the margin zone of the objective space. This is

indicated to the multiplexer in figure 2, which forwards the

configuration saved in the archive (c3) to the actuators, which

apply it to the system. The system returns to state s3, which

represents the best so far experienced state. The LCT takes

over again and the learning is regularly continued by further

exploring the solution space.

C. Archive-Assisted Learning

Activating the archive once the margin is hit avoids con-

straint violations, by returning the system to a stable state

using the backup policy. However, the backup policy does

not prevent the LCT from repeatedly applying the rule that

caused the margin hit. Even worse, if the reward assigned to

the rule causing the margin hit does not penalize for triggering

the backup policy, the rule might be considered desirable (i.e.,

high fitness). In Figure 2 the state s4 is closer to the target than

any other state, but it resides in the margin. Rule (r3) brings

the system from state s3 to s4, and receives a high reward.

In this example, the learned behavior can result in oscillation,

as rule r3 will be applied repeatedly, alternating with archive

triggers every other cycle. To discourage repeated margin hits,

a rule causing an archive activation is assigned the minimum

reward value, eventually preventing it from being preferred for

its given state.

The purpose of margins and the archive are to avoid

violations of constrains. Bounds, on the other hand, are not

considered critical (as constraints are), and can tolerate some

violation. In fact, allowing bound violations in the exploration

phase gives LCTs the opportunity to explore new paths

to beneficial configurations, which may not be discoverable

otherwise. We support this by rewarding a rule with zero

each time it hits an undesired zone, reducing the fitness, and

hence the probability to be selected long-term. Therefore, our

approach uses this method to adhere to bounds. It does not

require additional hardware, and is not as rigid as the archive

mechanism, but does not completely prevent violations of

bounds when learning.

D. Benefits of Archive

The LCT augmented with the archive always applies con-

figurations appropriate for the current system, because the

configurations are derived from previous experiences. The

archive overcomes issues caused by the probabilistic behavior

of the roulette wheel selection algorithm of an LCT, as well

as issues caused by unlearned models/behavior. Violations of

bounds are allowed while exploring the solution space, but

are prevented in the long term by assigning low rewards to

rules that cause violations. We achieve all of this with simple

dedicated hardware.

1This example assumes rules where the conditions are so general to match
under all states mentioned.

IV. CASE STUDY: DVFS POWER MANAGEMENT

To evaluate the effectiveness of LCTs extended with an

archive and a margin to prevent constraint violations, we

deploy a hierarchical controller consisting of a supervisor

and LCT to control core DVFS. The CPU core executes a

multithreaded focus application with background tasks start-

ing and stopping unpredictably to invoke disturbance. This

mimics a typical use-case where a focus application requires

some performance, while periodic tasks get executed in the

background for synchronization and updates.

The application’s performance requirement is represented

by the objective function

δ =
|IPS − IPStarget|

IPSmax

, subject to P ≤ Pconstraint

with measured IPS (IPS) and power (P ), the performance

target (IPStarget), the maximal possible IPS value (IPSmax)

for normalization and the power constraint (Pconstraint). The

objective function also contains a power constraint that repre-

sents a system requirement. The metrics necessary to evaluate

the objective function are measured by hardware monitors.

The supervisor guides LCT behavior by defining the pro-

hibited, avoided, and allowed zones. This is done by provid-

ing constraints, targets, and margin values for the objective

function. By changing the LCT parameters at runtime, the

supervisor can provide adaptivity, continuously coordinating

the LCTs through their objective function such that their

emergent behavior is aligned with the overall system goals.

The LCT’s actions consist of increasing or decreasing the

core frequency in variable step sizes. The conditions of the

rules used to build the match set are performance in IPS,

and utilization and frequency in % of their maximum possible

values. These metrics are also measured by hardware monitors.

If the power constraint of the objective function is violated,

the frequency is set to the value stored in the archive. The

archive maintains the observed frequency setting that yielded

the so far best objective function value most recently.

V. EVALUATION

We evaluate the efficacy of our LCT augmented with an

archive compared to the original LCT design from [15].

A. Experimental Setup

The platform described in our case study is implemented on

a Xilinx Virtex®-7 FPGA. Gaisler’s GRlib2 is used as basis

for the MPSoC running at 100MHz and consisting of three

Leon3 cores. One of the cores reports the measurement data

to a host computer for later analysis, and another generates

synthetic IP packets (emulating IO). The third core controlled

by an LCT augmented by the previously introduced archive

and margin mechanism. It handles three threads of the focus

application, which mimics an IP-packet forwarding function.

All monitors, as well as the LCT with archive are implemented

using VHDL. The LCT has an invocation rate of 5ms, whereas

2https://www.gaisler.com/index.php/downloads/leongrlib
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(a) LCT without constraint handling.
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(b) LCT with constraint violations rewarded with 0.
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(c) LCT augmented with margin. Margin hits and constraint viola-
tions both rewarded with 0.
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(d) LCT augmented with margin and archive. Margin hits trigger
backtrack.

Fig. 3: Ability of LCT controllers to manage a power con-

straint given a target IPS. In all cases, the target IPS is

achievable with ~60% power.

the fitness update and action selection together take only

(#rules · 2+ 2) clk cycles = 2.58 µs in our setup. The DVFS

actions are carried out by pausing the processor’s pipeline

with a pulse density modulated signal. The IPS performance

target is determined based on the packet throughput of the

focus application. The supervisor sets a power constraint, but

no bounds. After four seconds the supervisor adapts to the

packet drop rate by increasing the IPS target. This behaviour

represents a context switch.

In an LCT-per-core setup, the hardware necessary for

our approach requires 10.6% additional slices compared to

an unaugmented MPSoC. Whereas, only one third of this

overhead is necessary for learning and action decisions. The

remaining slices are due to monitors and our DVFS actuator

implementation, which are typically included in state-of-the-

art MPSoCs.

B. Archive Evaluation

Figure 3 shows the ability of the LCT DVFS controller

to honor a power constraint for four different controller

implementations.

Figure 3a shows a basic LCT without a power constraint,

or any restriction on its exploration of the solution space. This

allows the controller to track IPS (purple dotted line in Figure

4) in the first four seconds. After the IPS target changes, the

controller aims to increase the performance by maximizing the

frequency, however, the IPS target is no longer achievable.

Figure 3b shows an LCT controller that applies a minimum

reward to constraint violations. Observe that constraint (dashed

orange line) violations occur throughout execution. This is

because constraint violations are required for this controller

to learn bad behavior, and subsequently avoid it. After the

context switch by the supervisor, the LCT must learn again,

requiring more constraint violations.

Figure 3c shows an LCT controller augmented with a

margin (dashed green line) that applies a minimum reward

to both constraint violations and margin hits. Observe that,

although there are a number of constraint violations at the

start, the more conservative reward assignment discourages the

LCT from approaching the constraint, eventually preventing

constraint violations. However, there are numerous constraint

violations during initial exploration because, although the

margin prevents any single-step actions from violating the

constraint, the lack of an archive does not prevent the LCT

from actuating toward the constraint after a margin hit. The

IPS target increase does not cause any violations. However, the

violations appearing near 7 seconds are caused by the roulette

wheel selection. Graph 4 (red dash dotted line) shows how

the introduced margin prevents the core from achieving the

increased target IPS.

Figure 3d shows an LCT controller augmented with both

a margin and archive. Observe that no constraint violations

occur. This is because in addition to the margin preventing any

single-step actions from violating the constraint, the archive

additionally guarantees that the action immediately following

a margin hit will revert away from the constraint. The context

switch does not cause any violations, because the augmented

LCT prioritizes the power constraint over the IPS target.

Again, the margin prevents the core from achieving the IPS

target.

Figure 4 shows the measured IPS (moving average) of all

four LCT implementations. Observe that the LCT augmented

with archive and margin not only approaches the reference

quickly, but also continues to stay the closest compared to

the other setups. Furthermore, the distance to the reference

decreases constantly, whereas the other setups continue ex-

ploring disadvantageous configurations intermittently.

Our experiments demonstrate that an LCT augmented with

an archive and a margin zone allows us to recognize ap-
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the target faster and stays closer to it than the other controllers.

proaching constraints, and lets us counteract in an appropriate

manner to prevent any constraint violations. Further, our ap-

proach deviates least from the target once in steady-state. The

experiments show that preventing constraint violations comes

at the cost of sacrificing the performance target. This is due to

correctly prioritizing constraints over achieving performance

targets. The comparison in Figure 3a and Figure 3b shows the

possible necessity of violating constraints in order to discover

desirable configurations.

VI. CONCLUSION AND FUTURE WORK

We demonstrate the ability to dynamically manage multi-

core processor performance targets while adhering to a given

power constraint by means of a hierarchical controller exploit-

ing machine learning and reflective supervision. Experimental

use cases revealed that archive-based backup policies predic-

tively cope with potentially critical actions and, thus, represent

trustworthy and effective means for obeying to critical system

constraints. These experiments were conducted for a packet

forwarding application running on an FPGA evaluation board

containing three SPARC-V8 cores. In general, the fusion

of rule-based reinforcement learning with reflective supervi-

sion allows the hardware/software control layers of multicore

processors to self-adapt under changing environmental or

workload dynamics. This is comparable to how biological

organisms or organizations adapt through evolution. However,

our multicore processors do this within seconds rather than

centuries, which is the typical time period in nature.

Current work focuses on extending the applicability of

LCT-based reinforcement learning for controlled memory ap-

proximation on a system with multiple on-chip cache levels

and off-chip main memory. Furthermore, we investigate the

opportunity for the evolutionary generation of new condition-

action pairs during runtime through refinement of existing

rules with proven track records.
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