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Abstract—MPSoCs increasingly depend on adaptive resource
management strategies at runtime for efficient utilization of
resources when executing complex application workloads. In
particular, conflicting demands for adequate computation perfor-
mance and power-/energy-efficiency constraints make desired ap-
plication goals hard to achieve. We present a hierarchical, cross-
layer hardware/software resource manager capable of adapting
to changing workloads and system dynamics with zero initial
knowledge. The manager uses rule-based reinforcement learning
classifier tables (LCTs) with an archive-based backup policy
as leaf controllers. The LCTs directly manipulate and enforce
MPSoC building block operation parameters in order to explore
and optimize potentially conflicting system requirements (e.g.,
meeting a performance target while staying within the power
constraint). A supervisor translates system requirements and
application goals into per-LCT objective functions (e.g., core
instructions-per-second (IPS). Thus, the supervisor manages the
possibly emergent behavior of the low-level LCT controllers
in response to 1) switching between operation strategies (e.g.,
maximize performance vs. minimize power; and 2) changing
application requirements. This hierarchical manager leverages
the dual benefits of a software supervisor (enabling flexibility),
together with hardware learners (allowing quick and efficient
optimization). Experiments on an FPGA prototype confirmed
the ability of our approach to identify optimized MPSoC oper-
ation parameters at runtime while strictly obeying given power
constraints.

Index Terms—Backup-based reinforcement machine learning,
MPSoC runtime management, hierarchical reflective control

I. INTRODUCTION

Nature is a rich source of examples where the collective
behavior of individual entities can accomplish astonishingly
complex tasks in an optimal or near optimal manner. This phe-
nomenon is known as emergence [1] and results from hidden
causal relationships among individuals that follow elementary
rules and actions. Consider, for example, an ant colony finding
the shortest path to food and other resources by following the
strongest pheromone deposition of their peers [2]. Or, flock
of birds during migration, flying with slight lateral offset,
yielding an overall aerodynamic and energy efficient formation
for the entire bird community [3]. Fish schools cluster to form
assemblies in order to protect themselves from predators by
controlling only their relative position, speed and orientation
to neighbors [4]. Emergent control is mimicked in synthetic
environments such as Conway’s game of life [5], emulating
birth and death of artificial cellular automata. In all mentioned
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examples, individuals follow specific, simple rules to take
actions that result in beneficial outcomes such as shortest
paths, least energy consumption, or improved safety for the
overall community, at a higher-level of representation. We
draw parallels to scenarios in which many distributed decision-
making mechanisms are deployed in complex computer sys-
tems for runtime management, e.g., dynamic power man-
agement of many-core processors using per-core frequency
throttling. Therefore, a strong case can be made for technical
systems to exploit emergent behavior for managing complex
multi-agent systems in a distributed manner with simple means
of control at the individual constituent level. However, if
not managed carefully, emergent behavior may also result in
uncontrolled oscillations [6] and chaotic actions. Furthermore,
the borderline between desirable and unwanted outcomes can
be very narrow.

In nature, the differentiation between beneficial and detri-
mental rules and actions are determined over centuries of
multi-generation Darwinistic evolution. Time to market and
economic pressure in system design do not allow for such a
survival-of-the-fittest design methodology. Hence, two critical
challenges for adopting emergent control in technical systems
can be formulated: 1) how to overcome multi-generation
evolution in order to adhere to state of the art development
cycle times; and 2) how to systematically avoid unproductive
or non-constructive emergent control leading to overall chaotic
system behavior.

In this paper, we present an approach as well as an
architecture to tackle these two challenges in a systematic
manner for optimizing configurable parameters in multi-core
processor systems. We envisage reinforcement-based machine
learning to replace natural evolution according to Darwinasian
selection. Our approach to replace natural selection proactively
explores the solution space by applying different operation pa-
rameter settings and assesses the corresponding outcomes with
fitness values. We apply learning classifier tables (LCTs) [7],
which are interpretable rule-based hardware machine learning
entities, for this purpose. As rule application and assessments
with LCTs can be done in the order of milliseconds, the
evolutionary exploration of a given solution space correspond-
ing to dozens or even hundreds of generations can now be
accomplished in seconds. Besides evolution speed, the quality
of the identified condition-action pairs is a decisive crite-
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rion. It is known that machine learning-based solution space
exploration cannot guarantee finding stable behaviors at all
times. Hence, we deploy a reflective supervisory control layer
(e.g., SPECTR [8]) to monitor and, when necessary, guide the
emergent behaviors by applying tighter constraints to the LCT
leaf controllers. An archive-based backup policy provides the
ability to adhere to constraints. The archive returns the system
to valid configurations once it is approaching constraints.

II. BACKGROUND AND RELATED WORK

The literature on autonomous complex systems engineering
relates the terms bio-inspired control and emergent behav-
ior frequently to so-called self-x properties, such as self-
adaptiveness, self-organization, self-healing or computational
self-awareness, as well as to fields like autonomic or organic
computing [9].

Corresponding reference architectures, such as Observe-
Decide-Act (ODA) or  Monitor-Analyze-Plan-Execute
(MAPE), have been developed to control configurable systems
at runtime in order to achieve a specified goal [10], [11].
In such architectures, an observer/monitor feeds information
on the functional system to an observer/analyzer/planner
which reasons on the observed parameters with respect to the
specified goal. The control loop is closed by a subsequent
planning and actuation step that may take additional
knowledge sources into account. In Learning Classifier
Systems (LCS) such as XCS [12] or LCT [7], the reasoning
and action derivation is made on the basis of conditional
rule tables and fitness assessments as part of a reinforcement
learning process. The learning in these systems adapts to
changing workloads, but the process may explore undesired
configurations, or, in worst case, never converge. The German
Research Foundation (DFG) research unit OC-Trust generally
addressed the question of trust in emergent, self-adaptive
systems and, in particular, the convergence issue by enforcing
predefined bounds in multi-agent organic computing (OC)
software systems [13]. While the constraints in OC-Trust are
determined during design time, and checked during runtime,
we envision dynamic constraint adjustments by a higher-layer
supervisor throughout runtime [14].

A. LCTs

LCTs were introduced by Zeppenfeld et al. [15] as a subset
of Wilson’s accuracy based classifier (XCS) [12]. LCTs are
hardware reinforcement learners that make configuration de-
cisions in order to optimize system parameter settings towards
a specific goal. This is enabled by the rule-based structure of
LCTs. A single rule in the rule table consists of condition,
action and fitness.

The operation of an LCT consists of four periodically
applied steps (Figure 1):

1) The LCT builds the match set [M], a subset of all rules
in the rule table [P]. A rule is part of the match set if its
condition matches the current sensor values.

2) Using the roulette-wheel selection algorithm [17], the
LCT selects an action based on the match set [M] and
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Fig. 1: Overview of the LCT logic from [16] (dashed lines
correspond to the fitness update path).

the corresponding fitnesses. All rules of the match set

[M] containing the selected action become part of the

newly built action set [A]. The roulette-wheel selection

algorithm enables the LCT to overcome local optima, as
it also occasionally selects actions with low fitness.

The selected action is applied to the system by actuators,

and the action set is saved in [A];_1.

4) The effect of an action on the system is observed by
sensors and graded based on the effectiveness towards
achieving the specified goal (using the objective func-
tion). Based on the objective function value, a reward is
calculated, which is used to update the fitnesses in the
rule table [P] of all rules in the saved action set [A];_1.
In XCS, for the fitness update a modified version of Q-
learning proposed by Wilson is used [17].

3

=

B. Hierarchical Decomposition

Research in intelligent management of computer systems
has established hierarchy as an effective way to provide coor-
dination and adaptivity to controllers in a scalable manner [8].
SOSA [16] specifically implements a resource management
hierarchy with a supervisor that coordinates distributed LCTs
to achieve a global goal. The physical system is horizontally
decomposed into subsystems in order to simplify the con-
trollers (i.e., LCTs) and provide scalability. The supervisor
oversees each LCT module, guiding its behavior through
objective function and rule definition, and coordinating with
other LCTs. We propose a similar supervisor in [14] to specify
constraints and bounds for LCT objective space, as shown in
Figure 2.

III. MANAGING EMERGENT BEHAVIOR

A key optimization challenge in system management lies in
the fact that the optimization is performed for metrics that can-
not directly be influenced by changing different configurable
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parameters. That is, LCTs act on the solution space defined
by configuration parameters (e.g., core operating frequency,
and cache capacity) whereas the actions have an impact
on the objective space defined by measurable metrics (e.g.,
throughput, temperature, and power). Moreover, in LCTs, the
metrics from the objective space are used to grade the actions
applied on the solution space. Figure 2 shows the relationship
between objective and solution space. Configuration ¢l results
in the system state sl. Due to variability sources such as
ambient temperature, shared resource contention, and software
complexity, this state is not precisely predictable for a specific
configuration. After observing state s1, the LCT decides on a
new configuration ¢2, which in turn results in the new state s2.
State s2 is used to evaluate the effectiveness of the previously
applied rule. [14]

A. Problem Definition

In [7] and [18] LCTs have the freedom to explore the
entire solution space to achieve a goal following a mathe-
matical function. In consequence, the resulting optimization
mechanism does neither adhere to physical constraints, e.g.,
thermal design power (TDP), nor to application performance
requirements. For example, a video playback which has a
target of 60 frames — per — second (fps) should by no means
undershoot a lower bound of 30 fps.

So in contrast to the optimization problem tackled in [7] and
[18], our optimization formulation consists of a performance
target, corresponding bounds plus a power constraint. Hereby,
constraints are more severe than bounds. Therefore, we distin-
guish between the following zones within the objective space
represented in Figure 2:

o prohibited: This zone is defined by physical constraints.
This is the most severe zone and is therefore also refereed
to as constraint for the remaining text.

avoided: This zone is derived from application per-
formance requirements and framed by the introduced
bounds.

allowed: This is the area of the objective space which
the LCTs should actively explore in order to identify an
optimal state by trying different configurations.

B. Backup Policy

Adhering to a constraint means preventing any violation of
it. In state of the art approaches this is achieved by backup
policies [19]. To prevent constraint violations, backup policies
must act before a violation occurs. We propose a margin zone
to act as a buffer in the allowed zone in order to avoid the
prohibited zone completely (see orange zone in Figure 2). This
allows us to recognize if the LCT’s exploration is approaching
a constraint, in which case the maximum action step in the
solution space does not result in a change in the objective
space that is larger than the size of the margin.

A countermeasure is triggered any time the LCT’s explo-
ration hits the margin zone by activating the corresponding
backup policy. The backup policy’s responsibility is to return
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the system to the allowed zone. A deterministic action selec-
tion, e.g., maximum fitness within the match set, will only
work for rulesets already trained for the currently executing
workload. This might not necessarily apply, e.g., shortly after
starting a newly installed application. Assuming each applica-
tion initially begins in the allowed zone of the objective space,
for any point in time there is a previous configuration in the
solution space which results in a valid point in the objective
space. So a backup policy reverting the latest executed action
on the solution space will return to the allowed zone. However,
because LCTs will exercise sub-optimal configurations while
learning, there might have been a better configuration earlier
than the most recent one. Bringing the system back to the best
experienced configuration causes less deviation from the target
than reversing the last action, which might result in oscillation
between the allowed and margin zones.

Our backup policy is implemented as an archive, tracking
the best so far experienced configuration for a workload. The
archive applies the saved configuration to the overall system
once it is activated by a margin hit.

Figure 2 shows an example sequence of LCT actions and
archive resets. The initial configuration ¢l results in a per-
formance s1 far away from the objective. The LCT increases
the frequency (configuration ¢2), which results in a higher
performance (state s2) and hence gives a high reward which
increases the fitness of this rule. As the new configuration
is better than the previous one, the archive saves the current
configuration and its corresponding objective value. Subse-
quently, the LCT distributes the workload over some more
cores resulting in configuration ¢3. This action brings the
system closer to the objective, but also nearer to the margin
zone (state s3). Because a rule is only graded on the distance to
the performance goal, the LCT is not aware of the proximity to
the margin. In this case, €3 replaces ¢2 in the archive due to the
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state improvement. Previously, a frequency increase resulted
in a positive reward, so the LCT applies this action again
(configuration ¢4)!. This time the frequency increase results
in state s4 in the margin zone of the objective space. This is
indicated to the multiplexer in figure 2, which forwards the
configuration saved in the archive (¢3) to the actuators, which
apply it to the system. The system returns to state s3, which
represents the best so far experienced state. The LCT takes
over again and the learning is regularly continued by further
exploring the solution space.

C. Archive-Assisted Learning

Activating the archive once the margin is hit avoids con-
straint violations, by returning the system to a stable state
using the backup policy. However, the backup policy does
not prevent the LCT from repeatedly applying the rule that
caused the margin hit. Even worse, if the reward assigned to
the rule causing the margin hit does not penalize for triggering
the backup policy, the rule might be considered desirable (i.e.,
high fitness). In Figure 2 the state s4 is closer to the target than
any other state, but it resides in the margin. Rule (r3) brings
the system from state s3 to s4, and receives a high reward.
In this example, the learned behavior can result in oscillation,
as rule r3 will be applied repeatedly, alternating with archive
triggers every other cycle. To discourage repeated margin hits,
a rule causing an archive activation is assigned the minimum
reward value, eventually preventing it from being preferred for
its given state.

The purpose of margins and the archive are to avoid
violations of constrains. Bounds, on the other hand, are not
considered critical (as constraints are), and can tolerate some
violation. In fact, allowing bound violations in the exploration
phase gives LCTs the opportunity to explore new paths
to beneficial configurations, which may not be discoverable
otherwise. We support this by rewarding a rule with zero
each time it hits an undesired zone, reducing the fitness, and
hence the probability to be selected long-term. Therefore, our
approach uses this method to adhere to bounds. It does not
require additional hardware, and is not as rigid as the archive
mechanism, but does not completely prevent violations of
bounds when learning.

D. Benefits of Archive

The LCT augmented with the archive always applies con-
figurations appropriate for the current system, because the
configurations are derived from previous experiences. The
archive overcomes issues caused by the probabilistic behavior
of the roulette wheel selection algorithm of an LCT, as well
as issues caused by unlearned models/behavior. Violations of
bounds are allowed while exploring the solution space, but
are prevented in the long term by assigning low rewards to
rules that cause violations. We achieve all of this with simple
dedicated hardware.

! This example assumes rules where the conditions are so general to match
under all states mentioned.
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IV. CASE STUDY: DVFS POWER MANAGEMENT

To evaluate the effectiveness of LCTs extended with an
archive and a margin to prevent constraint violations, we
deploy a hierarchical controller consisting of a supervisor
and LCT to control core DVFS. The CPU core executes a
multithreaded focus application with background tasks start-
ing and stopping unpredictably to invoke disturbance. This
mimics a typical use-case where a focus application requires
some performance, while periodic tasks get executed in the
background for synchronization and updates.

The application’s performance requirement is represented
by the objective function

o IPSmaa:

with measured IPS (/PS) and power (P), the performance
target (I PSyarget). the maximal possible IPS value (1 PS,,,q2)
for normalization and the power constraint (Pp.onstraint). The
objective function also contains a power constraint that repre-
sents a system requirement. The metrics necessary to evaluate
the objective function are measured by hardware monitors.

The supervisor guides LCT behavior by defining the pro-
hibited, avoided, and allowed zones. This is done by provid-
ing constraints, targets, and margin values for the objective
function. By changing the LCT parameters at runtime, the
supervisor can provide adaptivity, continuously coordinating
the LCTs through their objective function such that their
emergent behavior is aligned with the overall system goals.

The LCT’s actions consist of increasing or decreasing the
core frequency in variable step sizes. The conditions of the
rules used to build the match set are performance in IPS,
and utilization and frequency in % of their maximum possible
values. These metrics are also measured by hardware monitors.

If the power constraint of the objective function is violated,
the frequency is set to the value stored in the archive. The
archive maintains the observed frequency setting that yielded
the so far best objective function value most recently.

) , subject to P < Peonstraint

V. EVALUATION

We evaluate the efficacy of our LCT augmented with an
archive compared to the original LCT design from [15].

A. Experimental Setup

The platform described in our case study is implemented on
a Xilinx Virtex®-7 FPGA. Gaisler’s GRIib? is used as basis
for the MPSoC running at 100 MHz and consisting of three
Leon3 cores. One of the cores reports the measurement data
to a host computer for later analysis, and another generates
synthetic IP packets (emulating 10). The third core controlled
by an LCT augmented by the previously introduced archive
and margin mechanism. It handles three threads of the focus
application, which mimics an IP-packet forwarding function.
All monitors, as well as the LCT with archive are implemented
using VHDL. The LCT has an invocation rate of 5 ms, whereas

Zhttps://www.gaisler.com/index.php/downloads/leongrlib
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Fig. 3: Ability of LCT controllers to manage a power con-
straint given a target IPS. In all cases, the target IPS is
achievable with ~60 % power.

the fitness update and action selection together take only
(#rules -2+ 2) clk cycles = 2.58 us in our setup. The DVFS
actions are carried out by pausing the processor’s pipeline
with a pulse density modulated signal. The IPS performance
target is determined based on the packet throughput of the
focus application. The supervisor sets a power constraint, but
no bounds. After four seconds the supervisor adapts to the
packet drop rate by increasing the IPS target. This behaviour
represents a context switch.

In an LCT-per-core setup, the hardware necessary for
our approach requires 10.6 % additional slices compared to
an unaugmented MPSoC. Whereas, only one third of this
overhead is necessary for learning and action decisions. The
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remaining slices are due to monitors and our DVFS actuator
implementation, which are typically included in state-of-the-
art MPSoCs.

B. Archive Evaluation

Figure 3 shows the ability of the LCT DVFS controller
to honor a power constraint for four different controller
implementations.

Figure 3a shows a basic LCT without a power constraint,
or any restriction on its exploration of the solution space. This
allows the controller to track IPS (purple dotted line in Figure
4) in the first four seconds. After the IPS target changes, the
controller aims to increase the performance by maximizing the
frequency, however, the IPS target is no longer achievable.

Figure 3b shows an LCT controller that applies a minimum
reward to constraint violations. Observe that constraint (dashed
orange line) violations occur throughout execution. This is
because constraint violations are required for this controller
to learn bad behavior, and subsequently avoid it. After the
context switch by the supervisor, the LCT must learn again,
requiring more constraint violations.

Figure 3c shows an LCT controller augmented with a
margin (dashed green line) that applies a minimum reward
to both constraint violations and margin hits. Observe that,
although there are a number of constraint violations at the
start, the more conservative reward assignment discourages the
LCT from approaching the constraint, eventually preventing
constraint violations. However, there are numerous constraint
violations during initial exploration because, although the
margin prevents any single-step actions from violating the
constraint, the lack of an archive does not prevent the LCT
from actuating toward the constraint after a margin hit. The
IPS target increase does not cause any violations. However, the
violations appearing near 7 seconds are caused by the roulette
wheel selection. Graph 4 (red dash dotted line) shows how
the introduced margin prevents the core from achieving the
increased target IPS.

Figure 3d shows an LCT controller augmented with both
a margin and archive. Observe that no constraint violations
occur. This is because in addition to the margin preventing any
single-step actions from violating the constraint, the archive
additionally guarantees that the action immediately following
a margin hit will revert away from the constraint. The context
switch does not cause any violations, because the augmented
LCT prioritizes the power constraint over the IPS target.
Again, the margin prevents the core from achieving the IPS
target.

Figure 4 shows the measured IPS (moving average) of all
four LCT implementations. Observe that the LCT augmented
with archive and margin not only approaches the reference
quickly, but also continues to stay the closest compared to
the other setups. Furthermore, the distance to the reference
decreases constantly, whereas the other setups continue ex-
ploring disadvantageous configurations intermittently.

Our experiments demonstrate that an LCT augmented with
an archive and a margin zone allows us to recognize ap-
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Fig. 4: The LCT + Margin + Archive (blue line) approaches
the target faster and stays closer to it than the other controllers.

proaching constraints, and lets us counteract in an appropriate
manner to prevent any constraint violations. Further, our ap-
proach deviates least from the target once in steady-state. The
experiments show that preventing constraint violations comes
at the cost of sacrificing the performance target. This is due to
correctly prioritizing constraints over achieving performance
targets. The comparison in Figure 3a and Figure 3b shows the
possible necessity of violating constraints in order to discover
desirable configurations.

VI. CONCLUSION AND FUTURE WORK

We demonstrate the ability to dynamically manage multi-
core processor performance targets while adhering to a given
power constraint by means of a hierarchical controller exploit-
ing machine learning and reflective supervision. Experimental
use cases revealed that archive-based backup policies predic-
tively cope with potentially critical actions and, thus, represent
trustworthy and effective means for obeying to critical system
constraints. These experiments were conducted for a packet
forwarding application running on an FPGA evaluation board
containing three SPARC-V8 cores. In general, the fusion
of rule-based reinforcement learning with reflective supervi-
sion allows the hardware/software control layers of multicore
processors to self-adapt under changing environmental or
workload dynamics. This is comparable to how biological
organisms or organizations adapt through evolution. However,
our multicore processors do this within seconds rather than
centuries, which is the typical time period in nature.

Current work focuses on extending the applicability of
LCT-based reinforcement learning for controlled memory ap-
proximation on a system with multiple on-chip cache levels
and off-chip main memory. Furthermore, we investigate the
opportunity for the evolutionary generation of new condition-
action pairs during runtime through refinement of existing
rules with proven track records.
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