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1. Introduction

Tangential vector fields to a sphere are important in many areas of geophysical sciences, from the surface of the ocean
to the ionosphere [1]. Often the values of these vector fields may only be known at “scattered” locations, e.g., from mea-
surement taken from rawinsondes, airplanes, buoys, remote sensing devices, or from output from certain numerical models
(cf. [2, §4]), and values of the field must be approximated at other locations, e.g., on a grid or mesh. Additionally, these tan-
gential fields may satisfy certain physical constraints, such as being surface divergence-free (div-free) or curl-free, that must
be preserved in the approximation. A radial basis function (RBF) technique was developed exactly for these applications in
the papers [3,4]. The idea is to construct a positive definite kernel from a radial basis function in such a way that shifts of
the kernel can be linearly combined to yield a div-free or curl-free interpolant of the underlying field. This technique has
the added benefits that it gives a well-posed interpolant for scattered data, is devoid of any coordinate singularities, and
naturally allows a scalar potential for the field to be extracted [4].

When using a smooth RBF that features a shape parameter, &, to construct these div-free or curl-free kernels, one often
finds that the best accuracy of the interpolated field is achieved when ¢ is small, corresponding to a flat kernel, but that the
direct way of computing the interpolant (often called RBF-Direct) is prohibitively ill-conditioned. This is exactly analogous
to the standard RBF interpolation problem for scalar functions. In the scalar setting, three distinctly different numerical
algorithms have been presented thus far in the literature to bypass this ill-conditioning and open up the complete range
of ¢ that can be considered. These are the RBF-RA method [5,6], the RBF-QR method [7-9], and the RBF-GA method [10].
The present short note focuses on the RBF-QR method from [8], which is specific to RBF interpolation on the sphere. This
algorithm exploits the Mercer expansion of the scalar RBFs in terms of spherical harmonics to change the interpolation
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basis so that the ill-conditioning associated with small ¢ is analytically removed. It also shows that scalar RBF interpolants
converge to spherical harmonic interpolants in the flat limit (i.e. ¢ — 0). We show how this algorithm, which we call the
vector RBF-QR, can be extended to bypass the ill-conditioning associated with surface div-free RBF interpolation for small &
and demonstrate that these interpolants converge to div-free vector spherical harmonic interpolants as ¢ — 0. The algorithm
also extends naturally to the surface curl-free case, but the sake of brevity we leave out these details and refer the reader
to [11].

The rest of the paper is organized as follows: In Section 2, we introduce some notation and background on div-free RBF
interpolation and scalar/vector spherical harmonics. Section 3 contains the description of the new vector RBF-QR algorithm
and Section 4 contains a numerical example illustrating the stability of the algorithm in the flat limit. We conclude with
some brief comments in Section 5.

2. Notation and preliminaries
2.1. Surface div-free vector fields

Any C! tangential velocity field u on S? that is surface div-free can be written as

* Y *
u=V*x (Yr) =1t x V*v,
L*
where V* denotes the gradient in spherical coordinates, ¢ is the unit radial vector in spherical coordinate basis, and v is
some C2 scalar-valued function on SZ2. The function v is called the stream function and is unique up to a constant for a
given u [12, Proposition 2.1].

The operator L*, which is sometimes called the surface-curl operator or the rot operator, can be written entirely in
extrinsic (Cartesian) coordinates as L= x V, where V is the standard R3 gradient in the Cartesian basis, and f is the
unit normal vector to S? in the Cartesian basis [3]. Here we have dropped the % from L to indicate it is defined in extrinsic
coordinates. For scalar-valued functions v that can be extended smoothly from S? to R?, we can generate a tangential
velocity field that is surface div-free using u = Ly. The operator L can be simplified further by noting that i at a point
Xx=(x,y,2) on S? is just x. In what proceeds, we use the following notation for the operator L:

0 —z vy
Ly=| z 0 —x| Vg, (1)
-y x 0
—

QX

where Q (x) applied to a vector in R gives the cross product of x with that vector and the subscripts are used to indicate
what variable each operator is applied to. We note that one of the main benefits of working in extrinsic coordinates is that
artificial coordinate singularities (e.g. pole singularities) can be avoided.

2.2. Surface div-free RBF interpolation

Surface div-free RBF interpolation is similar to scalar RBF interpolation in the sense that one constructs interpolants from
linear combinations of shifts of a kernel at each of the given data sites; for a review of scalar RBF interpolation, we refer
the reader to [13]. The difference between the two approaches is that surface div-free RBF interpolants use a matrix-valued
kernel ®gj, whose columns are surface div-free. A detailed discussion of the construction of ®g;, is given in [3]. For the
sake of brevity, we do not repeat this derivation, but only present the final result. Let ¢ be a scalar-valued, radial kernel on
R3 with at least two continuous derivatives and let X,y € S2, then ®g;, is constructed using the operator L in (1) as

P, Y) =L Ly (I~ Y1) = —Q ) (Y Yy & (Ix— 1)) Q) = Q®) (V VA (Ix—yID) Q) )

where || - || denotes the vector two-norm and we have used the fact that the Q matrix in (1) is anti-symmetric and
Vy ® (Ix =yl = —Vg ¢ (IX —y|). It is straightforward to show that for any ¢ € R? that is tangent to S? at y, the vector
Dgiv (X, y)c is surface div-free in x and centered at the point y; see Fig. 1 for an illustration.

Let {Yj}?:1 be a distinct set of nodes on S2 and {Uj}?:1 be samples of a surface div-free tangent vector field sampled
on these nodes. The surface div-free RBF interpolant to this data takes the form

S(X) =Y Dy (X, ¥)€), (3)

j=1

where the coefficients ¢; € R3 are tangent to S? at yj, which is necessary to make the interpolation problem well-posed.
A naive approach to solving for the {c; ’}=1 by imposing s(yj) =u;, j=1,...,n will lead to a singular system of equations
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Fig. 1. Illustration of the matrix-valued surface div-free kernel (2) using the Hammer-Aitoff projection of the sphere [14]: (a) ®gjy applied to the zonal unit
vector at y= (1,0, 0), (a) ®q4jy applied to the meridional unit vector at y= (1,0, 0).

since each ¢; (and correspondingly u;) can be expressed using only two degrees of freedom rather than three. To see this,
let {aj, bj, nj} be orthonormal vectors at the node y;, where n; is the outward normal to S2, b; is a unit tangent vector,
and a; =n; x b;. Then we can write ¢; in this basis as ¢j = «ja; + B;bj, where «; =aJch and Bj = b]T.cj. Using this result,
we can express (3) as

S(X)=Z<Ddiv(x, yj) [@jaj+ Bjbj]. (4)
J

and write the interpolation conditions as als(y;) =al u; =: y; and b s(y;) = bl u; =: §;, which leads to the 2n-by-2n system
of equations

Z([;‘r}%iv(ylyw)[é\j bj]) [zj]:[g’] 1<i<n. (5)

j=r ol

Aij

The interpolation matrix that arises from this system (with entries given by A; ;) is positive definite if ®g;, is constructed
from an appropriately chosen scalar-valued ¢ [3], such as any of those listed in Table 1. Simplifications of the entries of this
matrix in terms of derivatives of ¢ are given in [4].

In this work, we choose a; and b;, for the point y; = (x;, y;, z;), to be the standard meridional and zonal vectors, which
can be expressed in Cartesian coordinates as

—ZjXj 1 —Yj
=zjyj |, b;j= xj |. (6)

:/_2 2 f1 _ 2
1zj l—zj lzj 0

If y; =[0, 0, 1], then we can pick any orthogonal vectors in the xy-plane.
We conclude by noting that once the coefficients ¢; are determined in (4), a stream-function ¥ (X) can be obtained for
the interpolated field using (2)

_ T T e -
s(x) = Q(:)W(j[lj Veo (Ix—y;jl) Q(y,)c,). (7)
¥ (X)

Approximation results for ¢ in reconstructing the underlying stream function for the field are given in [4].

Similar to scalar RBF interpolation, we refer to the method of computing the div-free RBF interpolant by solving the
system (5) as RBF-Direct. For ®g;, that are built from scalar kernels that depend on a shape parameter &, like those in
Table 1, the RBF-Direct approach becomes extremely ill-conditioned as ¢ — 0. However, as in the scalar RBF case, the
interpolant remains well-conditioned and the RBF-QR algorithm allows us to stably compute it.

2.3. Spherical harmonics
The RBF-QR algorithm presented in Section 3 relies on spherical harmonic expansions, both scalar and vector ones, so

we briefly review these expansions here. We refer the reader to more detailed discussions in [15] and [16], for the scalar
and vector case, respectively.
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Let Yl‘j denote the scalar spherical harmonic of integer degree n > 0 and integer order —y < v < on S2. These
functions are the eigenfunctions of the Laplace-Beltrami operator Agp, ie., Ag2 Y;‘i =—u(p+ 1)Yl‘j. We use the real-form

of the spherical harmonics functions in Cartesian coordinates, which for x = (x, y, z) € S? are given as

2pu+1 [ (u=v)! e 3
YP o0 = \/7 G Pr@cos(vtan' (). v=0,1,....4, o
e 2pu+1 [ (u=v)! . 1y B ,
\/? (u+u)!P}i(Z)Sm(—vtan (Y)), V= —pty ..., —1

where Pl‘j(z) are the associated Legendre functions of degree i and order v. The spherical harmonics form a complete,

orthonormal set of basis functions for the space of square-integrable functions on S2, which we denote by L2(S2) [15].
Thus, any function f € L?(S?) can be uniquely represented as

o M

FO=Y" 3" fuvY; (), where f, , = f FROY),(x0dS. 9)
S2

;4:0 V=—M

Vector spherical harmonics are the vectorial analogue of scalar spherical harmonics and can be used for representing
vector-valued functions on S2. There are three types of these vector harmonic functions: one that is normal to S2, one
that is tangent to S? and surface curl-free, and one that is tangent to S2 and surface div-free [16]. We focus on the
latter as they are the ones used in this paper. Both tangent vector spherical harmonics are the eigenfunctions of the vector
Laplace-Beltrami operator.

The surface div-free vector spherical harmonics can be constructed in Cartesian coordinates by applying operator L in (1)
to the scalar spherical harmonic functions (8) as follows [16]:

wy, (x) =LY, (x), # >0, —u <v<p. (10)

: WV 1
These caril be normalized as W, = OESH]
f,g) = /SZ fTgdS, where f and g are tangent vector fields on S2. The surface div-free vector spherical harmonics form a

complete orthonormal set of vector basis functions for the space of surface div-free vector fields that are tangent to S2 and
square integrable. We denote this space as Lgi,(S2). Any function u € Léiv(Sz) can be expanded in these harmonics as

w;(vx) so they are orthonormal with respect to the L?(S?)-vector inner product

o U
u@ =y Y Wy, (x), where iy, :/f(x)TWM(x)dS. (11)
u=1v=—/ S?

Note here that the sum in this expansion excludes p = 0 since Yg is annihilated by L.

As discussed in Section 2.2, the interpolation problem on the sphere requires that we utilize the tangent basis vectors at
x €S2, ie., ax and by. Therefore, it is relevant to introduce the following notation for the non-normalized surface div-free
and curl-free vector spherical harmonics in terms of these basis vectors:

meridional, div-free : G}, (X) = a,LyY;(x),  zonal, div-free : H}, (x) = by LxY}, (X). (12)
2.4. Spherical harmonic expansions of smooth radial kernels

The central idea of the scalar RBF-QR method is to replace the standard basis consisting of shifts of radial kernels by an
equivalent, but much better conditioned basis that spans the same space in the case of small €. For the sphere, this is done
by exploiting properties of the Mercer expansion of smooth radial kernels on the sphere in terms of spherical harmonics.
As discussed in [8], these expansions are given by

o M
PUX—YilD =" > {cuc Y, yNIYX), (13)

M:OU:—/,L

where the symbol Y’ denotes that the v =0 term is halved. Note that the spherical harmonic coefficients are independent
of v, which follows from the Funk-Hecke formula [17,15] for zonal functions. Table 1 lists the coefficients ¢,  for many
common radial kernels. These were first computed by Hubbert and Baxter [18] for all the radial kernels listed in this table
except for the IQ, which was given in [8]. It is important to note that the coefficients listed in Table 1 can be calculated
without the loss of any significant digits caused by numerical cancellations, even as € — 0 (see [8] for a discussion).

The central idea behind the vector RBF-QR algorithm will also be to replace the matrix-valued basis with a better basis
built from vector spherical harmonic expansions. We can use (2) and (13) to expand the matrix-valued kernel ®g;, in terms
of vector spherical harmonics as follows:
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Table 1
Coefficients in the spherical harmonic expansion (13) for various smooth radial kernels on the sphere. For the 1Q kernel, ;F{(...) denotes the hypergeo-
metric function, and for the GA kernel, I;, ;1,2 denotes the Bessel function of the second kind.

Radial kernel Expression Expansion coefficient, ¢, ¢
2p+1
: . _ 1 =27 (262 +1+(u+1/2)y/1+4¢2) 2
Multiquadric (MQ) ¢(r)=(1+(er?)? &fa/zxufl/z{w—wzf <1+\/W)
2u+1
. . _ 2y — 1 4: 2
Inverse multiquadric (IMQ) o(r)= (14 (er)?)" 2 W (W)
; _ 21 432 )
Inverse quadratic (IQ) ¢(r) =1+ (er)”) TGt ) +4eDyi P+ p+ 12 +2; 1+452)
Gaussian (GA) ¢ (r) =exp(—(er)?) 4?:1, €2 1,112(26%)
T o0 M , T
2 v v
Oaiy(X.V)) = Z Z £ Cyu e Ly Y, (%)) (LyY (y)\ ) =Y Y e w0 (W) (14)
pu=1v=—pn pn=1v=—n

Here we have used the non-normalized div-free vector spherical harmonics defined in (10) for simplicity.

The separation of the expansion (14) of a smooth matrix-valued kernel ®g;, in terms of increasing powers of ¢ is
essential to the RBF-QR algorithm. It is these powers of ¢ and not the coefficients c, . that lead ill-conditioning in the
matrix-valued basis for small ¢ in the RBF-Direct method. The RBF-QR algorithm analytically factors out the effects of these
powers of ¢ from the basis.

3. Vector RBF-QR algorithm

Recall from Section 2.2 that in order to interpolate div-free vector fields tangent to the sphere with the matrix-valued
div-free interpolant, we must represent the coefficient vectors and target field samples in terms of the orthonormal tangent
basis vectors (e.g., using (6)). In (5) we saw that this is equivalent to representing the kernel @4, in terms of these basis
vectors. We will denote this kernel as Ef)di\,:

N T
Baw(x,¥)) = [;T] Pavxy[aj b]. (15)

Using (14) on the right-hand side of (15) gives the expansion

~ © M / T T
Savx Y= Y (szﬂcu,s [;ﬂw;(x)) (whwp) [a; byl (16)

p=1v=—p

This is a 2-by-2 matrix whose entries are in terms of the meridional and zonal div-free vector spherical harmonics (12):

(@) | (b)

© | @ } » Where (17)

By (X, yj) = [

||| M}:

o M
(e cueGl G ) (b) D Y (e cue G XIH} ()
p=1v=

oo M oo M
(© Y Y e eueHp(0IGLy)  (d) D D (e e Hy O, ).
U=Tv=—p U=1v=—p

The goal of the vector RBF-QR algorithm is to express the space spanned by the columns of the 2-by-2n array containing
the shifts of the div-free matrix valued kernel, [cbdiv(x, yi) - Dgiv(x, yn)], using a basis that has the ill-conditioning
associated with small € removed. To this end, we first use (17) to write this array (now in transposed form) as
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([ oo M o M ]
/ /
DD e e GLmIGHLU) | Y D (e eueH) (X0)G), (1)
u=1v=—p u=lv=—pn
[e%e) M , [e%e) n ,
. D0 e e GLOOH, () | Y D (P ep e H) (0 H), (v1)
Dy (X, y1)" L u=1v=—p u=1v=—n i
Piv (X, yn) [ oo M M 7
DD e GLMIGH () | Y D (¥ e H) (X))G), (V)
U=1v=—n u=lv=—p
[e%s) " , o0 122 ,
DD e e GL OO | D D (P e HY (O H), (Vo)
L L p=1v=—n u=1v=—p 4
We then rewrite this as the following infinite block matrix-matrix product,
(16T ) %2600 Gl | 2 ¢l HI'®
Dgi T Hi! e 4o Hl(yp)--- 2
dlv()'(’lh) B Cle 1 y1) = .1 Y1) C1e 1'(Y1) € - w0 H®
o - i : : Glx) Hl®x)
By (X, Yn)" c1:G7 W) G0y c1eGliyn) - 1 g
~—/_4 —
B, | cLeHT ) SEHWn) c1eHiGn) - |
(19)

The next step is to truncate these infinite matrices to a vector spherical harmonic degree value @ = ptrunc. There are
two stipulations for this truncation degree. First, (tunc must be large enough that the entries in Fdiv are approximated
to machine precision; we refer to this value as fteps. The second is that piyunc must be large enough that the number of
columns in the truncated B* matrix is greater than or equal to 2n; we refer to this value as (. This condition on g is
given explicitly as po = [«/Zn +1- 1] since the number of vector spherical harmonic terms in a truncated expansion of
Mo is po(io + 2). Putting the truncation requirements together gives the condition fttrunc = max(io, teps). We denote the
truncated matrix-matrix product (19) as

Paiy ~ B E Y |. (20)

The matrix B has m = punc(Urunc + 2) columns and has the block form

B=[Bl|32|”.|BMO|BNO+1|'”|B,U«trunc] (21)

where B, 1 < (& < [Ltrunc, are the block matrices of size 2n-by-(2u + 1) with block entries

Jj—=(u+1)
Cu.eGy ¥i) | .
i J#FR+1,
[c,MHL HED (g
(Bu); ;= j=1.....2u+1,i=1,....n.
’ Cue GO ¥
2 L Vi .
L€ ] - I’L + 1’
[ e Hg(yi)}
The diagonal E matrix in (20) can be written as two square, diagonal blocks, E = diag([E1; E»]), where
8213 82M0+212M0+3
8415 82M0+412M0+5
E1= . and E)= A s
82#0 IZILOJFl 82Mtrunc Izl/’ftrunc+‘1

(22)
and I, is the identity matrix of size t-by-t. Finally, the Y matrix in (20) is given in block form by

V= [T IYE [ [ [ Y [ [ Ve |

Mtrunc
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where block Y, is given by
j—(u+1 j— (1 .
(V)1 =Gl * P00, (Vi) =Hir ", j=1,....2u+1.

In the flat limit, the truncated basis is still highly ill-conditioned because of the powers of ¢ in (19) (recall that the
expansion coefficients ¢, . do not affect the conditioning). However, all of these powers of ¢ are confined to the E matrix.
To develop a better conditioned basis, we need to factor out the ill-effects of the powers of €. To simplify the description of
this step of the algorithm, we make the assumption that n = (o + 2)/2 so that the sub-matrix block

[B1|B2|- | By ] (23)

of B in (21) and diagonal matrix E; in (22) are square and of size 2n-by-2n. We also assume that the interpolation node set
{yj}'}:1 is unisolvent with respect to the vector spherical harmonics of degree (o so that (23) is invertible. This restriction

means that the interpolation matrix associated with the vector spherical harmonic basis of degree g is invertible. When
using “scattered” node sets, we have never encountered a situation where the point set fails to be unisolvent.
The final step of the vector RBF-QR algorithm starts with a QR factorization on B in (20), which gives

P~ Q [R1] Ro] [%} v 24)
—— 2
R

Here we have partitioned R into Ry and Ry, where Ry is 2n-by-2n upper-triangular, and R; is an 2n-by-(m — 2n) full matrix.
Since the sub-block (23) is invertible by our assumption on the node set, we know Ry is also invertible. This together with
the block structure of E allows us to re-write (24) as

~ _ E B o
B ~ QR [12n IR; 1R2] [%] Y = QR; [51 IR; 1R2E2] Y = QRyE; [12,1 |ET'R; ]RzEz] Y. (25)

Biv

Since left matrix-multiplication is just a linear combination of the columns of the matrices, it follows from this new expres-
sion that any element in the span of the columns of 13;\, (i.e., the span of the original basis containing shifts of €>div) can
be represented to machine precision by a linear combination of the columns of (§diVY)T.

The form of EdivY in (25) is still not directly amenable to computations with small ¢ because it involves computing El_l.
However, this matrix and E; are diagonal so we can analytically remove the division by small ¢ using [19, Lemma 5.1.2] to
arrive at

BawY = [Ln | ET'RT R2E2 | = [1an | (RT'R2) 0 (BT Janm-202)] (26)
[ —

E

where J, ; is a o-by-7 matrix of 1’s, o denotes the Hadamard product (or entry-wise multiplication), and the entries of E
can be determined explicitly as

Y 2 2 2 -2
e Mo 1372,“0_*_3 & Mo+ ‘]3‘2#04_5 £ Mtrunc -]312/1trunc+1

82/40*

2 2 2 -4
JS,ZMO+3 geto 15,2M0+5 oot g=Hrune ]5,2,Uftrunc+]

m
I
~
-

4 6 2 —210+2
e* Japo—1.210+3 | €°J2po—12p0+5 | =-+ - | €FHTICTEROTL Ty 1 2 ptirune 1

82/1-trunc

2 4 -2
L &% Jopo+1.2000+3 | € J2p041.2000+5 0 J2110+1. 2t unc+1

The columns (EdivY)T in (26) can now be used as a stable basis for the space spanned by {@div(~,yj)}’}:1 for small . We

note that each element of this basis consists of a div-free vector spherical harmonic of some degree < po plus some O(g2)
combination of div-free vector spherical harmonics of degree > . This implies that matrix-valued div-free RBF interpolant
will converge to a div-free vector spherical harmonic interpolant of degree w¢ in limit & — 0, which is analogous to a scalar
RBF interpolant converging to a spherical harmonic interpolant in the flat limit [8].

Remark 3.1. Note that just as with the scalar RBF-QR algorithm [8], it is possible to include the spherical harmonic coef-
ficients c, ¢ in the diagonal matrices E1 and E; and generate a similar analytical simplification for E. This has the added
advantage of removing all ¢ dependence in the actual QR numerical computation and allows the central part of the vector
RBF-QR to be performed independent of the radial kernel used.
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(a) Target field (b) Interpolation nodes

Fig. 2. Hammer-Aitoff projection [14] of the (a) target div-free field and (b) n =924 node set used in the numerical example.

Remark 3.2. When the condition 2n = po(wo + 2) is not met, the R; matrix in (24) will not be square. The algorithm then
needs to be modified to move columns from R; to R, to make R; square. This requires a similar move of the corresponding
diagonals of E; to Es. In this case, the form of E in (27) also needs to change to include some &° terms.

Remark 3.3. More sophisticated techniques for selecting the truncation level fiunc are discussed in [20] for the scalar case
and may also be adopted here. These methods can reduce the overall computational time without reducing the approxima-
tion properties of the interpolants based on the stable basis.

4. Numerical example

To test the vector RBF-QR algorithm, we use the target div-free field displayed in Fig. 2 (a). This field is generated from
the stream function

V(X)) =32+ 2671.5((x70.9)2+(y+0.1)2)78(270.2)2 4 36—2((x+0.7)2+(y70.2)2)—8(270.25)2_

2 50— 1.1((x+0.2)>+(y=0.8)) =8(z+0.19)> _ 5,-2.2(x+02)>+(y+1)?)~8(z+0.21%) (28)

according to u = Ly (x). For the interpolation node set, we use the n = 924 scattered nodes displayed in Fig. 2 (b). These
are an example of the Hammersley nodes, which give well-distributed, but random sampling points for the sphere [21], and
were obtained from the SpherePts software package [22]. The number n = 924 corresponds to a truncated div-free vector
spherical harmonic expansion of @ = 42, which is commonly used in scalar spherical harmonic tests where it is denoted as
“T42” [8]. We only present results for the MQ kernel, but note that similar results were obtained for other smooth kernels.

Using this target field and node set, we computed the surface div-free RBF interpolants using the RBF-Direct and vector
RBF-QR algorithms for various values of €. The relative max-norm error in the interpolant was then computed by evaluating
the difference between the interpolants and the target field at a denser set of 4n points over the sphere. The results from the
experiment are displayed in Fig. 3 (a). We see from the figure that the error in the RBF-Direct approach decreases rapidly
with decreasing ¢ until around ¢ =1 when it starts to increase exponentially fast. This is where ill-conditioning in the
standard div-free RBF basis sets in. The vector RBF-QR algorithm on the other hand, shows no issues with ill-conditioning
for any values of ¢ <1 and we can use it to compute the resulting interpolant in a stable manner all the way to the
flat limit. Note that the error reaches a minimum at a non-zero value of ¢ and then starts to increase slightly. This is a
feature that comes from the target field, and not from instabilities in the algorithm. Fig. 3 (b) shows the max-norm errors
in approximating the stream function (28) as a function of &. For this computation, we used (7) to extract a stream function
from the interpolants and then adjusted it to have the same mean as the target stream function (28). We see that there is
a similar trend in these results, which is to be expected since the stream function comes from the interpolant.

5. Concluding remarks

The vector RBF-QR algorithm presented here can be used to bypass the ill-conditioning associated with surface div-free
RBF interpolation on a sphere in the ¢ — 0 limit. This allows for more comprehensive studies of how ¢ affects the accuracy
of the interpolants. The derivation of the algorithm additionally demonstrates the connection between these interpolants
and div-free vector spherical harmonics in the flat limit. The algorithm can also be applied straightforwardly to surface curl-
free RBF interpolation, since in this case, one simply has to replace the matrix-valued kernel ®g;, with the kernel @y =
(P(x)Vx)(P(y)Vy)Tgb(Hx —yl), where P(§) = (I — ££T) [11]. Div-free and curl-free RBFs are also available for interpolation
in R? [23]. For this problem it may be possible to extend the RBF-QR algorithms [7,9] developed for scalar RBF interpolation
in R?. However, the algorithm in [7] is limited to the Gaussian kernel and the algorithm in [9] is limited to kernels with
known Mercer series expansions.
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Fig. 3. Comparison of the relative max-norm errors in reconstructing the target (a) div-free field and (b) stream function (28) as a function of ¢ using the
vector RBF-QR algorithm and RBF-Direct for the MQ kernel.
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