
July 1, 2020 Optimization Methods & Software output

To appear in Optimization Methods & Software
Vol. 00, No. 00, Month 20XX, 1–26

EAGO.jl: Easy Advanced Global Optimization in Julia

M. E. Wilhelm and M. D. Stuber∗

Process Systems and Operations Research Laboratory, Dept. of Chemical and Biomolecular
Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT,

06269-3222, USA

(Received 00 Month 20XX; final version received 00 Month 20XX)

An extensible open-source deterministic global optimizer (EAGO) programmed entirely in the
Julia language is presented. EAGO was developed to serve the need for supporting higher-
complexity user-defined functions (e.g., functions defined implicitly via algorithms) within
optimization models. EAGO embeds a first-of-its-kind implementation of McCormick arith-
metic in an Evaluator structure allowing for the construction of convex/concave relaxations
using a combination of source code transformation, multiple dispatch, and context-specific
approaches. Utilities are included to parse user-defined functions into a directed acyclic graph
representation and perform symbolic transformations enabling dramatically improved solu-
tion speed. EAGO is compatible with a wide variety of local optimizers, the most exhaustive
library of transcendental functions, and allows for easy accessibility through the JuMP model-
ing language. Together with Julia’s minimalist syntax and competitive speed, these powerful
features make EAGO a versatile research platform enabling easy construction of novel meta-
solvers, incorporation and utilization of new relaxations, and extension to advanced problem
formulations encountered in engineering and operations research (e.g., multilevel problems,
user-defined functions). The applicability and flexibility of this novel software is demon-
strated on a diverse set of examples. Lastly, EAGO is demonstrated to perform comparably
to state-of-the-art commercial optimizers on a benchmarking test set.

Keywords: Deterministic Global Optimization; Nonconvex Programming; McCormick
Relaxations; Optimization Software; Branch-and-Bound; Julia

AMS Subject Classification: 90C26; 90C34; 90C57; 90C90

1. Introduction and Motivation

Mathematical optimization problems are ubiquitous in scientific and technical fields. Ap-
plications range from aerospace and chemical process systems to finance. However, even
relatively simple physical processes such as mixing, may introduce significant nonconvex-
ity into problem formulations [60]. As such, nonconvex programs often represent the most
faithful representations of the system of interest. Multiple approaches have been devel-
oped to address these cases. Heuristics such as evolutionary algorithms, may approximate
good solutions for select problems. However, heuristics may fail to guarantee that even
a feasible solution is detected in finite time [2]. In scenarios where a guarantee is nec-
essary, such as determining a reactor’s maximum safe operating temperature, complete
nonconvex methods must be applied. As nonconvex optimization problems are NP-hard,
the development of appropriate optimizers remains an active area of research [29].

∗Corresponding author. Email: stuber@alum.mit.edu

Author's final accepted version. Published version: Wilhelm, M.E. and Stuber, M.D.
EAGO.jl: Easy advanced global optimization. Optimization Methods & Software.
(2020) DOI: 10.1080/10556788.2020.1786566

https://doi.org/10.1080/10556788.2020.1786566

July 1, 2020 Optimization Methods & Software output

State-of-the-art complete global optimizers generally require that a problem can be con-
structed in an algebraic modeling language (AML). These languages provide a specialized
interface that allows users to construct optimization problems in a manner that can be
interpreted by optimizers; translating high-level syntax into the requisite C/Fortran code
and reducing chances for user-input errors. In addition to serving this central function,
AMLs have evolved to provide additional features such as embedding automatic differ-
entiation (AD) schemes and passing standard expression forms to optimizers [23]. This
last feature is required by nearly every complete nonconvex optimizer available today.
These regular expressions are then parsed by the optimizer via the introduction of aux-
iliary variables until all expressions in the model correspond to a form in the optimizers
reference library of relaxations. In many cases, this reference library is limited to a few
expressions: BARON [55] does not support trigonometric functions, ANTIGONE [37] and
Couenne [7] limit expressions to those allowed by AMPL [23] or GAMS [24] environments.
In addition, these complete optimizers do not support user-defined functions.
Many real-world optimization problems arise naturally from computer simulations and

take non-canonical forms. Problems defined in terms of ordinary differential equation
(ODE) and differential-algebraic equation (DAE) systems are pervasive in process sys-
tems engineering. Moreover, for many early-stage design problems, optimization of a
model with an embedded simulation represents only one of many valuable tasks. Others
may center around validating simulations, illustrating system dynamics, and assessing
sensitivities [9]. It is often necessary to recast these problems into an AML prior to opti-
mization. The manual reformulation of a model may be quite challenging for both subject
matter experts and non-experts alike. While application-specific simulation packages at-
tempt to bridge this gap, only gPROMS [4, 5, 49] provides access to state-of-the-art global
optimizers. As a propriety software offering, gPROMS is not readily extensible to user-
defined scripts, and suffers from the same lack of adaptability as other AMLs. Therefore,
users that require non-canonical formulations must resort back to using AMLs or their
own painstakingly implemented code. A few AMLs have mitigated this issue by offer-
ing simpler and more intuitive interfaces. Further enhancements to usability have been
provided by subject area-specific extensions in AMLs, such as Pyomo [28] and JuMP [21].
As an alternative to AML extensions, set-valued arithmetic may be used to construct

bounds. In this approach, convex and concave relaxations of non-canonical functions are
constructed using composition rules by overloading methods or objects. In each of these
approaches, a set-valued data type is constructed and arithmetic rules such as +, ÷, sin(·),
etc., are defined for this data type. Interval arithmetic [40, 46] was one of the first such
approaches, but subsequent work has extended this to affine arithmetic [18], and most
recently McCormick arithmetic [36, 39, 56]. While interval methods are quite general
and can be readily used in global optimization, McCormick arithmetic offers quadratic
convergence rates for a wide class of functions with tighter bounds [12, 42]. In addition,
McCormick operator theory has been developed to allow for the relaxation of implicit
functions, such as those arising in parametric ODE- and PDE-constrained systems and
nonlinear algebraic systems lacking closed-form parametric solutions [39, 56, 61, 64].
These approaches allow for the relaxation of a wide variety of user-defined functions
that arise in numerous application areas. For instance, a process flow diagram may be
reformulated into a simulation that is solved in a sequential block fashion.
The usage of McCormick relaxations has been limited by two significant factors. First,

no publicly available optimizers made use of McCormick composition rules to construct
convex and concave relaxations. EAGO was the first optimizer to remedy this issue (by
a matter of years) along with a recent release of a C++ implementation, MAiNGO [14].
Secondly, the bounds furnished by set-valued arithmetic may be markedly weaker than

2

July 1, 2020 Optimization Methods & Software output

polyhedral approaches, slowing solution speed [48]. One of the reasons for this disad-
vantage is that operator-overloading approaches cannot recognize and exploit internal
problem structure during the presolve phase and exploit this information throughout the
course of the branch-and-bound algorithm when the recognition of linear terms, com-
mon subexpressions, and convexity properties—as well as the introduction of auxiliary
variables—may be beneficial [60, 66, 67].
Our package EAGO—an acronym for Easy Advanced Global Optimization—seeks to

provide a unified framework for both auxiliary variable methods and set-valued arithmetic
methods with a greatly simplified user interface. Included in EAGO are a development
toolkit, a state-of-the-art deterministic global optimizer, and an API for optimizing prob-
lems defined as functions in Julia script. The primary appeal of constructing EAGO in
the Julia language [11] is that it strikes a balance between the speed requirement of sci-
entific computing and the high-level syntax. Using Julia, algorithms can be written in
a syntax simpler than MATLABTM while achieving execution speeds as fast as C and
Fortran [11]. A simple package management system is included in Julia’s base distribu-
tion making propagation of software quite simple. In addition to the above advantages,
EAGO exploits Julia’s Lisp-like abstract syntax tree (AST) for handling expressions to
implement tasks that would be extremely difficult, and in some cases impossible in other
scientific programming languages. As a consequence, optimization problems may be for-
mulated in Julia script and passed to an advanced global optimizer using a function no
more complicated than MATLAB’s fmincon [16]. This interface serves two purposes.
First, it is expected to act as a bridge to new users, who may be unfamiliar with efficient
problem formulations or AML syntax, by allowing them to try out a global optimizer
on a specific class of test problems before investing the time and energy in learning an
AML. In addition, it provides subject matter experts with unparalleled flexibility and the
advanced capabilities needed to address the highly-complex problems on the forefront of
optimization research.
In this paper, we detail the EAGO deterministic global optimization package and its

novel implementation. In Section 2, we establish the mathematical conventions used in
the paper. In Section 3, we describe a nonconvex optimizer developed using this toolkit.
In Section 4, we provide preliminary benchmarking data illustrating the relative compet-
itiveness of EAGO to extant approaches. In Section 5, we discuss EAGO’s extensibility
and flexibility. Lastly, we conclude in Section 6 by summarizing EAGO’s capabilities and
suggesting directions for future research.

2. Mathematical Notation

EAGO provides a toolkit for assembling and modifying branch-and-bound algorithms
along with their variants. Specifically, it provides a series of tools for addressing nonconvex
optimization problems of the form1:

f∗ = min
y∈Y⊂Rn

f(y)

s.t. h(y) = 0 (1)
g(y) ≤ 0

1Equivalent forms of this problem are supported via the JuMP AML.

3

July 1, 2020 Optimization Methods & Software output

where f : Y → R is the objective function, and g : Y → Rng and h : Y → Rnh are con-
straint functions. The lower and upper bounds on the variables are given by yL,yU ∈ Rn,
respectively. A subset of the equations in h may form linear constraints Ay = b specified
by the matrix A ∈ Rm×n with the vector b ∈ Rm. In order to ensure that the above prob-
lem is well-posed, it is typical to assume that all functions are continuous and suitably
bounded [29]. In this paper, we refer to variables that appear in any nonlinear expressions
as nonlinear variables and variables that appear in any nonconvex equality, inequalities,
or objective as nonconvex variables. The convexity tests used in most optimization rou-
tines check sufficient conditions such as determining that natural interval extension of
the Hessian of the augmented Lagrangian is everywhere positive-definite [47]. As a con-
sequence, expressions referred to as convex should be understood to be expressions that
have passed sufficient conditions for convexity.
In addition to the above terminology, the following conventions are followed through-

out the paper. Given xL,xU ∈ Rn with xL ≤ xU , X = [xL,xU] will represent an
n-dimensional interval that is a nonempty compact set defined as X = {x ∈ Rn :
xL ≤ x ≤ xU} with xL and xU the lower and upper bounds of the interval, respec-
tively. Additionally, let IRn be the set of all n-dimensional real intervals and for any
D ⊂ Rn, ID = {X ∈ IRn : X ⊂ D} is the set of all interval subsets of D. The mapping
F : ID → IRn is inclusion-isotonic provided that X ⊂ Y implies that F (X) ⊂ F (Y). The
image of X under the mapping f : D → Rn will be denoted by f(X) whereas an inclusion-
isotonic interval extension of f onX will be denoted by F (X) = [fL(X), fU (X)]. From the
Fundamental Theorem of Interval Analysis [41, p.47] we have f(X) ⊂ F (X), ∀X ∈ ID.

3. Global Optimization Framework

The EAGO package maintains a high-performance deterministic global optimizer. At the
time of writing this, the best optimizer available is detailed below. Further upgrades to
EAGO’s default optimizer will be described in the release notes on future tagged versions
of the EAGO.jl package available through Julia’s package manager. The EAGO optimizer
is specialized to treat programs with nonlinear objectives and constraints via a simulation
approach rather than via the auxiliary variable method. The distinction between the
approaches is primarily the result of how the factorable representation of the problem
is treated. In the following section, we discuss the implementation of the default EAGO
optimizer. The relaxations supported are detailed in Section 3.2. A description of the
presolve steps is presented in Section 3.3. An overview of the domain reduction techniques
used is given in Section 3.5. In Section 3.6, the construction of the relaxed lower-bounding
problem is discussed. In Section 3.7, we conclude by discussing the formulation of the
upper-bounding problem.

3.1 A Flexible Branch-and-Bound Routine

EAGO includes an implementation of the spatial branch-and-bound algorithm [29]. When
used with specific lower-bounding and node-selection routines, this algorithm furnishes
an ε-optimal global solution after a finite number of iterations. Numerous approaches
to generating bounds and selecting nodes have been shown to provide these guarantees.
Further development of such routines remains the subject of active research. For a detailed
discussion of the branch-and-bound algorithm, the reader is referred to the excellent
review presented in [29]. Most complete global optimizers also perform some additional
processing routines on each node to shrink the domain size [50]. EAGO allows the user

4

July 1, 2020 Optimization Methods & Software output

to define preprocessing and postprocessing functions as necessary. Information furnished
from computing the relaxations can be readily accessed from either of these functions.

Figure 1. A block flow diagram depicting the main flexible branch-and-bound routine implemented in EAGO.

We will utilize the following notation within the flexible branch-and-bound framework
(Alg. 1) presented below. Let Y ∈ IRn be the box constraints on the decision variable y of
program (1). Let the global lower and upper bound of f∗ in (1) at iteration k be denoted
by αk and βk, respectively. Let Yl ∈ IY correspond to a node in the branch-and-bound
tree where fLBDl and fUBDl are lower and upper bounds of f on Yl, respectively. Lastly,
let f∗ = f(y∗) be the ε-optimal objective function value where y∗ is a feasible point
corresponding to a solution of (1) at termination of the algorithm.

Algorithm 1 (Flexible Branch-and-Bound Framework)

(1) Initialization
(a) Set the stack to Σ = {Y }.
(b) Set the iteration number k := 0, set tolerances, set the global upper bound α0 :=

+∞, and the global lower bound β0 := −∞.
(2) Termination

(a) If Σ = ∅, the algorithm terminates with (1) infeasible.
(b) Check if a termination condition is satisfied.2 If the absolute tolerance condition

is satisfied, terminate with f∗ := αk as the ε-optimal estimate for the optimal
objective function value and y∗ as a feasible point at which f∗ is attained.

(c) Delete from Σ all nodes with fLBDl > αk and set βk := min
Y l∈Σ

fLBDl .

(3) Node Selection
(a) Select and delete a node Yl from the stack Σ according to a selection heuristic.

(4) Preprocessing
(a) Apply preprocessing routines3. If infeasibility on Yl is established, go to Step 2,

else set Yl to the bounds determined by preprocessing routines.

2To ensure an ε-optimal solution is reached in finite time, the termination condition must be based on an absolute
tolerance. Other conditions are included to deal with numerical issues. Additional assumptions must also be
satisfied such as pointwise convergence of the relaxations and Lipschitz continuity of the functions involved.
3Typically, domain reduction algorithms may be applied at this step.

5

July 1, 2020 Optimization Methods & Software output

(5) Lower-Bounding Problem
(a) Construct and solve the lower-bounding problem globally on Yl.
(b) If the problem is infeasible, set fLBDl := +∞. Otherwise, set fLBDl to the value

of the solution. If fLBDl < αk and the feasible optimal solution found, y̌, is also
feasible in (1), then set αk := fLBDl and y∗ := y̌.

(6) Upper-Bounding Problem (optional)
(a) Solve (1) locally on Yl.
(b) If a feasible solution is found with fUBDl < αk, αk := fUBDl and set y∗ to the

solution found.
(7) Postprocessing

(a) Apply postprocessing routine3 and adjust bounds of Yl, accordingly.
(8) Fathoming

(a) If fLBDl = +∞ or fLBDl > αk, go to Step 2.
(9) Repetition

(a) Checks if the repetition condition is satisfied4. If so, proceed to Step 4.
(10) Branching

(a) Select a branching dimension i according to a selection heuristic. Partition node
Yl in this dimension to form nodes Yl′ and Yl′′ .

(b) Set the lower bounds of the new nodes, fLBDYl′
, fLBDYl′′

:= fLBDl , and add these
nodes to the working stack Σ.

(c) Advance the iteration number, k := k + 1, and go to Step 2.

While multiple software implementations of branch-and-bound exist, the degree to
which the user can adapt the actual branch-and-bound algorithm to specialized prob-
lem formulations is often limited [1, 51]. For example, Juniper only provides a framework
for branching on integer variables [35]. EAGO’s flexible branch-and-bound routine is novel
in that it circumvents these limitations by allowing the user to redefine any method used
by the main routine. Each block depicted in Figure 1 can be set to user-defined sub-
routines. This is done by defining a subtype EAGO.ExtensionType and then extending
the EAGO’s base method to specialize on this newly defined type. A demonstration of
this usage is provided in Section S2.2 of the Supplementary Materials. This modular
architecture allows for the easy implementation of custom optimization schemes.

3.2 Relaxations

The relaxation libraries provided with EAGO are based on McCormick relaxation com-
position rules. The McCormick relaxation of the bilinear function was first introduced by
McCormick in [36]. This relaxation which consists of bounding the bilinear term using a
series of affine inequalities which many commercially available global optimizers such as
ANTIGONE and BARON [17, 27, 37, 55]. In the past decade, a significant effort has been
made to further generalize this approach to arbitrary nonlinear functions. An operator-
overloading scheme for constructing McCormick-based relaxations of functions described
by a class of algorithms was detailed by Mitsos et al. [39] and has been outlined in Section
S1 of the Supplementary Materials. Variations on this manner of constructing relaxations
through operator overloading have been termed McCormick relaxations; a convention we
adopt herein to maintain consistency with the extant body of literature.
Theoretical developments for generalizing the McCormick relaxation framework and

constructing convex and concave composite relaxations using arbitrary convex and con-

4If domain reduction in postprocessing yields a significant improvement, repetition may be beneficial.

6

July 1, 2020 Optimization Methods & Software output

cave functions were established by Scott et al. [56]. More recently, tighter composition
rules for multiplication and maxima operators were presented in [45, 70]. Methods of gen-
erating relaxations of implicit functions were developed by Stuber et al. [64]. Wechsung
et al. [73] described a method of propagating McCormick relaxations backwards on a
direct acyclic graph (DAG) representation of a problem. A method for tightening interval
bounds was described in [44]. Alternative differentiable relaxations were introduced in
[33, 34]. Additionally, McCormick relaxations have been shown to converge quadratically
under reasonable assumptions [12, 42, 43]; a requirement for avoiding clustering with
branch-and-bound [31]. While multiple papers have shown the utility of solving problems
via McCormick relaxations of factorable functions, the availability of an optimizer using
these relaxations is quite limited.
EAGO fills this void as a pioneering open-source optimization solver and research plat-

form supporting McCormick-based relaxations of general factorable functions. Envelopes
of simple expressions are used to generate relaxations of nonconvex intermediate func-
tions. The following functions are currently supported in EAGO with correctly-rounded
interval bounds:

• Arithmetic: +, -, ×, /, sqr, power, ln, log, sqrt, exp
• Nonsmooth: abs, sign, min, max
• Trigonometric: cos, sin, tan, sec, csc, cot
• Inverse Trigonometric: acos, asin, atan, asec, acsc, acot
• Hyperbolic: cosh, sinh, tanh, sech, csch, coth
• Inverse Hyperbolic: acosh, asinh, atanh, asech, acsch, acoth

Additional scaled versions of common operators and transcendental functions such as
log10(·) and sind(·) are also supported. As such, relaxations of nearly all functions avail-
able in standard AD libraries are included in EAGO. Rules for computing subgradients
of McCormick relaxations and gradients of the differentiable McCormick relaxations are
also included.
The calculation of convex and concave envelopes for convexoconcave (a univariate func-

tion, q : D → R, for which ∃p ∈ D such that q is convex on {d ∈ D | d ≤ p} and concave
on {d ∈ D | d ≥ p}), concavoconvex (the negation of a convexoconcave function), and
general periodic functions requires the computation of anchor points at which line seg-
ments meet. These anchor points, that depend only on interval bounds, are calculated
using a one-dimensional root-finding algorithm, such as a secant method or Newton’s
method. EAGO computes roots to an absolute tolerance of 10−10. The computation of
these anchor points and propagating correctly-rounded interval bounds may represent the
main computational expense when generating relaxations as illustrated by Figure 2.
One of the powerful features of EAGO is its ability to decouple various components

required to evaluate a relaxation via a source code transformation. A Wengert list [26]
(synonymously tape or trace) is generated using a source code transformation technique
that supports field access, nested-tape generation, and array operators that would be
challenging for most state-of-the-art AD software packages [53]. The representation pro-
vided by the JuMP AML is used to create a specialized Evaluator for nonlinear and
user-defined expressions. The Evaluator structure included in EAGO allows for the
reuse of intermediate values obtained by computationally expensive protocols. Interval
bounds and anchor points for each factor are only recomputed if the relaxation is being
constructed on a new domain or if both forward and reverse passes are performed (which
may alter interval bounds). This expedites additional evaluations such as those required
to add additional cutting planes to form outer approximations or as part of callback
function evaluations requested by a local NLP optimizer. The interval subgradient cut

7

July 1, 2020 Optimization Methods & Software output

Root Interval Float
Calculation

10 7

10 6

10 5

Ti
m

e
(n

an
os

ec
on

ds
)

Tan
Sinh
Cos
Asin
Asinh

Figure 2. A breakdown of the run-times for computing relaxations associated with implementing an objected-
oriented approach by operator.

detailed in Proposition 3.1, Section 3.5.4, is only performed during the first forward pass,
after all forward-reverse passes are performed, or evaluation occurs on a new domain. This
prevents the distinct relaxation from being evaluated at each point. Flowcharts depicting
the distinction between this novel approach and a pure overloading-based implementation
are provided in Figure 1 of the Supplementary Materials.
To supplement the source code transformation approach, a full multiple dispatch-based

McCormick relaxation implementation is included. This library defines methods for Mc-
Cormick operators that dispatch on the struct MC data type. Each instance of the
struct MC stores the convex relaxation in the field cv, the concave relaxation in the
field cc, the interval bounds in the field Intv, and subgradients of convex and concave
relaxations in the cv_grad and cc_grad fields, respectively. The user may force EAGO
to use the multiple dispatch implementation to compute relaxations in order to reduce
memory requirements using keyword arguments. Additionally, for some select expressions
where source code transformations are not expected to yield improvements to computa-
tional speed, EAGO defaults to a multiple dispatch implementation.

3.3 Presolving

Presolving may dramatically improve solution times by detecting special structures, re-
arranging algebraic terms to tighten relaxations, and potentially lifting problems into
simpler higher-dimensional forms. EAGO utilizes a variety of techniques to accomplish
this goal. First, linear and quadratic constraints are stored in a sparse format during
the solution routine. A list of variables appearing only in linear and quadratic terms are
constructed. Subsequently, a DAG representation of every nonlinear objective and con-
straint function present in the model is generated. After construction, the DAG undergoes
algebraic rearrangement to improve relaxation performance. These rearrangements sim-
plify expressions and change terms with weak relaxations into equivalent terms with
tighter relaxations (e.g., treating the subexpression x log(x) as the convex negative en-
tropy function). This is similar to ANTIGONE’s use of (2) and (7) for reducing the level

8

July 1, 2020 Optimization Methods & Software output

-1.00 -0.75 -0.50 -0.25 0.00

0

1

2

3

4

-1.00 -0.75 -0.50 -0.25 0.00

1

2

3

4

z z

w

Figure 3. Suppose z ∈ [−1, 0], a = 2, g(z) = (z + 2)3 and the standard order of operations is used to evaluate
expressions. Left: The function w = alog g(z) () is plotted with convex/concave relaxations of w = alog g(z)

() and the rearrangement wr = g(z)log a (). Right: The function w = log g(z)g(z) () is plotted with
convex/concave relaxations of w = log g(z)g(z) () and the rearrangement wr = log g(z) + log g(z) ().

at which auxiliary variables are introduced in standard factorable program [37] or using
the rearrangements of Khajavirad and Sahinidis [32] to improve the inferences made via
disciplined convex programming (DCP) [57].
EAGO’s framework provides a simple syntax for implementing expression trans-

formation by registering template DAGs corresponding to subexpressions. This
is done by creating the appropriate Template_Graph objects then invoking the
register_substitution!. Transformations to the Wengert list are made by locating
subexpressions that match specified forms and substituting in equivalent subexpressions.
The rearrangements given in Equations (2)-(8) are included in EAGO’s optimizer and
result in McCormick relaxations that may be significantly tighter than the original form.

exp(x) exp(y) = exp(x+ y) (2)
log(ax) = x log(a) (3)

(ax)b = (ab)x (4)
(xa)b = x(ab) (5)

alog(x) = xlog(a) (6)
log(xy) = log(x) + log(y) (7)

log(x/y) = log(x)− log(y) (8)

An illustration of the tightening effect produced by applying (6) and (7) is given in Figure
3. Note that (2)-(5) reduce the number of subexpressions that are relaxed. This improves
computation speed as calculations of relaxations are significantly more expensive than
floating-point calculations. These rearrangements do not tighten natural interval bounds.

9

July 1, 2020 Optimization Methods & Software output

3.4 User-Defined Functions

Figure 4. Given an optimization problem, EAGO generates a DAG representation for all user-defined functions,
composes these into a shared DAG representation of all nonlinear expressions, further detects special structures,
solves the optimization problem, and returns the model with respect to the original variables.

The development of relaxations of functions implemented in a script form rather than
an AML form can be exceedingly difficult for a complete global optimizer to handle. While
operator and method overloading techniques can be applied to a broad class of problems,
the introduction of auxiliary variables for these functions can be challenging. Moreover,
basic overloading approaches can be subject to a number of flaws that limit their practical
use. In the case of AD methods, perturbation errors may result from nested overloading
(e.g., required to form higher-order derivatives) [53]. Additionally, overloading approaches
to tape generation require that all potential promotions are anticipated and accounted
for. This limits the ability to integrate such tracing methods with other packages that may
use structures internally to perform calculations. EAGO makes use of context-oriented
programming tools introduced with Julia 0.7 to address forms inaccessible to method
overloading or operator overloading approaches [52]. This allows for the generation of
DAG representations from functions defined by Julia script; a core feature of EAGO.
In many technical application areas, components of a simulation may be represented by

a series of scripts. For instance, a chemical process flowsheet model will typically embed
a series of equations of state, mass and energy balances, and rules for solving the sys-
tem operating under particular equipment specifications (e.g., adiabatic flash) for each
block representing a unit operation. These simulations may be addressed using methods
that embed sequential modular solves in these user-defined functions via a semi-explicit
approach. EAGO’s handling of user-defined functions allows for the construction of for-
ward and reverse evaluation of blocks of these simulations and the determination of DAG
structures that span from the process blocks to the entire model. Figure 4 illustrates how
EAGO’s framework allows it to reconcile process models with AML defined optimiza-
tion problems. Additional user-defined functions may arise naturally as a description of
dynamic behavior such as the chemical kinetic examples in [74] and Section 3.4.2.
AD is a powerful tool for addressing these formulations using local nonlinear opti-

mizers by providing gradient information of the objective functions and constraints [26].

10

July 1, 2020 Optimization Methods & Software output

The direct optimization of problems with user-defined functions may also be desired in
a global optimization context. To our knowledge, EAGO is the only deterministic global
optimizer capable of handling user-defined factorable functions. User-defined functions
may include type-assertions and calls to functions that aren’t appropriate for direct over-
loading approaches as defined. Additionally, many implementations would require that
the user change local storage objects. EAGO makes use of a context-oriented approach
that overcomes each of these potential issues when generating the Wengert list for each
function. In this manner, EAGO allows us to solve optimization problems that include
partial derivatives of an arbitrary order as illustrated in Section 3.4.1.

3.4.1 Optimization of a Model With an Embedded Algorithm

Consider an aqueous n-butanol mixture undergoing a separation (by heating at constant
pressure, P [bar], and temperature, T [K], in a fixed volume). Depending on the operating
temperature, the system exhibits two immiscible liquid phases and potentially a minimum
boiling azeotrope. We’ll assume the existence of two immiscible phases is undesirable due
to equipment limitations. This implies the following liquid-phase stability conditions:

dln(γ1x1)

dx1
> 0,

dln(γ2x2)

dx2
> 0 (9)

where x1 is the liquid-phase mole-fraction of n-butanol, x2 is the liquid-phase mole-
fraction of water, and a van Laar activity coefficient model is given by

ln(γ1) =
1253/T

(1 + 2.62(x1/x2))2
(10)

ln(γ2) =
479/T

(1 + 0.382(x2/x1))2
(11)

where γ1 and γ2, are the respective activity coefficients of n-butanol and water. A modified
Raoult’s Law and mass balance yield two other equality constraints:

0 = P − x1γ1P
vp
1 + x2γ2P

vp
2

0 = x1 + x2 − 1

where P vp1 and P vp2 are, respectively, the vapor pressures of water and n-butanol, given
by:

P vp1 = 1.33× exp(11.83572− 4169.84/(T − 17.665)

P vp2 = 1.33× exp(11.33986− 3724.52/(T − 69.854).

An operating condition is sought with the minimum temperature such that the vapor
phase mass fraction of n-butanol is at least 0.95 and no liquid-liquid phase split occurs.
The vapor composition specification is then represented by the following constraint:

x1γ1P
vp
1 /P ≥ 0.95.

We can then write the objective function as:

f(x1, x2, T) = T (12)

11

July 1, 2020 Optimization Methods & Software output

where we restrict to the ranges of interest as follows x1 ∈ [0.01, 0.99], x2 ∈ [0.01, 0.99], and
T ∈ [363.15, 398.15]. Within 10.1 seconds, EAGO is able to prove that no such operating
condition exists, which is consistent with visual inspection of the Txy-diagrams [69].
Listing 1 Script used to set up and optimize the example given in Section 3.4.1.

using JuMP, EAGO, ForwardDiff

Define the activity model
gamma1_x1(z) = z[1]*(1253/z[3])/(1 + 2.62*(z[1]/z[2]))^2
gamma2_x2(z) = z[2]*(479/z[3])/(1 + 0.382*(z[2]/z[1]))^2
cons_1ex(z...) = ForwardDiff.gradient(z -> log(gamma1_x1(z)), collect(z))[1]
cons_2ex(z...) = ForwardDiff.gradient(z -> log(gamma2_x2(z)), collect(z))[2]

Define the JuMP model and solve
m = Model(EAGO.Optimizer)
register(m, :cons_1ex, 3, cons_1ex, autodiff = true)
register(m, :cons_2ex, 3, cons_2ex, autodiff = true)

@variable(m, 0.01 <= x[i=1:2] <= 0.99)
@variable(m, 363.15 <= T <= 398.15)
@constraint(m, x[1] + x[2] == 1.0)
@NLexpression(m, P1, 1.33*exp(11.83572 - 4169.84/(T - 17.665)))
@NLexpression(m, P2, 1.33*exp(11.33986 - 3724.523/(T - 69.854)))
@NLconstraint(m, cons_1ex(x[1],x[2],T)*P1 + cons_2ex(x[1],x[2],T)*P2 == 1.02)
@NLconstraint(m, cons_1ex(x[1],x[2],T)*P1/1.02 >= 0.95)
@NLconstraint(m, cons1, cons_1ex(x[1], x[2], T) >= 0.001)
@NLconstraint(m, cons2, cons_2ex(x[1], x[2], T) >= 0.001)
@NLobjective(m, Min, T)
optimize!(m)

3.4.2 Kinetic Parameter Estimation

Consider the kinetic parameter estimation problem [39], which was adapted from [59, 68].
The reaction mechanism can be modeled using the initial value problem:

dxA
dt

= k1xZxY − cO2
(k2f + k3f)xA +

k2f

K2
xD +

k3f

K3
xB − k5x

2
A

dxB
dt

= cO2
k3fxA −

(
k3f

K3
+ k4

)
xB,

dxZ
dt

= −k1xZxY

dxD
dt

= cO2
k2fxA −

k2f

K2
xD,

dxY
dt

= −k1sxZxY

xA(0) = 0, xB(0) = 0, xD(0) = 0, xY (0) = 0.4, xZ(0) = 140

where xj is the concentration of species j ∈ {A,B,D, Y, Z}. The constants are given
by T = 273, K2 = 46 exp(6500/T − 18), K3 = 2K2, k1 = 53, k1s = k1 × 10−6, k5 =
1.2 × 10−3, and cO2

= 2 × 10−3. Intensity versus time data is available in [61] as well
as a known dependency on concentration, I = xA + 2

21xB + 2
21xD[58]. The reaction rate

constants k2f ∈ [10, 1200], k3f ∈ [10, 1200], and k4 ∈ [0.001, 40] are unknown and form
the parameter vector p = (k2f , k3f , k4).
An implicit Euler discretization was constructed in [64, 74] and solved to global op-

timality by constructing relaxations of implicit functions using a fixed-point method.
While EAGO can replicate this implicit approach, we’ll consider the original case of the
explicit Euler discretization of the problem [39] for simplicity’s sake. In this example, a
semi-explicit approach is used; the relaxations of intermediate factors x that arise during

12

July 1, 2020 Optimization Methods & Software output

the simulation of the ODEs are computed. These factors are subsequently propagated
through to the objective function effectively eliminating the need to explicitly consider
the x values in the problem formulation, as detailed in [13, 39]. A discretization consist-
ing of 200 timesteps provides sufficiently high accuracy for this problem. The discretized
model becomes:

xi+1
A = xiA + ∆t

(
k1x

i
Y x

i
Z − cO2

(k2f + k3f)xiA +
k2f

K2
xiD +

k3f

K3
xiB − k5(xiA)2

)
xi+1
B = xiB + ∆t

(
k3fcO2

xiA −
(
k3f

K3
+ k4

)
xiB

)
xi+1
D = xiD + ∆t

(
k2fcO2

xiA −
k2f

K2
xiD

)
xi+1
Y = xiY + ∆t

(
−k1sx

i
Y x

i
Z

)
xi+1
Z = xiZ + ∆t

(
−k1sx

i
Y x

i
Z

)
where i = 0, . . . , 199 and ∆t = 0.01. While only three parameters are of interest in the
original optimization problem, 1003 variables are required to specify this in an AML along
with knowledge of reasonable variable box bounds. This is because the state vector:

x =
(
x1
A, x

1
B, x

1
D, x

1
Y , x

1
Z , · · · , x200

A , x200
B , x200

D , x200
Y , x200

Z

)
(13)

must be accounted for as decision variables in typical formulations. Since EAGO computes
composite relaxations, this problem formulation allows us to treat this state vector as a
series of intermediate expressions to be evaluated; therefore, allowing us to define the
problem with respect to the kinetic parameters of interest p.
Listing 2 Explicit Euler integration scheme script used in the kinetic parameter estimation example (Ex. 3.4.2).

function explicit_euler_integration(p)

x = zeros(typeof(p[1]), 1005); # Data storage array
x[4] = 0.4; x[5] = 140 # Sets initial condition
T = 273; delT = 0.01; cO2 = 2e-3; k1 = 53; k1s = k1*1E-6;
K2 = 46*exp(6500/T-18); K3 = 2*K2; h = delT; k5 = 1.2E-3

for i=1:200 # Offset by 1, initial condition is at x[1:5]
term1 = k1*x[5i-1]*x[5i]-cO2*(p[1]+p[2])*x[5i-4]
term2 = p[1]*x[5i-2]/K2+p[2]*x[5i-3]/K3-k5*x[5i-4]^2
x[5i+1] = x[5i-4] + h*(term1 + term2)
x[5i+2] = x[5i-3] + h*(p[2]*cO2*x[5i-4]-(p[2]/K3+p[3])*x[5i-3])
x[5i+3] = x[5i-2] + h*(p[1]*cO2*x[5i-4]-p[1]*x[5i-2]/K2)
x[5i+4] = x[5i-1] + h*(-k1s*x[5i-1]*x[5i])
x[5i+5] = x[5i] + h*(-k1s*x[5i-1]*x[5i])

end

return x
end

The objective function for this problem can then be given by

f(p) =
n∑
i=1

(
Ici (p)− Idi

)2
(14)

where Ici are the calculated intensity values at time step i from the model and Idi are

13

July 1, 2020 Optimization Methods & Software output

Listing 4 Script to build the JuMP model and calculate the ε-global optimal solution for the Example given in
Section 3.4.2.

Create model and add variables
m = Model(EAGO.Optimizer)
@variable(m, pL[i] <= p[i=1:3] <= pU[i])

Register objective, add objective function, and optimize
fobj(p...) = objective(p...)
JuMP.register(m, :fobj, 3, fobj, autodiff=true)
@NLobjective(m, Min, fobj(p...))
JuMP.optimize!(m)

the values corresponding to the experimental data. The EAGO optimizer converges to
within 90% in just 2.6 seconds, and to within 95% in 8.2 seconds. This is comparable to
the solution time presented in [39].
Listing 3 Script to load data and define the objective function for the Example given in Section 3.4.2.

using EAGO, JuMP, DataFrames, CSV

data = CSV.read("kinetic_intensity_data.csv") # Loads data from csv file to DataFrame
pL = [10.0 10.0 0.001]; pU = [1200.0 1200.0 40.0]

I(xA,xB,xD) = xA + (2/21)*xB + (2/21)*xD # Defines function for intensity
function objective(p...) # Integrates the ODEs and calculates SSE

x = explicit_euler_integration(p)
SSE = zero(typeof(p[1]))
for i=1:200

SSE += (I(x[5i-4],x[5i-3],x[5i-2]) - data[:intensity][i])^2
end
return SSE

end

3.5 Domain Reduction

Various techniques are commonly used to shrink each subdomain Y l generated within the
branch-and-bound algorithm. These techniques may significantly speed up the branch-
and-bound algorithm by eliminating large regions of the search space. EAGO makes use
of three main families of these routines: optimality-based bounds-tightening (Sec. 3.5.1),
feasibility-based bounds-tightening (Sec. 3.5.3), and duality-based bounds-tightening
(Sec. 3.5.2). EAGO executes the first two approaches during preprocessing while duality-
based bounds-tightening is applied during postprocessing.

3.5.1 Optimization-Based Bounds-Tightening (OBBT)

In addition to the lower bound calculation, relaxations are also used to tighten bounds via
optimization-based bounds-tightening (OBBT). For variables participating in a nonlinear
term, problem (15) is solved to obtain potentially tighter lower and upper variable bounds.

14

July 1, 2020 Optimization Methods & Software output

EAGO implements OBBT using a greedy algorithm with filtering [25].

min
y
±yk (15)

s.t. gcv(y) ≤ 0

hcv(y) ≤ 0

hcc(y) ≥ 0

f cv(y) ≤ αk

OBBT entails solving a large number of optimization problems. As such, EAGO uses
OBBT at the root node and then uses a heuristic to determine if it will be used at deeper
nodes in the branch-and-bound tree. For a node of depth d ≤ k (default k: 4), OBBT is
performed. For nodes of depth d > k, the OBBT performed with probability 2k−d [6].

3.5.2 Duality-Based Bounds-Tightening (DBBT)

Duality-based bounds-tightening (DBBT) is performed following the solution of the re-
laxed problem. The dual multiplier λi of each variable yi is queried along with the lower
bound LBD; all positive dual multipliers are used to shrink the variable bounds [54]:

yi ≥ yUi − λ−1
i (αk − LBD)

yi ≤ yLi + λ−1
i (αk − LBD).

3.5.3 Feasibility-Based Bounds-Tightening

Expression specific feasibility-based bounds-tightening is provided for linear constraints,
univariate quadratic constraints [20], and bivariate quadratic constraints [71]. For lin-
ear constraints, the following relationships are used. The set of linear constraints∑

j=1:n aijyj ≤ bi, i = 1, . . . ,m. Each linear constraint i is then processed sequentially
and the variable bounds are refined through application of the following relationship:

yUk ≤
1

aij

bi −∑
j 6=k

min(aijy
U
j , aijy

L
j)

 aik ≥ 0

yLk ≥
1

aij

bi −∑
j 6=k

min(aijy
U
j , aijy

L
j)

 aik < 0.

For a full discussion of univariate and bivariate constraint bounds-tightening, the reader
is encouraged to consult [20] and [71], respectively.

3.5.4 Constraint Propagation on the Directed Acyclic Graph

A two-stage constraint propagation scheme is used for nonlinear terms represented on
the DAG. In this first stage, natural interval extensions along with McCormick relax-
ations (and associated subgradients) computed at a reference point ȳ of the nonlinear
constraints and the objective are calculated via a forward pass on the DAG in topological
order. The subgradients are used to improve the interval bounds if possible, according
to Proposition 3.1 [44, 64]. The computed bounds of the constraints are then intersected

15

July 1, 2020 Optimization Methods & Software output

with constraint bounds. In the second stage, a reverse interval pass is then performed
in reverse topological order [65]. This is repeated, inferring tighter variable values until
either the variable bounds fail to tighten by a preset factor (default: 0.99) or a maximum
number of repetitions is reached (default: 3)

Proposition 3.1 Let v : Y → V be a factor in the computation of McCormick re-
laxations such that V = [vL, vU] are known interval bounds (e.g., by a natural interval
extension) with convex/concave relaxations vcv/vcc of v on Y and their respective sub-
gradients scvv , sccv computed at y = ȳ ∈ Y . The functions ω, µ : Y → R are the affine
relaxations of the convex and concave relaxations of v on Y , respectively, and defined as:

ω(y) ≡ vcv(ȳ) + scvv (ȳ)T(y − ȳ)

µ(y) ≡ vcc(ȳ) + sccv (ȳ)T(y − ȳ).

The lower and upper bounds of these relaxations are themselves valid bounds of v on Y .
Valid lower and upper bounds of the image set v(Y) are given by:

vL,new := max(vL, ωL(Y)) (16)

vU,new := min(vU , µU (Y)). (17)

By construction, the bounds furnished by (16) and (17) are at least as tight as the
original interval bounds. EAGO uses the midpoint of Y as the reference point, ȳ; this is
repeated until either the variable bounds reduction falls below a preset threshold (default:
0.99) or until a maximum number of repetitions is reached (default: 5).

3.6 Lower-Bounding Problem

A lower bound on the optimal solution value is calculated by solving to global optimality
the relaxation of (1), given as:

fLBD = min
y∈Y

f cv(y) (18)

s.t. gcv(y) ≤ 0

hcv(y) ≤ 0

hcc(y) ≥ 0.

EAGO’s default optimizer further relaxes this form via polyhedral outer approximation
of the McCormick-based relaxations detailed in Section 2. For nonlinear expressions, an
affine relaxation is generated via an affine approximation of the expression at the midpoint
of the domain using subgradient information [39]. Objective function value cuts taken at
the midpoint are also added using the current global upper bound, αk:

fLBD = min
y∈Y

f cv(ȳ) + scvf (ȳ)T(y − ȳ)

s.t. gcv(ȳ) + scvg (ȳ)T(y − ȳ) ≤ 0

hcv(ȳ) + scvh (ȳ)T(y − ȳ) ≤ 0

hcc(ȳ) + scch (ȳ)T(y − ȳ) ≥ 0

f cv(ȳ) + scvf (ȳ)T(y − ȳ) ≤ αk.

16

July 1, 2020 Optimization Methods & Software output

This is done in part because the standard McCormick relaxations [39] are potentially
nonsmooth and therefore may pose difficulty for gradient-based NLP optimizers. Addi-
tionally, the polyhedral relaxation can be significantly faster than a differentiable NLP
relaxation for certain problems. The lower-bounding problem is then solved using the
specified LP optimizer. Additional cutting planes are generated by adding constraints
at new reference points based on the solution of prior relaxation (default: up to 3) and
the objective is then updated with the new reference point. Alternatively, EAGO can
supply an Evaluator structure to local NLP optimizers. This evaluator can be queried
for function and subgradient values. If differentiable McCormick relaxations are selected
a MathOptInterface-wrapped local NLP optimizer may be used to furnish lower bounds
instead.

3.7 Upper-Bounding Problem

The use of tight upper bounds can accelerate the convergence of the branch-and-bound
algorithm by increasing the rate at which nodes are fathomed. One popular choice is that
of a feasible local solution. As solving an NLP to local optimality can be computationally
expensive, EAGO makes use of a heuristic similar to that of Couenne [6] to limit the num-
ber of upper-bounding problems solved. That is, for a node of depth d less than a tolerance
k, the local NLP is solved. For nodes of depth d > k, the local NLP is solved with proba-
bility 2k−d [6]. By default, EAGO uses Ipopt [72], but any other MathOptInterface.jl
compatible NLP optimizer can be specified passing keyword arguments to the EAGO
optimizer.

4. Numerical Experiments

The data files and code for all examples are freely available in the EAGO Git repository,
https://github.com/PSORLab/EAGO.jl. Additional special use cases in the Supplementary
Materials further illustrate EAGO’s flexibility. EAGO version 0.4.0 was used with an
absolute tolerance of εa = 10−3 and a relative tolerance of εr = 10−3. All numerical
experiments were run three times on a single thread of a 3.60GHz (4.00GHz turbo) Intel
Xeon E3-1270 v5 processor with 32GB in Ubuntu 18.02LTS and Julia v1.4.2. The lower-
bounding problem was solved using Gurobi 9.0.2 [27]. The upper-bounding problem was
solved using Ipopt v3.12.13 [72]. Julia, Ipopt, and CPLEX are all compiled with Intel MKL
2019 (Update 3) versions of LAPACK/BLAS. EAGO makes use of the JuMP mixed-mode
AD scheme for general problems [21] and a forward-mode AD scheme for user-defined
functions [53]. MathOptInterface v0.9.13 and JuMP version 0.21.2 were used to formulate
problems and provide interfaces to sub-solvers in a myriad of internal subroutines. The
ValidatedNumerics.jl library was used for correctly-rounded interval calculations [8] using
the :accurate rounding mode that is slightly more conservative than the IEEE Standard
1788-2015 [30], but is often significantly faster.
One of the primary advantages of EAGO is the relative speed of the Julia language.

To illustrate this, we provide a comparison of the solution times between EAGO and
three state-of-the-art deterministic global optimizers: BARON, ANTIGONE, and SCIP.
Twenty problems were selected from the MINLP2 and GLOBAL library that contains
only expressions supported by BARON, ANTIGONE, and SCIP. A list of the problems
along with a brief summary of formulation traits is given in Table 1. A maximum of 1000
seconds are allowed for each numerical experiment. BARON v17.10.16, ANTIGONE v1.1,
and SCIP v5.0 were used for these experiments. Optimizer performance is assessed using

17

https://github.com/PSORLab/EAGO.jl

July 1, 2020 Optimization Methods & Software output

the methods presented in Dolan and Moore [19]. A performance profile for this test set
is provided in Figure 5 and accompanying data is provided in Tables 2 and 3 of the
Supplementary Materials. The performance of optimizer s is the time in CPU seconds,
tp,s, required to solve problem p. The performance ratio on problem p by optimizer s is
the ratio of the optimizer’s performance to the best optimizer’s performance in the set:

rp,s =
tp,s

min{tp,s : s ∈ S}
.

The performance profile of optimizer s is the plot of the distribution function of the
performance metric where ρs(τ) is the probability that a performance ratio rp,s is within
a factor τ ∈ R of the best possible ratio

ρs(τ) =
1

np
card{p ∈ P : rp,s ≤ τ}

where card(S) denotes the cardinality of set S, P is the set of problems, np = card(P).
The percent relative gap remaining at time t for problem p is given by gt = 100 ×
(UBD − LBD)/max(|UBD|, |LBD|). As illustrated by Figure 5, EAGO solves many
problems with times comparable to state-of-the-art global optimizers. Of the problems
not solved within the time limit, EAGO typically yields a smaller percent relative gap
than the other optimizers. This suggests EAGO can provide meaningful run time results
when used to develop novel optimization routines. However, no claim of superiority is
appropriate at this time. This is particularly evident for nonconvex quadratic programs in
which SCIP and BARON both outperform EAGO. This is expected as EAGO makes use
of the McCormick-based relaxation framework for relaxing quadratic constraints whereas
other optimizers use specialized routines for relaxing quadratic constraints. We leave a
more exhaustive benchmarking analysis for a later date.

100 101 102 103

0.2

0.4

0.6

0.8

1.0

P(
r p

,s
:1

s
n s

)

Performance Profile on Test Set

BARON
SCIP
ANTIGONE
EAGO

Figure 5. Performance profiles for the test set enumerated in Table 1.

18

July 1, 2020 Optimization Methods & Software output

5. Extensibility of EAGO

The EAGO framework has already been used to demonstrate multiple novel approaches to
global optimization. The quasiconvexity of a hybrid-solar system was exploited allowing
for the problems to be solved with a certificate of global optimality [62]. In subsequent
works, novel affine relaxations [15] and relaxations of implicit functions [74], were im-
plemented by customizing and extending EAGO, respectively. One illustration of the
capability is provided in the EAGO package itself as functionality to solve nonconvex
semi-infinite programs (SIPs) as illustrated in Section 5.1.

5.1 Solving Semi-Infinite Programs

EAGO implements the SIPres algorithm [38, 63] for solving general nonconvex SIPs that
converges in a finite number of iterations under mild assumptions. For full implementation
details, the reader is directed to the EAGO GitHub repository at https://github.com/
PSORLab/EAGO.jl. Consider the standard-form SIP:

f∗ = min
x∈X

f(x) (19)

s.t. g(x,p) ≤ 0, ∀p ∈ P, |P | ≤ ∞
X = {x ∈ Rnz : xL ≤ x ≤ xU}
P = {p ∈ Rnp : pL ≤ p ≤ pU}.

A design centering problem developed in [22] is presented here. A location consisting of
coordinates x1, x2 is sought such that a disk with maximal radius, x3, can be inscribed
within a nonconvex container set. The SIP is stated formally as:

f∗ = max
x∈X

x3 (20)

s.t. g1(x, p) = 0.3sin(πz1(x, p))− z2(x, p) ≤ 0, ∀p ∈ P
g2(x, p) = z1(x, p)2 + 0.3z2(x, p)2 − 1 ≤ 0, ∀p ∈ P
X = [−1.5, 1.5]× [−1, 2]× [0, 1.5]

P = [0, 2π]

where the z terms are determined by the expressions:

z1(x, p) = x1 + x3cos(p)
z2(x, p) = x2 + x3sin(p).

This problem is constructed in the few lines of code contained in Code Listing 5. Using
EAGO’s implementation of the SIPres routine in combination with its global optimizer,
we were able to solve (20) and obtain certification of global optimality with an absolute
tolerance of εa = 10−3 in 1.97 seconds. All prior attempts to address this problem required
approximations of the constraint set or the use of approximate methods as done in the
original work of Floudas [22].
Listing 5 The code for solving the design centering problem given in Example 20 originally presented in [22]

using EAGO, Gurobi

19

https://github.com/PSORLab/EAGO.jl
https://github.com/PSORLab/EAGO.jl

July 1, 2020 Optimization Methods & Software output

f(x) = x[3] # Define objective
z1(x,p) = x[1] + x[3]*cos(p[1])
z2(x,p) = x[2] + x[3]*sin(p[1])
gSIP1(x,p) = 0.3*sin(pi*z1(x,p)) - z2(x,p) # Define SIP constraints
gSIP2(x,p) = z1(x,p)^2 + 0.3*z2(x,p)^2 - 1.0

xL = [-1.5, -1.0, 0.0]; xU = [1.5, 2.0, 1.5] # Defines bounds
pL = [0.0]; pU = [2.0*pi]

result = explicit_sip_solve(xL, xU, pL, pU, f, [gSIP1, gSIP2], sip_sense = :max,
relaxed_optimizer = Gurobi.Optimizer())

6. Conclusions and Future Directions

We have presented the first openly-available McCormick relaxation-based global opti-
mizer. This optimizer contains a number of features prevalent in modern nonconvex
optimization software and each of these features can be readily included or omitted
from user-developed routines. Among the features discussed were an interval constraint
programming algorithm, an affine interval bounds-tightening algorithm, duality-based
bounds-tightening algorithm, and a generic optimization-based bounds-tightening rou-
tine. Routines for constructing outer approximations of convex function envelopes were
discussed.
The basic optimizer developed in EAGO performs impressively relative to state-of-

the-art deterministic global optimizers on the selected examples shown. The number
of algebraic expressions supported by EAGO is significantly larger than the existing
complete global optimizers. In fact, the library size is comparable to that of modern
AD software [3]. Most notably, we have illustrated the use of our deterministic global
optimizer with native Julia code. As illustrated, support for script-defined functions serves
a two-fold purpose. First, it allows non-experts to explore simple optimization problems
without domain-specific knowledge. Second, it provides a framework that experts can
use to construct specialized algorithms for computing global optima of problems with
embedded simulations, already utilized in recent works [15, 62, 74].
Multiple avenues exist to further improve EAGO’s branch-and-bound optimization

framework and default optimizer. One potential avenue of interest is exploring the use
of tighter interval arithmetic in conjunction with McCormick-based relaxations. The use
of tighter interval bounds such as those generated by interval-Taylor arithmetic [10] may
yield significantly tighter relaxations and speed solution time [43]. Another potential im-
provement to EAGO lies in further specializing it to handle various categories of models
with embedded simulations. One such improvement may lie in selectively adding auxil-
iary variables to the formulation in the presolve step to tighten relaxations and improve
domain reduction. Another improvement may lie in the automatic detection of implicit
function reformulations [64, 74] and the application of specialized routines to address
these. One major adaptation of the EAGO toolkit presently underway is the incorporation
of a branch-and-cut framework for solving mixed-integer nonlinear problems [67].

Acknowledgment(s)

We would like to thank Huiyi Cao and Kamil Khan for their fruitful discussion on dif-
ferentiable McCormick relaxations and EAGO functionality. We would also like to thank
William Hale and Chenyu Wang for their preliminary feedback.

20

July 1, 2020 Optimization Methods & Software output

Funding

This material is based upon work supported by the National Science Foundation under
Grant No. 1932723, as well as the University of Connecticut. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

References

[1] B.M. Adams, W. Bohnhoff, K. Dalbey, J. Eddy, M. Eldred, D. Gay, K. Haskell, P.D. Hough, and L.P.
Swiler, DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual, Sandia
National Laboratories, Tech. Rep. SAND2010-2183 (2009).

[2] O. Andrzej and K. Stanislaw, Evolutionary Algorithms for Global Optimization, in Global Opti-
mization: Scientific and Engineering Case Studies, chap. 12, Springer US, Boston, MA, 2006, pp.
267–300, Available at https://doi.org/10.1007/0-387-30927-6_12.

[3] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon, Automatic differentiation of al-
gorithms, Journal of Computational and Applied Mathematics 124 (2000), pp. 171 – 190, Available
at https://doi.org/10.1016/S0377-0427(00)00422-2.

[4] P.I. Barton and C. Pantelides, gPROMS-a combined discrete/continuous modelling environment for
chemical processing systems, Simulation Series 25 (1993), pp. 25–25.

[5] P.I. Barton and C.C. Pantelides, Modeling of combined discrete/continuous processes, AIChE journal
40 (1994), pp. 966–979, Available at https://doi.org/10.1002/aic.690400608.

[6] P. Belotti, CoUEnnE: a user’s manual, Tech. Rep., Technical report, Lehigh University, 2009.
[7] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, Branching and bounds tightening techniques

for non-convex MINLP, Optimization Methods & Software 24 (2009), pp. 597–634.
[8] L. Benet and D. Sanders, ValidatedNumerics.jl (2019), Available at https://www.github.com/

JuliaIntervals/ValidatedNumerics.jl.
[9] B.W. Bequette, Process control: modeling, design, and simulation, Prentice Hall Professional, Upper

Saddle River, NJ, USA, 2003.
[10] M. Berz and G. Hoffstätter, Computation and application of Taylor polynomials with interval re-

mainder bounds, Reliable Computing 4 (1998), pp. 83–97, Available at https://doi.org/10.1023/A:
1009958918582.

[11] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah, Julia: A fresh approach to numerical com-
puting, SIAM review 59 (2017), pp. 65–98.

[12] A. Bompadre and A. Mitsos, Convergence rate of McCormick relaxations, Journal of Global Opti-
mization 52 (2012), pp. 1–28, Available at http://dx.doi.org/10.1007/s10898-011-9685-2.

[13] D. Bongartz and A. Mitsos, Deterministic global optimization of process flowsheets in a reduced space
using McCormick relaxations, Journal of Global Optimization 69 (2017), pp. 761–796, Available at
https://doi.org/10.1007/s10898-017-0547-4.

[14] D. Bongartz, J. Najman, S. Sass, and A. Mitsos, MAiNGO: McCormick based algorithm for mixed
integer nonlinear global optimization, Tech. Rep., RWTH Aachen, 2018.

[15] H. Cao, Y. Song, and K.A. Khan, Convergence of subtangent-based relaxations of nonlinear programs,
Processes 7 (2019), p. 221, Available at https://doi.org/10.3390/pr7040221.

[16] T. Coleman, M.A. Branch, and A. Grace, Optimization toolbox, For Use with MATLAB. User’s
Guide for MATLAB 5, Version 2, Relaese II (1999).

[17] I.I. CPLEX, IBM ILOG CPLEX Optimizer, http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/ (2020).

[18] L.H. De Figueiredo and J. Stolfi, Affine arithmetic: concepts and applications, Numerical Algorithms
37 (2004), pp. 147–158, Available at https://doi.org/10.1023/B:NUMA.0000049462.70970.b6.

[19] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Mathe-
matical programming 91 (2002), pp. 201–213, Available at https://doi.org/10.1007/s101070100263.

[20] F. Domes and A. Neumaier, Constraint propagation on quadratic constraints, Constraints 15 (2010),
pp. 404–429, Available at https://doi.org/10.1007/s10601-009-9076-1.

[21] I. Dunning, J. Huchette, and M. Lubin, JuMP: A modeling language for mathematical optimization,
SIAM Review 59 (2017), pp. 295–320, Available at https://doi.org/10.1137/15M1020575.

21

https://doi.org/10.1007/0-387-30927-6_12
https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1002/aic.690400608
https://www.github.com/JuliaIntervals/ValidatedNumerics.jl
https://www.github.com/JuliaIntervals/ValidatedNumerics.jl
https://doi.org/10.1023/A:1009958918582
https://doi.org/10.1023/A:1009958918582
http://dx.doi.org/10.1007/s10898-011-9685-2
https://doi.org/10.1007/s10898-017-0547-4
https://doi.org/10.3390/pr7040221
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s10601-009-9076-1
https://doi.org/10.1137/15M1020575

July 1, 2020 Optimization Methods & Software output

[22] C.A. Floudas and O. Stein, The adaptive convexification algorithm: A feasible point method for
semi-infinite programming, SIAM Journal on Optimization 18 (2008), pp. 1187–1208, Available at
http://dx.doi.org/10.1137/060657741.

[23] R. Fourer, D.M. Gay, and B.W. Kernighan, A modeling language for mathematical programming,
Management Science 36 (1990), pp. 519–554, Available at https://doi.org/10.1287/mnsc.36.5.519.

[24] GAMS Development Corporation, Washington, DC, USA, GAMS - A User’s Guide, GAMS Release
24.2.1 (2013), Available at http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf .

[25] A.M. Gleixner, T. Berthold, B. Müller, and S. Weltge, Three enhancements for optimization-based
bound tightening, Journal of Global Optimization 67 (2017), pp. 731–757, Available at https://doi.
org/10.1007/s10898-016-0450-4.

[26] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic
differentiation, 2nd ed., SIAM, Philadelphia, PA, 2008, Available at https://doi.org/10.1137/1.
9780898717761.

[27] Gurobi Optimization, LLC, Gurobi optimizer reference manual (2020), Available at http://www.
gurobi.com.

[28] W.E. Hart, C.D. Laird, J.P. Watson, D.L. Woodruff, G.A. Hackebeil, B.L. Nicholson, and J.D. Si-
irola, Pyomo-optimization modeling in Python, Vol. 67, 2nd ed., Springer, Switzerland, 2012, Avail-
able at https://doi.org/10.1007/978-3-319-58821-6.

[29] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Springer Berlin Heidelberg,
2013, Available at https://books.google.com/books?id=Pe_1CAAAQBAJ.

[30] IEEE, IEEE Standard for Interval Arithmetic, IEEE Std 1788-2015 (2015), pp. 1–97.
[31] R. Kannan and P.I. Barton, The cluster problem in constrained global optimization, Journal of Global

Optimization 69 (2017), pp. 629–676, Available at https://doi.org/10.1007/s10898-017-0531-z.
[32] A. Khajavirad and N.V. Sahinidis, A hybrid LP/NLP paradigm for global optimization relaxations,

Mathematical Programming Computation 10 (2018), pp. 383–421, Available at https://doi.org/10.
1007/s12532-018-0138-5.

[33] K.A. Khan, H.A.J. Watson, and P.I. Barton, Differentiable McCormick relaxations, Journal of Global
Optimization 67 (2017), pp. 687–729, Available at http://dx.doi.org/10.1007/s10898-016-0440-6.

[34] K.A. Khan, M. Wilhelm, M.D. Stuber, H. Cao, H.A.J. Watson, and P.I. Barton, Corrections to: Dif-
ferentiable McCormick relaxations, Journal of Global Optimization 70 (2018), pp. 705–706, Available
at https://doi.org/10.1007/s10898-017-0601-2.

[35] O. Kröger, C. Coffrin, H. Hijazi, and H. Nagarajan, Juniper: An Open-Source Nonlinear Branch-and-
Bound Solver in Julia, in International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, Springer, Cham, 2018, pp. 377–386.

[36] G.P. McCormick, Computability of global solutions to factorable nonconvex programs: Part I —
Convex underestimating problems, Mathematical Programming 10 (1976), pp. 147–175, Available at
http://dx.doi.org/10.1007/BF01580665.

[37] R. Misener and C.A. Floudas, ANTIGONE: Algorithms for continuous/integer global optimization
of nonlinear equations, Journal of Global Optimization 59 (2014), pp. 503–526, Available at https:
//doi.org/10.1007/s10898-014-0166-2.

[38] A. Mitsos, Global optimization of semi-infinite programs via restriction of the right-hand side, Op-
timization 60 (2011), pp. 1291–1308, Available at http://dx.doi.org/10.1080/02331934.2010.527970.

[39] A. Mitsos, B. Chachuat, and P.I. Barton, McCormick-based relaxations of algorithms, SIAM Journal
on Optimization 20 (2009), pp. 573–601, Available at https://doi.org/10.1137/080717341.

[40] R. Moore, Methods and Applications of Interval Analysis, Studies in Applied and Numerical Math-
ematics, Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,
Philadelphia, PA 19104), 1979, Available at https://books.google.com/books?id=bavU6VlOG4EC.

[41] R.E. Moore, Interval analysis, Vol. 4, Prentice-Hall Englewood Cliffs, 1966.
[42] J. Najman and A. Mitsos, Convergence analysis of multivariate McCormick relaxations, Journal of

Global Optimization 66 (2016), pp. 1–32, Available at https://doi.org/10.1007/s10898-016-0408-6.
[43] J. Najman and A. Mitsos, On tightness and anchoring of McCormick and other relaxations, Journal

of Global Optimization (2017), Available at https://doi.org/10.1007/s10898-017-0598-6.
[44] J. Najman and A. Mitsos, Tighter McCormick relaxations through subgradient propagation,

Journal of Global Optimization 75 (2019), pp. 565–593, Available at https://doi.org/10.1007/
s10898-019-00791-0.

[45] J. Najman, D. Bongartz, A. Tsoukalas, and A. Mitsos, Erratum to: Multivariate McCormick relax-
ations, Journal of Global Optimization 68 (2017), pp. 219–225, Available at https://doi.org/10.1007/
s10898-016-0470-0.

[46] A. Neumaier, Interval methods for systems of equations, Vol. 37, Cambridge university press, Cam-

22

http://dx.doi.org/10.1137/060657741
https://doi.org/10.1287/mnsc.36.5.519
http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf
https://doi.org/10.1007/s10898-016-0450-4
https://doi.org/10.1007/s10898-016-0450-4
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-319-58821-6
https://books.google.com/books?id=Pe_1CAAAQBAJ
https://doi.org/10.1007/s10898-017-0531-z
https://doi.org/10.1007/s12532-018-0138-5
https://doi.org/10.1007/s12532-018-0138-5
http://dx.doi.org/10.1007/s10898-016-0440-6
https://doi.org/10.1007/s10898-017-0601-2
http://dx.doi.org/10.1007/BF01580665
https://doi.org/10.1007/s10898-014-0166-2
https://doi.org/10.1007/s10898-014-0166-2
http://dx.doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1137/080717341
https://books.google.com/books?id=bavU6VlOG4EC
https://doi.org/10.1007/s10898-016-0408-6
https://doi.org/10.1007/s10898-017-0598-6
https://doi.org/10.1007/s10898-019-00791-0
https://doi.org/10.1007/s10898-019-00791-0
https://doi.org/10.1007/s10898-016-0470-0
https://doi.org/10.1007/s10898-016-0470-0

July 1, 2020 Optimization Methods & Software output

bridge, UK, 1990.
[47] A. Neumaier, Second-order sufficient optimality conditions for local and global nonlinear program-

ming, Journal of Global Optimization 9 (1996), pp. 141–151, Available at https://doi.org/10.1007/
BF00121660.

[48] A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinkó, A comparison of complete global optimization
solvers, Mathematical programming 103 (2005), pp. 335–356, Available at https://doi.org/10.1007/
s10107-005-0585-4.

[49] Process Systems Enterprise, gPROMS, Available at http://www.psenterprise.com/products/gproms.
[50] Y. Puranik and N.V. Sahinidis, Domain reduction techniques for global NLP and MINLP optimiza-

tion, Constraints 22 (2017), pp. 338–376, Available at https://doi.org/10.1007/s10601-016-9267-5.
[51] T.K. Ralphs and L. Ladanyi, Symphony: A parallel framework for branch and cut (1999), Available

at https://www.coin-or.org/SYMPHONY/intro-2.7/symphony.html.
[52] J. Revels, Cassette.jl, https://github.com/jrevels/Cassette.jl (2018).
[53] J. Revels, M. Lubin, and T. Papamarkou, Forward-mode automatic differentiation in Julia, arXiv

preprint arXiv:1607.07892 (2016).
[54] H.S. Ryoo and N.V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applica-

tions in process design, Computers & Chemical Engineering 19 (1995), pp. 551–566, Available at
https://doi.org/10.1016/0098-1354(94)00097-2.

[55] N.V. Sahinidis, BARON: A general purpose global optimization software package, Journal of Global
Optimization 8 (1996), pp. 201–205, Available at http://dx.doi.org/10.1007/BF00138693.

[56] J.K. Scott, M.D. Stuber, and P.I. Barton, Generalized McCormick relaxations, Journal of Global
Optimization 51 (2011), pp. 569–606, Available at https://doi.org/10.1007/s10898-011-9664-7.

[57] X. Shen, S. Diamond, Y. Gu, and S. Boyd, Disciplined convex-concave programming, in Decision
and Control (CDC), 2016 IEEE 55th Conference on, IEEE, 2016, pp. 1009–1014.

[58] A.B. Singer, Global dynamic optimization, Ph.D. diss., Massachusetts Institute of Technology, 2004,
Available at http://hdl.handle.net/1721.1/28662.

[59] A.B. Singer, J.W. Taylor, P.I. Barton, and W.H. Green, Global dynamic optimization for parameter
estimation in chemical kinetics, The Journal of Physical Chemistry A 110 (2006), pp. 971–976,
Available at https://doi.org/10.1021/jp0548873.

[60] E.M. Smith and C.C. Pantelides, Global optimisation of nonconvex MINLPs, Computers & Chemi-
cal Engineering 21 (1997), pp. S791 – S796, Available at http://dx.doi.org/10.1016/S0098-1354(97)
87599-0.

[61] M.D. Stuber, Evaluation of process systems operating envelopes, PhD dissertation, Massachusetts
Institute of Technology, 2013, Available at http://hdl.handle.net/1721.1/79143.

[62] M.D. Stuber, A differentiable model for optimizing hybridization of industrial process heat systems
with concentrating solar thermal power, Processes 6 (2018), p. 76, Available at https://doi.org/10.
3390/pr6070076.

[63] M.D. Stuber and P.I. Barton, Semi-infinite optimization with implicit functions, Industrial &
Engineering Chemistry Research 54 (2015), pp. 307–317, Available at http://dx.doi.org/10.1021/
ie5029123.

[64] M.D. Stuber, J.K. Scott, and P.I. Barton, Convex and concave relaxations of implicit functions,
Optimization Methods and Software 30 (2015), pp. 424–460, Available at https://doi.org/10.1080/
10556788.2014.924514.

[65] M.D. Stuber, A. Wechsung, A. Sundaramoorthy, and P.I. Barton, Worst-case design of subsea pro-
duction facilities using semi-infinite programming, AIChE Journal 60 (2014), pp. 2513–2524, Avail-
able at http://dx.doi.org/10.1002/aic.14447.

[66] M. Tawarmalani and N. Sahinidis, Convexification and Global Optimization in Continuous and
Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Nonconvex
Optimization and Its Applications, Springer US, 2002, Available at https://books.google.com/books?
id=MjueCVdGZfoC.

[67] M. Tawarmalani and N.V. Sahinidis, A polyhedral branch-and-cut approach to global optimiza-
tion, Mathematical Programming 103 (2005), pp. 225–249, Available at http://dx.doi.org/10.1007/
s10107-005-0581-8.

[68] J.W. Taylor, G. Ehlker, H.H. Carstensen, L. Ruslen, R.W. Field, and W.H. Green, Direct measure-
ment of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, The
Journal of Physical Chemistry A 108 (2004), pp. 7193–7203, Available at https://doi.org/10.1021/
jp0379547.

[69] J.W. Tester, M. Modell, et al., Thermodynamics and its Applications, Prentice Hall PTR, Upper
Saddle River, NJ, 1997.

23

https://doi.org/10.1007/BF00121660
https://doi.org/10.1007/BF00121660
https://doi.org/10.1007/s10107-005-0585-4
https://doi.org/10.1007/s10107-005-0585-4
http://www.psenterprise.com/products/gproms
https://doi.org/10.1007/s10601-016-9267-5
https://www.coin-or.org/SYMPHONY/intro-2.7/symphony.html
https://github.com/jrevels/Cassette.jl
https://doi.org/10.1016/0098-1354(94)00097-2
http://dx.doi.org/10.1007/BF00138693
https://doi.org/10.1007/s10898-011-9664-7
http://hdl.handle.net/1721.1/28662
https://doi.org/10.1021/jp0548873
http://dx.doi.org/10.1016/S0098-1354(97)87599-0
http://dx.doi.org/10.1016/S0098-1354(97)87599-0
http://hdl.handle.net/1721.1/79143
https://doi.org/10.3390/pr6070076
https://doi.org/10.3390/pr6070076
http://dx.doi.org/10.1021/ie5029123
http://dx.doi.org/10.1021/ie5029123
https://doi.org/10.1080/10556788.2014.924514
https://doi.org/10.1080/10556788.2014.924514
http://dx.doi.org/10.1002/aic.14447
https://books.google.com/books?id=MjueCVdGZfoC
https://books.google.com/books?id=MjueCVdGZfoC
http://dx.doi.org/10.1007/s10107-005-0581-8
http://dx.doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1021/jp0379547
https://doi.org/10.1021/jp0379547

July 1, 2020 Optimization Methods & Software output

[70] A. Tsoukalas and A. Mitsos, Multivariate McCormick relaxations, Journal of Global Optimization
59 (2014), pp. 633–662, Available at https://doi.org/10.1007/s10898-014-0176-0.

[71] S. Vigerske, Decomposition in multistage stochastic programming and a constraint integer pro-
gramming approach to mixed-integer nonlinear programming, Ph.D. diss., Humboldt-Universität zu
Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013.

[72] A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming, Mathematical Programming 106 (2006), pp. 25–57, Available
at https://doi.org/10.1007/s10107-004-0559-y.

[73] A. Wechsung, J.K. Scott, H.A. Watson, and P.I. Barton, Reverse propagation of McCormick relax-
ations, Journal of Global Optimization 63 (2015), pp. 1–36, Available at https://doi.org/10.1007/
s10898-015-0303-6.

[74] M.E. Wilhelm, A.V. Le, and M.D. Stuber, Global optimization of stiff dynamical systems, AIChE
Journal 65 (2019), p. e16836, Available at https://doi.org/10.1002/aic.16836.

24

https://doi.org/10.1007/s10898-014-0176-0
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10898-015-0303-6
https://doi.org/10.1007/s10898-015-0303-6
https://doi.org/10.1002/aic.16836

July 1, 2020 Optimization Methods & Software output

Benchmarking Problem Set Summary
Name Variables Inequalities Equalities Nonlinear Terms
alkyl 15 0 7 ×, (·)2

BeckerLago 2 0 0 (·)2
√

(·)
ex2_1_8 24 0 10 ×
ex3_1_1 8 6 0 ×
ex4_1_9 2 2 0 (·)2, (·)4

ex5_4_3 16 13 0 ×, (·)/(·), (·)a
ex6_2_10 6 0 3 ×, log, (·)/(·)
ex6_2_11 3 0 1 ×, log, (·)/(·)
ex6_2_13 6 0 3 ×, log, (·)/(·)
ex6_2_14 4 0 2 ×, log, (·)/(·)
ex7_2_1 7 14 0 ×, (·)/(·), (·)2

ex7_2_3 8 6 0 ×, (·)/(·)
ex7_2_4 8 0 7 ×, (·)/(·), (·)a
ex8_4_1 22 0 10 (·)2

ex8_4_2 24 0 10 (·)2

gold 2 0 0 ×, (·)2

hart6 6 0 0 exp(·), ×, (·)2

meanvar 8 0 2 ×
Model13 6 0 0 exp(·), ×, (·)2

process 10 0 7 ×, (·)/(·), (·)2

Table 1. The selected benchmarking problems are summarized by their scale and complexity in terms of the
number of variables, inequality and equality constraints, and types of nonlinear terms.

25

Supplementary Material for "EAGO.jl: Easy Advanced Global
Optimization in Julia"

M. E. Wilhelm and M. D. Stuber∗

Process Systems and Operations Research Laboratory, Dept. of Chemical and Biomolecular
Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs, CT,

06269-3222, USA

S1. Summary of McCormick Relaxation Theory

Definition S1.1 (Convex and Concave Relaxations [6]) Given a convex set Z ⊂ Rn
and a function w : Z → R, a convex function wcv : Z → R is a convex relaxation of w
on Z if wcv(z) ≤ w(z) for every z ∈ Z. A concave function wcc : Z → R is a concave
relaxation of w on Z if wcc(z) ≥ w(z) for every z ∈ Z.

The convex and concave relaxations of vector-valued and matrix-valued functions are
defined by the componentwise application of the above inequalities.

Definition S1.2 (Univariate Intrinsic Function [7]) The function u : B ⊂ R → R is a
univariate intrinsic function if, for any A ∈ IB, where IB = {X ∈ IR : X ⊂ B}, the
following are known and can be evaluated computationally:

(1) an interval extension of u on A that is an inclusion function of u on A,
(2) a concave relaxation of u on A,
(3) a convex relaxation of u on A.

Definition S1.3 (Factorable Function [7]) A function w : Z ⊂ Rn → R is factorable
if it can be expressed in terms of a finite number of factors v1, . . . , vm, such that given
z ∈ Z, vi = zi for i = 1, . . . , nz, and vk is defined for n ≤ k ≤ m as either

(1) vk = vi + vj , with, i, j < k,
(2) vk = vivj , with, i, j < k,
(3) vk = uk(vi), with, i < k, where uk : Bk → R is a univariate intrinsic function

and w(z) = vm(z). A vector-valued function is factorable if each of its components are
factorable functions.

Theorem S1.4 (Univariate McCormick Composition Rule [6]) Let Z ⊂ Rn and X ⊂ R
be nonempty convex sets. Consider the composite function w = φ ◦ q where w : Z → R is
continuous, φ : X → R, let q(Z) ⊂ X. Let qcv : Z → R and qcc : Z → R be convex and
concave relaxations of q on Z, respectively. Let φcv : X → R and φcc : X → R be convex
and concave relaxations of φ on X, respectively. Let ξ∗min ∈ X be a point at which φcv
attains its infimum on X and let ξ∗max ∈ X be a point at which φcc attains its supremum

∗Corresponding author. Email: stuber@alum.mit.edu

on X. Then the convex and concave relaxations are, respectively, given by

wcv : Z → R : z 7→ φcv(mid(qcv(z), qcc(z), ξ∗min)) (1)
wcc : Z → R : z 7→ φcc(mid(qcv(z), qcc(z), ξ∗max)). (2)

In the above, the mid(· , · , ·) function takes the median value of its three arguments.
Generally, the application of Theorem S1.4 requires the use of closed-form expressions to
determine the values of ξ∗max and ξ∗min in conjunction with defined forms of the relaxations
φcv and φcc.

Proposition S1.5 (McCormick Addition Rule [6]) Let Z ⊂ Rn, and w, q, r : Z → R
such that w(z) = q(z) + r(z). Let qcv, qcc : Z → R be convex and concave relaxations of q
on Z, respectively. Similarly, let rcv, rcc : Z → R be convex and concave relaxations of r
on Z, respectively. Then, wcv, wcc : Z → R, such that

wcv(z) = qcv(z) + rcv(z), wcc(z) = qcc(z) + rcc(z), (3)

are, respectively, a convex and concave relaxation of w on Z.

Proposition S1.6 (McCormick Multiplication Rule [6]) Let Z ⊂ Rn be a nonempty
convex set. Let w, q, r : Z → R such that w(z) = q(z)r(z). Let qcv : Z → R and qcc :
Z → R be convex and concave relaxations of q on Z, respectively. Let rcv : X → R
and rcc : X → R be convex and concave relaxations of r on Z, respectively. Further, let
qL, qU , rL, rU be bounds on q, r such that

qL ≤ q(z) ≤ qU and rL ≤ r(z) ≤ rU , ∀z ∈ Z.

Let the following intermediate function α1, α2, β1, β2, γ1, γ2, δ1, δ2 : Z → R be defined as

α1(z) = min{rLqcv(z), rLqcc(z)}, α2(z) = min{qLrcv(z), qLrcc(z)},
β1(z) = min{rUqcv(z), rUqcc(z)}, β2(z) = min{qUrcv(z), qUrcc(z)},
γ1(z) = max{rLqcv(z), rLqcc(z)}, γ2(z) = max{qUrcv(z), qUrcc(z)},
δ1(z) = max{rUqcv(z), rUqcc(z)}, δ2(z) = max{qLrcv(z), qLrcc(z)}.

Then, the convex and concave relaxations of r on Z are given by

wcv : Z → R : z 7→ max{α1(z) + α2(z)− qLrL, β1(z) + β2(z)− qUrU}
wcc : Z → R : z 7→ min{γ1(z) + γ2(z)− qUrL, δ1(z) + δ2(z)− qLrU},

respectively.

Definition S1.7 (Subgradients [8]) Let Z ⊂ Rn be a nonempty convex set, wcv : Z → R
be convex and wcc : Z → R be concave. A function scvw : Z → Rn is a subgradient
of wcv on Z if for each z̄ ∈ Z,wcv(z) ≥ wcv(z̄) + scvw (z̄)T(z − z̄), ∀z ∈ Z. Similarly,
a function sccw : Z → Rn is a subgradient of wcc on Z if for each z̄ ∈ Z,wcc(z) ≤
wcc(z̄) + sccw (z̄)T(z− z̄), ∀z ∈ Z.

Note that subgradients of vector-valued functions and subgradients of matrix-valued
functions will be defined analogously and will be matrix-valued functions and third-order
tensor-valued functions, respectively.

2

S2. Application to EAGO to Exotic Optimization Formulations

S2.1 Application to Trigonometric Functions

As a natural extension of supporting user-defined functions, EAGO also supports a wide
variety of trigonometric, hyperbolic, and other transcendental functions. This contrasts
the much more limited capabilities of other state-of-the-art global optimizers, such as
BARON [9], ANTIGONE [5], and SCIP [10]. As a result, EAGO can address problem
formulations such as the power scheduling problem presented below in (4). This example
originates from a model of two electrical generators connected to a network with three
nodes. The constraints are chosen to balance the power flowing into and out of each
node. In [3], a local minimum was located. Bounds on the decision variables are given in
Table S1. A preliminary version of EAGO was used in [2] to solve this problem to global
optimality. Using the first full release of EAGO, this problem can be solved to global
optimality in approximately 29 seconds.

min
y∈Y

3000y1 + 1000y31 + 2000y2 + 666.667y32 (4)

s.t. 0.4− y1 + 2Cy25 + y5y6(D sin(−y8)− C cos(−y8)) . . .
. . . + y5y7(D sin(−y9)− C cos(−y9)) = 0

0.4− y2 + 2Cy26 + y5y6(D sin(y8)− C cos(y8)) . . .

. . . + y5y7(D sin(y8 − y9)− C cos(y8 − y9)) = 0

0.2− y3 + 2Dy25 − y5y6(C sin(−y8) +D cos(−y8)) . . .
. . . − y5y7(C sin(−y9) +D cos(−y9)) = 0

0.2− y4 + 2Dy26 − y5y6(C sin(y8) +D cos(y8)) . . .

. . . − y5y7(C sin(y8 − y9) +D cos(y8 − y9)) = 0

0.8 + 2Cy27 + y5y7(D sin(y9)− C cos(y9)) . . .

. . . + y6y7(D sin(y9 − y8)− C cos(y9 − y8)) = 0

− 0.337 + 2Dy27 − y5y7(C sin(y9) +D cos(y9)) . . .

. . . − y6y7(C sin(y9 − y8) +D cos(y9 − y8)) = 0

C = (48.4/50.176) sin(0.25)

D = (48.4/50.176) cos(0.25)

Y = [yL,yU]

3

Table S1. Interval box constraints Y on the decision variables in (4).

Component Lower Bound Upper Bound
y1 0.5 1.2
y2 0.5 1.2
y3 0 0.3
y4 0 0.3
y5 0.90909 1.0909
y6 0.90909 1.0909
y7 0.90909 1.0909
y8 -0.5 0.3
y9 -0.5 0.3

S2.2 Customizing EAGO’s Solver: A Quasiconvex Problem

In addition to supporting a wide variety of problem forms, EAGO can be readily adapted
to suit the unique needs of users and application requirements. In this example, we’ll
modify EAGO’s branch-and-bound solver to solve a quasiconvex problem using a bisection
technique. The problem consists of minimizing a quasiconvex function f : C → R over
a convex feasible set. This can be done using a few simple lines of code. Consider the
quasiconvex problem presented in [4]:

f∗ = min
y∈Y

f(y) (5)

s.t.

5∑
i=1

i · yi − 5 = 0 (6)

5∑
i=1

y2i − 0.5π ≤ 0 (7)

−
(

1

2
y21 +

1

2
y22 + y23 + 2y1y2 + 4y1y3 + 2y2y3

)
≤ 0 (8)

− y21 − 6y1y2 − 2y22 + cos(y1) + π ≤ 0 (9)

Y = [0, 5]5

where

f(y) = −
ln((5 + y1)

2 +
∑5

i=1 yi)

1 +
∑5

i=1 y
2
i

. (10)

Interval analysis shows that f∗ ∈ F = [fL, fU] = [−5, 0]. As such, we can introduce a
new auxiliary variable t ∈ T = F and formulate the equivalent problem below:

t∗ = min
y∈Y,t∈T

t

s.t. (6)-(9)
f(y)− t ≤ 0

Y = [0, 5]2, T = [−5, 0].

4

In order to solve this problem, we resort to a bisection algorithm with respect to the
interval T . Let φτ (y) = f(y)−τ such that τ = (tL+ tU)/2, then we solve for y subject to
constraints (6)-(9) such that φτ (y) ≤ 0. If this problem is feasible, t∗ ∈ [tL, τ]. Otherwise,
t∗ ∈ [τ, tU]. The other interval is then discarded (fathomed) and this manner of bisection
is repeated until an interval containing a feasible solution with a width of at most ε is
located [1].
Then, we simply need to bisect solely in the t dimension. To implement this new solver

using EAGO, three main modifications to the optimizer must be made. First, we’ll short
circuit the preprocessing, postprocessing, and upper-bounding steps.
Listing S1 Short circuit preprocessing, postprocessing, and upper-bounding problem for example in Section S2.2.

using MathOptInterface, EAGO, JuMP
import EAGO: Optimizer

struct QuasiConvex <: EAGO.ExtensionType end

import EAGO: preprocess!, upper_problem!, postprocess!
function EAGO.preprocess!(t::QuasiConvex, x::Optimizer)

x._preprocess_feasibility = true
end
function EAGO.upper_problem!(t::QuasiConvex, x::Optimizer)

x._upper_feasibility = true
end
function EAGO.postprocess!(t::QuasiConvex, x::Optimizer)

x._postprocess_feasibility = true
end

Next, one specifies that the algorithm should terminate on convergence to an ε-optimal
point and return status codes should indicate a feasible optimal solution was returned.
Listing S2 Modify convergence and termination criteria for example in Section S2.2.

import EAGO: convergence_check, termination_check, repeat_check
function EAGO.convergence_check(t::QuasiConvex, x::Optimizer)

gap = (x._upper_objective_value - x._lower_objective_value)
return (gap <= x._parameters.absolute_tolerance)

end
function EAGO.termination_check(t::QuasiConvex, x::Optimizer)

flag = EAGO.convergence_check(t, x)
if flag

x._termination_status_code = MathOptInterface.OPTIMAL
x._result_status_code = MathOptInterface.FEASIBLE_POINT

end
return flag

end

It is further specified that bisection should only occur in the t dimension and only the
feasible node need be saved.
Listing S3 Specify dimensions for bisection for example in Section S2.2.

branch_variable = [i == 6 for i=1:6]
EAGO.repeat_check(t::QuasiConvex, x::Optimizer) = true

We then specify how the subproblem should be solved at each iteration. Here, the prob-
lem is solved at the midpoint value of t using the native EAGO function upper_problem!.
Bounds are then contracted depending on the feasibility of the subproblem.
Listing S4 Modify lower-bounding problem to solve new subproblem for example in Section S2.2.

import EAGO: lower_problem!
function EAGO.lower_problem!(t::QuasiConvex, x::Optimizer)
y = x._current_node

5

lower = y.lower_variable_bounds[6]
upper = y.upper_variable_bounds[6]
midy = (lower + upper)/2.0
y.lower_variable_bounds[6] = midy
y.upper_variable_bounds[6] = midy
EAGO.solve_local_nlp!(x)
feas = x._upper_feasibility
y.lower_variable_bounds[6] = feas ? lower : midy
y.upper_variable_bounds[6] = feas ? midy : upper
x._lower_objective_value = y.lower_variable_bounds[6]
x._upper_objective_value = y.upper_variable_bounds[6]
x._lower_feasibility = true
return

end

We can now define the problem using a JuMP syntax and retrieve the solution. The two
keyword options which don’t reference previously-defined functions specify an absolute
tolerance of εa = 10−8 should be used and the routine should not terminate when a
feasible point is located (even though no objective is specified).
Listing S5 Construct and optimize the JuMP model for example in Section S2.2

m = Model(optimizer_with_attributes(EAGO.Optimizer,
"absolute_tolerance" => 1E-8,
"branch_variable" => branch_variable,
"ext_type" => QuasiConvex()))

@variable(m, ((i<6) ? 0 : -5) <= y[i=1:6] <= ((i<6) ? 5 : 0))
@constraint(m, sum(i*y[i] for i=1:5) - 5 == 0)
@constraint(m, sum(y[i]^2 for i=1:5) - 0.5*pi^2 <= 0)
@expression(m, expr1, 2*y[1]*y[2] + 4*y[1]*y[3] + 2*y[2]*y[3])
@constraint(m, -(0.5*y[1]^2 + 0.5*y[2]^2 + y[3]^2 + expr1) <= 0)
@NLexpression(m, expr2, log((5 + y[1])^2 + sum(y[i] for i=1:5)))
@NLconstraint(m, -y[1]^2 -6*y[1]*y[2] -2*y[2]^2 +cos(y[1]) + pi <= 0)
@NLconstraint(m, -expr2/(1 + sum(y[i]^2 for i=1:5)) - y[6] <= 0)
@objective(m, Min, y[6])
JuMP.optimize!(m)

retrieve solution info
solution = JuMP.value.(y[1:5])
global_obj_value = JuMP.value.(y[6])

This problem can then be solved to an absolute tolerance of εa = 10−8 in just 0.7
seconds.

References

[1] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, 2004.
[2] H. Cao, Y. Song, and K.A. Khan, Convergence of subtangent-based relaxations of nonlinear programs,

Processes 7 (2019), p. 221.
[3] W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Journal of Opti-

mization Theory and Applications 30 (1980), pp. 127–129.
[4] C. Jansson, Quasiconvex relaxations based on interval arithmetic, Linear Algebra and its Applica-

tions 324 (2001), pp. 27–53.
[5] R. Misener and C.A. Floudas, ANTIGONE: Algorithms for continuous/integer global optimization

of nonlinear equations, Journal of Global Optimization 59 (2014), pp. 503–526.
[6] A. Mitsos, B. Chachuat, and P.I. Barton, McCormick-based relaxations of algorithms, SIAM Journal

on Optimization 20 (2009), pp. 573–601.
[7] J.K. Scott, M.D. Stuber, and P.I. Barton, Generalized McCormick relaxations, Journal of Global

Optimization 51 (2011), pp. 569–606.

6

[8] M.D. Stuber, J.K. Scott, and P.I. Barton, Convex and concave relaxations of implicit functions,
Optimization Methods and Software 30 (2015), pp. 424–460.

[9] M. Tawarmalani and N.V. Sahinidis, A polyhedral branch-and-cut approach to global optimiza-
tion, Mathematical Programming 103 (2005), pp. 225–249, Available at http://dx.doi.org/10.1007/
s10107-005-0581-8.

[10] S. Vigerske and A. Gleixner, SCIP: global optimization of mixed-integer nonlinear programs in a
branch-and-cut framework, Optimization Methods and Software 33 (2018), pp. 563–593, Available
at https://doi.org/10.1080/10556788.2017.1335312.

7

http://dx.doi.org/10.1007/s10107-005-0581-8
http://dx.doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1080/10556788.2017.1335312

Table S2. The solution times (CPU seconds) of the benchmarking problems are reported for each of the solvers
in the comparison study. The relative standard error (RSE) of the three trials was less than 5% for all instance
with total run time less than 0.5 seconds and less than 2% in all other instances.

Mean Solution Time (CPU Seconds)
Name EAGO SCIP BARON ANTIGONE
alkyl 0.07 0.742 0.296 0.16

BeckerLago 0.14 0.34 0.08 60.6
ex2_1_8 0.12 0.632 0.671 0.324
ex3_1_1 0.476 0.758 0.422 0.459
ex4_1_9 0.168 0.29 0.06 0.148
ex5_4_3 0.056 0.26 0.15 0.143
ex6_2_10 >1000 >1000 67.3 189
ex6_2_11 21.9 >1000 9 5.228
ex6_2_13 >1000 >1000 95.5 >1000
ex6_2_14 2.07 >1000 0.8 0.283
ex7_2_1 0.22 >1000 >1000 0.424
ex7_2_3 509 >1000 >1000 >1000
ex7_2_4 37.0 5.37 >1000 3.57
ex8_4_1 >1000 214.4 0.4 0.76
ex8_4_2 >1000 >1000 >1000 >1000

gold 0.69 4.03 1.52 316.17
hart6 5.21 2.01 0.08 0.338

meanvar 0.03 1.253 0.532 0.863
Model13 0.13 50.37 0.08 6.701
process 0.61 0.66 0.62 0.34

8

Table S3. The relative gap remaining for each solver and benchmarking problem pair that did not converge to
the desired tolerance within 1000 CPU seconds.

Relative Gap at Termination
Name EAGO SCIP BARON ANTIGONE

ex6_2_10 0.031 949.96 - -
ex6_2_11 - 4.01E7 - -
ex6_2_13 0.185 1783 - 0.2284
ex6_2_14 - 0.47 - -
ex7_2_1 - 3.83 0.013 -
ex7_2_3 - 234.42 0.698 0.114
ex8_4_1 0.404 - - -
ex8_4_2 0.967 inf 0.7812 0.496

9

Figure S1. Two flowcharts are provided to contrast (A) EAGO’s unique source code transformation-based compu-
tation of McCormick relaxations using a Wengert list (of length n) and (B) a standard operator/method overloading
implementation approach to generating McCormick relaxations.

10

	Introduction and Motivation
	Mathematical Notation
	Global Optimization Framework
	A Flexible Branch-and-Bound Routine
	Relaxations
	Presolving
	User-Defined Functions
	Optimization of a Model With an Embedded Algorithm
	Kinetic Parameter Estimation

	Domain Reduction
	Optimization-Based Bounds-Tightening (OBBT)
	Duality-Based Bounds-Tightening (DBBT)
	Feasibility-Based Bounds-Tightening
	Constraint Propagation on the Directed Acyclic Graph

	Lower-Bounding Problem
	Upper-Bounding Problem

	Numerical Experiments
	Extensibility of EAGO
	Solving Semi-Infinite Programs

	Conclusions and Future Directions

