FOURIER RESTRICTION TO A HYPERBOLIC CONE

ABSTRACT. Using a bilinear restriction theorem of Lee and a bilinear-to-linear
argument of Stovall, we obtain the conjectured range of Fourier restriction
estimates for a conical hypersurface in R* with hyperbolic cross sections.

1. INTRODUCTION
In this article, we resolve the Fourier restriction problem for the conical hyper-
surface
ri-{(6o 92 cefap o ep )
o
in R*. In this case, the problem asks, for which exponents p,q is the extension
(adjoint restriction) operator

Ef(x,z’,t) — // ei(z,m”t).(g,m QfQ)f(C,O’)dCdO’
[—1,1]2x[1,2]

of strong type (p,2q)? The restriction problem for the light cone in R* was solved
by Wolff [6], while for other conical hypersurfaces, such as those with negatively
curved cross sections, it has remained open. In the case of I', nearly optimal results
are known: Greenleaf [I] proved that & is of strong type (p, 2q) for p > ¢’ and ¢ > 2,
and Lee [2] extended that range to ¢ > 3/2 and p > ¢’. The main result of this
article is the boundedness of £ on the scaling line p = ¢’ for 3/2 < ¢ < 2, solving
the remaining part of the restriction problem for T.

Theorem 1.1. The operator £ is of strong type (¢',2q) for 3/2 < q < 2.

The surface I' looks like (a compact piece of) a cone whose cross sections are
hyperbolic paraboloids. Strong type (¢’,2q) restriction estimates for the hyperbolic
paraboloid in R? are known for ¢ > 13/8; see [3] and the references therein. A
simple argument using Minkowski’s and Hdélder’s inequalities shows that any such
estimate implies the corresponding one for I'. Therefore, the estimate in Theorem
is known for ¢ > 13/8 and holds conditionally for smaller ¢, pending further
estimates for the hyperbolic paraboloid. The superior bilinear restriction theory
for T', in relation to that of the hyperbolic paraboloid, allows us to prove Theorem
[1.1] unconditionally.

Terminology and notation. A positive constant is admissible if it depends only
on q. We write A < B to mean A < CB for some admissible constant C, which
is allowed to change from line to line. We denote the one-dimensional Hausdorff
measure by H!'. We write log for the base 2 logarithm. An interval of the form
[n279,(n 4 1)277) for some j,n € Z is dyadic, and Z; denotes the set of dyadic
intervals of length 277. The product of two dyadic intervals is a tile, and Tj
denotes the set of 277 x 27% tiles. Given 7 € T; i, we set 7 := 7 x [1,2]. We denote
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2 RESTRICTION TO A HYPERBOLIC CONE

by m; 5 and m;, respectively, the projections (¢, o) + (¢;,0) and ((;,0) — ¢, for
i=1,2and (¢,0) € R? x R. If 7 is one of these projections and S a subset of the
domain of 7, the m-projection of S refers to the set w(S), and a 7-fiber of S is any set
of the form m~1(7(s))NS with s € S. Horizontal and vertical refer to the directions
in R? parallel to the standard basis vectors e; and e, respectively. Finally, the
extension of a set refers to the Fourier extension of the set’s characteristic function.

Outline of the proof. We adapt an argument of Stovall [3] which showed that,
for 3/2 < q < 2, the extension operator associated to the hyperbolic paraboloid
in R3 is of strong type (¢',2q), provided an appropriate LP° x LPo — L% bilinear
restriction inequality holds for some gy < ¢ and py/2 < qo < pj. A bilinear estimate
suitable for running Stovall’s argument on the hypersurface I' is already known:

Theorem 1.2 (Lee [2]). Let 7,k C [—1,1]? be squares with unit separation in both
the horizontal and vertical directions. If ¢ > 3/2, then

IEfEqllq S 1f1l2llgll2

for all bounded measurable functions f and g supported in T x [1,2] and k x [1,2],
respectively.

To prove Theorem [[.1] it suffices to show that & is of restricted strong type
(¢',2q) for every 3/2 < g < 2. Thus, we aim to prove that

1
[€xall2q < 192 (1.1)

for an arbitrary measurable set Q C [—1,1]2 x [1,2]. In Section [2, we use Theorem
and a bilinear-to-linear argument of Vargas [4] to show that sets having roughly
constant 7 3- (or mg 3-) fiber length obey . In Section |3 we solve a related
inverse problem: For which sets 2 of constant fiber length can the inequality in
be reversed? Oversimplified, our answer is that {2 must be a box of the form
T; proving then becomes a matter of bounding the extension of a union of
boxes, which we do in Section Our real answer, however, is quantitative: We
show that (2 is approximately a union of boxes, where the number of boxes in the
union and the tightness of the approximation relate to the quantity C(£2), defined
thus:

Definition 1.3. For measurable sets Q; C Qp C [—1,1]% x [1,2], let C(Q4,s)
denote the smallest number ¢, either dyadic, zero, or infinite, such that ||Exqr [l2g <
e[/ for every measurable set Q) C Qy, and let C(Q;) := C(Q, Q).

Finally, in Section [5, we start with a generic set 2, decompose it into sets Q(K)
of fiber length roughly 2% sorted thence according to the value of C(Q(K)), and
apply the restriction estimates of Sections [3| and [4| to obtain .

While much of our argument resembles Stovall’s in [3], we include full details for
the convenience of the reader.

2. EXTENSIONS OF SETS OF CONSTANT FIBER LENGTH

In this section, we prove a scaling line restriction estimate for characteristic
functions of sets of constant 7 s-fiber length, arguing & la Vargas [4]. By symmetry,
the same estimate then holds for sets of constant s 3-fiber length.
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Definition 2.1. Given a measurable set Q C [—1,1]? x [1, 2] and an integer K > 0,
let

AUK) :={(¢,0)eN: Hl(wié(gl,a) nQ) ~ 2_K}.
Proposition 2.2. Suppose that Q = Q(K) for some K. Then C(Q2) < 1.

Proof. Let Q' C Q be measurable. Given 7,k € T, we write 7 ~ x if 7 and &
are separated by a distance of ~ 277 in the horizontal direction and ~ 2% in the
vertical direction. Up to a set of measure zero, we have

(L x L2’ =J | #x&

g,k T, k€T ke
TR

Consequently, by the triangle inequality and Lemma 6.1 in [5] (using that ¢ < 2),

||em||§q52( 3 SXWSXanz)

jk NT,RET; k

T~VK

By rescaling, Theorem [1.2] implies that

IExamExarnilly 27 URO=DI n 731 N &2 <27 URO-Dian 210N &2

Q=

for 7,k € T with 7 ~ k. Given 7 € T} j, there are admissibly many « such that
T ~ K, and for each such k, we have 107 O k. Thus,

1
||5XQI||%qszz<j+k>ug>( 3 mmoﬂq)

7,k T€731k
< § 9 GHR0-2) QN 1077107 2.1
<X max 20107749 (2.1)

Let J be an integer such that |m1 3(Q)| ~ 277. Then, by Fubini’s theorem, |Q| ~
2=/=K and

max |QN 107 < min{2~7/, 277} min{2= %, 27F}. (2.2)
k

TET,
We split the right-hand side of into four parts: summation over j, k satisfying
N)j<J,k<K;({)j<J, k>K;({i)j>J, k<K, (iv) j>J, k> K. Each
part is estimated simply by applying and summing a geometric series. We
obtain the desired bound in this way. O

3. AN INVERSE PROBLEM RELATED TO PROPOSITION [2.2]

In this section, we answer quantitatively the following question: If € extremizes
the inequality in Proposition [2.2] what structure must 2 have?

Proposition 3.1. Suppose that Q = Q(K) for some K, let J be an integer such
that |Q| ~ 27775 and let e := C(Q). Up to a set of measure zero, there exists a
decomposition

0= U Qs,

0<5<e1/5

where the union is taken over dyadic numbers, such that

(i) C(Q2s,92) < 83, and
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(i) Qs C UTE'T(; 7, where Ts C Tyx with #T5 < 670 for some admissible
constant Cy.

Proof of Proposition[3.1 The construction of the sets Qs consists of five steps. We
will begin by dividing €2 into sets !, whose 7 3-projections have constant m;-fiber
length «, respectively. That simple step enables us to adapt then the decomposi-

tion scheme employed in [3]. We divide each Q) into sets Qi’n whose respective

projections to the (j-axis are contained in n~! intervals in Z;. In our third step,
we divide each Q2 , into sets Q3 of constant 73 s-fiber length pn~'277. To each

Q‘Zm, , we may then apply variants of the first two steps wherein the roles of the

coordinates (i, (2 are reversed. Indeed, were 71 3 replaced by 72 3 in Definition
each Q3 | would be of the form Q2 | (J +1log(p~1n)). In the end, we obtain sets

«@,mn,p a,n,p
Qim, 05,6 Whose respective projections to the (p-axis are contained in 5~ intervals
in Zy. For fixed §, we define €5 to be the union of the sets Qi,n,p,ﬁﬁ’ of which

there will be at most (log ~!)* by construction. Appearing in the argument below,
there are of course constants and minor technical adjustments missing from this
summary.

Step 1. For each dyadic number 0 < o < 1, define

Q= {(¢0) € 0 M (m () N s(9) ~ o),
where A is an admissible constant to be chosen momentarily.
Lemma 3.2. For every 0 < a < 1, we have C(Q},Q) < a.

Proof of Lemma[3.3 Let ' C QL be measurable, and let J, be an integer such
that |71 3(Qa)| ~ a2~ 7=, We record the bound

atg=Je <07, (3.1)
Following the proof of Proposition 2.2} we have
1Exar I3, S 22—<j+k><1—%> ma 0L N 107 "4 |Qs. (3.2)
I o

By Fubini’s theorem,
QL N 107 < |m13(QL N 107) | min{2~ 5, 2771

< o min{277> 277} min{27 5,277} (3.3)
for every 7 € T 1. As in the proof of Proposition we split the right-hand side of
(3.2) into four parts: summation over j, k satisfying (i) j < J,, k < K; (ii) j < Ja,
k> K; (iii) j > Ja, k < K; (iv) § > Ja, k > K. Using (3.3) and (3.1]), we bound
the sum corresponding to (i) by

Z 2_(j+k)(1—§)(aA2—Ja—K)1—§|Q|% - aA(1—§)2—(JQ+K)(2—§)|Q|%

j<Ja
k<K

< o AGDg-HIOR-D)
~aAG D)
Using the same steps, the sum corresponding to (ii) is at most
T 2790- g k-4 AU-Dg-Je =D} ~ gAU-Dg-UetKIE-D|g|}

J<Ja
k>K
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A(Z-1) 01
Sa™taT Q.

The sums corresponding to (iii) and (iv) can be handled in essentially the same
way, leading to the estimate

[€xarll2q S a* G2 QY.
We conclude the proof by setting A := (% — %)_1. O
Step 2. For each 0 < a < 1, let S, := 71 (m1,3(2L)), and note that |S,| ~ 277«
with J, as in the proof of Lemma |3.2] Given a dyadic number 0 < n < « and a

Lebesgue point ¢; of Sa, let I, ,(¢1) be the maximal dyadic interval I such that
(1 €I and
NS,
||I|| > UB» (3.4)

where B is an admissible constant to be chosen later; such an interval exists by the
Lebesgue differentiation theorem. Without loss of generality, we assume that S, is
equal to its set of Lebesgue points. Let

Ta,n = {Cl € Sa : |Ia,7](gl)‘ 2 nBQ_Ja}'
If @ <, define So 0 = Tw,a and Sa .y :=Tay \ Ta 2, for n < o, and let
ng =0QLn Wi%(”fl(sam))-
Fore < a <1, define So :=Tys and Sq, = To,n \ Ta 2y for n < e. Forn < e, let
2, = U Q.
e<a<l
where Qin =QLN Wié(”fl(smn))~

Remark 3.3. We note that Q2 C Ql for a <cand 2, CQl fore <a <1,
while in general ng is not contained in Q. We do have

o= o= U U 2,

0<a<l 0<a<e 0<n<a

Lemma 3.4. For every 0 < n < a < g, the set Qim is contained in a union of
O(n™3B=A=1) bowes of the form 7, with T € Ty, and satisfies C(Q2, Q) < nt/2.

Proof of Lemma[3.} We argue first under the hypothesis that « < ¢, then indicate
the changes needed when o = €. By its definition, S, , is covered by dyadic intervals
I of length |I| > 7®|S,], in each of which S, has density obeying (3.4). The density
of each such I in S, is
NSl 1105l U < a
|Sal 1l Sal ™

Therefore, if C is a minimal-cardinality covering of S,, by these I (consisting
necessarily of pairwise disjoint intervals), then #C < n~28. Moreover, (3.4) and
(3.1) imply that

[I| SnB277e <pBa~A277 <B4/
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for every I € C. Thus, S, , is covered by O(n~3B~4) intervals in Z;. Since o < e,
it immediately follows that €2 , is contained in a union of O(n~*5~#) boxes of the
form claimed.

We turn to the restriction estimate. If n = «a, the result follows from Lemma [3.2
and Remark Thus, we may assume that n < a. We proceed by optimizing the
proof of Proposition as in [3]. Let Q' € Q7 , be measurable. From the proof

of (2.1), we see that

Exarll2 < S o GHha-7) Q' N107 9|0, 3.5
€xa quwjzkj Trg%‘kl 7 | (3.5)

Fix 7 € T; x. By Fubini’s theorem and the definition of 2}, (with a < ), we have
| N107] < |71 3(Q N 107)| min{275 2771

< @t minf|m (m1,5(Q))], [m1 (m1,3(107))[} min{275, 277}

< o min{277« 277} min{27K 27}, (3.6)
For certain j, the definition of Qim leads to a better estimate. We claim that if
17— Jal < Zlogn~!, then

1 N 107 < 7’7 o min{2~7+, 277} min{2~ 5, 27F}. (3.7)

Fix such a j. Note that 107 is contained in a union of four tiles x in T;_4 x—a,

so it suffices to prove (3.7) with s in place of 107. Let k =: I;_4 X Iy_4, where
Ij,4 c Ij,4 and I,_4 € Zp,_4. We have

|Ij_al = 27744 > 16n 7277 > (2n)P27 7,

provided 7 is sufficiently small. Suppose that I;_4 NSy, # 0. Then there exists
¢ € Ij_4N Sy, such that (1 ¢ Ty 2,, whence

[a2(C) < (2m)P277 < |14

Consequently, by the maximality of I, 2,(¢1) and the fact that 277 < 5= %277
we have

115400 Sl < |- 1 Sal < @)P 11—l = 16(20)7277 S 5 minf2~7+,277).
Thus, by Fubini’s theorem,
9 N&E| < a?Sam NIy min{275 275} < oA min{277* 277} min{2 ", 27%},
as claimed.

Now, to bound (3.5)), we split the sum into eight parts determined by the condi-
tions (a) k < K, (b) k> K and (i) j < Jo—Zlogn™!, (ii) Jo— L logn=! < j < Ja,
i) Jo < j < Jo+ Blogn=t, (iv) Jo+ Zlogn~! < j. In each case, we use (3.7) if
(iii) J 7 logn™, 7logn™t < ;
it applies, otherwise ([3.6). Summing geometric series and using (3.1)) and the fact
that || ~ 277K it is straightforward to deduce the bound

’ L
1Ex0 12g S 07 197,

where B’ is an admissible constant determined by B. We may choose B so that
B’ = 1; this better-than-required exponent will be utilized in the next paragraph.

Suppose now that o = €. For n < ¢, the preceding arguments work equally
well with Qim replaced by Q2 where ¢ < o' < 1. In particular, each such

a’,n?
QQ/ —3B—A)

&, 1s contained in a union of O(n
,

boxes 7, with 7 € T, and satisfies
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C(Qi,m,ﬁ) < 1. The case 7 = ¢ is similar, but with the bound C(Q2
¢ following directly from the definition of . Since the number of sets Qa s

O(loge™") = log(n~'/?) and their union is Q2

o) S

the lemma holds for « = ¢ as

e,m?
well. O
Step 3. For dyadic 0 < < a <eand 0 < p < 7n'/°, define
Q3 ={(¢o) e, H (r35(¢a,0) N Q2,) ~ p°Cn 3741027,

where C is an admissible constant to be chosen later. Lemma implies that
(7r2 3(§2, o)N Qin) < 7 3B=A=1277 for every (¢,0) € Qim. Thus,

2 _ 3
Qam - U Qam,p'
0<pSnt/s

Lemma 3.5. Forevery0 <n<a<eand0 < p<nt/® wehaveC(Qinp,Q)sp.

Proof of Lemma[3.5 If pP¢n=3B-A-1-C > 52C then by Lemma we have
C(02,,,, Q) St < pTFF AT S p
for C chosen sufficiently large. Thus, we may assume that p°Cn=38-A4-1-C < ,2C

Given a measurable set ' C Q3 mpand 7 € Tk, the set Q' N 107 has 7 3- and
7y a-fibers of length at most min{2=% 2%} and min{p?*“277/,277}, respectively,
and it has 7y 3- and 72 3-projections of measure at most min{277,277} and 27*,

respectively. Therefore, by Fubini’s theorem,

1 N107] < min{277 K 27I=K o=i=k ,2C9=J=k1 (3.8)
Following [3], we define
Ry:={(j,k): J=Clogp™" >j, K>k}yU{(j,k):J>j, K—Clogp " >k}
Ry:={(j,k):j>J+Clogp™!, K>k}U{(j,k):j>J, K—Clogp™" >k}
Ry :={(j,k):j>J+Clogp™, k> K}U{(j,k):j>J, k>K+Clogp™ '}
Ry :={(j,k): J+ Clogp~ >],k+Clogp’1>K}

Each ( j, k) belongs to some R;, 1 <1i <4, so by (3.5) and (| .7 we have

)
[Exar I3, S Z 9= (+k)(1=3) 9= (J+K)( 1—l)|m + Z 9=Uth(1=3)o=(+K)1-3) |5
(k)€ R (4,k)€R2
+ Z 9=U+R)A-D9=-G+R -7 + Z 9= HR(=3) 200=3)o=(J+R =D ||
(J,k)ERs (k)€ Ra

Summing these geometric series leads to the bound ||Exqr|l2q < p€ |2V, where
C' is an admissible constant determined by C; increasing C if necessary, we can

make C' > 1. O

As indicated above, the final two steps of our construction are variants of the
first two, wherein the roles of the coordinates (1, (s are reversed. Below, we briefly
explain how the argument in Steps 1 and 2 transfers, without rewriting all the
details. In short, Q2 n,p has constant my 3-fiber length by construction and thus
may replace €2, and p may replace € by Lemma

Step 4. For each dyadic number 0 < 8 < 1, define
Qs =1{(C0) e}, H (77 () Nmas(QD, ) ~ B}
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Lemma 3.6. For every 0 < 3<1,0<n<a<e, and 0 < p < n'/°, we have

C(Qi,n,p}ﬂv Q) S /8

Proof of Lemma[3.6, Since Qi)mp has constant 7y 3-fiber length, we can imitate the
proof of Lemma to show that 8 > C(Q4 Q2 ) > ol ). O

a,n,p,B?  ayn,p/ = a,n,p,B?

Step 5. For each 0 < 8 <1, let S p,p,8 1= T1 (72»3(Qi,n,p76))7 and let K, , 3 be
an integer such that |Sq ., g| ~ 27 Kemr4. Given a dyadic number 0 < § < 8 and

a Lebesgue point (o of Sa.y.p.8, let Iny » 8,6(C2) be the maximal dyadic interval I
such that (5 € I and

‘I n Sa7177p7ﬂ|
1]

As before, we may assume that S, , g is equal to its set of Lebesgue points. Let
Tamp,p.6 = 1{C2 € Samps: Hampps(C2)l 2 g2 Kemrsy,

If B < p, define Sanp.8,8 = Tamps,6 a0d Sanp.6,8 = Tanps.6 \ Tamnps.2s for
6 < S, and let

> 6B,

Qgﬂm,ﬁ,& = Qim,p,ﬁ N WE% (71 (Seamp.p.6))-

If p < B <1, define Sanp,5,0 = Tamp,p.p a0d San 8.6 = Tamp,p.6 \ Tonp.p,26
for § < p. For § < p, let

5 o A5
Qa,n,p,p,é = U 90777797[3,5’
p<pL1

3 —1/ _—1
where Qi,n,p,ﬁ,é = Qi,n,p,ﬁ N 71—2,3(771 (Saanapa576))'

Admittedly, the subscripts have become awkward. However, all we have done is
repeated Step 2, replacing Q! and e by Qim%ﬁ and p, respectively, and projecting

onto the (s-axis instead of the (;-axis. We note that

3 _ 5
Qoz,n,p - U U Qam,pﬁﬁ'

0<B<p0<5<p

Lemma 3.7. Forevery0 <n<a<e¢ and0<5§5§p§771/5, the set Q°

a,n,p,B,0
—1SB—6A—5C—6)

is contained in a union of O(§ bozes of the form 7, with T € Tk,

. 5 1/2
and satisfies C(Q5, , , 5.5, Q) < 6/2.

Proof of Lemma[3.7 Let Ko, be an integer such that |my (3, )| ~ 27 Keme,
Imitating the proof of Lemma we can show that Qim’ 5.6 1s covered by
O(673B=4=1) boxes of the form 7, where 7 € Ty, ,. Since Q3 has my -
fibers of length p®¢n=3B-4-1=C¢2=J and volume at most 27/~X it follows that
2 Kanp < p=5C2=K Thuys, Q2,555 1s covered by O(p=5C§=3B-A-1) = O(§—3B-A-5C—1)

boxes 7, with 7 € Tg k. Since Qz,n,p,ﬁﬁ - Qim and n 2> §°, Lemmanow implies
that Qi,n,p,ﬁ,é is covered by O(§~18B-64-5C=6) hoves 7 with 7 € T k.

To obtain the restriction estimate, we can adapt the proof of Lemma 3.4 O

Finally, we are equipped to finish the proof of Proposition [3.1] We have

Q= U U U U U Qg,nm,ﬁ,&: U s,

0<a<e 0<n<a 0<p<nt/5 0<B<p 0<I<B 0<8<el/5
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where
— 5
%= U U U U %mpss
d<BLet/5 B<pSet/s pd Sn<e nSase
Since for fixed § there are O((log §—1)*) sets ng,p,ﬁ,& properties (i) and (ii) in the

proposition follow from Lemma [3.7}
([

4. EXTENSIONS OF NEAR UNIONS OF BOXES

For each K, let J(K) be an integer such that |Q(K)| ~ 27/F)=K_ For each
dyadic number ¢, let K(g) denote the collection of all integers K > 0 for which
e = C(Q2(K)). For each K € K(g), Proposition [3.1| gives a decomposition Q(K) =
Uo<s<er/s UK)s such that for each 6, we have Q(K)s € U, er(x), T for some
T(K)s € Tir), i with #T(K)s < 6.

Lemma 4.1. For every 0 < § < e'/%, we have
H Z EXQK)s
KeK(e)

Proof of Lemma[/.1. Let A be an admissible constant to be chosen later, and divide
K(g) into O(log §—1) subsets K such that each is Alogd~!-separated. It suffices to
prove that

< (log 1) Z ||5XQ(K)5||§Z + 01
KeK(e)

2q
2q

2q
2 %
SO Exam), 38+ 6719«
29  Kek

H Z SXQ(K)é

KekK

for each K. Since ¢ < 2, we have

2q 4
H > Exawm)s ) :/‘ > [ Exams
q

aq
2

Kek KeKti=1
4 3
S Z 1Exar), 132+ Z HgXQ(Ki)a . (41)
Kek Kekt\D(k4) i=1 3
where D(K*) := {K € K*: K; = --- = K4}. To control the latter sum, we have

the following lemma.
Lemma 4.2. For all K, K' € K, we have
’ 2
1€x k) Exairs g S 27K F T max{|Q(K)], [(K) [} (4.2)

~

for some admissible constant cy > 0.
Proof of Lemma[4.3 By the Cauchy—Schwarz inequality and Proposition
5y 1
1Exar)sEXR);slg S [QUE)| 7 [QKT)[

For J := J(K) and J' := J(K'), we have

< NP —'KTK/‘ N
QK[ QK| 27« max{[Q(K)], |Q(K")[}

whenever either (i) K = K’ (i) J = J', (iii) J < J' and K < K’, or (iv) J > J'
and K > K’; in these cases, (4.2)) follows immediately.
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Thus, by symmetry, it suffices to prove (4.2) for K < K’ and J > J'. By the
bound # (7T (K)s x T(K')s) < 672% and the separation condition on K (with A
sufficiently large), it suffices to prove that

1
o’

lEXaK)sn+EX QK snillg S 2= =K |Q(K) |7 |QK)|7 (4.3)

for all 7 € T(K)s, k € T(K’)s, and some admissible constant c.

Fix two such tiles 7, k, and note that 7 must be taller than x and xk wider than
7. By translation, we may assume that the (o- and (;-axes intersect the centers of
7 and k, respectively. Define

LGl v ey ek fendC Gl ~ 2T <,
S lrn{c el g2y k=K Tosn{Clal g2y, =

so that

)

K’ J
T:UTk and n:UHj.
k=0 §=0

By the two-parameter Littlewood—Paley square function estimate and fact that
q < 2, we have

K J g
||8XQ(K)5O%5XQ(K’)5NE||Z5/<ZZ|5XQ(K)5ﬁ'FngQ(K’)5ﬂEj|2>

k=0 j=0
K J
O lExam)snaEX i ni, I (4.4)

k=0 j=0

where 7, := 7, x [1,2] and &; := k; % [1,2]. We first sum the terms with k = K.
By the Cauchy—Schwarz inequality and Proposition we have

J J
D Exe(r)s 7 Exrrsnm, 18 S D ]
j=0 j=0

Since x has width 277/ /, there are at most two nonempty «; with j < J’. This fact
and the bound

7] < minf2-0=7), 1}/ (4.5)

imply that Y7 o [f;[¥ < |k[¥. Since |7xr| < 27K K7, |7 ~ [Q(K)|, and
|| ~ |QK")|, we altogether have
J
S lEx (s Exarnsni, 15 S 27 IOV Q) [ QK| 7
=0
A similar argument shows that
o
S lIExaum)snm Xansns, 1 S 27T 10R) [ 9K

k=0
29
7

—(K'-K)%
~ 2 R 0KV

We now consider the terms with ¥ < K’ and j < J. In this case, 7 is a
subset of four tiles in T max(x .k} and x; is a subset of four tiles in Tax{sr j1, K-
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Moreover, these tiles are separated by a distance of 2% and 277 in the vertical and
horizontal directions, respectively. Thus, by Theorem (rescaled, as in the proof

of Proposition ,
(G _z It _
1€ Xa()snm EXarr; g lla S 27 VHHUTDIQ(K) N 72 1K) N &7
Using (4.5) and the analogous bound for |7%|, we now get

K'—1J-1
>0 lIExam)snm Exarnsn, 12 S 27 TR 3|3
k=0 j=0
~ 2V IR0 D QR 7 1K)
By the relations K < K', J > J" and (4.4), we have now proved (4.3). O

Returning to the proof of Lemma we consider the second sum in (4.1).
Given K € K*\ D(K*), let p(K) = (p;(K))?_; be a permutation of K such that
|Qpi(K))| is maximal among |Q(K;)], 1 < i < 4, and such that |K; — K| <
2|p1(K) — p2(K)| for all 1 < 4,5 < 4. Then by the Cauchy—Schwarz inequality,
Lemma the separation condition on K, the fact that ¢’ < 2¢, and choosing A
sufficiently large, we get

2q

S e s T zemeroiap )

KeKt\D(k4) "i=1 3 Kek“\D(KY)
K=p(K)

<30 N K - K2l Rl o

K1€)C Krek

Y )l

Kiex

< 2ol

5. PROOF OoF THEOREM [L.1]

In this final section, we prove our main result. We recall our setup: For € C
[—1,1]% x [1,2] a measurable set, we have divided Q2 into sets Q(K) of constant
fiber length 27X partitioned the indices K into sets K(g) according to the value
of € :== C(Q(K)), and decomposed each 2(K) into near unions of boxes Q(K)s for

0 <6 <el/5 Thus,
- U U U ax

0<e<10<65el/5 Kek(e)

(Actually, there may be K such that C(Q2(K)) = 0; however, those terms contribute
nothing to the left-hand side below.)

Proof of Theorem[I.1 By the triangle inequality, Lemma [4.1] Proposition [3.1} and
the fact that ¢’ < 2q, we have

I€xallg < Y >

0<e<10<65el/5

Z EXa(r)s

KeK(e)
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proving (L.I).

(1]
2]
(3]
(4]
(5]

[6]

RESTRICTION TO A HYPERBOLIC CONE

1

D (<log51>2q 3 ||5><Q<K>J||§z+m|<f)

0<e<10<65el/5 KeK(e)

SIS ST 0 DCTESTER I RAUTE

0<e<10<65el/5 KeK(e)

SIS (ogshsEQT | + |9

0<e<10<65el/5

1
S el
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