

FOURIER RESTRICTION TO A HYPERBOLIC CONE

ABSTRACT. Using a bilinear restriction theorem of Lee and a bilinear-to-linear argument of Stovall, we obtain the conjectured range of Fourier restriction estimates for a conical hypersurface in \mathbb{R}^4 with hyperbolic cross sections.

1. INTRODUCTION

In this article, we resolve the Fourier restriction problem for the conical hypersurface

$$\Gamma := \left\{ \left(\zeta, \sigma, \frac{\zeta_1 \zeta_2}{\sigma} \right) : \zeta \in [-1, 1]^2, \sigma \in [1, 2] \right\}$$

in \mathbb{R}^4 . In this case, the problem asks, for which exponents p, q is the extension (adjoint restriction) operator

$$\mathcal{E}f(x, x', t) := \iint_{[-1, 1]^2 \times [1, 2]} e^{i(x, x', t) \cdot (\zeta, \sigma, \frac{\zeta_1 \zeta_2}{\sigma})} f(\zeta, \sigma) d\zeta d\sigma$$

of strong type $(p, 2q)$? The restriction problem for the light cone in \mathbb{R}^4 was solved by Wolff [6], while for other conical hypersurfaces, such as those with negatively curved cross sections, it has remained open. In the case of Γ , nearly optimal results are known: Greenleaf [4] proved that \mathcal{E} is of strong type $(p, 2q)$ for $p \geq q'$ and $q \geq 2$, and Lee [2] extended that range to $q > 3/2$ and $p > q'$. The main result of this article is the boundedness of \mathcal{E} on the scaling line $p = q'$ for $3/2 < q < 2$, solving the remaining part of the restriction problem for Γ .

Theorem 1.1. *The operator \mathcal{E} is of strong type $(q', 2q)$ for $3/2 < q < 2$.*

The surface Γ looks like (a compact piece of) a cone whose cross sections are hyperbolic paraboloids. Strong type $(q', 2q)$ restriction estimates for the hyperbolic paraboloid in \mathbb{R}^3 are known for $q > 13/8$; see [3] and the references therein. A simple argument using Minkowski's and Hölder's inequalities shows that any such estimate implies the corresponding one for Γ . Therefore, the estimate in Theorem 1.1 is known for $q > 13/8$ and holds conditionally for smaller q , pending further estimates for the hyperbolic paraboloid. The superior bilinear restriction theory for Γ , in relation to that of the hyperbolic paraboloid, allows us to prove Theorem 1.1 unconditionally.

Terminology and notation. A positive constant is *admissible* if it depends only on q . We write $A \lesssim B$ to mean $A \leq CB$ for some admissible constant C , which is allowed to change from line to line. We denote the one-dimensional Hausdorff measure by \mathcal{H}^1 . We write \log for the base 2 logarithm. An interval of the form $[n2^{-j}, (n+1)2^{-j})$ for some $j, n \in \mathbb{Z}$ is *dyadic*, and \mathcal{I}_j denotes the set of dyadic intervals of length 2^{-j} . The product of two dyadic intervals is a *tile*, and $\mathcal{T}_{j,k}$ denotes the set of $2^{-j} \times 2^{-k}$ tiles. Given $\tau \in \mathcal{T}_{j,k}$, we set $\tilde{\tau} := \tau \times [1, 2]$. We denote

by $\pi_{i,3}$ and π_i , respectively, the projections $(\zeta, \sigma) \mapsto (\zeta_i, \sigma)$ and $(\zeta_i, \sigma) \mapsto \zeta_i$, for $i = 1, 2$ and $(\zeta, \sigma) \in \mathbb{R}^2 \times \mathbb{R}$. If π is one of these projections and S a subset of the domain of π , the π -projection of S refers to the set $\pi(S)$, and a π -fiber of S is any set of the form $\pi^{-1}(\pi(s)) \cap S$ with $s \in S$. *Horizontal* and *vertical* refer to the directions in \mathbb{R}^2 parallel to the standard basis vectors \mathbf{e}_1 and \mathbf{e}_2 , respectively. Finally, the *extension of a set* refers to the Fourier extension of the set's characteristic function.

Outline of the proof. We adapt an argument of Stovall [3] which showed that, for $3/2 < q < 2$, the extension operator associated to the hyperbolic paraboloid in \mathbb{R}^3 is of strong type $(q', 2q)$, provided an appropriate $L^{p_0} \times L^{p_0} \rightarrow L^{q_0}$ bilinear restriction inequality holds for some $q_0 < q$ and $p_0/2 < q_0 < p'_0$. A bilinear estimate suitable for running Stovall's argument on the hypersurface Γ is already known:

Theorem 1.2 (Lee [2]). *Let $\tau, \kappa \subseteq [-1, 1]^2$ be squares with unit separation in both the horizontal and vertical directions. If $q > 3/2$, then*

$$\|\mathcal{E}f\mathcal{E}g\|_q \lesssim \|f\|_2\|g\|_2$$

for all bounded measurable functions f and g supported in $\tau \times [1, 2]$ and $\kappa \times [1, 2]$, respectively.

To prove Theorem 1.1, it suffices to show that \mathcal{E} is of restricted strong type $(q', 2q)$ for every $3/2 < q < 2$. Thus, we aim to prove that

$$\|\mathcal{E}\chi_\Omega\|_{2q} \lesssim |\Omega|^{\frac{1}{q'}} \tag{1.1}$$

for an arbitrary measurable set $\Omega \subseteq [-1, 1]^2 \times [1, 2]$. In Section 2, we use Theorem 1.2 and a bilinear-to-linear argument of Vargas [4] to show that sets having roughly constant $\pi_{1,3}$ - (or $\pi_{2,3}$ -) fiber length obey (1.1). In Section 3, we solve a related inverse problem: For which sets Ω of constant fiber length can the inequality in (1.1) be reversed? Oversimplified, our answer is that Ω must be a box of the form $\tilde{\tau}$; proving (1.1) then becomes a matter of bounding the extension of a union of boxes, which we do in Section 4. Our real answer, however, is quantitative: We show that Ω is approximately a union of boxes, where the number of boxes in the union and the tightness of the approximation relate to the quantity $C(\Omega)$, defined thus:

Definition 1.3. For measurable sets $\Omega_1 \subseteq \Omega_2 \subseteq [-1, 1]^2 \times [1, 2]$, let $C(\Omega_1, \Omega_2)$ denote the smallest number ε , either dyadic, zero, or infinite, such that $\|\mathcal{E}\chi_{\Omega'_1}\|_{2q} \leq \varepsilon |\Omega_2|^{1/q'}$ for every measurable set $\Omega'_1 \subseteq \Omega_1$, and let $C(\Omega_1) := C(\Omega_1, \Omega_1)$.

Finally, in Section 5, we start with a generic set Ω , decompose it into sets $\Omega(K)$ of fiber length roughly 2^{-K} , sorted thence according to the value of $C(\Omega(K))$, and apply the restriction estimates of Sections 3 and 4 to obtain (1.1).

While much of our argument resembles Stovall's in [3], we include full details for the convenience of the reader.

2. EXTENSIONS OF SETS OF CONSTANT FIBER LENGTH

In this section, we prove a scaling line restriction estimate for characteristic functions of sets of constant $\pi_{1,3}$ -fiber length, arguing à la Vargas [4]. By symmetry, the same estimate then holds for sets of constant $\pi_{2,3}$ -fiber length.

Definition 2.1. Given a measurable set $\Omega \subseteq [-1, 1]^2 \times [1, 2]$ and an integer $K \geq 0$, let

$$\Omega(K) := \{(\zeta, \sigma) \in \Omega : \mathcal{H}^1(\pi_{1,3}^{-1}(\zeta_1, \sigma) \cap \Omega) \sim 2^{-K}\}.$$

Proposition 2.2. Suppose that $\Omega = \Omega(K)$ for some K . Then $C(\Omega) \lesssim 1$.

Proof. Let $\Omega' \subseteq \Omega$ be measurable. Given $\tau, \kappa \in \mathcal{T}_{j,k}$, we write $\tau \sim \kappa$ if τ and κ are separated by a distance of $\sim 2^{-j}$ in the horizontal direction and $\sim 2^{-k}$ in the vertical direction. Up to a set of measure zero, we have

$$([-1, 1]^2 \times [1, 2])^2 = \bigcup_{j,k} \bigcup_{\substack{\tau, \kappa \in \mathcal{T}_{j,k} \\ \tau \sim \kappa}} \tilde{\tau} \times \tilde{\kappa}.$$

Consequently, by the triangle inequality and Lemma 6.1 in [5] (using that $q < 2$),

$$\|\mathcal{E}\chi_{\Omega'}\|_{2q}^2 \lesssim \sum_{j,k} \left(\sum_{\substack{\tau, \kappa \in \mathcal{T}_{j,k} \\ \tau \sim \kappa}} \|\mathcal{E}\chi_{\Omega' \cap \tilde{\tau}} \mathcal{E}\chi_{\Omega' \cap \tilde{\kappa}}\|_q^q \right)^{\frac{1}{q}}.$$

By rescaling, Theorem 1.2 implies that

$\|\mathcal{E}\chi_{\Omega' \cap \tilde{\tau}} \mathcal{E}\chi_{\Omega' \cap \tilde{\kappa}}\|_q \lesssim 2^{-(j+k)(1-\frac{2}{q})} |\Omega' \cap \tilde{\tau}|^{\frac{1}{2}} |\Omega' \cap \tilde{\kappa}|^{\frac{1}{2}} \leq 2^{-(j+k)(1-\frac{2}{q})} |\Omega \cap \tilde{\tau}|^{\frac{1}{2}} |\Omega \cap \tilde{\kappa}|^{\frac{1}{2}}$ for $\tau, \kappa \in \mathcal{T}_{j,k}$ with $\tau \sim \kappa$. Given $\tau \in \mathcal{T}_{j,k}$, there are admissibly many κ such that $\tau \sim \kappa$, and for each such κ , we have $10\tau \supseteq \kappa$. Thus,

$$\begin{aligned} \|\mathcal{E}\chi_{\Omega'}\|_{2q}^2 &\lesssim \sum_{j,k} 2^{-(j+k)(1-\frac{2}{q})} \left(\sum_{\tau \in \mathcal{T}_{j,k}} |\Omega \cap 10\tilde{\tau}|^q \right)^{\frac{1}{q}} \\ &\lesssim \sum_{j,k} 2^{-(j+k)(1-\frac{2}{q})} \max_{\tau \in \mathcal{T}_{j,k}} |\Omega \cap 10\tilde{\tau}|^{1-\frac{1}{q}} |\Omega|^{\frac{1}{q}}. \end{aligned} \quad (2.1)$$

Let J be an integer such that $|\pi_{1,3}(\Omega)| \sim 2^{-J}$. Then, by Fubini's theorem, $|\Omega| \sim 2^{-J-K}$ and

$$\max_{\tau \in \mathcal{T}_{j,k}} |\Omega \cap 10\tilde{\tau}| \lesssim \min\{2^{-J}, 2^{-j}\} \min\{2^{-K}, 2^{-k}\}. \quad (2.2)$$

We split the right-hand side of (2.1) into four parts: summation over j, k satisfying (i) $j \leq J, k \leq K$; (ii) $j \leq J, k > K$; (iii) $j > J, k \leq K$; (iv) $j > J, k > K$. Each part is estimated simply by applying (2.2) and summing a geometric series. We obtain the desired bound in this way. \square

3. AN INVERSE PROBLEM RELATED TO PROPOSITION 2.2

In this section, we answer quantitatively the following question: If Ω extremizes the inequality in Proposition 2.2, what structure must Ω have?

Proposition 3.1. Suppose that $\Omega = \Omega(K)$ for some K , let J be an integer such that $|\Omega| \sim 2^{-J-K}$, and let $\varepsilon := C(\Omega)$. Up to a set of measure zero, there exists a decomposition

$$\Omega = \bigcup_{0 < \delta \lesssim \varepsilon^{1/5}} \Omega_\delta,$$

where the union is taken over dyadic numbers, such that

(i) $C(\Omega_\delta, \Omega) \lesssim \delta^{1/3}$, and

(ii) $\Omega_\delta \subseteq \bigcup_{\tau \in \mathcal{T}_\delta} \tilde{\tau}$, where $\mathcal{T}_\delta \subseteq \mathcal{T}_{J,K}$ with $\#\mathcal{T}_\delta \lesssim \delta^{-C_0}$ for some admissible constant C_0 .

Proof of Proposition 3.1. The construction of the sets Ω_δ consists of five steps. We will begin by dividing Ω into sets Ω_α^1 whose $\pi_{1,3}$ -projections have constant π_1 -fiber length α , respectively. That simple step enables us to adapt then the decomposition scheme employed in [3]. We divide each Ω_α^1 into sets $\Omega_{\alpha,\eta}^2$ whose respective projections to the ζ_1 -axis are contained in η^{-1} intervals in \mathcal{I}_J . In our third step, we divide each $\Omega_{\alpha,\eta}^2$ into sets $\Omega_{\alpha,\eta,\rho}^3$ of constant $\pi_{2,3}$ -fiber length $\rho\eta^{-1}2^{-J}$. To each $\Omega_{\alpha,\eta,\rho}^3$ we may then apply variants of the first two steps wherein the roles of the coordinates ζ_1, ζ_2 are reversed. Indeed, were $\pi_{1,3}$ replaced by $\pi_{2,3}$ in Definition 2.1, each $\Omega_{\alpha,\eta,\rho}^3$ would be of the form $\Omega_{\alpha,\eta,\rho}^3(J + \log(\rho^{-1}\eta))$. In the end, we obtain sets $\Omega_{\alpha,\eta,\rho,\beta,\delta}^5$ whose respective projections to the ζ_2 -axis are contained in δ^{-1} intervals in \mathcal{I}_K . For fixed δ , we define Ω_δ to be the union of the sets $\Omega_{\alpha,\eta,\rho,\beta,\delta}^5$, of which there will be at most $(\log \delta^{-1})^4$ by construction. Appearing in the argument below, there are of course constants and minor technical adjustments missing from this summary.

Step 1. For each dyadic number $0 < \alpha \leq 1$, define

$$\Omega_\alpha^1 := \{(\zeta, \sigma) \in \Omega : \mathcal{H}^1(\pi_1^{-1}(\zeta_1) \cap \pi_{1,3}(\Omega)) \sim \alpha^A\},$$

where A is an admissible constant to be chosen momentarily.

Lemma 3.2. *For every $0 < \alpha \leq 1$, we have $C(\Omega_\alpha^1, \Omega) \lesssim \alpha$.*

Proof of Lemma 3.2. Let $\Omega' \subseteq \Omega_\alpha^1$ be measurable, and let J_α be an integer such that $|\pi_{1,3}(\Omega_\alpha)| \sim \alpha^A 2^{-J_\alpha}$. We record the bound

$$\alpha^A 2^{-J_\alpha} \lesssim 2^{-J}. \quad (3.1)$$

Following the proof of Proposition 2.2, we have

$$\|\mathcal{E}\chi_{\Omega'}\|_{2q}^2 \lesssim \sum_{j,k} 2^{-(j+k)(1-\frac{2}{q})} \max_{\tau \in \mathcal{T}_{j,k}} |\Omega_\alpha^1 \cap 10\tilde{\tau}|^{1-\frac{1}{q}} |\Omega|^\frac{1}{q}. \quad (3.2)$$

By Fubini's theorem,

$$\begin{aligned} |\Omega_\alpha^1 \cap 10\tilde{\tau}| &\lesssim |\pi_{1,3}(\Omega_\alpha^1 \cap 10\tilde{\tau})| \min\{2^{-K}, 2^{-k}\} \\ &\lesssim \alpha^A \min\{2^{-J_\alpha}, 2^{-j}\} \min\{2^{-K}, 2^{-k}\} \end{aligned} \quad (3.3)$$

for every $\tau \in \mathcal{T}_{j,k}$. As in the proof of Proposition 2.2, we split the right-hand side of (3.2) into four parts: summation over j, k satisfying (i) $j \leq J_\alpha, k \leq K$; (ii) $j \leq J_\alpha, k > K$; (iii) $j > J_\alpha, k \leq K$; (iv) $j > J_\alpha, k > K$. Using (3.3) and (3.1), we bound the sum corresponding to (i) by

$$\begin{aligned} \sum_{\substack{j \leq J_\alpha \\ k \leq K}} 2^{-(j+k)(1-\frac{2}{q})} (\alpha^A 2^{-J_\alpha - K})^{1-\frac{1}{q}} |\Omega|^\frac{1}{q} &\sim \alpha^{A(1-\frac{1}{q})} 2^{-(J_\alpha + K)(2-\frac{3}{q})} |\Omega|^\frac{1}{q} \\ &\lesssim \alpha^{A(\frac{2}{q}-1)} 2^{-(J+K)(2-\frac{3}{q})} |\Omega|^\frac{1}{q} \\ &\sim \alpha^{A(\frac{2}{q}-1)} |\Omega|^\frac{2}{q}. \end{aligned}$$

Using the same steps, the sum corresponding to (ii) is at most

$$\sum_{\substack{j \leq J_\alpha \\ k > K}} 2^{-j(1-\frac{2}{q})} 2^{-k(2-\frac{3}{q})} \alpha^{A(1-\frac{1}{q})} 2^{-J_\alpha(1-\frac{1}{q})} |\Omega|^\frac{1}{q} \sim \alpha^{A(1-\frac{1}{q})} 2^{-(J_\alpha + K)(2-\frac{3}{q})} |\Omega|^\frac{1}{q}$$

$$\lesssim \alpha^{A(\frac{2}{q}-1)} |\Omega|^{\frac{2}{q'}}.$$

The sums corresponding to (iii) and (iv) can be handled in essentially the same way, leading to the estimate

$$\|\mathcal{E}\chi_{\Omega'}\|_{2q} \lesssim \alpha^{A(\frac{1}{q}-\frac{1}{2})} |\Omega|^{\frac{1}{q'}}.$$

We conclude the proof by setting $A := (\frac{1}{q} - \frac{1}{2})^{-1}$. \square

Step 2. For each $0 < \alpha \leq 1$, let $S_\alpha := \pi_1(\pi_{1,3}(\Omega_\alpha^1))$, and note that $|S_\alpha| \sim 2^{-J_\alpha}$ with J_α as in the proof of Lemma 3.2. Given a dyadic number $0 < \eta \leq \alpha$ and a Lebesgue point ζ_1 of S_α , let $I_{\alpha,\eta}(\zeta_1)$ be the maximal dyadic interval I such that $\zeta_1 \in I$ and

$$\frac{|I \cap S_\alpha|}{|I|} \geq \eta^B, \quad (3.4)$$

where B is an admissible constant to be chosen later; such an interval exists by the Lebesgue differentiation theorem. Without loss of generality, we assume that S_α is equal to its set of Lebesgue points. Let

$$T_{\alpha,\eta} := \{\zeta_1 \in S_\alpha : |I_{\alpha,\eta}(\zeta_1)| \geq \eta^B 2^{-J_\alpha}\}.$$

If $\alpha < \varepsilon$, define $S_{\alpha,\alpha} := T_{\alpha,\alpha}$ and $S_{\alpha,\eta} := T_{\alpha,\eta} \setminus T_{\alpha,2\eta}$ for $\eta < \alpha$, and let

$$\Omega_{\alpha,\eta}^2 := \Omega_\alpha^1 \cap \pi_{1,3}^{-1}(\pi_1^{-1}(S_{\alpha,\eta})).$$

For $\varepsilon \leq \alpha \leq 1$, define $S_{\alpha,\varepsilon} := T_{\alpha,\varepsilon}$ and $S_{\alpha,\eta} := T_{\alpha,\eta} \setminus T_{\alpha,2\eta}$ for $\eta < \varepsilon$. For $\eta \leq \varepsilon$, let

$$\Omega_{\varepsilon,\eta}^2 := \bigcup_{\varepsilon \leq \alpha \leq 1} \tilde{\Omega}_{\alpha,\eta}^2,$$

where $\tilde{\Omega}_{\alpha,\eta}^2 := \Omega_\alpha^1 \cap \pi_{1,3}^{-1}(\pi_1^{-1}(S_{\alpha,\eta}))$.

Remark 3.3. We note that $\Omega_{\alpha,\eta}^2 \subseteq \Omega_\alpha^1$ for $\alpha < \varepsilon$ and $\tilde{\Omega}_{\alpha,\eta}^2 \subseteq \Omega_\alpha^1$ for $\varepsilon \leq \alpha \leq 1$, while in general $\Omega_{\varepsilon,\eta}^2$ is not contained in Ω_ε^1 . We do have

$$\Omega = \bigcup_{0 < \alpha \leq 1} \Omega_\alpha^1 = \bigcup_{0 < \alpha \leq \varepsilon} \bigcup_{0 < \eta \leq \alpha} \Omega_{\alpha,\eta}^2.$$

Lemma 3.4. *For every $0 < \eta \leq \alpha \leq \varepsilon$, the set $\Omega_{\alpha,\eta}^2$ is contained in a union of $O(\eta^{-3B-A-1})$ boxes of the form $\tilde{\tau}$, with $\tau \in \mathcal{T}_{J,0}$, and satisfies $C(\Omega_{\alpha,\eta}^2, \Omega) \lesssim \eta^{1/2}$.*

Proof of Lemma 3.4. We argue first under the hypothesis that $\alpha < \varepsilon$, then indicate the changes needed when $\alpha = \varepsilon$. By its definition, $S_{\alpha,\eta}$ is covered by dyadic intervals I of length $|I| \gtrsim \eta^B |S_\alpha|$, in each of which S_α has density obeying (3.4). The density of each such I in S_α is

$$\frac{|I \cap S_\alpha|}{|S_\alpha|} = \frac{|I \cap S_\alpha|}{|I|} \cdot \frac{|I|}{|S_\alpha|} \gtrsim \eta^{2B}.$$

Therefore, if \mathcal{C} is a minimal-cardinality covering of $S_{\alpha,\eta}$ by these I (consisting necessarily of pairwise disjoint intervals), then $\#\mathcal{C} \lesssim \eta^{-2B}$. Moreover, (3.4) and (3.1) imply that

$$|I| \lesssim \eta^{-B} 2^{-J_\alpha} \lesssim \eta^{-B} \alpha^{-A} 2^{-J} \leq \eta^{-B-A} 2^{-J}$$

for every $I \in \mathcal{C}$. Thus, $S_{\alpha,\eta}$ is covered by $O(\eta^{-3B-A})$ intervals in \mathcal{I}_J . Since $\alpha < \varepsilon$, it immediately follows that $\Omega_{\alpha,\eta}^2$ is contained in a union of $O(\eta^{-3B-A})$ boxes of the form claimed.

We turn to the restriction estimate. If $\eta = \alpha$, the result follows from Lemma 3.2 and Remark 3.3. Thus, we may assume that $\eta < \alpha$. We proceed by optimizing the proof of Proposition 2.2, as in [3]. Let $\Omega' \subseteq \Omega_{\alpha,\eta}^2$ be measurable. From the proof of (2.1), we see that

$$\|\mathcal{E}\chi_{\Omega'}\|_{2q}^2 \lesssim \sum_{j,k} 2^{-(j+k)(1-\frac{2}{q})} \max_{\tau \in \mathcal{T}_{j,k}} |\Omega' \cap 10\tilde{\tau}|^{1-\frac{1}{q}} |\Omega|^{\frac{1}{q}}. \quad (3.5)$$

Fix $\tau \in \mathcal{T}_{j,k}$. By Fubini's theorem and the definition of Ω_α^1 (with $\alpha < \varepsilon$), we have

$$\begin{aligned} |\Omega' \cap 10\tilde{\tau}| &\lesssim |\pi_{1,3}(\Omega' \cap 10\tilde{\tau})| \min\{2^{-K}, 2^{-k}\} \\ &\lesssim \alpha^A \min\{|\pi_1(\pi_{1,3}(\Omega'))|, |\pi_1(\pi_{1,3}(10\tilde{\tau}))|\} \min\{2^{-K}, 2^{-k}\} \\ &\lesssim \alpha^A \min\{2^{-J_\alpha}, 2^{-j}\} \min\{2^{-K}, 2^{-k}\}. \end{aligned} \quad (3.6)$$

For certain j , the definition of $\Omega_{\alpha,\eta}^2$ leads to a better estimate. We claim that if $|j - J_\alpha| < \frac{B}{4} \log \eta^{-1}$, then

$$|\Omega' \cap 10\tilde{\tau}| \lesssim \eta^{\frac{3B}{4}} \alpha^A \min\{2^{-J_\alpha}, 2^{-j}\} \min\{2^{-K}, 2^{-k}\}. \quad (3.7)$$

Fix such a j . Note that 10τ is contained in a union of four tiles κ in $\mathcal{T}_{j-4,k-4}$, so it suffices to prove (3.7) with κ in place of 10τ . Let $\kappa =: I_{j-4} \times I_{k-4}$, where $I_{j-4} \in \mathcal{I}_{j-4}$ and $I_{k-4} \in \mathcal{I}_{k-4}$. We have

$$|I_{j-4}| = 2^{-j+4} \geq 16\eta^{\frac{B}{4}} 2^{-J_\alpha} \geq (2\eta)^B 2^{-J_\alpha},$$

provided η is sufficiently small. Suppose that $I_{j-4} \cap S_{\alpha,\eta} \neq \emptyset$. Then there exists $\zeta_1 \in I_{j-4} \cap S_{\alpha,\eta}$ such that $\zeta_1 \notin T_{\alpha,2\eta}$, whence

$$|I_{\alpha,2\eta}(\zeta_1)| < (2\eta)^B 2^{-J_\alpha} \leq |I_{j-4}|.$$

Consequently, by the maximality of $I_{\alpha,2\eta}(\zeta_1)$ and the fact that $2^{-j} \leq \eta^{-\frac{B}{4}} 2^{-J_\alpha}$, we have

$$|I_{j-4} \cap S_{\alpha,\eta}| \leq |I_{j-4} \cap S_\alpha| \leq (2\eta)^B |I_{j-4}| = 16(2\eta)^B 2^{-j} \lesssim \eta^{\frac{3B}{4}} \min\{2^{-J_\alpha}, 2^{-j}\}.$$

Thus, by Fubini's theorem,

$$|\Omega' \cap \tilde{\kappa}| \lesssim \alpha^A |S_{\alpha,\eta} \cap I_{j-4}| \min\{2^{-K}, 2^{-k}\} \lesssim \eta^{\frac{3B}{4}} \alpha^A \min\{2^{-J_\alpha}, 2^{-j}\} \min\{2^{-K}, 2^{-k}\},$$

as claimed.

Now, to bound (3.5), we split the sum into eight parts determined by the conditions (a) $k \leq K$, (b) $k > K$ and (i) $j \leq J_\alpha - \frac{B}{4} \log \eta^{-1}$, (ii) $J_\alpha - \frac{B}{4} \log \eta^{-1} < j \leq J_\alpha$, (iii) $J_\alpha < j < J_\alpha + \frac{B}{4} \log \eta^{-1}$, (iv) $J_\alpha + \frac{B}{4} \log \eta^{-1} \leq j$. In each case, we use (3.7) if it applies, otherwise (3.6). Summing geometric series and using (3.1) and the fact that $|\Omega| \sim 2^{-J-K}$, it is straightforward to deduce the bound

$$\|\mathcal{E}\chi_{\Omega'}\|_{2q} \lesssim \eta^{B'} |\Omega|^{\frac{1}{q'}},$$

where B' is an admissible constant determined by B . We may choose B so that $B' = 1$; this better-than-required exponent will be utilized in the next paragraph.

Suppose now that $\alpha = \varepsilon$. For $\eta < \varepsilon$, the preceding arguments work equally well with $\Omega_{\alpha,\eta}^2$ replaced by $\tilde{\Omega}_{\alpha',\eta}^2$, where $\varepsilon \leq \alpha' \leq 1$. In particular, each such $\tilde{\Omega}_{\alpha',\eta}^2$ is contained in a union of $O(\eta^{-3B-A})$ boxes $\tilde{\tau}$, with $\tau \in \mathcal{T}_{J,0}$, and satisfies

$C(\tilde{\Omega}_{\alpha',\eta}^2, \Omega) \lesssim \eta$. The case $\eta = \varepsilon$ is similar, but with the bound $C(\tilde{\Omega}_{\alpha',\varepsilon}^2, \Omega) \lesssim \varepsilon$ following directly from the definition of ε . Since the number of sets $\tilde{\Omega}_{\alpha',\eta}^2$ is $O(\log \varepsilon^{-1}) = \log(\eta^{-1/2})$ and their union is $\Omega_{\varepsilon,\eta}^2$, the lemma holds for $\alpha = \varepsilon$ as well. \square

Step 3. For dyadic $0 < \eta \leq \alpha \leq \varepsilon$ and $0 < \rho \lesssim \eta^{1/5}$, define

$$\Omega_{\alpha,\eta,\rho}^3 := \{(\zeta, \sigma) \in \Omega_{\alpha,\eta}^2 : \mathcal{H}^1(\pi_{2,3}^{-1}(\zeta_2, \sigma) \cap \Omega_{\alpha,\eta}^2) \sim \rho^{5C} \eta^{-3B-A-1-C} 2^{-J}\},$$

where C is an admissible constant to be chosen later. Lemma 3.4 implies that $\mathcal{H}^1(\pi_{2,3}^{-1}(\zeta_2, \sigma) \cap \Omega_{\alpha,\eta}^2) \lesssim \eta^{-3B-A-1} 2^{-J}$ for every $(\zeta, \sigma) \in \Omega_{\alpha,\eta}^2$. Thus,

$$\Omega_{\alpha,\eta}^2 = \bigcup_{0 < \rho \lesssim \eta^{1/5}} \Omega_{\alpha,\eta,\rho}^3.$$

Lemma 3.5. *For every $0 < \eta \leq \alpha \leq \varepsilon$ and $0 < \rho \lesssim \eta^{1/5}$, we have $C(\Omega_{\alpha,\eta,\rho}^3, \Omega) \lesssim \rho$.*

Proof of Lemma 3.5. If $\rho^{5C} \eta^{-3B-A-1-C} \geq \rho^{2C}$, then by Lemma 3.4, we have

$$C(\Omega_{\alpha,\eta,\rho}^3, \Omega) \lesssim \eta^{\frac{1}{2}} \leq \rho^{\frac{3C}{2(3B+A+1+C)}} \lesssim \rho$$

for C chosen sufficiently large. Thus, we may assume that $\rho^{5C} \eta^{-3B-A-1-C} \leq \rho^{2C}$. Given a measurable set $\Omega' \subseteq \Omega_{\alpha,\eta,\rho}^3$ and $\tau \in \mathcal{T}_{j,k}$, the set $\Omega' \cap 10\tilde{\tau}$ has $\pi_{1,3}$ - and $\pi_{2,3}$ -fibers of length at most $\min\{2^{-K}, 2^{-k}\}$ and $\min\{\rho^{2C} 2^{-J}, 2^{-j}\}$, respectively, and it has $\pi_{1,3}$ - and $\pi_{2,3}$ -projections of measure at most $\min\{2^{-J}, 2^{-j}\}$ and 2^{-k} , respectively. Therefore, by Fubini's theorem,

$$|\Omega' \cap 10\tilde{\tau}| \lesssim \min\{2^{-J-K}, 2^{-j-K}, 2^{-j-k}, \rho^{2C} 2^{-J-k}\}. \quad (3.8)$$

Following 3, we define

$$R_1 := \{(j, k) : J - C \log \rho^{-1} \geq j, K \geq k\} \cup \{(j, k) : J \geq j, K - C \log \rho^{-1} \geq k\}$$

$$R_2 := \{(j, k) : j \geq J + C \log \rho^{-1}, K \geq k\} \cup \{(j, k) : j \geq J, K - C \log \rho^{-1} \geq k\}$$

$$R_3 := \{(j, k) : j \geq J + C \log \rho^{-1}, k \geq K\} \cup \{(j, k) : j \geq J, k \geq K + C \log \rho^{-1}\}$$

$$R_4 := \{(j, k) : J + C \log \rho^{-1} \geq j, k + C \log \rho^{-1} \geq K\}.$$

Each (j, k) belongs to some R_i , $1 \leq i \leq 4$, so by 3.5 and 3.8, we have

$$\begin{aligned} \|\mathcal{E}\chi_{\Omega'}\|_{2q}^2 &\lesssim \sum_{(j,k) \in R_1} 2^{-(j+k)(1-\frac{2}{q})} 2^{-(J+K)(1-\frac{1}{q})} |\Omega|^{\frac{1}{q}} + \sum_{(j,k) \in R_2} 2^{-(j+k)(1-\frac{2}{q})} 2^{-(j+K)(1-\frac{1}{q})} |\Omega|^{\frac{1}{q}} \\ &\quad + \sum_{(j,k) \in R_3} 2^{-(j+k)(1-\frac{2}{q})} 2^{-(j+k)(1-\frac{1}{q})} |\Omega|^{\frac{1}{q}} + \sum_{(j,k) \in R_4} 2^{-(j+k)(1-\frac{2}{q})} \rho^{2C(1-\frac{1}{q})} 2^{-(J+k)(1-\frac{1}{q})} |\Omega|^{\frac{1}{q}}. \end{aligned}$$

Summing these geometric series leads to the bound $\|\mathcal{E}\chi_{\Omega'}\|_{2q} \lesssim \rho^{C'} |\Omega|^{1/q'}$, where C' is an admissible constant determined by C ; increasing C if necessary, we can make $C' \geq 1$. \square

As indicated above, the final two steps of our construction are variants of the first two, wherein the roles of the coordinates ζ_1, ζ_2 are reversed. Below, we briefly explain how the argument in Steps 1 and 2 transfers, without rewriting all the details. In short, $\Omega_{\alpha,\eta,\rho}^3$ has constant $\pi_{2,3}$ -fiber length by construction and thus may replace Ω , and ρ may replace ε by Lemma 3.5.

Step 4. For each dyadic number $0 < \beta \leq 1$, define

$$\Omega_{\alpha,\eta,\rho,\beta}^4 := \{(\zeta, \sigma) \in \Omega_{\alpha,\eta,\rho}^3 : \mathcal{H}^1(\pi_1^{-1}(\zeta_1) \cap \pi_{2,3}(\Omega_{\alpha,\eta,\rho}^3)) \sim \beta^A\}.$$

Lemma 3.6. *For every $0 < \beta \leq 1$, $0 < \eta \leq \alpha \leq \varepsilon$, and $0 < \rho \lesssim \eta^{1/5}$, we have $C(\Omega_{\alpha,\eta,\rho,\beta}^4, \Omega) \lesssim \beta$.*

Proof of Lemma 3.6. Since $\Omega_{\alpha,\eta,\rho,\beta}^3$ has constant $\pi_{2,3}$ -fiber length, we can imitate the proof of Lemma 3.2 to show that $\beta \gtrsim C(\Omega_{\alpha,\eta,\rho,\beta}^4, \Omega_{\alpha,\eta,\rho,\beta}^3) \geq C(\Omega_{\alpha,\eta,\rho,\beta}^4, \Omega)$. \square

Step 5. For each $0 < \beta \leq 1$, let $S_{\alpha,\eta,\rho,\beta} := \pi_1(\pi_{2,3}(\Omega_{\alpha,\eta,\rho,\beta}^4))$, and let $K_{\alpha,\eta,\rho,\beta}$ be an integer such that $|S_{\alpha,\eta,\rho,\beta}| \sim 2^{-K_{\alpha,\eta,\rho,\beta}}$. Given a dyadic number $0 < \delta \leq \beta$ and a Lebesgue point ζ_2 of $S_{\alpha,\eta,\rho,\beta}$, let $I_{\alpha,\eta,\rho,\beta,\delta}(\zeta_2)$ be the maximal dyadic interval I such that $\zeta_2 \in I$ and

$$\frac{|I \cap S_{\alpha,\eta,\rho,\beta}|}{|I|} \geq \delta^B.$$

As before, we may assume that $S_{\alpha,\eta,\rho,\beta}$ is equal to its set of Lebesgue points. Let

$$T_{\alpha,\eta,\rho,\beta,\delta} := \{\zeta_2 \in S_{\alpha,\eta,\rho,\beta} : |I_{\alpha,\eta,\rho,\beta,\delta}(\zeta_2)| \geq \delta^B 2^{-K_{\alpha,\eta,\rho,\beta}}\}.$$

If $\beta < \rho$, define $S_{\alpha,\eta,\rho,\beta,\beta} := T_{\alpha,\eta,\rho,\beta,\beta}$ and $S_{\alpha,\eta,\rho,\beta,\delta} := T_{\alpha,\eta,\rho,\beta,\delta} \setminus T_{\alpha,\eta,\rho,\beta,2\delta}$ for $\delta < \beta$, and let

$$\Omega_{\alpha,\eta,\rho,\beta,\delta}^5 := \Omega_{\alpha,\eta,\rho,\beta}^4 \cap \pi_1^{-1}(\pi_1^{-1}(S_{\alpha,\eta,\rho,\beta,\delta})).$$

If $\rho \leq \beta \leq 1$, define $S_{\alpha,\eta,\rho,\beta,\rho} := T_{\alpha,\eta,\rho,\beta,\rho}$ and $S_{\alpha,\eta,\rho,\beta,\delta} := T_{\alpha,\eta,\rho,\beta,\delta} \setminus T_{\alpha,\eta,\rho,\beta,2\delta}$ for $\delta < \rho$. For $\delta \leq \rho$, let

$$\Omega_{\alpha,\eta,\rho,\beta,\delta}^5 := \bigcup_{\rho \leq \beta \leq 1} \tilde{\Omega}_{\alpha,\eta,\rho,\beta,\delta}^5,$$

where $\tilde{\Omega}_{\alpha,\eta,\rho,\beta,\delta}^5 := \Omega_{\alpha,\eta,\rho,\beta,\delta}^4 \cap \pi_1^{-1}(\pi_1^{-1}(S_{\alpha,\eta,\rho,\beta,\delta}))$.

Admittedly, the subscripts have become awkward. However, all we have done is repeated Step 2, replacing Ω_α^1 and ε by $\Omega_{\alpha,\eta,\rho,\beta}^4$ and ρ , respectively, and projecting onto the ζ_2 -axis instead of the ζ_1 -axis. We note that

$$\Omega_{\alpha,\eta,\rho}^3 = \bigcup_{0 < \beta \leq \rho} \bigcup_{0 < \delta \leq \beta} \Omega_{\alpha,\eta,\rho,\beta,\delta}^5.$$

Lemma 3.7. *For every $0 < \eta \leq \alpha \leq \varepsilon$ and $0 < \delta \leq \beta \leq \rho \lesssim \eta^{1/5}$, the set $\Omega_{\alpha,\eta,\rho,\beta,\delta}^5$ is contained in a union of $O(\delta^{-18B-6A-5C-6})$ boxes of the form $\tilde{\tau}$, with $\tau \in \mathcal{T}_{J,K}$, and satisfies $C(\Omega_{\alpha,\eta,\rho,\beta,\delta}^5, \Omega) \lesssim \delta^{1/2}$.*

Proof of Lemma 3.7. Let $K_{\alpha,\eta,\rho}$ be an integer such that $|\pi_{2,3}(\Omega_{\alpha,\eta,\rho}^3)| \sim 2^{-K_{\alpha,\eta,\rho}}$. Imitating the proof of Lemma 3.4, we can show that $\Omega_{\alpha,\eta,\rho,\beta,\delta}^5$ is covered by $O(\delta^{-3B-A-1})$ boxes of the form $\tilde{\tau}$, where $\tau \in \mathcal{T}_{0,K_{\alpha,\eta,\rho}}$. Since $\Omega_{\alpha,\eta,\rho}^3$ has $\pi_{2,3}$ -fibers of length $\rho^{5C} \eta^{-3B-A-1-C} 2^{-J}$ and volume at most 2^{-J-K} , it follows that $2^{-K_{\alpha,\eta,\rho}} \lesssim \rho^{-5C} 2^{-K}$. Thus, $\Omega_{\alpha,\eta,\rho,\beta,\delta}^5$ is covered by $O(\rho^{-5C} \delta^{-3B-A-1}) = O(\delta^{-3B-A-5C-1})$ boxes $\tilde{\tau}$, with $\tau \in \mathcal{T}_{0,K}$. Since $\Omega_{\alpha,\eta,\rho,\beta,\delta}^5 \subseteq \Omega_{\alpha,\eta}^2$ and $\eta \gtrsim \delta^5$, Lemma 3.4 now implies that $\Omega_{\alpha,\eta,\rho,\beta,\delta}^5$ is covered by $O(\delta^{-18B-6A-5C-6})$ boxes $\tilde{\tau}$, with $\tau \in \mathcal{T}_{J,K}$.

To obtain the restriction estimate, we can adapt the proof of Lemma 3.4. \square

Finally, we are equipped to finish the proof of Proposition 3.1. We have

$$\Omega = \bigcup_{0 < \alpha \leq \varepsilon} \bigcup_{0 < \eta \leq \alpha} \bigcup_{0 < \rho \lesssim \eta^{1/5}} \bigcup_{0 < \beta \leq \rho} \bigcup_{0 < \delta \leq \beta} \Omega_{\alpha,\eta,\rho,\beta,\delta}^5 = \bigcup_{0 < \delta \lesssim \varepsilon^{1/5}} \Omega_\delta,$$

where

$$\Omega_\delta := \bigcup_{\delta \leq \beta \lesssim \varepsilon^{1/5}} \bigcup_{\beta \leq \rho \lesssim \varepsilon^{1/5}} \bigcup_{\rho^5 \lesssim \eta \leq \varepsilon} \bigcup_{\eta \leq \alpha \leq \varepsilon} \Omega_{\alpha, \eta, \rho, \beta, \delta}^5.$$

Since for fixed δ there are $O((\log \delta^{-1})^4)$ sets $\Omega_{\alpha, \eta, \rho, \beta, \delta}^5$, properties (i) and (ii) in the proposition follow from Lemma 3.7. \square

4. EXTENSIONS OF NEAR UNIONS OF BOXES

For each K , let $J(K)$ be an integer such that $|\Omega(K)| \sim 2^{-J(K)-K}$. For each dyadic number ε , let $\mathcal{K}(\varepsilon)$ denote the collection of all integers $K \geq 0$ for which $\varepsilon = C(\Omega(K))$. For each $K \in \mathcal{K}(\varepsilon)$, Proposition 3.1 gives a decomposition $\Omega(K) = \bigcup_{0 < \delta \lesssim \varepsilon^{1/5}} \Omega(K)_\delta$ such that for each δ , we have $\Omega(K)_\delta \subseteq \bigcup_{\tau \in \mathcal{T}(K)_\delta} \tilde{\tau}$ for some $\mathcal{T}(K)_\delta \subseteq \mathcal{T}_{J(K), K}$ with $\#\mathcal{T}(K)_\delta \lesssim \delta^{-C_0}$.

Lemma 4.1. *For every $0 < \delta \lesssim \varepsilon^{1/5}$, we have*

$$\left\| \sum_{K \in \mathcal{K}(\varepsilon)} \mathcal{E} \chi_{\Omega(K)_\delta} \right\|_{2q}^{2q} \lesssim (\log \delta^{-1})^{2q} \sum_{K \in \mathcal{K}(\varepsilon)} \|\mathcal{E} \chi_{\Omega(K)_\delta}\|_{2q}^{2q} + \delta |\Omega|^{2q \over q'}$$

Proof of Lemma 4.1. Let A be an admissible constant to be chosen later, and divide $\mathcal{K}(\varepsilon)$ into $O(\log \delta^{-1})$ subsets \mathcal{K} such that each is $A \log \delta^{-1}$ -separated. It suffices to prove that

$$\left\| \sum_{K \in \mathcal{K}} \mathcal{E} \chi_{\Omega(K)_\delta} \right\|_{2q}^{2q} \lesssim \sum_{K \in \mathcal{K}} \|\mathcal{E} \chi_{\Omega(K)_\delta}\|_{2q}^{2q} + \delta^2 |\Omega|^{2q \over q'}$$

for each \mathcal{K} . Since $q < 2$, we have

$$\begin{aligned} \left\| \sum_{K \in \mathcal{K}} \mathcal{E} \chi_{\Omega(K)_\delta} \right\|_{2q}^{2q} &= \int \left| \sum_{\mathbf{K} \in \mathcal{K}^4} \prod_{i=1}^4 \mathcal{E} \chi_{\Omega(K_i)_\delta} \right|^{\frac{q}{2}} \\ &\lesssim \sum_{K \in \mathcal{K}} \|\mathcal{E} \chi_{\Omega(K)_\delta}\|_{2q}^{2q} + \sum_{\mathbf{K} \in \mathcal{K}^4 \setminus D(\mathcal{K}^4)} \left\| \prod_{i=1}^4 \mathcal{E} \chi_{\Omega(K_i)_\delta} \right\|_{\frac{q}{2}}^{\frac{q}{2}}, \end{aligned} \quad (4.1)$$

where $D(\mathcal{K}^4) := \{\mathbf{K} \in \mathcal{K}^4 : K_1 = \dots = K_4\}$. To control the latter sum, we have the following lemma.

Lemma 4.2. *For all $K, K' \in \mathcal{K}$, we have*

$$\|\mathcal{E} \chi_{\Omega(K)_\delta} \mathcal{E} \chi_{\Omega(K')_\delta}\|_q \lesssim 2^{-c_0|K-K'|} \max\{|\Omega(K)|, |\Omega(K')|\}^{2 \over q'} \quad (4.2)$$

for some admissible constant $c_0 > 0$.

Proof of Lemma 4.2. By the Cauchy–Schwarz inequality and Proposition 2.2

$$\|\mathcal{E} \chi_{\Omega(K)_\delta} \mathcal{E} \chi_{\Omega(K')_\delta}\|_q \lesssim |\Omega(K)|^{1 \over q'} |\Omega(K')|^{1 \over q'}.$$

For $J := J(K)$ and $J' := J(K')$, we have

$$|\Omega(K)|^{1 \over q'} |\Omega(K')|^{1 \over q'} \lesssim 2^{-\frac{|K-K'|}{q'}} \max\{|\Omega(K)|, |\Omega(K')|\}^{2 \over q'}$$

whenever either (i) $K = K'$, (ii) $J = J'$, (iii) $J < J'$ and $K < K'$, or (iv) $J > J'$ and $K > K'$; in these cases, (4.2) follows immediately.

Thus, by symmetry, it suffices to prove (4.2) for $K < K'$ and $J > J'$. By the bound $\#(\mathcal{T}(K)_\delta \times \mathcal{T}(K')_\delta) \lesssim \delta^{-2C_0}$ and the separation condition on \mathcal{K} (with A sufficiently large), it suffices to prove that

$$\|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}}\|_q \lesssim 2^{-c|K-K'|} |\Omega(K)|^{\frac{1}{q'}} |\Omega(K')|^{\frac{1}{q'}} \quad (4.3)$$

for all $\tau \in \mathcal{T}(K)_\delta$, $\kappa \in \mathcal{T}(K')_\delta$, and some admissible constant c .

Fix two such tiles τ, κ , and note that τ must be taller than κ and κ wider than τ . By translation, we may assume that the ζ_2 - and ζ_1 -axes intersect the centers of τ and κ , respectively. Define

$$\tau_k := \begin{cases} \tau \cap \{\zeta : |\zeta_2| \sim 2^{-k}\}, & k < K', \\ \tau \cap \{\zeta : |\zeta_2| \lesssim 2^{-K'}\}, & k = K' \end{cases} \quad \text{and} \quad \kappa_j := \begin{cases} \kappa \cap \{\zeta : |\zeta_1| \sim 2^{-j}\}, & j < J, \\ \kappa \cap \{\zeta : |\zeta_1| \lesssim 2^{-J}\}, & j = J \end{cases},$$

so that

$$\tau = \bigcup_{k=0}^{K'} \tau_k \quad \text{and} \quad \kappa = \bigcup_{j=0}^J \kappa_j.$$

By the two-parameter Littlewood–Paley square function estimate and fact that $q < 2$, we have

$$\begin{aligned} \|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}}\|_q^q &\lesssim \int \left(\sum_{k=0}^{K'} \sum_{j=0}^J |\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}_k} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}_j}|^2 \right)^{\frac{q}{2}} \\ &\lesssim \sum_{k=0}^{K'} \sum_{j=0}^J \|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}_k} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}_j}\|_q^q, \end{aligned} \quad (4.4)$$

where $\tilde{\tau}_k := \tau_k \times [1, 2]$ and $\tilde{\kappa}_j := \kappa_j \times [1, 2]$. We first sum the terms with $k = K'$. By the Cauchy–Schwarz inequality and Proposition 2.2, we have

$$\sum_{j=0}^J \|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}_{K'}} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}_j}\|_q^q \lesssim \sum_{j=0}^J |\tilde{\tau}_{K'}|^{\frac{q}{q'}} |\tilde{\kappa}_j|^{\frac{q}{q'}}.$$

Since κ has width $2^{-J'}$, there are at most two nonempty κ_j with $j \leq J'$. This fact and the bound

$$|\tilde{\kappa}_j| \leq \min\{2^{-(j-J')}, 1\} |\tilde{\kappa}| \quad (4.5)$$

imply that $\sum_{j=0}^J |\tilde{\kappa}_j|^{\frac{q}{q'}} \lesssim |\tilde{\kappa}|^{\frac{q}{q'}}$. Since $|\tilde{\tau}_{K'}| \lesssim 2^{-(K'-K)} |\tilde{\tau}|$, $|\tilde{\tau}| \sim |\Omega(K)|$, and $|\tilde{\kappa}| \sim |\Omega(K')|$, we altogether have

$$\sum_{j=0}^J \|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}_{K'}} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}_j}\|_q^q \lesssim 2^{-(K'-K)\frac{q}{q'}} |\Omega(K)|^{\frac{q}{q'}} |\Omega(K')|^{\frac{q}{q'}}.$$

A similar argument shows that

$$\begin{aligned} \sum_{k=0}^{K'} \|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}_k} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}_J}\|_q^q &\lesssim 2^{-(J-J')\frac{q}{q'}} |\Omega(K)|^{\frac{q}{q'}} |\Omega(K')|^{\frac{q}{q'}} \\ &\sim 2^{-(K'-K)\frac{q}{q'}} |\Omega(K)|^{\frac{2q}{q'}}. \end{aligned}$$

We now consider the terms with $k < K'$ and $j < J$. In this case, τ_k is a subset of four tiles in $\mathcal{T}_{J, \max\{K, k\}}$ and κ_j is a subset of four tiles in $\mathcal{T}_{\max\{J', j\}, K'}$.

Moreover, these tiles are separated by a distance of 2^{-k} and 2^{-j} in the vertical and horizontal directions, respectively. Thus, by Theorem 1.2 (rescaled, as in the proof of Proposition 2.2),

$$\|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}_k} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}_j}\|_q \lesssim 2^{-(j+k)(1-\frac{2}{q})} |\Omega(K) \cap \tilde{\tau}_k|^{\frac{1}{2}} |\Omega(K') \cap \tilde{\kappa}_j|^{\frac{1}{2}}.$$

Using (4.5) and the analogous bound for $|\tilde{\tau}_k|$, we now get

$$\begin{aligned} \sum_{k=0}^{K'-1} \sum_{j=0}^{J-1} \|\mathcal{E}\chi_{\Omega(K)_\delta \cap \tilde{\tau}_k} \mathcal{E}\chi_{\Omega(K')_\delta \cap \tilde{\kappa}_j}\|_q^q &\lesssim 2^{-(J'-K)(q-2)} |\tilde{\tau}|^{\frac{q}{2}} |\tilde{\kappa}|^{\frac{q}{2}} \\ &\sim 2^{(J'-J+K-K')(1-\frac{q}{2})} |\Omega(K)|^{\frac{q}{q'}} |\Omega(K')|^{\frac{q}{q'}}. \end{aligned}$$

By the relations $K < K'$, $J > J'$ and (4.4), we have now proved (4.3). \square

Returning to the proof of Lemma 4.1, we consider the second sum in (4.1). Given $\mathbf{K} \in \mathcal{K}^4 \setminus D(\mathcal{K}^4)$, let $p(\mathbf{K}) = (p_i(\mathbf{K}))_{i=1}^4$ be a permutation of \mathbf{K} such that $|\Omega(p_1(\mathbf{K}))|$ is maximal among $|\Omega(K_i)|$, $1 \leq i \leq 4$, and such that $|K_i - K_j| \leq 2|p_1(\mathbf{K}) - p_2(\mathbf{K})|$ for all $1 \leq i, j \leq 4$. Then by the Cauchy–Schwarz inequality, Lemma 4.2, the separation condition on \mathcal{K} , the fact that $q' < 2q$, and choosing A sufficiently large, we get

$$\begin{aligned} \sum_{\mathbf{K} \in \mathcal{K}^4 \setminus D(\mathcal{K}^4)} \left\| \prod_{i=1}^4 \mathcal{E}\chi_{\Omega(K_i)_\delta} \right\|_{\frac{q}{2}}^{\frac{q}{2}} &\lesssim \sum_{\substack{\mathbf{K} \in \mathcal{K}^4 \setminus D(\mathcal{K}^4) \\ \mathbf{K} = p(\mathbf{K})}} 2^{-c_0|p_1(\mathbf{K}) - p_2(\mathbf{K})|} |\Omega(p_1(\mathbf{K}))|^{\frac{2q}{q'}} \\ &\lesssim \sum_{K_1 \in \mathcal{K}} \sum_{K_2 \in \mathcal{K}} |K_1 - K_2|^2 2^{-c_0|K_1 - K_2|} |\Omega(K_1)|^{\frac{2q}{q'}} \\ &\lesssim \delta^{\frac{c_0 A}{2}} \sum_{K_1 \in \mathcal{K}} |\Omega(K_1)|^{\frac{2q}{q'}} \\ &\lesssim \delta^2 |\Omega|^{\frac{2q}{q'}}. \end{aligned}$$

\square

5. PROOF OF THEOREM 1.1

In this final section, we prove our main result. We recall our setup: For $\Omega \subseteq [-1, 1]^2 \times [1, 2]$ a measurable set, we have divided Ω into sets $\Omega(K)$ of constant fiber length 2^{-K} , partitioned the indices K into sets $\mathcal{K}(\varepsilon)$ according to the value of $\varepsilon := C(\Omega(K))$, and decomposed each $\Omega(K)$ into near unions of boxes $\Omega(K)_\delta$ for $0 < \delta \lesssim \varepsilon^{1/5}$. Thus,

$$\Omega = \bigcup_{0 < \varepsilon \lesssim 1} \bigcup_{0 < \delta \lesssim \varepsilon^{1/5}} \bigcup_{K \in \mathcal{K}(\varepsilon)} \Omega(K)_\delta.$$

(Actually, there may be K such that $C(\Omega(K)) = 0$; however, those terms contribute nothing to the left-hand side below.)

Proof of Theorem 1.1. By the triangle inequality, Lemma 4.1, Proposition 3.1, and the fact that $q' < 2q$, we have

$$\|\mathcal{E}\chi_\Omega\|_{2q} \leq \sum_{0 < \varepsilon \lesssim 1} \sum_{0 < \delta \lesssim \varepsilon^{1/5}} \left\| \sum_{K \in \mathcal{K}(\varepsilon)} \mathcal{E}\chi_{\Omega(K)_\delta} \right\|_{2q}$$

$$\begin{aligned}
&\lesssim \sum_{0 < \varepsilon \lesssim 1} \sum_{0 < \delta \lesssim \varepsilon^{1/5}} \left((\log \delta^{-1})^{2q} \sum_{K \in \mathcal{K}(\varepsilon)} \|\mathcal{E} \chi_{\Omega(K)_\delta}\|_{2q}^{2q} + \delta |\Omega|^{\frac{2q}{q'}} \right)^{\frac{1}{2q}} \\
&\lesssim \left[\sum_{0 < \varepsilon \lesssim 1} \sum_{0 < \delta \lesssim \varepsilon^{1/5}} (\log \delta^{-1}) \delta^{\frac{1}{3}} \left(\sum_{K \in \mathcal{K}(\varepsilon)} |\Omega(K)|^{\frac{2q}{q'}} \right)^{\frac{1}{2q}} \right] + |\Omega|^{\frac{1}{q'}} \\
&\lesssim \left[\sum_{0 < \varepsilon \lesssim 1} \sum_{0 < \delta \lesssim \varepsilon^{1/5}} (\log \delta^{-1}) \delta^{\frac{1}{3}} |\Omega|^{\frac{1}{q'}} \right] + |\Omega|^{\frac{1}{q'}} \\
&\lesssim |\Omega|^{\frac{1}{q'}},
\end{aligned}$$

proving (1.1). \square

REFERENCES

- [1] A. Greenleaf, *Principal curvature and harmonic analysis*, Indiana Univ. Math. J., 30 (1981), no. 4, 519–537.
- [2] S. Lee, *Bilinear restriction estimates for surfaces with curvatures of different signs*, Trans. Amer. Math. Soc., 358 (2006), no. 8, 3511–3533.
- [3] B. Stovall, *Scale-invariant Fourier restriction to a hyperbolic surface*, Anal. PDE, 12 (2019), no. 5, 1215–1224.
- [4] A. Vargas, *Restriction theorems for a surface with negative curvature*, Math. Z., 249 (2005), no. 1, 97–111.
- [5] T. Tao, A. Vargas, L. Vega, *A bilinear approach to the restriction and Kakeya conjectures*, J. Amer. Math. Soc., 11 (1998), no. 4, 967–1000.
- [6] T. Wolff, *A sharp bilinear cone restriction estimate*, Ann. of Math. (2), 153 (2001), no. 3, 661–698.