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2 DECOUPLING IN R? FOR CURVES WITH VANISHING
CURVATURE

CHANDAN BISWAS, MAXIM GILULA, LINHAN LI, JEREMY SCHWEND, AND YAKUN XI

ABSTRACT. We expand the class of curves (¢1(t), p2(t)), t € [0, 1] for which
the £2 decoupling conjecture holds for 2 < p < 6. Our class of curves includes
all real-analytic regular curves with isolated points of vanishing curvature and
all curves of the form (¢, 1) for v € (0, c0).

1. INTRODUCTION

Let g be a locally integrable function defined on a measurable set ) in R, and
define the (o1, p2) extension operator by

B gana) = [ el (o 0) eaa(oy
where e(z) = e?™#. We will just write Egg(x1,22) from now on because o1 and @2
will be clear from the context.

This extension operator with @ = [0, 1] and the curve (¢1, p2) with vanishing or
infinite curvature is the main object of study in this paper. In particular, we prove
an ¢2 decoupling inequality of the form

1/2

(L.1) 1 Ejo,119/lLr(r2y < Ced™° Z HEAQH%P(R?)
AGPart61/2 ([0,1])

for curves with curvature that vanishes, or goes to infinity at finite order. Above,
Partsi/2([0, 1]) denotes a partition of the unit interval into subintervals of size §'/2,
and 2 < p <6.

The notorious difficulty of this problem for various extension operators has led
to few developments in the 2000’s since Wolff [6], but just a few years ago in the
revolutionary paper [I], Bourgain-Demeter proved inequality () for the curve
(t,t?) in R?, as well as generalizations to all curves and hypersurfaces with non-
vanishing curvature. This ¢2 decoupling inequality of Bourgain-Demeter had many
powerful applications; for example, the proof of the main conjecture in Vinogradov’s
Mean Value Theorem [2], an 80 year old problem in number theory counting integer
solutions to a system of equations of the form z¥ + .-+ 2% = ¥ + ... + ¢¥ used
¢? decoupling as a key tool. One should consult Pierce’s exposition [4] on the
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Vinogradov Mean Value Theorem for an almost complete list of recent advances
and references regarding Bourgain-Demeter’s result.

The ¢? decoupling theory of Bourgain-Demeter helped make significant progress
on, and even close, multiple long standing open problems in harmonic analysis and
number theory, and has the potential of even further significant applications. This
prompts one to extend the decoupling inequalities to include a bigger class of curves
such as those with vanishing curvature, which we study in this paper. A model case
to keep in mind is the curve (p1(t), p2(t)) = (t,t'7), v > 0, where the curvature
is 0 or oo at the origin. Our result for this model case is the following.

Theorem 1.1. Given the curve (t,t**") for fivred v > 0, for all 2 < p < 6, all
€>0, and all g : [0,1] — C there is a constant Ce such that

1/2

(1.2) 1 Ejo, 119l rr2y < Ced™° Z HEAQH%P(RQ)
A€Part /2 ([0,1])

Next, for the more general version with curve (¢, o(t)):

First, if ¢” is in C%%([0,1]), some a > 0, and bounded away from 0 and oo,
the decoupling result automatically follows from the work of section 7 of Bourgain-
Demeter [I]. To make this result more general, at points where one of these is not
satisfied we will need two things, as mirrored in the assumptions of Theorem
and Proposition

(1) Control on the rate of vanishing (or blowup) of ¢”.
(2) Control on the nearby C%® norm, for use in bounding error with Taylor’s
theorem.

Definition 1.2. Let ¢ be defined near z € R. Then rzs(z), the supremal right
order of vanishinﬂ of ¢ at z, and rj ;(2), the infimal right order of vanishing of
¢ at z, will be defined as

//t
ryg(z) = sup{s : lim sup 7 (1) = 0},

t—zt t*

11 t
TZI(Z) = sup {S : lirgirlf (pt—i) = 0} )

and similarly for the left order of vanishings. Furthermore, define r3 g similarly for
" If ¢ is in Holder space C%%(), 0 < a < 1, then define

S0// ) — S0// y
|@//|Coya(g) = sup M
aAYEQ |z — y]

Finally, the supremal right C%®-order of vanishing of ©" at z will be defined as

1
i s(@) = sup { s imsup (120 ol

t—0t t®

and likewise for the left order of vanishing.

WWe are abusing the word “vanishing”a bit here since we also include the oo case, for which
the “vanishing”order is negative.
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In Proposition B.:2] we will reduce Theorem to the case where z = 0, and
¢ is defined on an interval (0,c] for some ¢ > 0. As such we define the orders of
vanishing at 0 as:

To.g = T‘;S(O), To = TZI(O), Tota,8 i= F;r+a75(0).
As a remark, if we extend the definition of Toy, g to all a € [0, 1], then
Tota,s +«
is nonincreasing in «, and

T241,5 = 13,5,

when defined, by definition of [¢"|¢o.a () and the mean value theorem, respectively.
Hence, for the purpose of assumption (2) in Theorem [[33] and Prop B2} the follow-
ing statements are ordered from strongest to weakest (with assumption (2) using

(iii)):
i) r3,s = 72,58 — 1

(
(ii) To48,5 = 12,5 — 8 for some § € (0,1)
(iii) Tot 5,5 > ra.s — B+ o(fB), for f > 0 small.

Given the unit ball B = B(0,1) in R?, denote by wp : R? — R the weight function

ws(@) = (14 )

For each rectangle R in R? with sides parallel to the coordinate axes, let wr be the
adaptation of wg to R. To be more precise, if R is the rectangle centered at xy of
size a x b with its sides parallel to the coordinate axes, we define

wr(x) = wp(Tr(x — xp)),
where Tg is the linear transformation that maps (a,0) to (1,0) and (0,b) to (0, 1).

Theorem 1.3. Let Z be a finite subset of [0,1]. Let ¢” be never zero and locally
Hilder continuous in [0,1]\ Z with exponent o > 0. Furthermore, assume that for
each z € Z, ¢ satisfies the following conditions:

(1) T;:S(Z) = T;'J(z) € (—1,00) and Tis(z) = T2_,I(Z) € (—1,00)
(2) F;L_i_ﬂ)s(z) > TIS(Z) — B+ o(B), and likewise for r—, with B € (0, a].
Then, defining the maximal order of vanishing r as
7= maéc{rg's +2,r5 ¢+ 2,2},
z€ ’ ’
we have, for all 2 < p <6, all e > 0, and all g € L*([0,1]),

1/2

1Bonglison,) SCo™ | 30 1Eaglir, )
AEPart51/2 ([0,1])

where Rs, is a rectangle with sides parallel to the coordinate axes of size §~1 x 6T/2,
and

Eag(xy,29) := /Ag(t)e(txl + o(t)x2)dt.

A simple corollary is the following:



4 CHANDAN BISWAS, MAXIM GILULA, LINHAN LI, JEREMY SCHWEND, AND YAKUN XI

Corollary 1.4. If ¢ is analytic on [0, 1] with curvature not identically zero, then
for all 2 < p <6 we have

1/2

IBlonglrwn,) SCO™ (30 1Baglisn, )
AGPart51/2 ([0,1])

for all g € L'([0,1]), where Ry, is a rectangle with sides parallel to the coordinate
azes of size 6~ x 6~ /2, with r — 2 being the mazimum order of vanishing of ¢
over the whole curve, and

Eag(xy,29) := /Ag(t)e(txl + @(t)x2)dt.

Our results naturally extend to curves in general forms. Let S be a regular
curve in R? parametrized by {(¢1(t), p2(t));0 <t < 1} where ¢;’s are C° smooth
functions. We assume that the Wronskian of (¢, ¢4) only vanishes at finitely many
points, and to finite order. We define, for any subinterval A of [0,1] and for any
function g € L'([0,1]),

ESg(a1,22) = /A g(t)e(101(t) + 202 (£))dt.

Corollary 1.5. Let S be a regular curve as described above. For each € > 0,0 <
0 <1 the following holds:

1/2

||E[%71]g||Lp(wBM) <Co ¢ Z HEXQH%P(WB&T) )
AEPartsl/g([O,l])

where Bs, is a ball of radius 5’”2, and where r — 2 s the maximum order of

vanishing of the Wronskian of (o}, ¢h).

Our paper is organized as follows. In section 2 we present a proof for the model
case. In section 3, we prove our main theorem, Theorem [[.3], and its corollary.

Acknowledgment. This problem was suggested to the authors as part of the
Mathematics Research Community program in June of 2018. The authors would
like to thank Prof. Philip T. Gressman, Prof. Larry Guth, and Prof. Lillian B.
Pierce for organizing the MRC program, suggesting this problem and their constant
support. The authors also want to thank Prof. Shaoming Guo, Prof. Yumeng Ou
and Prof. Po Lam Yung for many helpful conversations during the program.

Notation.

<¢: For nonnegative numbers A, B, A <. B means that A < C.B for some
constant C, which depends on e.

Kpm(5): We shall use K2?7(5) to denote the decoupling constant at scale d
associated to the standard parabola (,t?), t € [0, 1] for exponent p.

Rectangles: For a rectangle of side lengths A and B, it will be understood that
the associated sides are parallel to the first and second coordinate axes, respectively.

2. PROOF FOR THE MODEL CASE (¢,t'7),v >0

Fix an v € (0,00) and consider the compact curve {y(t) = (¢,t'7) C R?,t €
[0,1]}. We have the following result which is stronger than Theorem [Tt
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Proposition 2.1. For any g € L*(]0,1]),
1/2

e 2
O 1Bl ) S 6 S B,
AGPartél/g ([0,1])

holds for 2 < p < 6, where Rs, is a rectangle of side lengths 6! and 6772 with
r =max{1+v,2}.

Proof. Given 0 < € < 1. Decompose the unit interval into

K
0,1 = [0751/2—6} U U {21@—151/2—6721951/2—5} '

k=1
Note that we can afford logarithmic losses in § and the number of k’s is O(log(§ 1)),
so it suffices to show that for any §l/2—c < g < 1/2,

1/2
e 2
22 1Bu2utlisen, ) S0 > 1Bl
A€Part 12 ([a,2a])
We claim that for any a € [67/27¢,1/2], we have the following inequality:
1/2

(2_3) ||E[a,2a]g||LP(wRa%5) Se o Z ||EA9||LP(wRW,y5) s
A€Party /2 ([a,2a])

where R, , s is a rectangle of size 5 1 xal=vs 1,
Once we prove [23), 22) follows by Minkowski’s inequality and the fact that
a < 1. Given [a,2a], let tg € [a,2a]. The Taylor expansion
1
A (to+ ALY = aH(t})+u+(1+y)t5m+#t;§—l(At)2)+a1*'/tg—20((m)3)

shows that if At < §1/277, where 0 = &, then on the interval [to, to + At], the curve
Ya(t) := (t,a'=¢1 ") is within § from the parabola

1
(2.4) (t, AT (1 D)+ %tg—lﬁ)) .
In fact, since a > 6'/27¢, the error |a!~"t§~*(At)?| ~ |a~(At)*| < §. Define

Eang(er,z2) = / g(b)eltns +a ="t )dt,

A
then
Eng(z1,22) = Ea 5, 9(z1,0" ' 32),
and thus
1-v
(2.5) ||EA9HLP(RG’V,5) =ar HEA,vag”Lp(Qé)a

where Qs is a cube of side length 6~'. So to prove the claim, it suffices to show
1/2

—€ 2
(26) 1B a9l i, Se 0 > 1 9L ()
AEPart51/2 ([a,2a])
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This is equivalent to showing the smallest constant K,(J) that makes the following
inequality hold satisfies K (8) Se 0~

1/2
(27) 1 iy < pr)( > ||fe||ip<w%>> 7

0€Ps

where supp f is contained in N5(7a), the 6 neighborhood of the curve {v,(t),a <
t < 2a}, and Pj is a finitely overlapping cover of .45 with curved regions 6 of the
form

0= {(t,n+a """ it € Iy, In| <263,

where I runs over all intervals with length §'/2 and center belongs to 6'/2ZN[a, 2a).
Note that by Minkowski, (2.7)) implies estimates with the same constant over any
spatial cubes with side length larger than 6!, and thus we shall always use the
weight associated to the largest spatial cube throughout our iteration.

We apply the iteration argument sketched in [I], [3] and [5]. Namely, we have

1/2

1 litwa,y < Ko@) [ 3 1120

TEPs1_ o

And the decoupling inequality for the parabola (Z4]) implies that
1/2

el oo, S EEG) [ D0 Wfolinn, |
0ecPs,0CT

where K7" is the standard (t, t?) paraboloid decoupling constant with
KPP (6) Se 6™ .
We iterate to get
K,(8) < ORI K, (5070,
where k should be chosen so that 6(=)" ~ a2 < 1/4. From this it follows that
Kp,(9) < Ccd7¢, with the constant uniform in a. A more detailed treatment of this
iteration process will be given in the next section. O
3. PROOF OF THEOREM

The work of Bourgain-Demeter implies the following:

Lemma 3.1. Let ¢ € C*%[0,1] satisfy ¢"" > 0. Then we have, for all 2 < p < 6,
1/2

||E[071]9||Lp(wcg5) Sed™ " Z ||EA9||%p(wQ5)
AGPart61/2 ([o,1])

for all g € L*([0,1]), where Qs is a cube of side length §~1.
To prove Theorem [[3] it will suffice to prove the following proposition.
First, recall the simplified definitions:

sa”(t)‘ _ 00}7

//t
To 5 = sup{s : lim ?"(t) = O}, ro1 = inf{s : lim n

t—o0t+ 8 t—0+
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2,0
and, defining p?*(t) := | |co.e(it,20)s  T24a,s = sup{s : lim; o+ £ ts(t) =0}.

Proposition 3.2. Let ¢" be positive and locally a-Holder continuous in (0,¢], for
some «, ¢ > 0. Also, let the orders of vanishing of ©" satisfy
(1) rog =121 =172 € (—1,00)
(2) F2+515 Z T2 — ﬂ + O(ﬂ)a fOT ﬂ S (0,0é].
Then we have, for all 2 < p < 6 and with r := max{ry + 2,2},
1/2

HE(O,c]g”LT’(wR(;’,_) SE )¢ Z HEAgH%P(wR(;,T)
AEPart51/2((Ovc])

or all integrable g : (0,¢c] — C, where Rs, is a rectangle of side lengths 5~1 and
[ g g : (0, ) : g g

072, and c is chosen sufficiently small, independent of §, €, or «.

Proof. Decompose interval (0, ¢] into:
K
0, = (0,51/275] U U [21@7151/27572%1/275 _
k=1

We automatically get the desired decoupling on the (0,52 ¢ interval. Since we can
afford log losses in § and the number of ks is O(log(d71)), it suffices to show that
for any 6%/27¢ < a < ¢,

1/2

(31 Bzagliron, ) S5 > 1B,
A€Part /2 ([a,2a])
Define
ol = min{p" (t) : t € [a,2a]}.
By hypothesis (1), there exists some constant D, > 0 such that
(3.2) ol > D7 ta" b > D7E
for 627 ¢ < a<e¢ c sufficiently small. Defining Rs,» as a rectangle with side

lengths 6% and 6~ *(¢!)~1, we claim that
1/2

(3.3) [ Ela,2a191 Lo (wr

e 2
Y
AgParty /2 ([a,2a])

By Minkowski and (32)), (33) will imply ) if ¢ is chosen sufficiently small (where,
due to our use of weighted norms and the definition of wg, the extra D, can be
absorbed into the implicit <. constant).

5,00

Let to € [a,2a], and define the curve v,(t) = (t 2“"(’5)). Similarly, define the

Tl
paraboloid
2¢(to) | 2¢'(to) ¢"(to)
(3.4) Paty(t) = (t, o7 + o (t —to) + o7 (t—1t0)*).
Then, for 0 < At < tq,
ch’B(to) Taip,s— 55

Na(to + A) = paty(to + AL)| S (At < ¢t (A0

B

1"
QT2+ 5=

a
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< Cﬁa—(ﬂ-‘r%) (At)2+,3

by Taylor’s Theorem, hypothesis on 72, and hypothesis on 72 3 s for a proper choice
of 5(€). Namely, since Toy 3.5 > 12— B+0(5) by assumption (2), there exists a choice
of B(e) that vanishes at 0 sufficiently quickly such that Fatrg.9 > 79 — S(€) — %(76)
Letting Atymaz = sup{s : |(Ya — Pa,,)(to + At)] < d for all 0 < At < s} and

recalling that @ > 6'/2¢, then either At,,q, > a or, for some constant ¢, > 0,

IS - T I S 1_e8
(3.5) Atbmaz > COZBa 2F6 > ¢ 03B I8 248 > ¢ .02 14
Therefore, on [to, min{2a, to + 055%*%}], (t, Pa,to(t)) € Ns(7a)-
Defining
Banug(oriaz) = [ gteltar + 250a)at
A “
then
Eng(w1,%2) = Eay,9(21, Ga2),

and thus

1/p
1Estlinion, > = (2) " 1Esnulionyy

where Qs is a cube of side length 6—'. Thus to prove the claim, it suffices to show
1/2

. 2
1 Bfazata 9oy Se 6 S 1Eandlie,
Ag€Partg; /2 ([a,2a])

This is equivalent to showing the smallest constant K,(d) that makes the following
inequality holds satisfies K,(8) <. 6~ (noting that K, (0) is tied to 6'/2 partitions)

1/2
||f||LP(wQ6) = Kp(a) (Z ||f9||ip(wQ5)> ’

6€ Ps

where suppfis contained in A5(v,), the § neighborhood of the curve {v,(t),a <
t < 2a}, and P;s is a finitely overlapping cover of .45 with curved regions 6 of the
form

0 = {(t;n+a(t) : t € Iy, [n] <26},
where Iy runs over all intervals with length 6'/2 and center belongs to 6'/2ZN[a, 2a.

We apply the iteration argument sketched in [I], [3] and [5] Namely, we have
1/2
e 2
i,y < Ko@) [ 5 12
TEP51,€3/2

And due to (B0, we can use the decoupling inequality for the parabola p, ¢, in

B) to obtain

1/2

1l oo, S EEG) [ D0 Wfolinn, |
0ecPs,0CT
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where K7" is the standard (t, t?) paraboloid decoupling constant with
KP(0) < Cy6™7

for all ¢ > 0. Note that p,¢, has constant curvature % 2 1, and due to

rescaling and an application of Minkowski, K7 still bounds the decoupling for
Pa,t,- More specifically, normalizing the curvature of p, ¢ will expand the spatial
rectangles while leaving K, unchanged. Finally, an application of Minkowski implies
that decoupling constants K, over larger spatial rectangles are bounded by the
decoupling constants over smaller rectangles.

Using €23/4 in place of o, this implies that
Kp(5) < 06%)/457525/4[(1)(63517#‘3/2) < CZI052,8/457625/41(1)(51765/2)-
For the second inequality, we used the fact that K,(0?03) < oy 'K,(c3). Denote

Ce=c'Copps. Using 1+ (1= L)+ ..+ (1—9F 1 = Z(1 - (1 - D)), we
iterate to get

K,(0) < 65575(1*(1*%)%[(17(5(17%)3

k
€

eB

< Tl 1K, (509",

where k should be chosen so that 61— %) ~ 2. Replacing a? with e~!, we get

loglog(6—1/2)

~ —log(1-¢€B/2)’
S0 _
T < (log(s~V/2)) w775 < €67/
for any choice of (¢). From this it follows that K, (4) < C.d~¢, with the constant
uniform in a. (Note that K,(e™!) ~ 1.) O

Now we finish the paper with a simple proof of Corollary[[.Zand a corresponding
discretized version. The latter might be useful for future applications which gives
bounds similar to those of Wooley [7].

Proof of Corollary LA The Wronskian of (¢}, ¢4) is:
© 90/2} 1o 1o
det = — .
Lo/l/ A P1¥P2 — P2¥1

Given tg, since S is a regular curve, we may assume ¢} (t) # 0 near t;. Using a
partition of unity, it suffices to consider a piece of the curve containing t; where
¥} (t) # 0. When we do the change of variable s = ¢1(¢), then the curve becomes

(5, 02(01(5)) = (5,9(5)),
where t = ¢ *(s), and
_ () _ oa(er'(s)
PLt) et (5))
with a non-zero denominator by our assumption. Then the second derivative equals

W' (s)

[Ph ()] AL IO

W(s) = 1P = varn](t) _ [eaes = hel(pr ' (s) _ Wronskian at ¢
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which satisfies the requirement of Theorem [[.3], with the order of vanishing of the
curvature equaling the order of vanishing of the Wronskian, if the Wronskian only

vanishes of finite order at a finite number of points.
O

Corollary [[H gives the following discretized version.

Theorem 3.3. ] "T_l <tpn < for each 1 < n < N is a collection of points in
[0,1], then for each R > N7, (p1,¢2) as in Corollary L3, we have

6 1/6 N 1/2

N

1

ﬁ/ > ane(@101(tn) + 2202(tn))| wa, (@)dordry | Se N an
n=1

n=1
Here Br denotes a ball of radius R.

Proof. The proof is along the same line of proof of Theorem 4.1 in [2]. For com-
pleteness we give the details of the proof. Let {By+} be a collection of finitely
overlapping balls covering Bg. We apply Corollary to each By~ and use the
fact that

Z’LUBNT < O’LUBR

to get

1/2

1 E0,190 L6 (wp ) Se N > ”EAQH%WMBR)
AgPart ;1 ([0,1])

For 7 > 0 let g, (t) = % 25:1 AnX[t,—7.t,+7) () and apply the above inequality and
then let 7 to 0. This completes the proof. 1
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