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ℓ2 DECOUPLING IN R2 FOR CURVES WITH VANISHING

CURVATURE

CHANDAN BISWAS, MAXIM GILULA, LINHAN LI, JEREMY SCHWEND, AND YAKUN XI

Abstract. We expand the class of curves (ϕ1(t), ϕ2(t)), t ∈ [0, 1] for which
the ℓ2 decoupling conjecture holds for 2 ≤ p ≤ 6. Our class of curves includes

all real-analytic regular curves with isolated points of vanishing curvature and
all curves of the form (t, t1+ν) for ν ∈ (0,∞).

1. Introduction

Let g be a locally integrable function defined on a measurable set Q in R, and
define the (ϕ1, ϕ2) extension operator by

Eϕ1,ϕ2

Q g(x1, x2) =

ˆ

Q

e((x1, x2) · (ϕ1(t), ϕ2(t))g(t)dt,

where e(z) = e2πiz . We will just write EQg(x1, x2) from now on because ϕ1 and ϕ2

will be clear from the context.
This extension operator with Q = [0, 1] and the curve (ϕ1, ϕ2) with vanishing or

infinite curvature is the main object of study in this paper. In particular, we prove
an ℓ2 decoupling inequality of the form

(1.1) ‖E[0,1]g‖Lp(R2) ≤ Cǫδ
−ǫ


 ∑

∆∈Part
δ1/2

([0,1])

‖E∆g‖
2
Lp(R2)




1/2

for curves with curvature that vanishes, or goes to infinity at finite order. Above,
Partδ1/2([0, 1]) denotes a partition of the unit interval into subintervals of size δ1/2,
and 2 ≤ p ≤ 6.

The notorious difficulty of this problem for various extension operators has led
to few developments in the 2000’s since Wolff [6], but just a few years ago in the
revolutionary paper [1], Bourgain-Demeter proved inequality (1.1) for the curve
(t, t2) in R2, as well as generalizations to all curves and hypersurfaces with non-
vanishing curvature. This ℓ2 decoupling inequality of Bourgain-Demeter had many
powerful applications; for example, the proof of the main conjecture in Vinogradov’s
Mean Value Theorem [2], an 80 year old problem in number theory counting integer
solutions to a system of equations of the form xk1 + · · ·+ xks = yk1 + · · ·+ yks , used
ℓ2 decoupling as a key tool. One should consult Pierce’s exposition [4] on the

This material is based upon work supported by the National Science Foundation under Grant
No. 1641020. We would also like to thank the AMS and everyone who helped make possible the
Oscillatory Integrals Mathematics Research Community held in June of 2018. Schwend was also
supported by NSF DMS-1653264 and DMS-1147523.

1

http://arxiv.org/abs/1812.04760v2


2 CHANDAN BISWAS, MAXIM GILULA, LINHAN LI, JEREMY SCHWEND, AND YAKUN XI

Vinogradov Mean Value Theorem for an almost complete list of recent advances
and references regarding Bourgain-Demeter’s result.

The ℓ2 decoupling theory of Bourgain-Demeter helped make significant progress
on, and even close, multiple long standing open problems in harmonic analysis and
number theory, and has the potential of even further significant applications. This
prompts one to extend the decoupling inequalities to include a bigger class of curves
such as those with vanishing curvature, which we study in this paper. A model case
to keep in mind is the curve (ϕ1(t), ϕ2(t)) = (t, t1+ν), ν > 0, where the curvature
is 0 or ∞ at the origin. Our result for this model case is the following.

Theorem 1.1. Given the curve (t, t1+ν) for fixed ν > 0, for all 2 ≤ p ≤ 6, all

ǫ > 0, and all g : [0, 1] → C there is a constant Cǫ such that

(1.2) ‖E[0,1]g‖Lp(R2) ≤ Cǫδ
−ǫ


 ∑

∆∈Part
δ1/2

([0,1])

‖E∆g‖
2
Lp(R2)




1/2

.

Next, for the more general version with curve (t, ϕ(t)):

First, if ϕ′′ is in C0,α([0, 1]), some α > 0, and bounded away from 0 and ∞,
the decoupling result automatically follows from the work of section 7 of Bourgain-
Demeter [1]. To make this result more general, at points where one of these is not
satisfied we will need two things, as mirrored in the assumptions of Theorem 1.3
and Proposition 3.2:

(1) Control on the rate of vanishing (or blowup) of ϕ′′.
(2) Control on the nearby C0,α norm, for use in bounding error with Taylor’s
theorem.

Definition 1.2. Let ϕ′′ be defined near z ∈ R. Then r+2,S(z), the supremal right

order of vanishing1 of ϕ′′ at z, and r+2,I(z), the infimal right order of vanishing of

ϕ′′ at z, will be defined as

r+2,S(z) := sup

{
s : lim sup

t→z+

ϕ′′(t)

ts
= 0

}
,

r+2,I(z) := sup

{
s : lim inf

t→z+

ϕ′′(t)

ts
= 0

}
,

and similarly for the left order of vanishings. Furthermore, define r3,S similarly for
ϕ′′′. If ϕ′′ is in Hölder space C0,α(Ω), 0 < α < 1, then define

|ϕ′′|C0,α(Ω) := sup
x 6=y∈Ω

|ϕ′′(x) − ϕ′′(y)|

|x− y|α
.

Finally, the supremal right C0,α-order of vanishing of ϕ′′ at z will be defined as

r+2+α,S(z) := sup

{
s : lim sup

t→0+

|ϕ′′|C0,α({z}+[t,2t])

ts
= 0

}
,

and likewise for the left order of vanishing.

1We are abusing the word “vanishing”a bit here since we also include the ∞ case, for which
the “vanishing”order is negative.
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In Proposition 3.2, we will reduce Theorem 1.3 to the case where z = 0, and
ϕ is defined on an interval (0, c] for some c > 0. As such we define the orders of
vanishing at 0 as:

r2,S := r+2,S(0), r2,I := r+2,I(0), r2+α,S := r+2+α,S(0).

As a remark, if we extend the definition of r2+α,S to all α ∈ [0, 1], then

r2+α,S + α

is nonincreasing in α, and

r2+1,S ≥ r3,S ,

when defined, by definition of |ϕ′′|C0,α(Ω) and the mean value theorem, respectively.
Hence, for the purpose of assumption (2) in Theorem 1.3 and Prop 3.2, the follow-
ing statements are ordered from strongest to weakest (with assumption (2) using
(iii)):
(i) r3,S = r2,S − 1
(ii) r2+β,S = r2,S − β for some β ∈ (0, 1)
(iii) r2+β,S ≥ r2,S − β + o(β), for β > 0 small.

Given the unit ball B = B(0, 1) in R2, denote by ωB : R2 → R the weight function

ωB(x) =
(
1 + ‖x‖

)−200

.

For each rectangle R in R2 with sides parallel to the coordinate axes, let ωR be the
adaptation of ωB to R. To be more precise, if R is the rectangle centered at x0 of
size a× b with its sides parallel to the coordinate axes, we define

ωR(x) = ωB(TR(x− x0)),

where TR is the linear transformation that maps (a, 0) to (1, 0) and (0, b) to (0, 1).

Theorem 1.3. Let Z be a finite subset of [0, 1]. Let ϕ′′ be never zero and locally

Hölder continuous in [0, 1] \ Z with exponent α > 0. Furthermore, assume that for

each z ∈ Z, ϕ satisfies the following conditions:

(1) r+2,S(z) = r+2,I(z) ∈ (−1,∞) and r−2,S(z) = r−2,I(z) ∈ (−1,∞)

(2) r+2+β,S(z) ≥ r+2,S(z)− β + o(β), and likewise for r−, with β ∈ (0, α].

Then, defining the maximal order of vanishing r as

r := max
z∈Z

{r+2,S + 2, r−2,S + 2, 2},

we have, for all 2 ≤ p ≤ 6, all ǫ > 0, and all g ∈ L1([0, 1]),

‖E[0,1]g‖Lp(ωRδ,r
) ≤ Cǫδ

−ǫ


 ∑

∆∈Part
δ1/2

([0,1])

‖E∆g‖
2
Lp(ωRδ,r

)




1/2

where Rδ,r is a rectangle with sides parallel to the coordinate axes of size δ−1×δ−r/2,

and

E∆g(x1, x2) :=

ˆ

∆

g(t)e(tx1 + ϕ(t)x2)dt.

A simple corollary is the following:
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Corollary 1.4. If ϕ is analytic on [0, 1] with curvature not identically zero, then

for all 2 ≤ p ≤ 6 we have

‖E[0,1]g‖Lp(ωRδ,r
) ≤ Cǫδ

−ǫ


 ∑

∆∈Part
δ1/2

([0,1])

‖E∆g‖
2
Lp(ωRδ,r

)




1/2

for all g ∈ L1([0, 1]), where Rδ,r is a rectangle with sides parallel to the coordinate

axes of size δ−1 × δ−r/2, with r − 2 being the maximum order of vanishing of ϕ′′

over the whole curve, and

E∆g(x1, x2) :=

ˆ

∆

g(t)e(tx1 + ϕ(t)x2)dt.

Our results naturally extend to curves in general forms. Let S be a regular
curve in R2 parametrized by {(ϕ1(t), ϕ2(t)); 0 ≤ t ≤ 1} where ϕi’s are C

∞ smooth
functions. We assume that the Wronskian of (ϕ′

1, ϕ
′
2) only vanishes at finitely many

points, and to finite order. We define, for any subinterval ∆ of [0, 1] and for any
function g ∈ L1([0, 1]),

ES
∆g(x1, x2) =

ˆ

∆

g(t)e(x1ϕ1(t) + x2ϕ2(t))dt.

Corollary 1.5. Let S be a regular curve as described above. For each ǫ > 0, 0 <
δ ≤ 1 the following holds:

‖ES
[0,1]g‖Lp(ωBδ,r

) ≤ Cǫδ
−ǫ




∑

∆∈Part
δ1/2

([0,1])

‖ES
∆g‖

2
Lp(ωBδ,r

)




1/2

,

where Bδ,r is a ball of radius δ−r/2, and where r − 2 is the maximum order of

vanishing of the Wronskian of (ϕ′
1, ϕ

′
2).

Our paper is organized as follows. In section 2 we present a proof for the model
case. In section 3, we prove our main theorem, Theorem 1.3, and its corollary.

Acknowledgment. This problem was suggested to the authors as part of the
Mathematics Research Community program in June of 2018. The authors would
like to thank Prof. Philip T. Gressman, Prof. Larry Guth, and Prof. Lillian B.
Pierce for organizing the MRC program, suggesting this problem and their constant
support. The authors also want to thank Prof. Shaoming Guo, Prof. Yumeng Ou
and Prof. Po Lam Yung for many helpful conversations during the program.

Notation.

.ǫ: For nonnegative numbers A,B, A .ǫ B means that A ≤ CǫB for some
constant Cǫ which depends on ǫ.
Kpar

p (δ): We shall use Kpar
p (δ) to denote the decoupling constant at scale δ

associated to the standard parabola (t, t2), t ∈ [0, 1] for exponent p.
Rectangles: For a rectangle of side lengths A and B, it will be understood that

the associated sides are parallel to the first and second coordinate axes, respectively.

2. Proof for the model case (t, t1+ν), ν > 0

Fix an ν ∈ (0,∞) and consider the compact curve {γ(t) = (t, t1+ν) ⊂ R2, t ∈
[0, 1]}. We have the following result which is stronger than Theorem 1.1:
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Proposition 2.1. For any g ∈ L1([0, 1]),

(2.1) ‖E[0,1]g‖Lp(ωRδ,r
) .ǫ δ

−ǫ




∑

∆∈Part
δ1/2

([0,1])

‖E∆g‖
2
Lp(ωRδ,r

)




1/2

holds for 2 ≤ p ≤ 6, where Rδ,r is a rectangle of side lengths δ−1 and δ−r/2, with

r = max{1 + ν, 2}.

Proof. Given 0 < ǫ≪ 1. Decompose the unit interval into

[0, 1] =
[
0, δ1/2−ǫ

]
∪

K⋃

k=1

[
2k−1δ1/2−ǫ, 2kδ1/2−ǫ

]
.

Note that we can afford logarithmic losses in δ and the number of k’s is O(log(δ−1)),
so it suffices to show that for any δ1/2−ǫ ≤ a ≤ 1/2,

(2.2) ‖E[a,2a]g‖Lp(ωRδ,r
) .ǫ δ

−ǫ


 ∑

∆∈Part
δ1/2

([a,2a])

‖E∆g‖
2
Lp(ωRδ,r

)




1/2

.

We claim that for any a ∈ [δ1/2−ǫ, 1/2], we have the following inequality:

(2.3) ‖E[a,2a]g‖Lp(ωRa,ν,δ
) .ǫ δ

−ǫ


 ∑

∆∈Part
δ1/2

([a,2a])

‖E∆g‖
2
Lp(ωRa,ν,δ

)




1/2

,

where Ra,ν,δ is a rectangle of size δ−1 × a1−νδ−1.
Once we prove (2.3), (2.2) follows by Minkowski’s inequality and the fact that

a ≤ 1. Given [a, 2a], let t0 ∈ [a, 2a]. The Taylor expansion

a1−ν(t0+∆t)1+ν = a1−ν(t1+ν
0 +(1+ν)tν0∆t+

(1 + ν)ν

2
tν−1
0 (∆t)2)+a1−νtν−2

0 O((∆t)3)

shows that if ∆t ≤ δ1/2−σ, where σ = ǫ
3 , then on the interval [t0, t0+∆t], the curve

γa(t) := (t, a1−νt1+ν) is within δ from the parabola

(2.4)

(
t, a1−ν(t1+ν

0 + (1 + ν)tν0t+
(1 + ν)ν

2
tν−1
0 t2)

)
.

In fact, since a ≥ δ1/2−ǫ, the error
∣∣a1−νtν−2

0 (∆t)3
∣∣ ∼

∣∣a−1(∆t)3
∣∣ ≤ δ. Define

E∆,γag(x1, x2) =

ˆ

∆

g(t)e(tx1 + a1−νt1+νx2)dt,

then

E∆g(x1, x2) = E∆,γag(x1, a
ν−1x2),

and thus

(2.5) ‖E∆g‖Lp(Ra,ν,δ)
= a

1−ν
p ‖E∆,γag‖Lp(Qδ)

,

where Qδ is a cube of side length δ−1. So to prove the claim, it suffices to show

(2.6) ‖E[a,2a],γa
g‖Lp(ωQδ

) .ǫ δ
−ǫ


 ∑

∆∈Part
δ1/2

([a,2a])

‖E∆,γag‖
2
Lp(ωQδ

)




1/2

.
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This is equivalent to showing the smallest constant Kp(δ) that makes the following
inequality hold satisfies Kp(δ) .ǫ δ

−ǫ:

(2.7) ‖f‖Lp(ωQδ
) ≤ Kp(δ)

(
∑

θ∈Pδ

‖fθ‖
2
Lp(ωQδ

)

)1/2

,

where supp f̂ is contained in Nδ(γa), the δ neighborhood of the curve {γa(t), a ≤
t ≤ 2a}, and Pδ is a finitely overlapping cover of Nδ with curved regions θ of the
form

θ = {(t, η + a1−νt1+ν) : t ∈ Iθ, |η| ≤ 2δ},

where Iθ runs over all intervals with length δ1/2 and center belongs to δ1/2Z∩[a, 2a].
Note that by Minkowski, (2.7) implies estimates with the same constant over any
spatial cubes with side length larger than δ−1, and thus we shall always use the
weight associated to the largest spatial cube throughout our iteration.

We apply the iteration argument sketched in [1], [3] and [5]. Namely, we have

‖f‖Lp(ωQδ
) ≤ Kp(δ

1−σ)


 ∑

τ∈Pδ1−σ

‖fτ‖
2
Lp(ωQδ

)




1/2

.

And the decoupling inequality for the parabola (2.4) implies that

‖fτ‖Lp(ωQδ
) ≤ Kpar

p (δ)




∑

θ∈Pδ,θ⊂τ

‖fθ‖
2
Lp(ωQδ

)




1/2

,

where Kpar
p is the standard (t, t2) paraboloid decoupling constant with

Kpar
p (δ) .ǫ δ

−ǫ.

We iterate to get

Kp(δ) ≤ Ck
ǫ δ

−ǫ(1−(1−σ)k)Kp(δ
(1−σ)k),

where k should be chosen so that δ(1−σ)k ∼ a2 ≤ 1/4. From this it follows that
Kp(δ) ≤ Cǫδ

−ǫ, with the constant uniform in a. A more detailed treatment of this
iteration process will be given in the next section. �

3. Proof of Theorem 1.3

The work of Bourgain-Demeter implies the following:

Lemma 3.1. Let ϕ ∈ C2,α[0, 1] satisfy ϕ′′ > 0. Then we have, for all 2 ≤ p ≤ 6,

‖E[0,1]g‖Lp(ωQδ
) .ǫ δ

−ǫ




∑

∆∈Part
δ1/2

([0,1])

‖E∆g‖
2
Lp(ωQδ

)




1/2

for all g ∈ L1([0, 1]), where Qδ is a cube of side length δ−1.

To prove Theorem 1.3, it will suffice to prove the following proposition.

First, recall the simplified definitions:

r2,S = sup
{
s : lim

t→0+

ϕ′′(t)

ts
= 0
}
, r2,I = inf

{
s : lim

t→0+

∣∣∣ϕ
′′(t)

ts

∣∣∣ = ∞
}
,
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and, defining ϕ2,α(t) := |ϕ′′|C0,α([t,2t]), r2+α,S = sup{s : limt→0+
ϕ2,α(t)

ts = 0}.

Proposition 3.2. Let ϕ′′ be positive and locally α-Hölder continuous in (0, c̃], for
some α, c̃ > 0. Also, let the orders of vanishing of ϕ′′ satisfy

(1) r2,S = r2,I =: r2 ∈ (−1,∞)
(2) r2+β,S ≥ r2 − β + o(β), for β ∈ (0, α].

Then we have, for all 2 ≤ p ≤ 6 and with r := max{r2 + 2, 2},

‖E(0,c]g‖Lp(ωRδ,r
) .ǫ δ

−ǫ




∑

∆∈Part
δ1/2

((0,c])

‖E∆g‖
2
Lp(ωRδ,r

)




1/2

for all integrable g : (0, c] → C, where Rδ,r is a rectangle of side lengths δ−1 and

δ−
r
2 , and c is chosen sufficiently small, independent of δ, ǫ, or α.

Proof. Decompose interval (0, c] into:

(0, c] =
(
0, δ1/2−ǫ

]
∪

K⋃

k=1

[
2k−1δ1/2−ǫ, 2kδ1/2−ǫ

]
.

We automatically get the desired decoupling on the (0, δ
1
2−ǫ] interval. Since we can

afford log losses in δ and the number of k’s is O(log(δ−1)), it suffices to show that
for any δ1/2−ǫ < a < c,

(3.1) ‖E[a,2a]g‖Lp(ωRδ,r
) .ǫ δ

−ǫ


 ∑

∆∈Part
δ1/2

([a,2a])

‖E∆g‖
2
Lp(ωRδ,r

)




1/2

.

Define
ϕ′′
a := min{ϕ′′(t) : t ∈ [a, 2a]}.

By hypothesis (1), there exists some constant Dǫ > 0 such that

(3.2) ϕ′′
a ≥ D−1

ǫ ar2+
ǫr2
100 ≥ D−1

ǫ δ
r2
2

for δ
1
2−ǫ < a < c, c sufficiently small. Defining Rδ,ϕ′′

a
as a rectangle with side

lengths δ−1 and δ−1(ϕ′′
a)

−1, we claim that

(3.3) ‖E[a,2a]g‖Lp(ωR
δ,ϕ′′

a
) .ǫ δ

−ǫ


 ∑

∆∈Part
δ1/2

([a,2a])

‖E∆g‖
2
Lp(ωR

δ,ϕ′′
a
)




1/2

.

By Minkowski and (3.2), (3.3) will imply (3.1) if c is chosen sufficiently small (where,
due to our use of weighted norms and the definition of ωR, the extra Dǫ can be
absorbed into the implicit .ǫ constant).

Let t0 ∈ [a, 2a], and define the curve γa(t) =
(
t, 2ϕ(t)

ϕ′′

a

)
. Similarly, define the

paraboloid

(3.4) ρa,t0(t) =

(
t,
2ϕ(t0)

ϕ′′
a

+
2ϕ′(t0)

ϕ′′
a

(t− t0) +
ϕ′′(t0)

ϕ′′
a

(t− t0)
2

)
.

Then, for 0 ≤ ∆t . t0,

|γa(t0 +∆t)− ρa,t0(t0 +∆t)| .

∣∣∣∣∣
ϕ2,β(t0)

ϕ′′
a

∣∣∣∣∣(∆t)
2+β ≤ Cǫ

ar2+β,S− ǫβ
27

ar2+
ǫβ
27

(∆t)2+β
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≤ Cǫa
−(β+ ǫβ

9 )(∆t)2+β

by Taylor’s Theorem, hypothesis on r2, and hypothesis on r2+β,S for a proper choice
of β(ǫ). Namely, since r2+β,S ≥ r2−β+o(β) by assumption (2), there exists a choice

of β(ǫ) that vanishes at 0 sufficiently quickly such that r2+β,S ≥ r2 − β(ǫ)− ǫβ(ǫ)
27 .

Letting ∆tmax = sup{s : |(γa − ρa,t0)(t0 + ∆t)| < δ for all 0 < ∆t < s} and

recalling that a ≥ δ1/2−ǫ, then either ∆tmax > a or, for some constant cǫ > 0,

(3.5) ∆tmax ≥ cǫδ
1

2+β a
β+

ǫβ
9

2+β ≥ cǫδ
1

2+β δ
β
2

2+β δ
ǫβ
18

−ǫβ

2+β ≥ cǫδ
1
2−

ǫβ
4 .

Therefore, on [t0,min{2a, t0 + cǫδ
1
2−

ǫβ
4 }], (t, ρa,t0(t)) ∈ Nδ(γa).

Defining

E∆,γag(x1, x2) =

ˆ

∆

g(t)e(tx1 +
2ϕ(t)
ϕ′′

a
x2)dt,

then

E∆g(x1, x2) = E∆,γag(x1,
ϕ′′

a

2 x2),

and thus

‖E∆g‖Lp(ωR
δ,ϕ′′

a
) =

(
2
ϕ′′

a

)1/p
‖E∆,γag‖Lp(ωQδ

),

where Qδ is a cube of side length δ−1. Thus to prove the claim, it suffices to show

‖E[a,2a],γa
g‖Lp(ωQδ

) .ǫ δ
−ǫ


 ∑

∆∈Part
δ1/2

([a,2a])

‖E∆,γag‖
2
Lp(ωQδ

)




1/2

.

This is equivalent to showing the smallest constant Kp(δ) that makes the following

inequality holds satisfiesKp(δ) .ǫ δ
−ǫ: (noting thatKp(δ) is tied to δ1/2 partitions)

‖f‖Lp(ωQδ
) ≤ Kp(δ)

(
∑

θ∈Pδ

‖fθ‖
2
Lp(ωQδ

)

)1/2

,

where supp f̂ is contained in Nδ(γa), the δ neighborhood of the curve {γa(t), a ≤
t ≤ 2a}, and Pδ is a finitely overlapping cover of Nδ with curved regions θ of the
form

θ = {(t, η + γa(t)) : t ∈ Iθ, |η| ≤ 2δ},

where Iθ runs over all intervals with length δ1/2 and center belongs to δ1/2Z∩[a, 2a].

We apply the iteration argument sketched in [1], [3] and [5] Namely, we have

‖f‖Lp(ωQδ
) ≤ Kp(c

2
ǫδ

1−ǫβ/2)




∑

τ∈P
δ1−ǫβ/2

‖fτ‖
2
Lp(ωQδ

)




1/2

.

And due to (3.5), we can use the decoupling inequality for the parabola ρa,t0 in
(3.4) to obtain

‖fτ‖Lp(ωQδ
) ≤ Kpar

p (δ)




∑

θ∈Pδ,θ⊂τ

‖fθ‖
2
Lp(ωQδ

)




1/2

,
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where Kpar
p is the standard (t, t2) paraboloid decoupling constant with

Kpar
p (δ) ≤ Cσδ

−σ

for all σ > 0. Note that ρa,t0 has constant curvature ϕ′′(t0)
ϕ′′

a
& 1, and due to

rescaling and an application of Minkowski, Kpar
p still bounds the decoupling for

ρa,t0 . More specifically, normalizing the curvature of ρa,t0 will expand the spatial
rectangles while leavingKp unchanged. Finally, an application of Minkowski implies
that decoupling constants Kp over larger spatial rectangles are bounded by the
decoupling constants over smaller rectangles.

Using ǫ2β/4 in place of σ, this implies that

Kp(δ) ≤ Cǫ2β/4δ
−ǫ2β/4Kp(c

2
ǫδ

1−ǫβ/2) ≤ c−1
ǫ Cǫ2β/4δ

−ǫ2β/4Kp(δ
1−ǫβ/2).

For the second inequality, we used the fact that Kp(σ
2
1σ

2
2) ≤ σ−1

1 Kp(σ
2
2). Denote

Cǫ = c−1
ǫ Cǫ2β/4. Using 1 + (1 − ǫβ

2 ) + ... + (1 − ǫβ
2 )k−1 = 2

ǫβ (1 − (1 − ǫβ
2 )k), we

iterate to get

Kp(δ) ≤ C
k

ǫ δ
− ǫ

2 (1−(1− ǫβ
2 )k)Kp(δ

(1− ǫβ
2 )k)

≤ C
k

ǫ δ
− ǫ

2Kp(δ
(1− ǫβ

2 )k),

where k should be chosen so that δ(1−
ǫβ
2 )k ∼ a2. Replacing a2 with e−1, we get

k ≤
log log(δ−1/2)

− log(1− ǫβ/2)
,

so

C
k

ǫ ≤ (log(δ−1/2))
Cǫ

log(1−ǫβ/2) ≤ Cǫδ
−ǫ/2

for any choice of β(ǫ). From this it follows that Kp(δ) ≤ Cǫδ
−ǫ, with the constant

uniform in a. (Note that Kp(e
−1) ≈ 1.) �

Now we finish the paper with a simple proof of Corollary 1.5 and a corresponding
discretized version. The latter might be useful for future applications which gives
bounds similar to those of Wooley [7].

Proof of Corollary 1.5. The Wronskian of (ϕ′
1, ϕ

′
2) is:

det

[
ϕ′
1 ϕ′

2

ϕ′′
1 ϕ′′

2

]
= ϕ′

1ϕ
′′
2 − ϕ′

2ϕ
′′
1 .

Given t0, since S is a regular curve, we may assume ϕ′
1(t) 6= 0 near t0. Using a

partition of unity, it suffices to consider a piece of the curve containing t0 where
ϕ′
1(t) 6= 0. When we do the change of variable s = ϕ1(t), then the curve becomes

(s, ϕ2(ϕ
−1
1 (s))) = (s, ψ(s)),

where t = ϕ−1
1 (s), and

ψ′(s) =
ϕ′
2(t)

ϕ′
1(t)

=
ϕ′
2(ϕ

−1
1 (s))

ϕ′
1(ϕ

−1
1 (s))

,

with a non-zero denominator by our assumption. Then the second derivative equals

ψ′′(s) =
[ϕ′

1ϕ
′′
2 − ϕ′

2ϕ
′′
1 ](t)

[ϕ′
1(t)]

2
=

[ϕ′
1ϕ

′′
2 − ϕ′

2ϕ
′′
1 ](ϕ

−1
1 (s))

[ϕ′
1(ϕ

−1
1 (s))]2

=
Wronskian at t

[ϕ′
1(t)]

2
,
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which satisfies the requirement of Theorem 1.3, with the order of vanishing of the
curvature equaling the order of vanishing of the Wronskian, if the Wronskian only
vanishes of finite order at a finite number of points.

�

Corollary 1.5 gives the following discretized version.

Theorem 3.3. If n−1
N < tn ≤ n

N for each 1 ≤ n ≤ N is a collection of points in

[0, 1], then for each R ≥ N r, (ϕ1, ϕ2) as in Corollary 1.5, we have


 1

R2

ˆ

∣∣∣∣∣

N∑

n=1

ane(x1ϕ1(tn) + x2ϕ2(tn))

∣∣∣∣∣

6

wBR(x)dx1dx2




1/6

.ǫ N
ǫ

(
N∑

n=1

|an|
2

)1/2

.

Here BR denotes a ball of radius R.

Proof. The proof is along the same line of proof of Theorem 4.1 in [2]. For com-
pleteness we give the details of the proof. Let {BNr} be a collection of finitely
overlapping balls covering BR. We apply Corollary 1.5 to each BNr and use the
fact that

∑
wBNr ≤ CwBR

to get

‖E[0,1]g‖L6(wBR
) .ǫ N

ǫ




∑

∆∈PartN−1([0,1])

‖E∆g‖
2
L6(wBR

)




1/2

.

For τ > 0 let gτ (t) =
1
2τ

∑N
n=1 anχ[tn−τ,tn+τ ](t) and apply the above inequality and

then let τ to 0. This completes the proof. �
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