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Abstract—Heterogeneous multicore processors (HMPs) are commonly deployed

to meet the performance and power requirements of emerging workloads. HMPs

demand adaptive and coordinated resource management techniques to control

such complex systems. While Multiple-Input-Multiple-Output (MIMO) control

theory has been applied to adaptively coordinate resources for single-core

processors, the coordinated management of HMPs poses significant additional

challenges for achieving robustness and responsiveness, due to the

unmanageable complexity of modeling the system dynamics. This paper presents,

for the first time, a methodology to design robust MIMO controllers with rapid

response and formal guarantees for coordinated management of HMPs.

Our approach addresses the challenges of: (1) system decomposition and

identification; (2) selection of suitable sensor and actuator granularity; and

(3) appropriate system modeling to make the system identifiable as well as

controllable. We demonstrate the practical applicability of our approach on an

ARM big.LITTLE HMP platform running Linux, and demonstrate the efficiency

and robustness of our method by designing MIMO-based resource managers.

Index Terms—Heterogeneous multiprocessors, MIMO, control theory, system

modeling, resource management

Ç

1 INTRODUCTION

MODERN multicores must support diverse workloads that exhibit
varying resource demands, sometimes with conflicting constraints.
Workload characteristics (e.g., memory-bound, compute-bound)
may vary across applications executing concurrently, posing
significant challenges for homogeneous architectures [1], [2].
Emerging heterogeneous multicore processors (HMPs) deploy het-
erogeneous compute elements on a single chip, allowing tradeoffs
between objectives such as maximizing performance and minimiz-
ing power consumption. For instance,ARM’s big.LITTLE architecture
[3] deploys cores with more cache and compute capacity (big), along-
side low power and low performance cores (LITTLE). These HMPs
require sophisticated and adaptive resource management due to the
presence of multiple architecturally differentiated cores supporting
diverse workloads. Contemporary approaches utilize heuristics to
optimize a single objective in order to manage resources at runtime
[4], [5], [6], [7]. However, realistic scenarios demand simultaneous
management of multiple objectives (e.g., best performance within a
thermal cap), resulting in the challenge of tuning a large configura-
tion space of reconfiguration parameters. Ad-hoc approaches are not

robust: coordinating and prioritizing actuators is not straightforward
and often requires complex algorithms. Additionally, with ad-hoc
approaches, there are no guarantees that the system will avoid an
unstable state whenworkloads are unpredictable.

Control theoretic approaches for resource management (e.g., [8],
[9], [10], [11], [12], [13], [14]) provide formal guarantees for achiev-
ing robustness and stability, particularly in the presence of work-
load variability. Multiple-Input-Multiple-Output (MIMO) control
theory is effective for coordinatingmanagement of multiple goals in
unicore processors [15]. However, MIMO control for HMPs poses
additional challenges and complexity in systemmodeling, develop-
ment of robust controllers, and guaranteeing stability in the face of
dynamic and unpredictable system behavior. We demonstrate that
directly applying a classic MIMO approach ([15]) leads to controller
designs that either lack robustness (i.e, are highly susceptible to insta-
bility) or manifest poor responsiveness (i.e., the speed with which a
new target objective can be met), mainly due to unmanageable sys-
tem identification complexity. An appropriate dynamic system
modeling (i.e., identification) and decomposition strategy is needed
to account for considerations such as size of the system, heterogene-
ity of cores, and scope of the actuators and sensors in HMPs. Once
the system dynamics are properly modeled, several off-the-shelf
robust controller design techniques are available for building a
stable and responsive resourcemanager.

Our work presents, for the first time, a methodology to design
robust and responsive MIMO controllers for coordinated manage-
ment of HMPs with formal guarantees. The main contributions of
this paper are:

! System modeling guidelines for formulating robust and
responsive MIMO control of complex HMPs. This includes
a set of properties for the system to be controllable, effi-
cient, and robust. We enable tuning of the controller by
simplifying the identification of dynamic systems.

! Demonstration of the practical efficacy of our approach on
an 8-core ARM big.Little development board. We coordi-
nate the platform’s power and performance objectives
while experiencing disturbance caused by background
tasks and task migration.

2 BACKGROUND

MIMO control for coordinated resource management [15], [16] has
generalized management of multiple controllers or objectives for a
single-core processor. Consider the MIMO controller in Fig. 1 that
controls a system with two control inputs and two interdependent
measured outputs. The MIMO is implemented using a Linear Qua-
dratic Gaussian (LQG) controller [17]:

xðt þ 1Þ ¼ A & xðtÞ þ B & uðtÞ (1)

yðtÞ ¼ C & xðtÞ þ D & uðtÞ; (2)

where x; y, and u are vectors representing the system state, the
measured outputs, and the control inputs, respectively. Coefficient
matrices A, B, C, andD capture the system behavior, and their val-
ues are obtained through system identification. Matrix sizes are
determined by both the number of inputs and outputs of the con-
troller as well as the order of the controller.

The MIMO design process consists of: 1) defining the system to
be controlled by specifying inputs and outputs; 2) using experi-
mental data to identify the system model; 3) designing and tuning
the controller based on the system model; and 4) analyzing and
validating the robustness and stability of the designed controller.

In this paper we focus mostly on steps (1) and (2). Once the con-
trolled system is defined, the first step in system identification is
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generating test waveforms from training applications in order to
create a system model. For complex systems it is more common
and feasible to use statistical or black-box methods based on Sys-
tem Identification Theory [18] for isolating the deterministic and
stochastic components of the system to build the model. Given an
order, the model estimation generates the A, B, C, and D matrices
(Equations (1) and (2)). The order dictates the dimension of the
model (i.e., size of the state space), which is typically a trade-off
between accuracy and complexity. Once the model is created, it is
cross-validated using a different data set and the model uncertainty
is assessed using Robust Stability Analysis [18]. The higher the
uncertainty guardband, the more robust is the model and therefore
the generated controller.

Picking actuators and measurement metrics that result in
behavior that can be estimated linearly is one of the most important
aspects of designing a stable controller [19]. Reducing model
uncertainty is crucial for the stability of a controller: perturbations
due to model uncertainty can destabilize a system; if system identification
is completed successfully, the remaining steps in controller design are
trivial. In the following sections, we describe a set of properties to
use when defining systems or subsystems for MIMO design, and
demonstrate why the controlled system should exhibit these prop-
erties for the controller to identify controllable, efficient, and robust
models for complex systems.

3 CONTROLLABLE HMP MODELS FOR MIMO DESIGN

We now illustrate the challenges faced in designing robust and
efficient MIMO control for HMP systems from the perspectives
of: (1) determining the optimal input/output MIMO configura-
tion; (2) establishing uniformity for system identification; (3)
managing the scope of sensors and actuators for model fitting;
and (4) minimzing the model size to handle complexity. We use
the case study shown in Fig. 2 to highlight these challenges and
motivate the need for an overall methodology for MIMO design
that establishes the desired guarantees.

Fig. 2 shows the ODROID 8-core big.LITTLE Exynos 5422 HMP
platform executing a set of representative applications on top of
Linux or Android, thereby emulating the background noise in real
platforms. Consider the system-level perspective of this HMP as
depicted in Fig. 3a. This abstraction shows the sensors and actuators
available for the 8-core HMP. Suppose we are interested in control-
ling the system throughput in terms of instructions per second
(IPS) while monitoring the power by using operating frequency
and injected idle cycles. The design of a LQG MIMO controller
(Equations (1) and (2)) is a well understood process. The main chal-
lenge is defining a system to identify and control this processor.

There are several pitfalls to address before designing the con-
troller. For example, let us define a MIMO using all frequency and
idle cycle inputs, and IPS and power outputs. First, the resulting
controller would be of size 10 & 10. Not only would the system be
challenging to identify, the resulting controller would be sluggish
and complex to execute at runtime. Second, the selected mix of con-
trol inputs have varied effects on measured outputs: frequency uni-
formly affects an entire cluster and its outputs, while idle cycle
injection affects per-core IPS and total cluster power. Note that
black-box identification techniques have no internal information
about subsystems, and simply try to relate the changes of any input

to an impact on any output. If a sensor only partially exercises the
system and, consequently, a subset of outputs, the outputs not
involved are considered unfavorably in the model. Furthermore,
identifying a state-space MIMO system needs training sets varying
all inputs simultaneously (e.g., a set of out-of-phase staircase sig-
nals for the control inputs [20]). If the inputs and output are not
uniformly correlated, isolation of the deterministic and stochastic
aspects of the system may be inaccurate. Third, heterogeneity of
core types can make the black-box system identification challeng-
ing (i.e., inaccurate or complex) if an output is correlated to more
than one core type (e.g., power capping using a chip-level power
sensor in HMPs). Subsystem asymmetry complicates system iden-
tification and increases model uncertainty. Note that these are con-
servative assumptions for system complexity. Platform complexity
will continue to increase in the future (e.g., Mediatek’s 10-core
3-cluster HMP SoC with two 2.5 GHz ARM A72, four 2.0 GHz
high-performance A53, and four 1.4 GHz energy-efficient A53
cores), further exacerbating these challenges.

In this context, the properties we are concerned with are con-
trollability, robustness, and efficiency. These properties are critical
to ensure that the closed-loop system is stable (does not show large
oscillations) and robust to disturbance, while rapidly converging
to the desired state. In the following, we demonstrate the need for
an overall control design methodology to satisfy these properties.
Guidelines presented highlight the challenges in the system identi-
fication process and provide insight about coordinated strategies
to ensure the properties.

3.1 Model Size
The number of control inputs and measured outputs are critical for
determining the system to be controlled by an individual MIMO.
There are formal requirements in MIMO design on number of
inputs and outputs (e.g., #inputs ' #outputs), and these values
determine the size of the controller and its responsiveness. Systems
with large numbers of inputs and outputs are more difficult to
identify and provide smaller robustness confidence intervals. If
identifiable, such a system will generate a sluggish controller that
requires heavy computations at every epoch due to the size of
state-space matrices. Fig. 3b depicts this challenge, where the
latency of the controller (to respond to changes in environment)
can be decreased by breaking down the system into smaller sub-
systems with manageable size.

In order to demonstrate the issues with system identification of
MIMO controllers with a large number of control inputs and mea-
sured outputs, we simulate an 8 & 8 system similar to [16]. Using
the gem5 architectural simulator [21] we construct a homogeneous
system comprised of four computing cores. For control inputs to
the system we use per-core core clock frequency and cache size.
Measured outputs are per-core power and IPS. The simulation is
designed to isolate the size issue from other pitfalls discussed in
this section. Fig. 4 compares the real output and modeled output

Fig. 1. Basic 2 & 2MIMO.

Fig. 2. Example system overview.
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for the same set of inputs. The inaccuracy of the modeled IPS
and power show the difficulty in identifying a system model for
a large system.

3.2 System Uniformity
Systems that are composed of uniform subsystems can be identi-
fied more easily than those with varying subsystems (e.g.,
Fig. 3c). One of the main challenges in identifying HMPs com-
pared to CMPs or single-core systems is the heterogeneity in com-
pute units. In addition to having nonuniform characteristics,
heterogeneous systems can have different actuation configurations
for various elements, which requires proper care in system identi-
fication. One example is a larger range of operating frequencies
for high-performance cores compared to energy-efficient cores. To
mitigate the effects of this heterogeneity, the system can be
decomposed into subsystems that control uniform elements.

In order to compare the accuracy of system identification in
uniform and nonuniform systems, Fig. 5 shows residual auto-
correlation for three sets of MIMOmodels in our case study. Resid-
ual is the stochastic component (e.g., disturbance, noise) of the sys-
tem output, which is not supposed to be included in the model. If
there is no correlation between the residual and itself or any inputs,
the model is good. In this context, there are two important proper-
ties in the residual function that need to be ensured: 1) the residual
should not affect the confidence levels (i.e., the probability with
which the true output will fall into the confidence interval range
[22]); 2) the spectrum of samples should not show any peaks, falls,
or patterns (except around zero). In other words, the residual corre-
lation for different samples (Fig. 5 x-axis) should look like pure
noise. If a model violates either of these two properties, the control-
ler generated from this model will likely fail the robustness analy-
sis. Two of the models in Fig. 5 are designed to control a dual-core
uniform system (either two Cortex-A15 cores or two Cortex-A7

cores), and the third model represents a heterogeneous system
(Cortex-A15 and A7). The result of auto-correlation shows that for
the same set of experiments, uniform systems maintain a residual
mean around zero while the nonuniform case operate outside con-
fidence intervals. This property will result in high uncertainty and
can easily make the corresponding controller unstable. Benefiting
from architectural insight about the uniformity of underlying sub-
systems can improve the quality of system model.

3.3 Scope of Controllability
Selecting actuators and measurement metrics that result in stable,
ideally linear, relations is one of the most challenging and impor-
tant tasks when designing a controllable MIMO. Some actuators
have different granularity and operate in various scopes, such as
task-level, core-level, system-wide, etc. Choosing actuators with
the same scope results in a more accurate system system model,
and robust controller.

The top plots in Fig. 6 show real and modeled output for IPS
and power of the ODROID platform. The model is for a system
that controls clock frequency of each cluster (cluster-level actuator),
and number of active cores for the whole platform (system-level
actuator), in order to track system power and IPS. The model for
this system attempts to mimic power behavior but fails to show an
acceptable simulated output behavior for IPS references. In the
lower plot of Fig. 6 we observe that this model many peaks that
break the boundaries of the 99 percent confidence intervals, violat-
ing both desired residual properties. In the next section, we show
how well a model can fit the measured data if a more careful com-
bination of subsystems and sensors/actuators is selected.

3.4 Model Minimality
Selecting the suitable system order when defining a system to iden-
tify is one of the important challenges in designing a controllable
system. The model order directly affects the complexity of the
resulting controller implementation. The order will determine the
accuracy, confidence in modeling, and additional computation for

Fig. 3. System-level views: (a) Exynos 5422 8-core HMP with sensors and actua-
tors, (b) large number of sensors and actuators, (c) nonuniform subsystems, and
(d) discrete scope of sensor and actuators.

Fig. 4. (Left) Real versus modeled IPS output of an 8& 8 system. (Right) Real ver-
sus modeled power output of an 8& 8 system.

Fig. 5. Residual comparison between uniform and nonuniform subsystem model-
ing. The horizontal scale is the number of lags, which is the time difference
(in Samples) between estimated correlation.

Fig. 6. Top: Real versus modeled IPS and Power measured outputs, normalized
around the mean. Bottom: Confidence interval violations of residual function in a
MIMO controller with inconsistent actuator scope.
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decision making. Higher order models generally1 provide higher
accuracy, but the resulting controllers require more computation
for each control decision, and respond sluggishly to rapid changes.
Therefore, both architectural insight and complexity analysis are
needed to choose the proper model order. For system identification
of MIMO controllers, Matlab provides recommendations based on
a singularity function which can give designers insight about the
model behavior. The case study system in this section is con-
structed using a big cluster with four Cortex-A15 cores. This model
has two inputs (clock frequency and number of active cores) to
control two measured outputs (IPS and Power).

Fig. 7 shows an example of an output (IPS) modeled using three
different orders. This system has desirable size, sensors/actuators,
and uniformity, which all together result in a suitable system iden-
tification. The last design decision is the order of the model. In
most cases, models with higher order mimic the true IPS with
more precision. However, it should be noted that order-two has
89.99 percent, order-three 90.53 percent and order-four has
90.58 percent fitting association. As we go to even higher orders,
the improvement on accuracy diminishes. It is the designer’s
responsibility to select the proper order for the model that provides
good enough accuracy while maintaining controller efficiency; how-
ever, the rule of thumb is that a fitting value of larger than 80 per-
cent is often good enough [20]. We also refer to the Matlab system
identification recommendation for a set of various MIMOs. First,
the 10 & 10 MIMO described in Section 3.1 has the recommended
order 20, which was the maximum order allowed by the tool. On
the other hand, 4 & 2 and 4 & 4 MIMOs with various actuator scope
had recommended orders between 3 to 5. This shows that not only
are large systems penalized due to size of state space matrices, but
are also required to store many prior measurements and actuations
to capture the dynamics of the system.

Fig. 8 shows a complementary analysis in selecting model order
for the same case study. In this figure, the auto-correlation function
for the residuals for three different orders of our big cluster system
are computed and illustrated. The confidence interval for these func-
tions is shown as dashed lines. For an acceptable model, the correla-
tion curves should lie between these lines and not show any peaks,
falls, or patterns. As we can observe, the first-order model has many
confidence violations, which indicates the controller designed from
this model would not be robust. While the third-order model shows
improved behaviour, the fifth-order model exhibits a peak around 9
and -9 due to over-fitting. This indicates that in some corner cases the
controller generated from this model may become unstable. The abil-
ity to avoid unstable states in our closed-loop system is one of the
advantages of our proposed guidelines.

3.5 Mixture of Issues
To demonstrate the aggregated effect of issues mentioned in this
section on a real system, we use a 10 & 10 model similar to Fig. 3a

with cluster frequency and core idle cycles as control inputs, and
cluster power and core IPS as measured outputs. Fig. 9 shows the
fit and residual for the system identification. The model shows
high error between real and modeled data, which indicates that it
cannot capture the dynamics of the system, and may result in insta-
bility and high steady state error. More importantly, this system
requires an order of 20 (due to its singularity value [18]) for identi-
fication which means the controller should consider inputs (u(t))
and output (y(t)) for many previous iterations in its state matrix.
This would impose a large memory requirement and computa-
tional overhead in the controller which will result in a slow settling
time. The bottom plot in Fig. 9 shows auto-correlation of residuals
for one of the outputs and the correlated confidence intervals. In
this example, though the autocorrelation of the residual exhibits no
patterns, it fails to fall within the 99 percent confidence interval
range, thus showing the importance of selecting proper size, uni-
formity, scope, and order in MIMO design process.

4 CONTROL DESIGN METHODOLOGY

We now present our overall MIMO control design methodology for
HMPs, including guidelines for ensuring a more robust and stable
closed-loop system, as outlined in Fig. 10.

Specifications. The designer must begin by defining or specifying
a) the management objectives of the system (e.g., energy efficiency,
maximum throughput, power capping, etc.), (b) the computer sys-
tem structure (e.g., VF islands, nodes, processors), (c) compute unit
description (e.g., type and number of cores and accelerators), and
(d) list of sensors/actuators and their scope for the computer sys-
tem. These specifications are necessary for system decomposition
and identification.

System Decomposition. This step consists of finding all the valid
combinations of specifications that compose controllable subsys-
tems for managing the desired objective(s). This process eliminates
potential systems with an uncontrollable number of inputs and
outputs or subsystems with insufficient actuators. It is important to
ensure that each measurable output of a subsystem is necessary
and appropriate for achieving the overall objective(s). For example,
selecting the entire processor as the system model to identify in

Fig. 7. Modeled versus true IPS (normalized to mean) of Cortex-A15 four-core
system for different model orders.

Fig. 8. Residual for Cortex-A15 four-core systems of different orders.

Fig. 9. Top: Fit of the simulated model associated with three of the ten outputs, nor-
malized around the mean. Bottom: Residual function of one of the outputs in
10& 10 MIMO w.r.t. 99 percent confidence intervals.

1. Over-fitting is possible.
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order to manage a single core’s temperature is a poor choice that
will result in an inefficient controller. In the case that a system can
be divided into uniform or nonuniform subsystems, uniform
decomposition is highly preferred.

System Identification. This is the critical step in designing MIMO
controllers for HMPs. Here, all candidates found during system
decomposition are modeled and evaluated in terms of their resid-
ual behaviour, and their associated fit to measured data and model
order. Black-box system identification is performed to find system
models exhibiting an acceptable fitting value. Based on a rule of
thumb in control theory, if the coefficient of determination, also
known as R2, is greater or equal than 80 percent, the model will be
acceptable [20]. In case there are multiple valid candidates that sat-
isfy these requirements, the model with minimum order will be
selected for controller design. On the other hand, if there is no
model found having all the recommended properties, confidence
intervals can be expanded (i.e., relaxed) to include at least one sys-
tem model. These boundaries are used in the last step for robust-
ness analysis.

Controller Design. Given that our guidelines for system decom-
position are followed and the resulting system is identifiable, the
design of the controller itself (i.e., finding the coefficient matrices
for Equations (1) and (2)) is a well-established field where off-the-
shelf tools can be used. Design of MIMO controllers for computing
systems is extensively explained in [20] and [15].

Robustness Analysis. In this final step, we check if the controller
can tolerate disturbance based on a defined uncertainty level while
maintaining the specified confidence (i.e., remaining stable). In
addition, we ensure that the chosen controller can meet the design
objectives. At this stage, all unaccounted elements, modeling limita-
tions, and environmental effects are estimated as model uncertain-
ties. The designer must ensure the controller is stable for all the
uncertainties. For example, we can confirm our MIMO controller is
robust enough to reject the disturbance from background tasks and
is able to react efficiently in case of task migration from one cluster
to the other. If the designed controller cannot meet the requirements
of the closed-loop system, we return to system identification and
select a higher order model for a new controller design iteration.

5 RESULTS

Our goal is to evaluate two distinct MIMO configurations, one
which satisfies the conditions defined in Section 4, and one which
does not, in terms of their ability to track performance and power
goals on an HMP. Our evaluation is done using the ODROID-XU3
platform with an Exynos 5422 HMP (Table 1) running Ubuntu

Linux. This platform has four ARM A15 cores and four ARM A7
cores divided into two clusters. DVFS is applied at the cluster-level,
but cores can be clock-gated individually. Memory is shared across
all cores, so application threads can transparently execute on any
core. We consider a typical mobile scenario in which one or more
multithreaded applications execute concurrently across the HMP.

5.1 Experimental Setup
Controller Configurations. We design two control-based resource
managers. 1) Two individual 2 & 2 MIMOs, one for each cluster.
Each controller tracks an IPS and power reference for its cluster.
The controlled inputs are the cluster clock frequency and the number
of active cores in the cluster. 2) A single system-wide 4 & 2 MIMO
with a single IPS and power reference for the whole system. The
controlled inputs are the clock frequency and number of active
cores for each cluster. We use the discussed design process for all
MIMO controllers, which are generated using the Matlab System
Identification Toolbox [23]. We are able to achieve sufficient accu-
racy using fourth-order models, which is efficient for runtime invo-
cation. The models for the manager (1) meet all conditions we
defined, while the manager (2) model does not meet the system
uniformity condition.

Controller Training. We use a custom micro-benchmark for sys-
tem identification test waveforms. The micro-benchmark consists
of a sequence of independent multiply-accumulate operations per-
formed over both sequential and random memory locations, yield-
ing varied instruction-level and memory-level parallelism. We
generate test waveforms by running multiple instances of the
micro-benchmarks in each cluster (one instance per core) and vary-
ing control inputs in the format of a staircase test (i.e., sine wave),
both with single-input variation and all-input variation. There
is no memory sharing/synchronization between the multiple
instances, which allows us to identify the system under very high
variations in the system outputs given changes in the controllable
inputs.

Controller Robustness Analysis. During the system identification
phase, we also extract the non-deterministic aspects of the system,
leading to the extended version of Equations (1) and (2) used to
assess the controller robustness:

xðt þ 1Þ ¼ A & xðtÞ þ B & uðtÞ þ K & eðtÞ (3)

yðtÞ ¼ C & xðtÞ þ D & uðtÞ þ eðtÞ; (4)

where K corresponds to the non-deterministic aspects of the sys-
tem, and eðtÞ represents external noise or disturbances that influ-
ence the system state and outputs. For Robust Stability Analysis, we
use a Kalman filter as an estimator whose role is to guess the state
information by looking at the system outputs and inputs. Since the
signal eðtÞ is random, providing its variance is sufficient. We
design an optimal tracking controller and link the estimator with
the tracker. The tracker uses the state estimate from the estimator
along with output tracking errors to generate the system inputs.
For the robustness analysis, we ensure that the controller is
stable for all the uncertainties whose maximum sustained impact
is bounded by a designer-specified margin. In our case, the

Fig. 10. MIMO design methodology for HMPs.

TABLE 1
Exynos 5422 Main Core Parameters

Parameter (Core type) big (Cortex A15) LITTLE (Cortex A7)

Issue width 4 (OoO) 2 (Inorder)
L1$I/$D size (KB) 32/32 32/32
L2 size (KB)1 2048 512
Max VF 2.0 GHz/1.2V 1.4 GHz/1.2V
Min VF 1.2 GHz/1.0V 1.0 GHz/1.1V
1Per cluster shared L2 caches.
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uncertainty guardbands of 50 percent for IPS and 30 percent
for power (from [16]) ensures both the 4& 2 and 2 & 2 controllers
are stable.

Implementation. The controllers are implemented as Linux user-
space processes that execute in parallel with the applications.
Instruction and cycle counters for computing IPS are collected by a
lightweight kernel module which access ARM’s Performance Mon-
itor Unit (PMU) on each core. Power is calculated per-cluster using
the on-board current and voltage sensors present on the ODROID
board. Power measurements are made in the same time increments
as performance for each cluster. IPS/power measurements and con-
troller invocation are performed periodically every 50 ms.

Evaluated Workloads. We test our controllers using our micro-
benchmark and a subset of PARSEC applications. For the micro-
benchmark, we execute 8 instances of the same benchmark, mim-
icking the training scenario. For the PARSEC applications, we exe-
cute two multithreaded application instances with four threads
each. Both cases result in a system fully loaded with eight parallel
threads. Linux’s HMP thread scheduler may map any thread to
any core dynamically at run-time. Table 2 lists the benchmarks
used and IPS/Power references. We empirically select two sets of
trackable references. For each case, the applications run for a total
of 65s. After the first 5s (warm-up period) the controllers are set to
ref1 for 20s, then the references are changed to ref2 for 20s, then
changed back to ref1 for the remaining 20s.

5.2 Evaluation
Fig. 11 illustrates the evaluation scenario for the blackscholes appli-
cation using the three phases with the references shown in Table 2.
For blackscholes the dual 2 & 2 is able to quickly converge towards
the reference, while the 4& 2 MIMO is unable to find a configura-
tion that tracks both IPS and Power. Since a full system MIMO
does not meet the properties described in Section 3, it is not able to
properly capture the fact that the little cluster’s controllable inputs
have a more significant impact on total system performance than
on total system power. When considering power only (tracked by
both controllers), we can also see that the 4& 2 MIMO takes longer

to reach the reference. In a scenario in which the power reference is
decreased to, for instance, address a thermal emergency, the much
longer reaction time of the full system MIMO could lead to system
failure. Due to the longer transient period imposed the 4& 2
MIMO, the system has on average 4 percent performance degrada-
tion for the ref1 set (phases 1 and 3), while operating above the
references for the ref2 set (phase 2) results an a 3 percent higher
power consumption.

Fig. 12 summarizes the results for all benchmarks. We evaluate
our controllers using the following general properties of feedback
control systems [20]: stability, accuracy, settling time, and overshoot,
also known as SASO Analysis.

Stability. Stability is formally verified at design time before
deploying using pole-zero analysis of the closed-loop state-space
model in Matlab [24]. In our evaluation both controllers are stable.

Accuracy. Accuracy is defined by the steady-state error between
the measured output and reference input. We calculate the steady-
state error as the difference between the reference and median out-
put. We have empirically determined that the median output value
provides a good proxy to the stable output value when calculating
the steady-state error, since the median is not significantly affected
by output changes during the transient state. In our experimental
evaluation, each of the phases show in Table 2 is 20s long, allowing
the system to stays in the stable-state longer than in the transient
state. Also the median value ignores some oscillations which are
expected to happen around the reference. This happens mainly
due to two reasons: 1) workload variability and noise from the
underlying runtime system (Linux kernel); and 2) the granularity
of valid control input values (number of active cores and clock fre-
quency) is not fine enough to track the reference given the current
workload state, so the controller oscillates between the two set of
inputs that best track the reference. Figs. 12a and 12b show the
steady state error for power and IPS for the benchmarks executed.
The error is shown as the average error over the three tracking
phases. The steady-state error is under 11 and 4 percent in all cases
for IPS and power respectively. This tells us that both controllers
are able to sufficiently track the references on average. The 2 & 2

TABLE 2
Workloads and References for the 2& 2 MIMOs

IPS((109) ref1 Power(W) ref1 IPS((109) ref2 Power(W) ref2

Workload BigC LittleC BigC LittleC BigC LittleC BigC LittleC

bodytrack 4.78 0.76 3.10 0.29 2.82 0.62 1.65 0.20

canneal 1.55 0.04 1.87 0.16 1.36 0.04 1.40 0.11

streamcluster 2.72 0.05 2.88 0.19 1.81 0.04 1.65 0.13

mbench 11.97 4.48 4.14 0.69 7.06 2.53 2.17 0.37

x264 5.25 0.28 3.62 0.24 3.09 0.59 1.94 0.23

swaptions 3.04 1.72 2.55 0.48 2.69 1.47 1.92 0.34

blackscholes 1.65 1.41 2.10 0.40 1.45 1.21 1.59 0.28

fluidanimate 3.06 1.53 2.36 0.42 2.75 1.33 1.79 0.30

For the 4 & 2 MIMO, the IPS/Power reference are the aggregated references of
the big and little clusters. Fig. 11. Total IPS and power tracking for the 2x2 and 4x2 MIMOs when running

blackscholes.

Fig. 12. Accuracy in terms of steady-state (SS) error, settling time, and overshoot (OS) results.
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error is comparable or less than the 4& 2 in all cases but one, how-
ever, the differences are not significant.

Settling Time. The settling time is the time it takes to reach suffi-
ciently close to the steady-state value after the reference values are
set. Figs. 12c and 12d show the empirically calculated worst-case
settling time for IPS and power respectively. This is where the
behavior of the controllers diverge: the 4& 2 settling time is worse
in all cases but one, and significantly so in many. This is due to
size or non-uniformity of the model, which needs more trial and
error to converge. Settling time is an important metric for systems
in which the references might change rapidly. It is also important
for disturbance rejection in the presence of dynamic workloads,
because the convergence must occur before the workload changes.
For instance, [16] presents an optimizer deployed on top a single-
MIMO design which periodically changes references to reach an
optimal energy efficient point. In our HMP scenario, such an
approach could only be used with the 2 & 2 multi-MIMO, since
the high settling time of the 4 & 2 MIMO does not allow such an
optimizer time to converge.

Maximum Overshoot. The maximum overshoot is calculated as
the largest difference observed between the output and reference,
as a percentage of the reference. Figs. 12e and 12f show the maxi-
mum overshoot of each case for IPS and power. The overshoot is
highly application dependent, and the significance of this metric
is case-specific. Our overshoot values are acceptable given our
prior observations about steady-state and accuracy. There is not
a distinctly discernible pattern to the respective overshoot, but
the 2 & 2 controller does have higher maximum overshoot in
many cases. This is a common property of a fast-responding
controller.

Runtime Complexity. The runtime cost of each control iteration is
dominated by the A & xðtÞ matrix multiplication (Equation (1)). A
is a coefficient matrix of size n & n, and xðtÞ is a current state vector
of size n, where n ¼ order þ #outputs. Both the 4 & 2 and 2 & 2
MIMOs are order-4 controllers, resulting in the same runtime com-
plexity of Oðn3Þ (considering the straightforward implementation
of matrix multiplication). In our experimental evaluation, the
runtime overhead is 3:4ms and 2:6ms for the 4 & 2 and 2 & 2
MIMO, respectively. This results in a negligible effective overhead
(< 0:01%) given the control period (50ms). For larger systems, the
cubic growth with both order and number of inputs further moti-
vates the use of multiple smaller MIMO designs. Additionally, a
multi-MIMO design provides more opportunities for optimization,
such as executing multiple control iterations in parallel.

6 RELATED WORK

Single-objective heuristic-based runtime resource management
approaches have been explored extensively [4], [5], [6]. In general,
there is a large body of literature on ad-hoc resource management
approaches for processors often using heuristics and thresholds
[25], [26], rules [27], [28], solvers [29], [30], [31], and predictive
models [32], [33] which are typically structured in nested loops.

Pothukuchi et al. [16] present a well-categorized comparison
among five main classes of on-chip resource management
approaches: Optimization,Machine Learning,Model-basedHeuris-
tics, Rule-based Heuristics, and Control Theory. They discuss the
shortcomings of ad-hoc and heuristic-based approaches in address-
ing some of the attributes such as lack of guarantees, the need for
exhaustive training and close to reality models, just to mention a
few. There are a number of control theoretic approaches ([8], [9],
[10], [34], [35], [36], [37], [38], [39], [40]) that provide formal and effi-
cient means to address robustness and testability for managing
computer systems. The most successful of these concurrently coor-
dinate and control multiple goals and actuators in a non-conflicting
manner by adding an ad-hoc component to a controller or hierarchi-
cal loops. In [15] the authors provide a guide for designing MIMO

formal controllers for tuning architectural parameters in processors
to enhance coordination, and demonstrate the coordinating man-
agement of multiple goals for unicore processors [16]. To the best of
our knowledge, our work is the first to apply the complexity of
MIMO control for heterogeneous multicores. We believe ours is the
first effort in designing predictable MIMO control for HMPs that
critically need coordinated control of discrete systems with numer-
ous and diverse elements. Our work leverages lessons learned from
applying techniques [19], [20] for the design of MIMOs for general
computer systems.

7 CONCLUSION

In thisworkwe present amethodology to enable robust and predict-
able MIMO control of HMPs. Our methodology takes into account
the non-uniform nature of the sensors and actuators in the system
and outlines the steps for proper system decomposition and system
identification prior to the classical MIMO controller design process.
With our approach, the robustness analysis process is able to ensure
system stability and satisfaction of design objectives. We demon-
strate efficacy of our approach on a case study using the ODROID
big.LITTLE HMP platform by following all steps of our methodol-
ogy to generate predictableMIMO controllers.

As our work demonstrates, MIMO control is a promising tech-
nique for contemporary HMPs, however it has limitations that
need to be addressed in future work. As we demonstrated, current
MIMO control approaches suffer from exponential growth due to
input/output sizes, and infeasibility of Dynamic System Model
identification for large MIMO systems, thus requiring the deploy-
ment of multiple controllers to achieve responsiveness. However,
distributed MIMOs are not sufficiently autonomous. A higher level
resource management policy is needed to set the tracking referen-
ces of local controllers and optimizing their gains towards a sys-
tem-wide optimization goal. As future work, we plan to explore
the use of techniques such as supervisory control theory for hierarchi-
cal coordination of local controllers and management of the overall
system behavior.
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